1
|
Pinel-Cabello M, Ruiz-Fresneda MA, Sánchez-Castro I, Brinkmann H, Moll H, Cherkouk A, López-Fernández M, Merroun ML. Role of growth conditions and physicochemical factors controlling the removal and biomineralization of U(VI) by Stenotrophomonas bentonitica BII-R7. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126217. [PMID: 40222609 DOI: 10.1016/j.envpol.2025.126217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/03/2025] [Accepted: 04/05/2025] [Indexed: 04/15/2025]
Abstract
Microbial U(VI)-phosphate biomineralization-based bioremediation has gained attention as a cost-effective and eco-friendly strategy. However, key environmental and biological factors controlling the process remain unclear. The present work assesses the influence of pH and physiological state of Stenotrophomonas bentonitica BII-R7 cells on U(VI) biomineralization under growing and non-growing conditions. The results showed that biomineralization was more effective at growing cells, removing up to 95 % of soluble U after 24 h, forming needle-shape accumulates on the cell surface and extracellular that avoid the entrance of U(VI) in the cells. High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and time-resolved laser-induced fluorescence spectroscopy (TRLFS) analyses, along with the phosphatase activity detected under these conditions, suggested a two-stage process: first, a fast-passive biosorption of U(VI) to organic phosphate groups of the cell surface and secondly the biomineralization in form of U(VI)-phosphate precipitates by the activity of phosphatase enzymes. Furthermore, the pH seemed to influence the efficiency of the biomineralization, being more effective at pH 7 than 5.5, as it could affect the free functional groups available for biosorption. Therefore, the results highlight the key factors that need to be controlled for the long-term removal of U(VI) via biomineralization for bioremediation purposes.
Collapse
Affiliation(s)
- Maria Pinel-Cabello
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain.
| | - Miguel A Ruiz-Fresneda
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Iván Sánchez-Castro
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| | - Hannes Brinkmann
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Henry Moll
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | - Andrea Cherkouk
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Bautzner Landstrasse 400, 01328, Dresden, Germany
| | | | - Mohamed L Merroun
- Department of Microbiology, University of Granada, Campus Fuentenueva s/n, 18071, Granada, Spain
| |
Collapse
|
2
|
Naifar A, Oueslati K, Aouaini F, Basha B, Ben Lamine A. Unraveling Uranium Adsorption Mechanisms on Amidoxime-Modified Multiwalled Carbon Nanotubes Using Statistical Physics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:12781-12791. [PMID: 40371926 DOI: 10.1021/acs.langmuir.5c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Effective management of uranium levels in soil and water via removal or minimization is imperative for safeguarding both environmental integrity and public health. This study successfully implemented four advanced statistical physics-based adsorption models (monoenergetic monolayer, bienergetic monolayer, trienergetic monolayer and bienergetic bilayer) to accurately describe experimental uranium(VI) uptake onto amidoxime (AO) modified multiwalled carbon nanotubes (AO-MWCNTs) at 298-318 K range. The optimal model, selected through rigorous statistical analysis (R2, χred2, RSS and HYBRID), was deployed to derive essential thermodynamic parameters including entropy, Gibbs free energy and internal energy alongside stereographic metrics. The variations in these relevant factors are carefully inspected in relation to the temperature of adsorption isotherms. Our conducted error quantification procedure identified the single-energy monolayer framework as the most satisfactory and realistic representation of the adsorption data. Moreover, performed numerical analysis demonstrated that the number of uranium bounded by the docking cavity fluctuates in the range of [1.22-0.76] across the temperature range. As the system's thermal energy increased, the number of accessible sites per unit mass of the adsorbent was observed to rise and reached 126,788 for T = 318 K. Finally, thermodynamic analysis revealed that the retention process is endothermic while the negative values of Gibbs free energy confirmed the spontaneous nature of the adsorption process indicating its thermodynamic feasibility. Entropy shows two regimes around a maximum: for C < C1/2 (≈12 mg/L), disorder increases sharply; beyond the peak, entropy declines, indicating emerging configurational order. The major outcomes of our investigation provide crucial insights and are expected to significantly contribute to minimizing the environmental and health risks associated with uranium contamination.
Collapse
Affiliation(s)
- Amin Naifar
- Preparatory Institute for Engineering Studies of Kairouan, (I.P.E.I.K) University of Kairouan, Kairouan 3100, Tunisia
- Laboratory of Chemistry, Materials and Modelling (LR24ES02), Department of Physics, University of Kairouan, Kairouan 3100, Tunisia
| | - Kods Oueslati
- Laboratory of Quantum Physics LR 18 ES 18, Faculty of Sciences of Monastir, Monastir 5000, Tunisia
- Preparatory Institute for Engineering Studies of Bizerte, University of Carthage, (I.P.E.I.B.), Bizerte 7021, Tunisia
| | - Fatma Aouaini
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Beriham Basha
- Department of Physics, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Abdelmottaleb Ben Lamine
- Laboratory of Quantum Physics LR 18 ES 18, Faculty of Sciences of Monastir, Monastir 5000, Tunisia
| |
Collapse
|
3
|
Bradley PM, Romanok KM, Smalling KL, Donahue L, Gaikowski MP, Hines RK, Breitmeyer SE, Gordon SE, Loftin KA, McCleskey RB, Meppelink SM, Schreiner ML. Tapwater exposures, residential risk, and mitigation in a PFAS-impacted-groundwater community. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1368-1388. [PMID: 40223753 DOI: 10.1039/d5em00005j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Tapwater (TW) safety and sustainability are priorities in the United States. Per/polyfluoroalkyl substance(s) (PFAS) contamination is a growing public-health concern due to prolific use, widespread TW exposures, and mounting human-health concerns. Historically-rural, actively-urbanizing communities that rely on surficial-aquifer private wells incur elevated risks of unrecognized TW exposures, including PFAS, due to limited private-well monitoring and contaminant-source proliferation in urbanizing landscapes. Here, a broad-analytical-scope TW-assessment was conducted in a hydrologically-vulnerable, Mississippi River alluvial-island community, where PFAS contamination of the shallow-alluvial drinking-water aquifer has been documented, but more comprehensive contaminant characterization to inform decision-making is currently lacking. In 2021, we analyzed 510 organics, 34 inorganics, and 3 microbial groups in 11 residential and community locations to assess (1) TW risks beyond recognized PFAS issues, (2) day-to-day and year-to-year risk variability, and (3) suitability of the underlying sandstone aquifer as an alternative source to mitigate TW-PFAS exposures. Seventy-six organics and 25 inorganics were detected. Potential human-health risks of detected TW exposures were explored based on cumulative benchmark-based toxicity quotients (∑TQ). Elevated risks (∑TQ ≥ 1) from organic and inorganic contaminants were observed in all alluvial-aquifer-sourced synoptic samples but not in sandstone-aquifer-sourced samples. Repeated sampling at 3 sites over 52-55 h indicated limited variability in risk over the short-term. Comparable PFAS-specific ∑TQ for spatial-synoptic, short-term (3 days) temporal, and long-term (3 years quarterly) temporal samples indicated that synoptic results provided useful insight into the risks of TW-PFAS exposures at French Island over the long-term. No PFAS detections in sandstone-aquifer-sourced samples over a 3 year period indicated no PFAS-associated risk and supported the sandstone aquifer as an alternative drinking-water source to mitigate community TW-PFAS exposures. This study illustrated the importance of expanded contaminant monitoring of private-well TW, beyond known concerns (in this case, PFAS), to reduce the risks of a range of unrecognized contaminant exposures.
Collapse
|
4
|
Faqir Y, Li Z, Gul T, Zahoor, Jiang Z, Yu L, Tan C, Chen X, Ma J, Feng J. Uranium's hazardous effects on humans and recent developments in treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118043. [PMID: 40080936 DOI: 10.1016/j.ecoenv.2025.118043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/15/2025]
Abstract
Uranium, a naturally occurring element, is predominantly recognized for its role as fuel in both civilian and military energy sectors. Concerns have been raised regarding the adverse environmental impacts and health risks associated with uranium mining due to the exposure it causes. Such exposure leads to systemic toxicity, affecting pulmonary, hepatic, renal, reproductive, neurological, and bone health. This review identifies significant research gaps regarding detoxification methods for uranium contamination and recommends further advancements, including genetic modification and exploration of plant compounds. A comprehensive review of published research materials from diverse sources of uranium, including various treatments and hazardous impacts on the human body, was conducted. Additionally, a PRISMA analysis was performed in this study. This review emphasizes the importance of collaboration and the formulation of research-informed regulations to effectively safeguard vulnerable communities from the consequences of contamination. Public discourse often emphasizes the significance of radiotoxicity; however, the non-radioactive chemotoxicity of uranium has been identified as a significant risk factor for environmental exposures, contingent upon species, enrichment, and exposure route. Given these serious health consequences, several methods are being investigated to ameliorate uranium toxicity. In response to these concerns, several techniques, such as phytomedicinal treatments, biochemical approaches, and chelation therapy, have been investigated to minimize the adverse effects of uranium exposure in the human body.
Collapse
Affiliation(s)
- Yahya Faqir
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ziang Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Talaal Gul
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zahoor
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ziwei Jiang
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Chengjia Tan
- School of Life Science and Technology, Mianyang Teachers' College, Mianyang 621000, China
| | - Xi Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang 621000, China
| | - Jiahua Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jiafu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang 621000, China.
| |
Collapse
|
5
|
Peng L, Chen X, Wang AQ, Xie G, Zhang B, Feng JF. Insulin like growth factor binding protein 7 activate JNK/ERK signaling to aggravate uranium-induced renal cell cytotoxicity. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03923-4. [PMID: 40021513 DOI: 10.1007/s00210-025-03923-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
Acute kidney injury (AKI) can occur primarily by exposing kidneys to uranium (U). Insulin-like growth factor binding protein 7 (IGFBP7) can regulate sepsis-induced AKI and epithelial-mesenchymal transition through ERK1/2 signaling. In vitro, the IGFBP7's role and mechanism of action in uranium-induced NRK-52E cells, however, remains unknown. To evaluate the effect of U exposure on kidneys, rat kidney proximal cell line NRK-52E was treated with different concentrations (200, 400, and 800 µmol/L) of it. Subsequently, three siRNAs targeting IGFBP7 were transfected with the HiPerFect reagent. The role of the JNK/ERK signaling pathway in uranium-induced kidney cytotoxicity was examined by a series of cell function experiments, including CCK-8 assay, TUNEL staining, RT-qPCR, Western blot, and flow cytometry analysis. Uranium inhibited NRK-52E cell viability and enhanced IGFBP7 expression in a dose-dependent manner. Silencing of IGFBP7 promoted cell cycle progression and inhibited cell apoptosis of uranium-treated cells. Mechanistically, silencing of IGFBP7 inhibited the uranium-activated JNK/ERK signaling pathway. The ERK1/2 signaling inhibitor PD98059 suppressed the IGFBP7-activated JNK/ERK signaling pathway. Furthermore, knockdown of IGFBP7 exerted a similar effect with PD98059 on uranium-induced NRK-52E cell cycle arrest and apoptosis. Silencing IGFBP7 inhibited the JNK/ERK signaling pathway to attenuate uranium-induced cytotoxicity and necrosis of NRK-52E cells.
Collapse
Affiliation(s)
- Ling Peng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Fucheng District, Mianyang, 621000, P.R. China
| | - Xi Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Fucheng District, Mianyang, 621000, P.R. China
| | - An-Qun Wang
- Departments of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, P.R. China
| | - Gang Xie
- Departments of Pathology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, P.R. China
| | - Bin Zhang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Fucheng District, Mianyang, 621000, P.R. China
| | - Jia-Fu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Departments of Clinical Laboratory, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Fucheng District, Mianyang, 621000, P.R. China.
| |
Collapse
|
6
|
Chaúque BJM, de Amorim Nascimento FL, Silva KJS, Hoff RB, Goldim JR, Rott MB, Zanette RA, Verruck S. Solar-based technologies for removing potentially toxic metals from water sources: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3503-3530. [PMID: 39821874 DOI: 10.1007/s11356-025-35897-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 01/02/2025] [Indexed: 01/19/2025]
Abstract
Technological advances have led to a proportional increase in the deposition of contaminants across various environmental compartments, including water sources. Heavy metals, also known as potentially toxic metals, are of particular concern due to their significant harmful impacts on environmental and human health. Among the available methods for mitigating the threat of these metals in water, solar radiation-based technologies stand out for their cleanliness, cost-effectiveness, and efficiency in removing or reducing the toxicity of heavy metals. The performance and productivity of these methods in removing heavy metals such as arsenic (As), chromium (Cr), mercury (Hg), and uranium (U) from water still need to be comprehensively synthesized. Thus, this work aims to address that gap. The performance, potential, and challenges of real-world applications of conventional solar stills (CSS), membrane-based solar stills, and solar heterogeneous photocatalysis are concisely summarized and critically reviewed. CSS and membrane-based stills are highly effective (efficacy > 98%) in removing and capturing heavy metals from water. However, structural and functional improvements are needed to enhance productivity (especially for CSS) and usability in real-world environmental remediation and drinking water supply scenarios. Solar heterogeneous photocatalysis is highly effective in removing and/or converting As, Cr, Hg, and U into their non-toxic or less toxic forms, which subsequent processes can easily remove. Further research is necessary to evaluate the safety of photocatalytic materials, their integration into scalable solar reactors, and their usability in real-world environmental remediation applications.
Collapse
Affiliation(s)
- Beni Jequicene Mussengue Chaúque
- Mestrado Profissional Em Pesquisa Clínica, Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Porto Alegre, Rio Grande Do Sul, Brazil.
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
- Center of Studies in Science and Technology (NECET), Biology Course, Universidade Rovuma, Niassa, Lichinga, Mozambique.
| | - Francisco Lucas de Amorim Nascimento
- Departamento de Zootecnia E Desenvolvimento Rural, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, SC, 88034-001, Brazil
| | | | - Rodrigo Barcellos Hoff
- Advanced Laboratory Section of Santa Catarina (SLAV/SC), Ministry of Agriculture and Livestock (MAPA), R. João Grumiche, 117 - Bloco T, São José, Santa Catarina, 88102-600, Brazil
| | - José Roberto Goldim
- Master's Program in Clinical Research (MPPC) at the Hospital de Clínicas de Porto Alegre (HCPA) (CAPES Pilot Program), Porto Alegre, Rio Grande Do Sul, Brazil
| | - Marilise Brittes Rott
- Protozoology Laboratory, Microbiology Immunology and Parasitology Department, Basic Health Sciences Institute, Federal University of Rio Grande Do Sul, Ramiro Barcelos Street, N 2600, Porto Alegre, Rio Grande Do Sul, 90035-002, Brazil
| | - Régis Adriel Zanette
- Postgraduate Program in Biological Sciences: Pharmacology and Therapeutics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Silvani Verruck
- Departamento de Ciência E Tecnologia de Alimentos, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, Itacorubi, Florianópolis, Santa Catarina, 88034-001, Brazil
| |
Collapse
|
7
|
Lieberman-Cribbin W, Martinez-Morata I, Domingo-Relloso A, Umans JG, Cole SA, O’Leary M, Grau-Perez M, Pichler G, Devereux RB, Nigra AE, Kupsco A, Navas-Acien A. Relationship Between Urinary Uranium and Cardiac Geometry and Left Ventricular Function: The Strong Heart Study. JACC. ADVANCES 2024; 3:101408. [PMID: 39640231 PMCID: PMC11617505 DOI: 10.1016/j.jacadv.2024.101408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 12/07/2024]
Abstract
Background Uranium is a potentially cardiotoxic, nonessential element commonly found in drinking water throughout the United States. Objectives The purpose of this study was to evaluate if urinary uranium concentrations were associated with measures of cardiac geometry and function among American Indian young adults from the Strong Heart Family Study. Methods Urinary uranium was measured among 1,332 participants free of diabetes, cardiovascular disease, and <50 years of age at baseline (2001-2003). Transthoracic echocardiography and blood pressure were assessed at baseline and at a follow-up visit (2006-2009). We estimated adjusted mean differences in cardiac geometry and function measures at baseline and follow-up using linear mixed-effect models with a random intercept and slope over time. Results Median (interquartile range) uranium was 0.029 (0.045) μg/g creatinine. In fully adjusted cross-sectional models, a log-doubling of urinary uranium was positively associated with left ventricular (LV) mass index (mean difference: 0.49 g/m2, 95% CI: 0.07-0.92 g/m2), left atrial systolic diameter (0.01 cm/m2, 0.01-0.02 cm/m2), and stroke volume (0.66 mL, 0.25-1.08 mL) at baseline. Prospectively, uranium was associated with increases in left atrial diameter (0.01 cm/m2, 0.01-0.02 cm/m2), pulse pressure (0.28 mm Hg, 0.05-0.52 mm Hg), and incident LV hypertrophy (odds ratio: 1.25, 95% confidence interval: 1.06, 1.48). Conclusions Urinary uranium levels were adversely associated with measures of cardiac geometry and LV function among American Indian adults, including increases in pulse pressure and LV hypertrophy. These findings support the need to determine the potential long-term subclinical and clinical cardiovascular effects of chronic uranium exposure, and the need for future strategies to reduce exposure.
Collapse
Affiliation(s)
- Wil Lieberman-Cribbin
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Arce Domingo-Relloso
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Jason G. Umans
- Georgetown-Howard Universities Center for Clinical and Translational Science, Washington DC, USA
- MedStar Health Research Institute, Hyattsville, Maryland, USA
| | - Shelley A. Cole
- Population Health Program, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Marcia O’Leary
- Missouri Breaks Industries Research, Cheyenne River Sioux Tribe, Eagle Butte, South Dakota, USA
| | - Maria Grau-Perez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
- Big data and Artificial Intelligence Unit, Biomedical Research Institute INCLIVA, Valencia, Spain
- Department of Statistics and Operational Research, University of Valencia, Valencia, Spain
| | - Gernot Pichler
- Department of Cardiology and Karl Landsteiner Institute for Cardiovascular and Critical Care Research, Clinic Floridsdorf, Vienna, Austria
| | - Richard B. Devereux
- Division of Cardiology, Weill Cornell Medical College, New York, New York, USA
| | - Anne E. Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
8
|
Uduba P, Soares L, Babalola T, Slotnick M, Linder A, Meliker JR. Uranium in Drinking Water and Bladder Cancer: A Case-control Study in Michigan. HEALTH PHYSICS 2024; 127:719-724. [PMID: 39102509 PMCID: PMC12053534 DOI: 10.1097/hp.0000000000001880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
ABSTRACT Uranium is naturally occurring in groundwater used for drinking; however, health risks from naturally occurring concentrations are uncertain. Uranium can cause both radiological and chemical toxicity following ingestion. Bladder and kidneys receive a dose when uranium is excreted into the urine. Investigate the association between uranium in drinking water and bladder cancer risk in a case-control study. A population-based bladder cancer case-control study was conducted in 11 counties of southeastern Michigan. A total of 411 cases and 566 controls provided drinking water and toenail samples and answered questions about lifestyle and residential history. Uranium was measured in drinking water and toenails, and its association with bladder cancer was assessed via unconditional logistic regression models. Median uranium concentration in water was 0.12 μg L -1 , with a maximum of 4.99 μg L -1 , and median uranium concentration in toenails was 0.0031 μg g -1 . In adjusted regression models, there was a suggestion of a protective effect among those exposed to the upper quartile of uranium in drinking water (HR = 0.64, 95% CI: 0.43, 0.96) and toenails (HR 0.66; 95% CI 0.45, 0.96) compared to those in the lowest quartile. Our objective is to investigate additional adjustment of drinking water source at home residence at time of recruitment to address potential selection bias and confounding attenuated results toward the null for drinking water uranium (HR = 0.68, 95% CI: 0.44, 1.05) and toenail uranium (HR = 0.80, 95% CI: 0.53, 1.20). This case-control study showed no increased risk of bladder cancer associated with uranium found in drinking water or toenails.
Collapse
Affiliation(s)
| | - Lissa Soares
- Program in Public Health, Stony Brook University
| | | | - Melissa Slotnick
- Department of Nutritional Sciences, University of Michigan School of Public Health
| | | | | |
Collapse
|
9
|
Garima, Babita, Amanjeet, Kataria N, Bhardwaj A, Dhiman R, Chaudhary S. Risk assessment of uranium in water sources near coal mines and in human organs of Shahdol District, Madhya Pradesh, using biokinetic modelling. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:513. [PMID: 39541045 DOI: 10.1007/s10653-024-02294-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
This study concentrated on determining the levels of uranium present in drinking water samples obtained from various locations throughout the Shahdol district in Madhya Pradesh, India. In this assessment a LED fluorimeter Quantalase (LF-2a) was utilized. Uranium, being a radioactive substance, can be hazardous to health when consumed in significant quantities over extended durations. The study found that the average uranium concentration was 167.91 µg/L. 82% of samples exceeded recommended limits, emphasizing the essential aspect of this study. The study utilizes the age-specific biokinetic model developed by the International Commission on Radiological Protection to examine uranium distribution across various organs. Using dosimetric model, the study provides a comprehensive health risk analysis by assessing the chemical toxicity and the radiation dosages received by particular organs. Longitudinal studies on uranium distribution across different organs and tissues showed that the kidneys, liver, non-exchangeable bone volume, and soft tissues are the primary locations where uranium accumulates.
Collapse
Affiliation(s)
- Garima
- Department of Physics, Baba Mastnath University, Rohtak, Haryana, 124021, India
| | - Babita
- Department of Physics, Baba Mastnath University, Rohtak, Haryana, 124021, India
| | - Amanjeet
- Department of Physics, University of Delhi (Ramjas College), Delhi, 110007, India.
| | - Navish Kataria
- Department of Environmental Science, J.C. Bose University of Science and Technology, Faridabad, 121006, India
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Academy of Research and Education, Kelambakkam, Chengalpattu, 603103, Tamil Nadu, India
| | - Ashutosh Bhardwaj
- Department of Physics and Astrophysics, University of Delhi, Delhi, 110007, India
| | - Rekha Dhiman
- Department of Physics, Guru Jambheswar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Sawan Chaudhary
- Department of Sciences, Geeta University, Panipat, Haryana, 132145, India
| |
Collapse
|
10
|
Gao Y, Zhou S, Yang Z, Tang Z, Su Y, Duan Y, Song J, Huang Z, Wang Y. Unveiling the role of uranium in enhancing the transformation of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135624. [PMID: 39208634 DOI: 10.1016/j.jhazmat.2024.135624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/04/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Transformation represents one of the most important pathways for the horizontal transfer of antibiotic resistance genes (ARGs), which enables competent bacteria to acquire extracellular ARGs from the surrounding environment. Both heavy metals and irradiation have been demonstrated to influence the bacterial transformation process. However, the impact of ubiquitously occurring radioactive heavy metals on the transformation of ARGs remains largely unknown. Here, we showed that a representative radioactive nuclide, uranium (U), at environmental concentrations (0.005-5 mg/L), improved the transformation frequency of resistant plasmid pUC19 into Escherichia coli by 0.10-0.85-fold in a concentration-dependent manner. The enhanced ARGs transformation ability under U stress was demonstrated to be associated with reactive oxygen species (ROS) overproduction, membrane damage, and up-regulation of genes related to DNA uptake and recombination. Membrane permeability and ROS production were the predominant direct and indirect factors affecting transformation ability, respectively. Our findings provide valuable insight into the underlying mechanisms of the impacts of U on the ARGs transformation process and highlight concerns about the exacerbated spread of ARGs in radioactive heavy metal-contaminated ecosystems, especially in areas with nuclear activity or accidents.
Collapse
Affiliation(s)
- Yuanyuan Gao
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Shuai Zhou
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China.
| | - Zhengqing Yang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China.
| | - Zhenping Tang
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Yinglong Su
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yi Duan
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Jian Song
- Hunan Province Key Laboratory of Rare Metal Minerals Exploitation and Geological Disposal of Wastes, School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zefeng Huang
- Hunan Province Key Laboratory of Pollution Control and Resources Reuse Technology, School of Civil Engineering, University of South China, Hengyang 421001, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, China
| |
Collapse
|
11
|
Dhanya V, Rajesh N. Sonochemical synthesis of guar gum - Zirconium phosphate composite for efficient capture of uranium from water. Int J Biol Macromol 2024; 282:136830. [PMID: 39461635 DOI: 10.1016/j.ijbiomac.2024.136830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/12/2024] [Accepted: 10/21/2024] [Indexed: 10/29/2024]
Abstract
The increasing presence of uranium as a radionuclide contaminant in water is a threat to human health and the environment. Sonication-assisted crosslinking of guar gum, a biopolymer, is carried out with zirconium phosphate to form an adsorbent (GG@ZrP) for the removal of uranium from water. The surface characteristics, functionalities, and thermal stability of the composite were established using various analytical and spectral tools. Langmuir, Freundlich, and Sips models were used to evaluate the batch adsorption parameters. The adsorbent exhibited an excellent Langmuir adsorption capacity of 500 mg g-1 towards adsorption of uranium at pH 6. The adsorption was endothermic (ΔH, 22.63 kJ mol-1) and followed pseudo-second order kinetics. The synergistic influence of hydroxyl-rich guar gum and phosphate moieties resulted in efficient binding of uranium. With a high selectivity towards interfering cations and anions and applicability over a good range of pH, this adsorbent is a promising candidate for uranium remediation from water.
Collapse
Affiliation(s)
- V Dhanya
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India
| | - N Rajesh
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India.
| |
Collapse
|
12
|
Yu HY, Gupta S, Zhou Z. Removal of metals and assimilable organic carbon by activated carbon and reverse osmosis point-of-use water filtration systems. CHEMOSPHERE 2024; 365:143251. [PMID: 39233301 DOI: 10.1016/j.chemosphere.2024.143251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/06/2024]
Abstract
Activated carbon (AC) systems and reverse osmosis (RO) systems are commonly used point-of-use (POU) water filtration systems for removing trace-level contaminants in tap water to protect human health. However, limited research has been done to evaluate their effectiveness in removing heavy metals like manganese (Mn) and uranium (U), or to assess the potential for undesired microbial growth within POU systems, which can reduce their treatment efficiency. This study aimed to systematically evaluate the removal of metals and assimilable organic carbon (AOC) in POU systems. AC systems were operated to 200% of their designed treatment capacities and RO systems were run for three weeks. The results showed that AC systems were generally ineffective at removing metals from drinking water, while RO systems effectively removed them. Both Mn and U were poorly removed by AC systems. Calcium (Ca) and magnesium (Mg) were poorly removed by AC systems, with efficiencies of less than 1%. Iron (Fe) removal by AC systems varied between 61% and 84%. Copper (Fe), likely due to its low influent concentration (<30 μg L-1), was effectively removed by AC systems with efficiencies over 95%. In contrast, RO systems consistently removed all metals effectively. Mn and U removal in RO systems exceeded 95%, while Ca, Mn, Fe, and Cu were all removed with efficiencies greater than 98%. AOC was effectively removed from all AC and RO systems, but with high variability in removal efficiency, which is likely attributed to the heterogeneity of biofilm and microbial growth within the POU systems. The new knowledge generated from this study can improve our understanding of chemical contaminant removal in POU systems and inform the development of better strategies for designing and operating POU systems to remove chemical contaminants in drinking water and mitigate their associated health risks.
Collapse
Affiliation(s)
- Hsin-Yin Yu
- Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Shreya Gupta
- Civil and Construction Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhi Zhou
- Environmental and Ecological Engineering, Purdue University, West Lafayette, IN, 47907, USA; Civil and Construction Engineering, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Vibho A, Rogat C, Karavas E, Mohammed R, Ogadi P, White M, Salois T, Anderson C, Prairie MW, Frisbie SH, Gallant SK. Development of an affordable light emitting diode spectrophotometer paired with a Python program for calibration and linearity testing and the measurement of uranium(VI). PLoS One 2024; 19:e0308516. [PMID: 39288129 PMCID: PMC11407612 DOI: 10.1371/journal.pone.0308516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/24/2024] [Indexed: 09/19/2024] Open
Abstract
Uranium (U) is a radiologically and chemically toxic element that occurs naturally in water, soil, and rock at generally low levels. However, anthropogenic uranium can also leach into groundwater sources due to mining, ore refining, and improper nuclear waste management. Over the last few decades, various methods for measuring uranium have emerged; however, most of these techniques require skilled scientists to run samples on expensive instrumentation for detection or require the pretreatment of samples in complex procedures. In this work, a Schiff base ligand (P1) is used to develop a simple spectrophotometric method for measuring the concentration of uranium (VI) with an accurate and affordable light-emitting diode (LED) spectrophotometer. A test for a higher-order polynomial relationship was used to objectively determine the calibration data's linearity. This test was done with a Python program on a Raspberry Pi computer that captured the spectrophotometer's calibration and sample measurement data.
Collapse
Affiliation(s)
- Amrutaa Vibho
- Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont, United States of America
| | - Courtney Rogat
- Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont, United States of America
| | - Emily Karavas
- Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont, United States of America
| | - Rahisa Mohammed
- Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont, United States of America
| | - Peace Ogadi
- Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont, United States of America
| | - Michael White
- Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont, United States of America
| | - Thomas Salois
- Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont, United States of America
| | - Charles Anderson
- Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America
| | - Michael W. Prairie
- Department of Electrical and Computer Engineering, Norwich University, Northfield, Vermont, United States of America
| | - Seth H. Frisbie
- Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont, United States of America
| | - Sarah K. Gallant
- Department of Chemistry and Biochemistry, Norwich University, Northfield, Vermont, United States of America
| |
Collapse
|
14
|
Ansari AH, Das A, Sonker A, Ansari NG, Ansari MA, Morthekai P. Assessment of the health risks associated with heavy metal contamination in the groundwaters of the Leh district, Ladakh. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:369. [PMID: 39167338 DOI: 10.1007/s10653-024-02149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
There has been a significant rise in cancer-related mortality in the Ladakh region during the past 10 years. The most common type of case is gastrointestinal cancer, which has been linked in theory by medical research to lifestyle factors, high altitude conditions, and the prevalence of Helicobacter pylori bacteria brought on by poor hygiene. Nevertheless, the precise cause of the rise in cancer cases is still unknown. Concurrently, there has been a significant change in Ladakh's water use practices due to development, improved basic utilities, and related vocational shifts. The local population has become increasingly reliant on groundwater since it provides a year-round, continuous water supply for home and agricultural uses. In this study, we assessed heavy metal contamination in groundwaters and associated human health risks. The results indicate that 46-96% of the groundwater samples have heavy metal pollution with a health hazard index > 1, which means using these groundwaters for drinking, food preparation, and agriculture is likely to result in carcinogenic and non-carcinogenic health hazards. The main heavy metal contaminants found in the groundwater of the Leh district include Cr, As, Hg, and U. According to the health risk assessment, 46-76% of the groundwater samples contain unsafe levels of Cr and As. Prolonged exposure to these levels is likely to cause gastrointestinal cancer in the local population. Acute to chronic exposure to U and Hg concentrations present in some groundwater samples is likely to result in various non-carcinogenic health risks.
Collapse
Affiliation(s)
- A H Ansari
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India.
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| | - Arunaditya Das
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Archana Sonker
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Nasreen Ghazi Ansari
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, 226001, India
| | - Mohammad Arif Ansari
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - P Morthekai
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow, Uttar Pradesh, 226007, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
15
|
Péter T, Takács D, Sáringer S, Szerlauth A, Sajdik K, Galbács G, Tomšič M, Shaw S, Morris K, Douglas G, Szilágyi I. Interaction between Uranyl Cations and Layered Double Hydroxide Nanoparticles: Implications for Nuclear Wastewater Management. ACS ES&T WATER 2024; 4:3059-3067. [PMID: 39712466 PMCID: PMC11656702 DOI: 10.1021/acsestwater.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/21/2024] [Accepted: 06/05/2024] [Indexed: 12/24/2024]
Abstract
Effective uranium (U) capture is required for the remediation of contaminated solutes associated with the nuclear fuel cycle, including fuel reprocessing effluents, decommissioning, or nuclear accident cleanup. Here, interactions between uranyl cations (UO2 2+) and a Mg-Al layered double hydroxide (LDH) were investigated using two types of uranyl-bearing LDH colloids. The first (ULDH) was synthesized by coprecipitation with 10% of Mg2+ substituted by UO2 2+. Alternatively, UO2 2+ was added to a neoformed LDH to obtain the second uranyl-bearing LDH colloid (LDHU). In both the LDHU and ULDH colloid systems, schoepite (UO2)8O2(OH)12·12H2O, was formed. The presence of U significantly reduced the size of both LDHU and ULDH compared to a reference LDH colloid. Surface charge and aggregation of the ULDH and LDHU colloids were compared in NaCl, Na2CO3, Na2SiO3, and Na3PO4 solutions that are often present in nuclear wastewaters. Aggregation of ULDH and LDHU in the presence of Na2SiO3 or Na3PO4 promotes colloid restabilization. While the uranyl cation was not incorporated into the LDH structure, it influences nanoparticle growth in addition to imparting modified surface properties that affect aggregation. This has implications for radioactive waste disposals, where LDH, which can also incorporate a variety of other radionuclides, is used for remediation.
Collapse
Affiliation(s)
- Tamás Péter
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, H-6720 Szeged, Hungary
- Department
of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Dóra Takács
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, H-6720 Szeged, Hungary
- Department
of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Szilárd Sáringer
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, H-6720 Szeged, Hungary
- Department
of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Adél Szerlauth
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, H-6720 Szeged, Hungary
- Department
of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Kadosa Sajdik
- Department
of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Gábor Galbács
- Department
of Molecular and Analytical Chemistry, University
of Szeged, H-6720 Szeged, Hungary
| | - Matija Tomšič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, SI-1000 Ljubljana, Slovenia
| | - Samuel Shaw
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth and Environmental Sciences, University
of Manchester, U.K.-M139PL Manchester, United Kingdom
| | - Katherine Morris
- Research
Centre for Radwaste Disposal and Williamson Research Centre, Department
of Earth and Environmental Sciences, University
of Manchester, U.K.-M139PL Manchester, United Kingdom
| | - Grant Douglas
- Centre for
Environment and Life Sciences, CSIRO Environment, WA-6913 Wembley, Australia
- School
of Molecular and Life Sciences, Curtin University, WA-6102 Bentley, Australia
| | - István Szilágyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Centre, University of Szeged, H-6720 Szeged, Hungary
- Department
of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
16
|
Zhang B, Zhu W, Hou R, Yue Y, Feng J, Ishag A, Wang X, Qin Y, Sun Y. Recent advances of application of bentonite-based composites in the environmental remediation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121341. [PMID: 38824894 DOI: 10.1016/j.jenvman.2024.121341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/11/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Bentonite-based composites have been widely utilized in the removal of various pollutants due to low cost, environmentally friendly, ease-to-operate, whereas the recent advances concerning the application of bentonite-based composites in environmental remediation were not available. Herein, the modification (i.e., acid/alkaline washing, thermal treatment and hybrids) of bentonite was firstly reviewed; Then the recent advances of adsorption of environmental concomitants (e.g., organic (dyes, microplastics, phenolic and other organics) and inorganic pollutants (heavy metals, radionuclides and other inorganic pollutants)) on various bentonite-based composites were summarized in details. Meanwhile, the effect of environmental factors and interaction mechanism between bentonite-based composites and contaminants were also investigated. Finally, the conclusions and prospective of bentonite-based composites in the environmental remediation were proposed. It is demonstrated that various bentonite-based composites exhibited the high adsorption/degradation capacity towards environmental pollutants under the specific conditions. The interaction mechanism involved the mineralization, physical/chemical adsorption, co-precipitation and complexation. This review highlights the effect of different functionalization of bentonite-based composites on their adsorption capacity and interaction mechanism, which is expected to be helpful to environmental scientists for applying bentonite-based composites into practical environmental remediation.
Collapse
Affiliation(s)
- Bo Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Weiyu Zhu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Rongbo Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Yanxue Yue
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jiashuo Feng
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Alhadi Ishag
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China; Department of Chemical Engineering, Faculty of Engineering and Technical Studies, University of Kordofan, El Obeid, 51111, Sudan
| | - Xiao Wang
- Research Center of Applied Geology of China Geological Survery, Chengdu, 610036, PR China
| | - Yan Qin
- Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, PR China.
| | - Yubing Sun
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| |
Collapse
|
17
|
Hassan A, Mollah MMR, Jayashree R, Jain A, Das S, Das N. Ultrafast Removal of Thorium and Uranium from Radioactive Waste and Groundwater Using Highly Efficient and Radiation-Resistant Functionalized Triptycene-Based Porous Organic Polymers. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38687684 DOI: 10.1021/acsami.4c01397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Thorium (Th) and uranium (U) are important strategic resources in nuclear energy-based heavy industries such as energy and defense sectors that also generate significant radioactive waste in the process. The management of nuclear waste is therefore of paramount importance. Contamination of groundwater/surface water by Th/U is increasing at an alarming rate in certain geographical locations. This necessitates the development of strategic adsorbent materials with improved performance for capturing Th/U species from radioactive waste and groundwater. This report describes the design of a unique, robust, and radiation-resistant porous organic polymer (POP: TP-POP-SO3NH4), which demonstrates ultrafast removal of Th(IV) (<30 s)/U(VI) (<60 s) species present in simulated radioactive wastewater/groundwater samples. Thermal, chemical, and radiation stabilities of these POPs were studied in detail. The synthesized ammoniated POP revealed exceptional capture efficiency for trace-level Th (<4 ppb) and U (<3 ppb) metal ions through the cation-exchange mechanism. TP-POP-SO3NH4 shows a significant sorption capacity [Th (787 mg/g) and U (854 mg/g)] with an exceptionally high distribution coefficient (Kd) of 107 mL/g for Th. This work also demonstrates a facile protocol to convert a nonperforming POP, by simple chemical modifications, into a superfast adsorbent for efficient uptake/removal of U/Th.
Collapse
Affiliation(s)
- Atikur Hassan
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | - Md Mofizur Rahman Mollah
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Ravikumar Jayashree
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Ashish Jain
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Soumen Das
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603102, India
| | - Neeladri Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| |
Collapse
|
18
|
Youssef WM, El-Maadawy MM, Masoud AM, Alhindawy IG, Hussein AEM. Uranium capture from aqueous solution using palm-waste based activated carbon: sorption kinetics and equilibrium. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:428. [PMID: 38573523 PMCID: PMC10995074 DOI: 10.1007/s10661-024-12560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Carbonaceous materials produced from agricultural waste (palm kernel shell) by pyrolysis can be a proper type of low-cost adsorbent for wide uses in radioactive effluent treatment. In this context, the as-produced bio-char (labeled as PBC) and its sub-driven sulfuric acid and zinc oxide activated carbons (labeled as PBC-SA, and PBC-Zn respectively) were employed as adsorbents for uranium sorption from aqueous solution. Various analytical techniques, including SEM (Scanning Electron Microscopy), EXD (X-ray Diffraction), BET (Brunauer-Emmett-Teller), FTIR (Fourier Transform Infrared Spectroscopy), and Zeta potential, provide insights into the material characteristics. Kinetic and isotherm investigations illuminated that the sorption process using the three sorbents is nicely fitted with Pseudo-second-order-kinetic and Langmuir isotherm models. The picked data display that the equilibrium time was 60 min, and the maximum sorption capacity was 9.89, 16.8, and 21.9 mg/g for PBC, PBC-SA, and PBC-Zn respectively, which reflects the highest affinity for zinc oxide, activated bio-char, among the three adsorbents, for uranium taking out from radioactive wastewater. Sorption thermodynamics declare that the sorption of U(VI) is an exothermic, spontaneous, and feasible process. About 92% of the uranium-loaded PBC-Zn sorbent was eluted using 1.0 M CH3COONa sodium ethanoate solution, and the sorbent demonstrated proper stability for 5 consecutive sorption/desorption cycles.
Collapse
Affiliation(s)
| | | | - A M Masoud
- Nuclear Materials Authority, Cairo, Egypt.
| | | | | |
Collapse
|
19
|
Yang Y, Dai C, Chen X, Zhang B, Li X, Yang W, Wang J, Feng J. Role of uranium toxicity and uranium-induced oxidative stress in advancing kidney injury and endothelial inflammation in rats. BMC Pharmacol Toxicol 2024; 25:14. [PMID: 38308341 PMCID: PMC10837886 DOI: 10.1186/s40360-024-00734-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE Uranium exposure may cause serious pathological injury to the body, which is attributed to oxidative stress and inflammation. However, the pathogenesis of uranium toxicity has not been clarified. Here, we evaluated the level of oxidative stress to determine the relationship between uranium exposure, nephrotoxic oxidative stress, and endothelial inflammation. METHODS Forty male Sprague-Dawley rats were divided into three experimental groups (U-24h, U-48h, and U-72h) and one control group. The three experimental groups were intraperitoneally injected with 2.0 mg/kg uranyl acetate, and tissue and serum samples were collected after 24, 48, and 72 h, respectively, whereas the control group was intraperitoneally injected with 1.0 ml/kg normal saline and samples were collected after 24 h. Then, we observed changes in the uranium levels and oxidative stress parameters, including the total oxidative state (TOS), total antioxidant state (TAS), and oxidative stress index (OSI) in kidney tissue and serum. We also detected the markers of kidney injury, namely urea (Ure), creatine (Cre), cystatin C (CysC), and neutrophil gelatinase-associated lipocalin (NGAL). The endothelial inflammatory markers, namely C-reactive protein (CRP), lipoprotein phospholipase A2 (Lp-PLA2), and homocysteine (Hcy), were also quantified. Finally, we analyzed the relationship among these parameters. RESULTS TOS (z = 3.949; P < 0.001), OSI (z = 5.576; P < 0.001), Ure (z = 3.559; P < 0.001), Cre (z = 3.476; P < 0.001), CysC (z = 4.052; P < 0.001), NGAL (z = 3.661; P < 0.001), and CRP (z = 5.286; P < 0.001) gradually increased after uranium exposure, whereas TAS (z = -3.823; P < 0.001), tissue U (z = -2.736; P = 0.001), Hcy (z = -2.794; P = 0.005), and Lp-PLA2 (z = -4.515; P < 0.001) gradually decreased. The serum U level showed a V-shape change (z = -1.655; P = 0.094). The uranium levels in the kidney tissue and serum were positively correlated with TOS (r = 0.440 and 0.424; P = 0.005 and 0.007) and OSI (r = 0.389 and 0.449; P = 0.013 and 0.004); however, serum U levels were negatively correlated with TAS (r = -0.349; P = 0.027). Partial correlation analysis revealed that NGAL was closely correlated to tissue U (rpartial = 0.455; P = 0.003), CysC was closely correlated to serum U (rpartial = 0.501; P = 0.001), and Lp-PLA2 was closely correlated to TOS (rpartial = 0.391; P = 0.014), TAS (rpartial = 0.569; P < 0.001), and OSI (rpartial = -0.494; P = 0.001). Pearson correlation analysis indicated that the Hcy levels were negatively correlated with tissue U (r = -0.344; P = 0.030) and positively correlated with TAS (r = 0.396; P = 0.011). CONCLUSION The uranium-induced oxidative injury may be mainly reflected in enhanced endothelial inflammation, and the direct chemical toxicity of uranium plays an important role in the process of kidney injury, especially in renal tubular injury. In addition, CysC may be a sensitive marker reflecting the nephrotoxicity of uranium; however, Hcy is not suitable for evaluating short-term endothelial inflammation involving oxidative stress.
Collapse
Affiliation(s)
- Yuwei Yang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China.
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China.
| | - Chunmei Dai
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Xi Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Bin Zhang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Xiaohan Li
- Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P.R. China
| | - Wenyu Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Jun Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Jiafu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China.
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China.
| |
Collapse
|
20
|
Jiao X, Dong Z, Baccolo G, Qin X, Wei T, Di J, Shao Y. Quantifying uranium radio-isotope ratios in riverine suspended particulate matter: Insights into natural and anthropogenic influences in the glacial-fed river system of the NE Tibetan Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132725. [PMID: 37813028 DOI: 10.1016/j.jhazmat.2023.132725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/05/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
The analysis of uranium isotope ratio 235U/238U in environmental media serves as a reliable method to distinguish between natural and anthropogenic sources of uranium, playing a crucial role in assessing the extent of contamination with anthropogenic uranium and disturbances in its biogeochemical cycle. In this study, we focus on the northeastern Tibetan Plateau to examine the atomic ratio of 235U and 238U in riverine suspended particulate matter (SPM) across eight glacial watersheds. Results reveal that the 235U/238U atomic ratio in the suspended load ranges from 0.007247 to 0.007437 (with an average value of 0.00727 ± 0.00003), which closely aligns with the ratio found in natural uranium (0.00725). The highest mean ratio (0.00729 ± 0.00007) is observed in the upper glacial basin of the Ningchan River. Results suggest the negligible influence of isotopically altered in relation to human nuclear activities. When considering different environmental media, such as soil, snow/cryoconite, and riverine suspended particulate matter in the study area, the 235U/238U ratio in surface soil presents the highest values, pointing to a slight enrichment of 235U. This may be attributed to the fact that soil retains the cumulative signals of uranium atmospheric deposition, including the deposition of 235U-enriched airborne particulate matter deposited after atmospheric nuclear tests carried out in the second half of the 20th century. On the contrary, riverine suspended particulate matter and glacial sediments are more influenced by the natural 235U/238U signature under modern environmental conditions. This confirms that the northeastern Tibetan Plateau is still relatively pristine with respect to biogeochemical disturbances related to human activities.
Collapse
Affiliation(s)
- Xiaoyu Jiao
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwen Dong
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Giovanni Baccolo
- Laboratory of Environmental Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Xiang Qin
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Wei
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Di
- State Key Laboratory of Cryosphere Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaping Shao
- Institute for Geophysics and Meteorology, University of Cologne, Cologne D-50923, Germany
| |
Collapse
|
21
|
Levin R, Villanueva CM, Beene D, Cradock AL, Donat-Vargas C, Lewis J, Martinez-Morata I, Minovi D, Nigra AE, Olson ED, Schaider LA, Ward MH, Deziel NC. US drinking water quality: exposure risk profiles for seven legacy and emerging contaminants. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2024; 34:3-22. [PMID: 37739995 PMCID: PMC10907308 DOI: 10.1038/s41370-023-00597-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND Advances in drinking water infrastructure and treatment throughout the 20th and early 21st century dramatically improved water reliability and quality in the United States (US) and other parts of the world. However, numerous chemical contaminants from a range of anthropogenic and natural sources continue to pose chronic health concerns, even in countries with established drinking water regulations, such as the US. OBJECTIVE/METHODS In this review, we summarize exposure risk profiles and health effects for seven legacy and emerging drinking water contaminants or contaminant groups: arsenic, disinfection by-products, fracking-related substances, lead, nitrate, per- and polyfluorinated alkyl substances (PFAS) and uranium. We begin with an overview of US public water systems, and US and global drinking water regulation. We end with a summary of cross-cutting challenges that burden US drinking water systems: aging and deteriorated water infrastructure, vulnerabilities for children in school and childcare facilities, climate change, disparities in access to safe and reliable drinking water, uneven enforcement of drinking water standards, inadequate health assessments, large numbers of chemicals within a class, a preponderance of small water systems, and issues facing US Indigenous communities. RESULTS Research and data on US drinking water contamination show that exposure profiles, health risks, and water quality reliability issues vary widely across populations, geographically and by contaminant. Factors include water source, local and regional features, aging water infrastructure, industrial or commercial activities, and social determinants. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general problems, ascertaining the state of drinking water resources, and developing mitigation strategies. IMPACT STATEMENT Drinking water contamination is widespread, even in the US. Exposure risk profiles vary by contaminant. Understanding the risk profiles of different drinking water contaminants is necessary for anticipating local and general public health problems, ascertaining the state of drinking water resources, and developing mitigation strategies.
Collapse
Affiliation(s)
- Ronnie Levin
- Harvard TH Chan School of Public Health, Boston, MA, USA.
| | - Cristina M Villanueva
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Daniel Beene
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
- University of New Mexico Department of Geography & Environmental Studies, Albuquerque, NM, USA
| | | | - Carolina Donat-Vargas
- ISGlobal, Barcelona, Spain
- CIBER epidemiología y salud pública (CIBERESP), Madrid, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Johnnye Lewis
- Community Environmental Health Program, College of Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Irene Martinez-Morata
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Darya Minovi
- Center for Science and Democracy, Union of Concerned Scientists, Washington, DC, USA
| | - Anne E Nigra
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Erik D Olson
- Natural Resources Defense Council, Washington, DC, USA
| | | | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | |
Collapse
|
22
|
Nandish NS, Kempalingappa LBS, Hidayath M, Siddaraju PRK, Naregundi K, Shrirangaiah CM. Distribution of U and 210PO in groundwater of Kodagu district, Karnataka, India. RADIATION PROTECTION DOSIMETRY 2023; 199:2548-2553. [PMID: 38126852 DOI: 10.1093/rpd/ncad202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 12/23/2023]
Abstract
Trace amounts of uranium along with its decay products are found in varying levels in natural soil, rocks, water and air. They are a matter of significant concern due to their carcinogenic nature. In the present work, the distribution of U and 210Po in groundwater of Kodagu District, Karnataka, India, was studied. The concentration of total U in groundwater samples was estimated using LASER and LED fluorimeter, and the activity of 210Po in groundwater was studied using electrochemical deposition followed by alpha counting method. The concentration of U and 210Po varied from 0.4 to 8.8 μgl-1 and 0.47 to 4.35 mBql-1, respectively. The ingestion dose due to U and 210Po in groundwater varied from 0.33 to 7.17 and 0.41 to 3.81 μSv y-1, respectively. The estimated U activity was found to be well below the standard safe limits of 30 μgl-1 in drinking water, as recommended by WHO and USEPA. The 210Po activity was low compared with the recommended 100 mBql-1 standard of WHO.
Collapse
Affiliation(s)
- Namitha S Nandish
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | | | - Mohamed Hidayath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570 006, India
| | | | - Karunakara Naregundi
- Centre for Advanced Research in Environmental Radioactivity, Mangalore University, Mangalore 574 199, India
| | | |
Collapse
|
23
|
Mulkapuri S, Siddikha A, Ravi A, Saha P, Kumar AV, Boodida S, Vithal M, Das SK. Electrocatalytic Hydrogen Evolution by a Uranium(VI) Polyoxometalate: an Environmental Toxin for Sustainable Energy Generation. Inorg Chem 2023; 62:19664-19676. [PMID: 37967464 DOI: 10.1021/acs.inorgchem.3c03018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The uranyl ion (UO2)2+, a uranium nuclear waste, is one of the serious contaminants in our ecosystem because of its radioactivity, relevant human activities, and highly mobile and complex nature of living cells. In this article, we have reported the synthesis and structural characterization of an uranyl cation-incorporated polyoxometalate (POM) compound, K10[{K4(H2O)6}{UO2}2(α-PW9O34)2]·13H2O (1), in which the uranyl cations are complexed with an in situ generated [α-PW9O34]9- cluster. Single-crystal X-ray diffraction (SCXRD) analysis of compound 1 reveals that the uranyl-potassium complex cationic species, [{K4(H2O)6}{UO2}2]8+, is sandwiched by two [α-PW9O34]9- clusters resulting in a Dawson type of POM. Compound 1 was further characterized by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis and infrared (IR), Raman, electronic absorption, and solid-state photoluminescence spectral studies. IR stretching vibrations at 895 and 856 cm-1 and the Raman signature peak at 792 cm-1 in the IR and Raman spectra of compound 1 primarily confirm the presence of a trans-[O═U═O]2+ ion. The solid-state photoluminescence spectrum of 1 exhibits a typical vibronic structure, resulting from symmetrical vibrations of [O═U═O]2+ bands, corresponding to the electronic transitions of S11 → S10 and S10 → S0υ (υ = 0-3). Interestingly, title compound 1 shows efficient electrocatalytic hydrogen evolution by water reduction with low Tafel slope values of 186.59 and 114.83 mV dec-1 at 1 mA cm-2 along with optimal Faradaic efficiency values of 82 and 87% at neutral pH and in acidic pH 3, respectively. Detailed electrochemical analyses reveal that the catalytic hydrogen evolution reaction (HER) activity mediated by compound 1 is associated with the UVI/UV redox couple of the POM. The microscopic as well as routine spectral analyses of postelectrode samples and controlled experiments have confirmed that compound 1 behaves like a true molecular electrocatalyst for the HER. To our knowledge, this is the first paradigm of a uranium-containing polyoxometalate that exhibits electrocatalytic water reduction to molecular H2. In a nutshell, an environmental toxin (a uranium-oxo compound) has been demonstrated to be utilized as an efficient electrocatalyst for hydrogen generation from water, a green approach of sustainable energy production.
Collapse
Affiliation(s)
- Sateesh Mulkapuri
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
| | - Asha Siddikha
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
- Department of Chemistry, JNTUH University College of Engineering, Science and Technology, Hyderabad 500085, India
- Department of Chemistry, Osmania University, Hyderabad 500 007, India
| | - Athira Ravi
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
| | - Pinki Saha
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
| | - Avulu Vinod Kumar
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
| | - Sathyanarayana Boodida
- Department of Chemistry, JNTUH University College of Engineering, Science and Technology, Hyderabad 500085, India
| | - Muga Vithal
- Department of Chemistry, Osmania University, Hyderabad 500 007, India
| | - Samar K Das
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
| |
Collapse
|
24
|
Hoyle-Gardner J, Badisa VLD, Sher S, Runwei L, Mwashote B, Ibeanusi V. Bacillus sp. strain MRS-1: A potential candidate for uranyl biosorption from uranyl polluted sites. Saudi J Biol Sci 2023; 30:103873. [PMID: 38073661 PMCID: PMC10709514 DOI: 10.1016/j.sjbs.2023.103873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 11/10/2023] [Indexed: 06/27/2024] Open
Abstract
The uranyl tolerance of a metal-resistant Bacillus sp. strain MRS-1, was determined in this current study. This was done due to a rise in anthropogenic activities, such as the production of uranium-based nuclear energy, which contributes to environmental degradation and poses risks to ecosystems and human health. The purpose of the research was to find effective strategies for uranium removal to minimize the contamination. In this paper, the biosorption of uranyl was investigated by batch tests. Bacteria could continue to multiply up to 350 ppm uranyl concentrations, however this growth was suppressed at 400 ppm, that generally accepted as the minimum concentration for bacterial growth inhibition. The optimal conditions for uranyl biosorption were pH 7, 20 °C, and a contact duration of 30 min with living bacteria. According to the findings of an investigation that used isotherm and kinetics models (Langmuir, Freundlich and pseudo second order), Bacillus sp. strain MRS-1 biosorption seemed to be dependent on monolayer adsorption as well as certain functional groups that had a strong affinity for uranyl confirmed by Fourier Transform Infrared Spectroscopy (FTIR) analysis. The shifts/sharping of peaks (1081-3304 cm-1) were prominent in treated samples compared to control one. These functional groups could be hydroxyl, amino, and carboxyl. Our findings showed that Bacillus sp. strain MRS-1 has an elevated uranyl biosorption ability, with 24.5 mg/g being achieved. This indicates its potential as a powerful biosorbent for dealing with uranium contamination in drinking water sources and represents a breakthrough in the cleanup of contaminated ecosystems.
Collapse
Affiliation(s)
- Jada Hoyle-Gardner
- Core Laboratory, School of the Environment, Florida A&M University, Tallahassee, FL, USA
- Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | | | - Shahid Sher
- Williams Lab, School of the Environment, Florida A&M University, Tallahassee, FL, USA
| | - Li Runwei
- Department of Civil Engineering, New Mexico State University, Las Cruces, NM, USA
| | - Benjamin Mwashote
- Core Laboratory, School of the Environment, Florida A&M University, Tallahassee, FL, USA
| | - Victor Ibeanusi
- Core Laboratory, School of the Environment, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
25
|
Liang J, Yan Z, Zhang Y, Xu H, Song W. Proteomics analysis of resistance mechanism of Trichoderma harzianum under U(VI) stress. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107303. [PMID: 37783189 DOI: 10.1016/j.jenvrad.2023.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Trichoderma harzianum has a certain resistance to Hexavalent Uranium (U(VI)), but its resistance mechanism is unknown. Based on proteomics sequencing using DIA mode, differentially expressed proteins (DEPs) of Trichoderma harzianum under U(VI) stress were identified. GO enrichment, KEGG annotation analysis and DEPs annotation were performed. The results showed that 8 DEPs, 8 DEPs and 15 DEPs were obtained in the low-dose, medium-dose and high-dose groups, respectively. The functional classification of GO demonstrated that DEPs were associated with 17 molecular functions, 5 biological processes, and 5 cellular components. Furthermore, DEPs were enriched in transport and catabolism, energy metabolism, translation, and signal transduction. These findings showed that Trichoderma harzianum was significantly changed in protein expression and signaling pathway after U(VI) exposure. Therefore, these results have provided Trichoderma harzianum with a theoretical background that can be applied to environmental cleanup.
Collapse
Affiliation(s)
- Jun Liang
- Jianghuai College of Anhui University, Hefei, 230031, China.
| | - Zhuna Yan
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yan Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Huan Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wencheng Song
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123, Suzhou, China.
| |
Collapse
|
26
|
Gonzales AK, Donaher SE, Wattier BD, Martinez NE. Exposure of Lemna minor (Common Duckweed) to Mixtures of Uranium and Perfluorooctanoic Acid (PFOA). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2412-2421. [PMID: 37477461 DOI: 10.1002/etc.5720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 07/18/2023] [Indexed: 07/22/2023]
Abstract
A variety of processes, both natural and anthropogenic, can have a negative impact on surface waters, which in turn can be detrimental to human and environmental health. Few studies have considered the ecotoxicological impacts of concurrently occurring contaminants, and that is particularly true for mixtures that include contaminants of emerging concern (CEC). Motivated by this knowledge gap, the present study considers the potential ecotoxicity of environmentally relevant contaminants in the representative aquatic plant Lemna minor (common duckweed), a model organism. More specifically, biological effects associated with exposure of L. minor to a ubiquitous radionuclide (uranium [U]) and a fluorinated organic compound (perfluorooctanoic acid [PFOA], considered a CEC), alone and in combination, were monitored under controlled laboratory conditions. Lemna minor was grown for 5 days in small, aerated containers. Each treatment consisted of four replicates with seven plants each. Treatments were 0, 0.3, and 3 ppb PFOA; 0, 0.5, and 5 ppb U; and combinations of these. Plants were observed daily for frond number and signs of chlorosis and necrosis. Other biological endpoints examined at the conclusion of the experiment were chlorophyll content and antioxidant capacity. In single-exposure experiments, a slight stimulatory effect was observed on frond number at 0.3 ppb PFOA, whereas both concentrations of U had a detrimental effect on frond number. In the dual-exposure experiment, the combinations with 5 ppb U also had a detrimental effect on frond number. Results for chlorophyll content and antioxidant capacity were less meaningful, suggesting that environmentally relevant concentrations of PFOA and U have only subtle effects on L. minor growth and health status. Environ Toxicol Chem 2023;42:2412-2421. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Annelise K Gonzales
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Sarah E Donaher
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Bryanna D Wattier
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
| | - Nicole E Martinez
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, South Carolina, USA
- Center for Nuclear Environmental Engineering Sciences and Radioactive Waste Management, Clemson, South Carolina, USA
| |
Collapse
|
27
|
Rani L, Srivastav AL, Kaushal J, Shukla DP, Pham TD, van Hullebusch ED. Significance of MOF adsorbents in uranium remediation from water. ENVIRONMENTAL RESEARCH 2023; 236:116795. [PMID: 37541412 DOI: 10.1016/j.envres.2023.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/21/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Uranium is considered as one of the most perilous radioactive contaminants in the aqueous environment. It has shown detrimental effects on both flora and fauna and because of its toxicities on human beings, therefore its exclusion from the aqueous environment is very essential. The utilization of metal-organic frameworks (MOFs) as an adsorbent for the removal of uranium from the aqueous environment could be a good approach. MOFs possess unique properties like high surface area, high porosity, adjustable pore size, etc. This makes them promising adsorbents for the removal of uranium from contaminated water. In this paper, sources of uranium in the water environment, human health disorders, and application of the different types of MOFs as well as the mechanisms of uranium removal have been discussed meticulously.
Collapse
Affiliation(s)
- Lata Rani
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India; Chitkara School of Pharmacy, Chitkara University, Himachal Pradesh, India
| | - Arun Lal Srivastav
- Chitkara University School of Engineering and Technology, Chitkara University, Himachal Pradesh, India.
| | - Jyotsna Kaushal
- Centre for Water Sciences, Chitkara University Institute of Engineering & Technology, Chitkara University, Punjab, India
| | - Dericks P Shukla
- Department of Civil Engineering, Indian Institute of Technology, Mandi, Himachal Pradesh, India
| | - Tien Duc Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi-19 Le Thanh Tong, Hoan Kiem, Hanoi, 100000, Viet Nam
| | - Eric D van Hullebusch
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, F-75005, Paris, France
| |
Collapse
|
28
|
Wang R, Chen Y, Chen J, Ma M, Xu M, Liu S. Integration of transcriptomics and metabolomics analysis for unveiling the toxicological profile in the liver of mice exposed to uranium in drinking water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122296. [PMID: 37536476 DOI: 10.1016/j.envpol.2023.122296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Uranium is a contaminate in the underground water in many regions of the world, which poses health risks to the local populations through drinking water. Although the health hazards of natural uranium have been concerned for decades, the controversies about its detrimental effects continue at present since it is still unclear how uranium interacts with molecular regulatory networks to generate toxicity. Here, we integrate transcriptomic and metabolomic methods to unveil the molecular mechanism of lipid metabolism disorder induced by uranium. Following exposure to uranium in drinking water for twenty-eight days, aberrant lipid metabolism and lipogenesis were found in the liver, accompanied with aggravated lipid peroxidation and an increase in dead cells. Multi-omics analysis reveals that uranium can promote the biosynthesis of unsaturated fatty acids through dysregulating the metabolism of arachidonic acid (AA), linoleic acid, and glycerophospholipid. Most notably, the disordered metabolism of polyunsaturated fatty acids (PUFAs) like AA may contribute to lipid peroxidation induced by uranium, which in turn triggers ferroptosis in hepatocytes. Our findings highlight disorder of lipid metabolism as an essential toxicological mechanism of uranium in the liver, offering insight into the health risks of uranium in drinking water.
Collapse
Affiliation(s)
- Ruixia Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjiu Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Unit III & Ostomy Service, Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jiahao Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Ma
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Martinez-Morata I, Sobel M, Tellez-Plaza M, Navas-Acien A, Howe CG, Sanchez TR. A State-of-the-Science Review on Metal Biomarkers. Curr Environ Health Rep 2023; 10:215-249. [PMID: 37337116 PMCID: PMC10822714 DOI: 10.1007/s40572-023-00402-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
PURPOSE OF REVIEW Biomarkers are commonly used in epidemiological studies to assess metals and metalloid exposure and estimate internal dose, as they integrate multiple sources and routes of exposure. Researchers are increasingly using multi-metal panels and innovative statistical methods to understand how exposure to real-world metal mixtures affects human health. Metals have both common and unique sources and routes of exposure, as well as biotransformation and elimination pathways. The development of multi-element analytical technology allows researchers to examine a broad spectrum of metals in their studies; however, their interpretation is complex as they can reflect different windows of exposure and several biomarkers have critical limitations. This review elaborates on more than 500 scientific publications to discuss major sources of exposure, biotransformation and elimination, and biomarkers of exposure and internal dose for 12 metals/metalloids, including 8 non-essential elements (arsenic, barium, cadmium, lead, mercury, nickel, tin, uranium) and 4 essential elements (manganese, molybdenum, selenium, and zinc) commonly used in multi-element analyses. RECENT FINDINGS We conclude that not all metal biomarkers are adequate measures of exposure and that understanding the metabolic biotransformation and elimination of metals is key to metal biomarker interpretation. For example, whole blood is a good biomarker of exposure to arsenic, cadmium, lead, mercury, and tin, but it is not a good indicator for barium, nickel, and uranium. For some essential metals, the interpretation of whole blood biomarkers is unclear. Urine is the most commonly used biomarker of exposure across metals but it should not be used to assess lead exposure. Essential metals such as zinc and manganese are tightly regulated by homeostatic processes; thus, elevated levels in urine may reflect body loss and metabolic processes rather than excess exposure. Total urinary arsenic may reflect exposure to both organic and inorganic arsenic, thus, arsenic speciation and adjustment for arsebonetaine are needed in populations with dietary seafood consumption. Hair and nails primarily reflect exposure to organic mercury, except in populations exposed to high levels of inorganic mercury such as in occupational and environmental settings. When selecting biomarkers, it is also critical to consider the exposure window of interest. Most populations are chronically exposed to metals in the low-to-moderate range, yet many biomarkers reflect recent exposures. Toenails are emerging biomarkers in this regard. They are reliable biomarkers of long-term exposure for arsenic, mercury, manganese, and selenium. However, more research is needed to understand the role of nails as a biomarker of exposure to other metals. Similarly, teeth are increasingly used to assess lifelong exposures to several essential and non-essential metals such as lead, including during the prenatal window. As metals epidemiology moves towards embracing a multi-metal/mixtures approach and expanding metal panels to include less commonly studied metals, it is important for researchers to have a strong knowledge base about the metal biomarkers included in their research. This review aims to aid metals researchers in their analysis planning, facilitate sound analytical decision-making, as well as appropriate understanding and interpretation of results.
Collapse
Affiliation(s)
- Irene Martinez-Morata
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA.
| | - Marisa Sobel
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Maria Tellez-Plaza
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Tiffany R Sanchez
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 West 168th Street, 1107, New York, NY, 10032, USA
| |
Collapse
|
30
|
Berntsson E, Vosough F, Noormägi A, Padari K, Asplund F, Gielnik M, Paul S, Jarvet J, Tõugu V, Roos PM, Kozak M, Gräslund A, Barth A, Pooga M, Palumaa P, Wärmländer SKTS. Characterization of Uranyl (UO 22+) Ion Binding to Amyloid Beta (Aβ) Peptides: Effects on Aβ Structure and Aggregation. ACS Chem Neurosci 2023; 14:2618-2633. [PMID: 37487115 PMCID: PMC10401651 DOI: 10.1021/acschemneuro.3c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer's disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aβ aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aβ production, and these metals bind to Aβ peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aβ peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aβ peptides with affinities in the micromolar range, induce structural changes in Aβ monomers and oligomers, and inhibit Aβ fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation.
Collapse
Affiliation(s)
- Elina Berntsson
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Faraz Vosough
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Andra Noormägi
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Kärt Padari
- Institute
of Molecular and Cell Biology, University
of Tartu, 50090 Tartu, Estonia
| | - Fanny Asplund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Maciej Gielnik
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus, Denmark
| | - Suman Paul
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Vello Tõugu
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Per M. Roos
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- University
Healthcare Unit of Capio St. Göran Hospital, 112 81 Stockholm, Sweden
| | - Maciej Kozak
- Department
of Biomedical Physics, Institute of Physics, Faculty of Physics, Adam Mickiewicz University, 61-712 Poznań, Poland
- SOLARIS
National Synchrotron Radiation Centre, Jagiellonian
University, 31-007 Kraków, Poland
| | - Astrid Gräslund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Andreas Barth
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Margus Pooga
- Institute
of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Peep Palumaa
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Sebastian K. T. S. Wärmländer
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| |
Collapse
|
31
|
Bales C, Kinsela AS, Miller C, Wang Y, Zhu Y, Lian B, Waite TD. Removal of Trace Uranium from Groundwaters Using Membrane Capacitive Deionization Desalination for Potable Supply in Remote Communities: Bench, Pilot, and Field Scale Investigations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37464745 DOI: 10.1021/acs.est.3c03477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The performance of membrane capacitive deionization (MCDI) desalination was investigated at bench, pilot, and field scales for the removal of uranium from groundwater. It was found that up to 98.9% of the uranium can be removed using MCDI from a groundwater source containing 50 μg/L uranium, with the majority (94.5%) being retained on the anode. Uranium was found to physiochemically adsorb to the electrode without the application of a potential by displacing chloride ions, with 16.6% uranium removal at the bench scale via this non-electrochemical process. This displacement of chloride did not occur during the MCDI adsorption phase with the adsorption of all ions remaining constant during a time series analysis on the pilot unit. For the scenarios tested on the pilot unit, the flowrate of the product water ranged from 0.15 to 0.23 m3/h, electrode energy consumption from 0.28 to 0.51 kW h/m3, and water recovery from 69 to 86%. A portion (13-53% on the pilot unit) of the uranium was found to remain on the electrodes after the brine discharge phase with conventional cleaning techniques unable to release this retained uranium. MCDI was found to be a suitable means to remove uranium from groundwater systems though with the need to manage the accumulation of uranium on the electrodes over time.
Collapse
Affiliation(s)
- Clare Bales
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Andrew S Kinsela
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Christopher Miller
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yuan Wang
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| | - Yunyi Zhu
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| | - Boyue Lian
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
- UNSW Centre for Transformational Environmental Technologies, Yixing, Jiangsu 214206, PR China
| |
Collapse
|
32
|
Zhong D, Wang R, Zhang H, Wang M, Zhang X, Chen H. Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity. Nat Commun 2023; 14:3997. [PMID: 37414766 PMCID: PMC10326073 DOI: 10.1038/s41467-023-39716-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/27/2023] [Indexed: 07/08/2023] Open
Abstract
Uranium (U) is a well-known nephrotoxicant which forms precipitates in the lysosomes of renal proximal tubular epithelial cells (PTECs) after U-exposure at a cytotoxic dose. However, the roles of lysosomes in U decorporation and detoxification remain to be elucidated. Mucolipin transient receptor potential channel 1 (TRPML1) is a major lysosomal Ca2+ channel regulating lysosomal exocytosis. We herein demonstrate that the delayed administration of the specific TRPML1 agonist ML-SA1 significantly decreases U accumulation in the kidney, mitigates renal proximal tubular injury, increases apical exocytosis of lysosomes and reduces lysosomal membrane permeabilization (LMP) in renal PTECs of male mice with single-dose U poisoning or multiple-dose U exposure. Mechanistic studies reveal that ML-SA1 stimulates intracellular U removal and reduces U-induced LMP and cell death through activating the positive TRPML1-TFEB feedback loop and consequent lysosomal exocytosis and biogenesis in U-loaded PTECs in vitro. Together, our studies demonstrate that TRPML1 activation is an attractive therapeutic strategy for the treatment of U-induced nephrotoxicity.
Collapse
Affiliation(s)
- Dengqin Zhong
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Ruiyun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Hongjing Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Mengmeng Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Xuxia Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Honghong Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai, PR China.
| |
Collapse
|
33
|
Huang L, Sun G, Xu W, Li S, Qin X, An Q, Wang Z, Li J. Uranium uptake is mediated markedly by clathrin-mediated endocytosis and induce dose-dependent toxicity in HK-2 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104171. [PMID: 37295740 DOI: 10.1016/j.etap.2023.104171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/17/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
The objective of this study was to explore the endocytosis mechanisms of uranium uptake in HK-2 cells and its toxic effects. Our results demonstrated that uranium exposure impairs redox homeostasis and increases the permeability of the cell membrane and mitochondrial membrane, which may induce cell apoptosis by cytochrome-c leakage. Alkaline phosphatase activity increased after uranium exposure, which may be involved in the process of intracellular mineralisation of uranium, leading to severe cell necrosis. Furthermore, our findings demonstrated that the clathrin-mediated endocytosis process contributed substantially to uranium uptake in HK-2 cells and the total uranium uptake was highly correlated with cell viability, reaching a high correlation coefficient (r= -0.853) according to Pearson correlation analysis. In conclusion, the uptake of uranium into mammalian cells was mainly facilitated by the clathrin-mediated endocytosis pathway and induced dose-dependent cellular toxicity, including redox homeostasis imbalance, membrane injury, cell apoptosis and necrosis.
Collapse
Affiliation(s)
- Liqun Huang
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Ge Sun
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Wenli Xu
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Shufang Li
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Xiujun Qin
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Quan An
- China Institute for Radiation Protection, Taiyuan 030006, China
| | - Zhongwen Wang
- Department of Radiation Safety, China Institute of Atomic Energy, Beijing 102413, China
| | - Jianguo Li
- China Institute for Radiation Protection, Taiyuan 030006, China
| |
Collapse
|
34
|
Zhang L, Jia M, Wang X, Gao L, Zhang B, Wang L, Kong J, Li L. A novel fluorescence sensor for uranyl ion detection based on a dansyl-modified peptide. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122403. [PMID: 36708634 DOI: 10.1016/j.saa.2023.122403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
It is of great significance to sensitively and selectively detect uranyl ion (UO22+) in environmental and biological samples due to the high risks of UO22+ to human health. However, such suitable sensors are still scarce. A novel fluorescence sensor based on a dansyl-modified peptide, Dansyl-Glu-Glu-Pro-Glu-Trp-COOH (D-P5), was efficiently synthesized by Fmoc solid phase peptide synthesis. As the first linear peptide-based fluorescence sensor for UO22+, D-P5 exhibited high selectivity and sensitivity to UO22+ over 27 metal ions (UO22+, Cr3+, Cu2+, Ba2+, Hg2+, Pb2+, Co2+, Ag+, Fe3+, Ca2+, K+, Mg2+, Mn2+, Na+, Ni2+, Cd2+, Zn2+, Al3+, Dy3+, Er3+, Gd2+, Ho3+, La3+, Lu3+, Pr3+, Sm3+, Tm3+) by a turn-off fluorescence response in 10 mM HEPES buffer (pH 6.3). The effects of anions such as S2-, NO3-, SO42- CO32-, HCOO-, antioxidant ascorbic acid and 4-nitrophenyl acetate on the selectivity for UO22+ detection were also studies. D-P5 sensor could be used for detecting UO22+ in a good linear relationship with concentration in the range of 0-8.0 μM with a low limit of detection of 83.2 nM. Furthermore, the interaction of the sensor with UO22+ was characterized by ESI-MS, IR, XPS and ITC measurements. The 1:1 binding stoichiometry between the sensor and UO22+ was measured by the job's plot and further verified by ESI-MS. The binding constant of the sensor with UO22+ was calculated to be 9.8 × 104 M-1 by modified Benesi-Hildebrand equation. ITC results showed that theΔHθ andΔSθ for the interaction of D-P5 with UO22+ were -(7.167 ± 1.25) kJ·mol-1 and 66.5 J·mol-1·K-1, respectively. Time-resolved fluorescence spectroscopy indicated that the mechanism of fluorescence quenching of D-P5 by UO22+ ion was static quenching process. In addition, this sensor displayed a good practicality for UO22+ detection in lake water sample without tedious sample pretreatment.
Collapse
Affiliation(s)
- Lianshun Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Mengqing Jia
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Xi Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Lei Gao
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng 252000, PR China
| | - Bo Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, PR China
| | - Lianzhi Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, PR China.
| |
Collapse
|
35
|
Saifulina E, Janabayev D, Kashkinbayev Y, Shokabaeva A, Ibrayeva D, Aumalikova M, Kazymbet P, Bakhtin M. Epidemiology of Somatic Diseases and Risk Factors in the Population Living in the Zone of Influence of Uranium Mining Enterprises of Kazakhstan: A Pilot Study. Healthcare (Basel) 2023; 11:healthcare11060804. [PMID: 36981460 PMCID: PMC10048745 DOI: 10.3390/healthcare11060804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
The increase in uranium mining in Kazakhstan has brought with it a number of problems. Reducing the negative impact of radiation-toxic factors on the health of workers and the population in uranium mining regions is one of them. This article presents a pilot population health study in which we developed approaches to support residents living near an operating uranium mining enterprise. The purpose of the current study was to assess the impact of technogenic factors on the health of those living near the Syrdarya uranium ore province. Data collected from 5605 residents from the village of Bidaykol (the main group)—which is located 4 km from the uranium mining enterprise—and the village of Sunakata (the control group), which is located in the Kyzylorda region, were analyzed. A bidirectional cohort study was conducted. The prevalence of acute and chronic diseases among the residents of Bidaykol was 1.3 times higher than that in the control group. The structure of morbidity was dominated by pathologies of the genitourinary system (27%), the circulatory system (14.4%), and the respiratory system (11.9%). Relative risks (RR > 1) were identified for most classes of diseases, the highest being for diseases of the blood (RR = 2.6), skin (RR = 2.3), and genitourinary system (RR = 1.9). In the main group, renal pathologies were the most frequent class in the age group of 30–40 years, occurring mainly in women. In addition, they had a direct dependence on the duration of residence in the territory of the uranium ore province. Further studies into the interaction between the technogenic factors associated with uranium mining enterprises and the development of diseases of the urinary system are needed. This will make it possible to determine ways to prevent these pathologies in the population.
Collapse
|
36
|
Efficient removal of uranium (VI) from aqueous solution by thiol-functionalized montmorillonite/nanoscale zero-valent iron composite. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
37
|
Sanyal K, Dhara S, Gumber N, Pai RV. A highly sensitive method for uranium quantification in water samples at ultra-trace level by total reflection X-ray fluorescence, after its direct pre-concentration on the surface of amidoxime functionalized quartz sample supports. Talanta 2023; 254:124129. [PMID: 36462282 DOI: 10.1016/j.talanta.2022.124129] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
Abstract
In this work we have developed a Total reflection X-Ray Fluorescence (TXRF) based methodology for the determination of uranium in natural water samples at ultra-trace concentration level. The methodology involves functionalization of quartz sample supports used for TXRF measurements with (3-Amidoxy) triethoxysilane, which has very high uranium uptake efficiency. (3-Amidoxy) triethoxysilane has been synthesized from (3-Cyanopropyl) triethoxysilane (CPTS). This amidoxime functionalized sample supports, simply needed to be dipped in the uranium solution for 3 h after which, it can be directly taken for TXRF measurements. The developed methodology is very fast, simple with less sample preparation steps involved. The present work utilizes Rayleigh scattered peak to construct the calibration curve for the quantification purpose. The developed methodology has improved accuracy as well as precision for the quantification of uranium at such low concentrations level. The detection limit and accuracy obtained are 0.013 ng/mL (13 ppt) and 1.9%, respectively which are the lowest using any X-Ray Fluorescence based method, to the best of our knowledge. The method was successfully applied for the U determination in natural water samples like ground water, river water and sea water.
Collapse
Affiliation(s)
- Kaushik Sanyal
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India.
| | - Sangita Dhara
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Nitin Gumber
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| | - Rajesh V Pai
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai, 400094, India
| |
Collapse
|
38
|
Gardner CB, Wichterich C, Calero AE, Welch SA, Widom E, Smith DF, Carey AE, Lyons WB. Carbonate weathering, phosphate fertilizer, and hydrologic controls on dissolved uranium in rivers in the US Corn Belt: Disentangling seasonal geogenic- and fertilizer-derived sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160455. [PMID: 36435237 DOI: 10.1016/j.scitotenv.2022.160455] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Soil and bedrock weathering and phosphate (P) fertilizers may both contribute to the uranium (U) load of rivers in agricultural regions, but controls over their relative influence are not well known. This study investigates the U sources to rivers in Ohio, United States, part of the Eastern Corn Belt in the Mississippi River watershed. We present a regional picture of seasonal U sources to rivers based on four analyses: 1) a spatial analysis of legacy soil and water data, 2) new measurements of U and carbonate weathering products from rivers at 50 locations across the state collected seasonally over two years, 3) a weekly time series with additional 234U/238U (n = 5) and 87Sr/86Sr (n = 5) measurements from an agricultural river, and 4) a mass-balance approach to U addition to the landscape based on reported P fertilizer use. Uranium concentrations in surface waters collected statewide ranged 0.1-21 nM (n = 132), with significantly higher concentrations in the glaciated agricultural portion of the state (mean = 7.3 nM; n = 105) than the non-glaciated portion (mean = 2.0 nM; n = 24). Concentrations in the glaciated region were highest during the spring and summer and decreased during baseflow. In the time-series, concentrations were ~7 nM during baseflow and ~14 nM during intermediate seasonal discharge conditions, indicating a second more surficial endmember source of U in addition to bedrock weathering that is well correlated with other carbonate weathering products. Systematic increases in 87Sr/86Sr and decreases in 234U/238U with increasing discharge confirm a changing source of carbonate and U weathering and a third surficial endmember during high discharge events. Our mass balance approach and geochemical analysis suggest that elevated U concentrations are the result of carbonate weathering deep in the soil column during elevated seasonal flow. Further work on U dynamics in agricultural rivers is required to understand mechanism controlling seasonal changes in U concentrations and 234U/238U in downstream rivers and U flux.
Collapse
Affiliation(s)
- Christopher B Gardner
- School of Earth Sciences, The Ohio State University, 125 S Oval Mall, Columbus, OH 43210, USA; Byrd Polar and Climate Research Center, The Ohio State University, 1090 Carmack Rd, Columbus, OH, USA.
| | - Connor Wichterich
- School of Earth Sciences, The Ohio State University, 125 S Oval Mall, Columbus, OH 43210, USA
| | - Adolfo E Calero
- School of Earth Sciences, The Ohio State University, 125 S Oval Mall, Columbus, OH 43210, USA
| | - Susan A Welch
- School of Earth Sciences, The Ohio State University, 125 S Oval Mall, Columbus, OH 43210, USA; Byrd Polar and Climate Research Center, The Ohio State University, 1090 Carmack Rd, Columbus, OH, USA
| | - Elisabeth Widom
- Department of Geology and Environmental Earth Science, Miami University, 118 Shideler Hall, 250 S. Patterson Ave, Oxford, OH 45056, USA
| | - Devin F Smith
- School of Earth Sciences, The Ohio State University, 125 S Oval Mall, Columbus, OH 43210, USA
| | - Anne E Carey
- School of Earth Sciences, The Ohio State University, 125 S Oval Mall, Columbus, OH 43210, USA; Byrd Polar and Climate Research Center, The Ohio State University, 1090 Carmack Rd, Columbus, OH, USA
| | - W Berry Lyons
- School of Earth Sciences, The Ohio State University, 125 S Oval Mall, Columbus, OH 43210, USA; Byrd Polar and Climate Research Center, The Ohio State University, 1090 Carmack Rd, Columbus, OH, USA
| |
Collapse
|
39
|
Hu Q, Zhang R, Zheng J, Song M, Gu C, Li W. Hydrogen sulfide attenuates uranium-induced kidney cells pyroptosis via upregulation of PI3K/AKT/mTOR signaling. J Biochem Mol Toxicol 2023; 37:e23220. [PMID: 36094782 DOI: 10.1002/jbt.23220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 01/18/2023]
Abstract
We have identified that hydrogen sulfide (H2 S), a gaseous mediator, plays a crucial role in antioxidative, anti-inflammatory, and cytoprotective effects on uranium (U)-triggered rat nephrotoxicity. Pyroptosis is a special mode of inflammation and programmed cell death involved in the activation of inflammasome and Caspase-1 and the release of inflammatory cytokines. This study aims to confirm whether H2 S can alleviate U-induced rat NRK-52E cell pyroptosis and to investigate the H2 S underlying regulatory mechanism. Our results indicate that pretreatment with NaHS (an H2 S donor) significantly inhibited U-increased reactive oxygen species level, NLRP3, apoptosis-related speck-like protein consisting of a caspase recruitment domain (ASC), and cleaved Caspase-1 proteins expression, gasdermin D messenger RNA (GSDMD mRNA) expression, interleukin (IL)-1β and IL-18 contents, lactate dehydrogenase leakage, and numbers of double-positive dying kidney cells. NaHS application evidently augmented phosphorylated PI3K, AKT, and mTOR expression as well as ratios of their respective phosphorylation to the corresponding total proteins which were downregulated by U treatment. But, LY294002 (a PI3K inhibitor) administration effectively abrogated the consequences of NaHS on the levels of p-PI3K, cleaved Caspase-1, ASC and NLRP3 proteins, GSDMD mRNA expression, and (IL)-1β and IL-18 contents. Simultaneously, LY294002 significantly reversed the effects of NaHS on U-induced pyroptosis rate and cytotoxicity. Taken together, these results indicate that H2 S ameliorated U-triggered NRK-52E cells pyroptosis via upregulation of PI3K/AKT/mTOR pathway, suggesting a novel role for H2 S in the management of nephrotoxicity caused by U exposure.
Collapse
Affiliation(s)
- Qiaoni Hu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Rui Zhang
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Jifang Zheng
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Menghui Song
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Chaohao Gu
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| | - Wanting Li
- Guangxi Key Laboratory of Tumor Immunology and Microenvironment Regulation, Faculty of Basic Medical Sciences, Guilin Medical University, Guilin city, Guangxi, People's Republic of China
| |
Collapse
|
40
|
Deshmukh P, Sar SK, Jindal MK, Ray T. Magnetite based green bio composite for uranium exclusion from aqueous solution. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08723-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Prusty S, Somu P, Sahoo JK, Panda D, Sahoo SK, Sahoo SK, Lee YR, Jarin T, Sundar LS, Rao KS. Adsorptive sequestration of noxious uranium (VI) from water resources: A comprehensive review. CHEMOSPHERE 2022; 308:136278. [PMID: 36057349 DOI: 10.1016/j.chemosphere.2022.136278] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/22/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Groundwater is usually utilized as a drinking water asset everywhere. Therefore, groundwater defilement by poisonous radioactive metals such as uranium (VI) is a major concern due to the increase in nuclear power plants as well as their by-products which are released into the watercourses. Waste Uranium (VI) can be regarded as a by-product of the enrichment method used to produce atomic energy, and the hazard associated with this is due to the uranium radioactivity causing toxicity. To manage these confronts, there are so many techniques that have been introduced but among those adsorptions is recognized as a straightforward, successful, and monetary innovation, which has gotten major interest nowadays, despite specific drawbacks regarding operational as well as functional applications. This review summarizes the various adsorbents such as Bio-adsorbent/green materials, metal oxide-based adsorbent, polymer based adsorbent, graphene oxide based adsorbent, and magnetic nanomaterials and discuss their synthesis methods. Furthermore, this paper emphasis on adsorption process by various adsorbents or modified forms under different physicochemical conditions. In addition to this adsorption mechanism of uranium (VI) onto different adsorbent is studied in this article. Finally, from the literature reviewed conclusion have been drawn and also proposed few future research suggestions.
Collapse
Affiliation(s)
- Sourav Prusty
- Department of Chemistry, GIET University, Gunupur, 765022, Rayagada, Odisha, India
| | - Prathap Somu
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea; Department of Bioengineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 600124, India
| | - Jitendra Kumar Sahoo
- Department of Chemistry, GIET University, Gunupur, 765022, Rayagada, Odisha, India
| | - Debasish Panda
- Department of Chemistry, GIET University, Gunupur, 765022, Rayagada, Odisha, India
| | - Sunil Kumar Sahoo
- Health Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
| | - Shraban Kumar Sahoo
- School of Applied Sciences, Centurion University of Technology and Management, Odisha, India
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea.
| | - T Jarin
- Department of Electrical & Electronics Engineering (EEE), Jyothi Engineering College, Thrissur, 679531, India
| | - L Syam Sundar
- Department of Mechanical Engineering, College of Engineering, Prince Mohammad Bin Fahd University, Al Khobar, 31952, Saudi Arabia
| | - Koppula Srinivas Rao
- Department of Computer Science and Engineering, MLR Institute of Technology, Hyderabad, 500043, India.
| |
Collapse
|
42
|
Xarchoulakos DC, Manoutsoglou E, Kallithrakas-Kontos NG. Distribution of uranium isotopes, 210Pb and 210Po in groundwaters of Crete- Greece. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Gao JQ, Yu Y, Wang DH, Liu LJ, Wang W, Dai HZ, Cen K. Hydrogeochemical characterization and water quality assessment in Altay, Xinjiang, northwest China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:832. [PMID: 36166099 DOI: 10.1007/s10661-022-10413-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
The safety of drinking and irrigation water is an issue of great concern worldwide. The rational development and utilization of water resources are vital for the economic and societal stability of Altay, an extremely arid area. In this study, three types of water samples (25 river waters, 10 groundwaters, 6 lake waters) were collected from main rivers and lakes in Altay and analyzed for electrical conductivity, total dissolved solids, pH, major ions (i.e., K+, Na+, Ca2+, Mg2+, HCO3-, Cl-, SO42-, NO3-, NO2-, F-), and trace elements (i.e., Al, Li, B, Sc, Ti, Mn, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, I, Ba, U). The water quality index (WQI), hazard quotient, carcinogenic risk, Na percentage, and Na adsorption ratio were then calculated to evaluate the water quality for drinking and irrigation. The results showed that the main hydrochemical type of river waters and groundwaters was Ca-HCO3, whereas that of lake water was mainly Na-SO4. The WQIs (9.39-170.69) indicated that the water quality in Altay ranged from poor to excellent. The concentrations of As, Ni, and U need to be carefully monitored since their average carcinogenic risks (for all waters collected, for adults) reached 0.05686, 0.06801, and 0.14527 and exceeded the safety risk levels (10-4-10-6) by at least 568 times, 680 times, and 1452 times, respectively. The result of Na% and SAR indicated that lake waters (with Na% of 62.92 and SAR of 41.63) and groundwaters (with Na% of 37.88 and SAR of 5.58) in Altay were unsuitable for irrigation, while river water (with Na% of 29.24 and SAR of 3.33) could meet the irrigation quality requirements. The results of this study could help promote reasonable water resource use among three types of waters and population protection in Altay.
Collapse
Affiliation(s)
- Juan-Qin Gao
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
- Key Laboratory of Metallogeny and Mineral Resource Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, People's Republic of China
| | - Yang Yu
- Key Laboratory of Metallogeny and Mineral Resource Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, People's Republic of China.
| | - Deng-Hong Wang
- Key Laboratory of Metallogeny and Mineral Resource Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, People's Republic of China
| | - Li-Jun Liu
- Geology and Mineral Resources Scientific Institute of Sichuan Exploration Bureau of Geology and Mineral Resources, Chengdu, 610036, People's Republic of China
| | - Wei Wang
- Geology and Mineral Resources Scientific Institute of Sichuan Exploration Bureau of Geology and Mineral Resources, Chengdu, 610036, People's Republic of China
| | - Hong-Zhang Dai
- Key Laboratory of Metallogeny and Mineral Resource Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing, 100037, People's Republic of China
| | - Kuang Cen
- School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, People's Republic of China
| |
Collapse
|
44
|
Chengatt AP, Sarath NG, Sebastian DP, Mohanan NS, Sindhu ES, George S, Puthur JT. Chelate assisted phytoextraction for effective rehabilitation of heavy metal(loid)s contaminated lands. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:981-996. [PMID: 36148488 DOI: 10.1080/15226514.2022.2124233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The contamination of lands and water by heavy toxic metal(loid)s is an environmental issue that needs serious attention as it poses a major threat to public health. The persistence of heavy metals/metalloids in the environment as well as their potentially dangerous effects on organisms underpins the need to restore the areas contaminated by heavy toxic metal(loid)s. Soil restoration can be achieved through a variety of different methods. Being more cost-effective and environmentally sustainable, phytoremediation has recently replaced traditional processes like soil washing and burning. Many plants have been intensively explored to eliminate various heavy metals from polluted soils through phytoextraction, which is a commonly used phytoremediation approach. The ability of chelants to enhance phytoextraction potential has also received wide attention owing to their ability to elevate the efficiency of plants in removing heavy metal(loid)s. Chelants have been found to improve plant growth and the activity of the defense system. Several chelants, either non-biodegradable or biodegradable, have been reported to augment the phytoextraction efficiencies of various plants. The problem of the leaching of heavy metal(loid)s and secondary pollution caused by non-biodegradable chelants can be overcome by the use of biodegradable chelants to an extent. This review is a brief report focusing on recent articles on chelate-assisted phytoextraction of heavy metal (loids) As, Cd, Cu, Cr, Hg, Ni, Pb, U, and Zn.
Collapse
Affiliation(s)
| | - Nair G Sarath
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Kozhikode, India
| | | | | | - E S Sindhu
- Department of Botany, St. Joseph's College (Autonomous), Kozhikode, India
| | - Satheesh George
- Department of Botany, St. Joseph's College (Autonomous), Kozhikode, India
| | - Jos T Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Kozhikode, India
| |
Collapse
|
45
|
Srivastava A, Dumpala RMR, Kumar P, Kumar R, Rawat N. Chemical and Redox Speciation of Uranyl with Three Environmentally Relevant Bifunctional Chelates: Multi-Technique Approach Combined with Theoretical Estimations. Inorg Chem 2022; 61:15452-15462. [PMID: 36123167 DOI: 10.1021/acs.inorgchem.2c01991] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon and phosphorous are two primary elements common to the bio-geosphere and are omnipresent in both biotic and abiotic arenas. Phosphonate and carboxylate are considered as building blocks of glyphosate and humic substances and constituents of the cellular wall of bacteria and are the driving functionalities for most of the chemical interactions involving these two elements. Phosphonocarboxylates, a combination of both the functionalities in one moiety, are ideal models to dig deep into for understanding the chemical interactions of the two functional groups with metal ions. Phosphorous and carbon majorly exist as inorganic/organic phosphate and carboxylate, respectively, in the bio-geosphere. Aquatic contamination is a major concern for uranium, and the presence of complexing agents would alter the uranium concentrations in aquifers. Determination of solution thermodynamic parameters, speciation plots, redox patterns, Eh-pH diagrams, coordination structures, and molecular-level understanding by density functional theory calculations was carried out to interpret the uranyl (UO22+) interaction with three environmentally relevant phosphonocarboxylates, namely, phosphono-formic acid (PFA), phosphono-acetic acid (PAA), and phosphono-propanoic acid (PPA). UO22+ forms 1:1 complexes with the three phosphonocarboxylates in the monoprotonated form, having nearly the same stability, and the complexes [UO2(PFAH)], [UO2(PAAH)], and [UO2(PPAH)] involve chelate formation of five, six, and seven membered rings, respectively, through the participation of an oxygen each from the carboxylate and phosphonate, strengthened by an intra-molecular hydrogen bonding through the proton of the phosphonate moiety with uranyl oxygen. The complex formations are favored both enthalpically and entropically, with the latter being more contributive to the overall free energy of formation. The redox speciation showed an aqueous soluble complex formation over a wide pH range of 1-8. Electrospray ionization mass spectrometry and extended X-ray absorption fine structure established the coordination modes, which are further corroborated by density functional calculations. The knowledge gained from the present studies provide potential inputs in framing the cleanup, sequestering, microbial, and bio-remediation strategies for uranyl from aquatic environments.
Collapse
Affiliation(s)
- Ashutosh Srivastava
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Rama Mohana Rao Dumpala
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India.,Institute for Nuclear Waste Disposal, Karlsruhe Institute of Technology, P.O. Box 3640, Karlsruhe 76021, Germany
| | - Pranaw Kumar
- Fuel Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Ravi Kumar
- Atomic and Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Neetika Rawat
- Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
46
|
Kumar V, Setia R, Pandita S, Singh S, Mitran T. Assessment of U and As in groundwater of India: A meta-analysis. CHEMOSPHERE 2022; 303:135199. [PMID: 35667513 DOI: 10.1016/j.chemosphere.2022.135199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
More than 2.5 billion people depend upon groundwater worldwide for drinking, and giving quality water has become one of the great apprehensions of human culture. The contamination of Uranium (U) and Arsenic (As) in the groundwater of India is gaining global attention. The current review provides state-of-the-art groundwater contamination with U and As in different zones of India based on geology and soil texture. The average concentration of U in different zones of India was in the order: West Zone (41.07 μg/L) > North Zone (37.7 μg/L) > South Zone (13.5 μg/L)> Central Zone (7.4 μg/L) > East Zone (5.7 μg/L) >Southeast Zone (2.4 μg/L). The average concentration of As in groundwater of India is in the order: South Zone (369.7 μg/L)>Central Zone (260.4 μg/L)>North Zone (67.7 μg/L)>East Zone (60.3 μg/L)>North-east zone (9.78 μg/L)>West zone (4.14 μg/L). The highest concentration of U and As were found in quaternary sediments, but U in clay skeletal and As in loamy skeletal. Results of health risk assessment showed that the average health quotient of U in groundwater for children and adults was less than unity. In contrast, it was greater than unity for As posing a harmful impact on human health. This review provides the baseline data regarding the U and As contamination status in groundwater of India, and appropriate, effective control measures need to be taken to control this problem.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Botany, Government Degree College, Ramban, Jammu, India.
| | - Raj Setia
- Punjab Remote Sensing Centre, Ludhiana, India
| | - Shevita Pandita
- Department of Botany, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Sumit Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Tarik Mitran
- Soils & Land Resources Assessment Division, National Remote Sensing Centre, Balanagar, Hyderabad, 500 037, India
| |
Collapse
|
47
|
Sarkar S, Gill SS, Das Gupta G, Kumar Verma S. Water toxicants: a comprehension on their health concerns, detection, and remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53934-53953. [PMID: 35624361 DOI: 10.1007/s11356-022-20384-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/18/2022] [Indexed: 06/15/2023]
Abstract
Water is an essential moiety for the human use since a long time. Availability of good-quality water is very essential, as it is used in almost all the industrial, agricultural, and household activities. However, several factors such as increased urbanization and industrialization, extensive use of chemicals, natural weathering of rocks, and human ignorance led to incorporation of enormous toxicants into the water. The water toxicants are broadly classified as inorganic, organic, and radiological toxicants. Inorganic toxicants include heavy metals (As, Cr, Cd, Hg, Ni, Pb) and metalloids, ammonia, nitrate, and fluoride. Uranium is included in radiological toxicants which also causes chemical toxicity. Organic pollutants include polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phenolic compounds, phthalate esters, pesticides, pharmaceutical and personal care products, perchlorates, and flame retardants. These toxicants are harmful for the ecosystem as well as for the human beings causing different types of health complications like lung cancer, nasal cancer, gingivitis, severe vomiting and abdominal pain, hormonal imbalance, skeletal damage, neurotoxicity like Alzheimer and Parkinson disease, renal toxicity, nephrotoxicity, etc. The USEPA and WHO specified the permissible concentration of these pollutants in the drinking water. Determination techniques having high sensitivity, low cost, rapid onsite, and real-time detection of traces of water pollutants are discussed. This review also covers in depth about the remediation techniques, for the control of water toxicants, such as chelation of the heavy metals, intoxication of pollutants using various plants, adsorption of toxicants using different sorbent medias, and photocatalytic breakdown of persistent organic pollutants (POPs).
Collapse
Affiliation(s)
- Saptarshy Sarkar
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Sukhbir Singh Gill
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Ghanshyam Das Gupta
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga, 142 001, Punjab, India
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142 001, Punjab, India
| | - Sant Kumar Verma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, 142 001, Punjab, India.
| |
Collapse
|
48
|
Liu J, Wang X, Zhao Y, Xu Y, Pan Y, Feng S, Liu J, Huang X, Wang H. NH 3 Plasma Functionalization of UiO-66-NH 2 for Highly Enhanced Selective Fluorescence Detection of U(VI) in Water. Anal Chem 2022; 94:10091-10100. [PMID: 35737958 DOI: 10.1021/acs.analchem.2c01138] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Radioactive U(VI) in nuclear wastewater is a global environmental pollutant that poses a great threat to human health. Therefore, it is of great significance to develop a U(VI) sensor with desirable sensitivity and selectivity. Inspired by electron-donating group modification for enhancement of binding affinity toward U(VI), we report an amine group functionalization of UiO-66-NH2, using a low-cost, environmentally friendly, and low-temperature NH3 plasma technique as a fluorescence switching nanoprobe for highly sensitive and selective detection of U(VI). The resulting amine-functionalized UiO-66-NH2 (LTP@UiO-66-NH2) shows dramatically enhanced fluorescence emission and selective sensitivity for U(VI) on the basis of the quenching effect. The quenching efficiency increases from 58 to 80% with the same U(VI) concentration (17.63 μM) after NH3 plasma functionalization. As a result, the LTP@UiO-66-NH2 has the best Ksv (1.81 × 105 M-1, 298 K) and among the lowest LODs (0.08 μM, 19.04 ppb) compared with those reported in the literature. Intraday and interday precision and application in real environment experiments indicate stable and accurate U(VI) detection performance. Fluorescence lifetime and temperature-dependent detection experiments reveal that the quenching mechanism belongs to the static quenching interaction. The highly selective fluorescence detection is attributed to the selective binding of U(VI) by the rich functionalized amine groups of LTP@UiO-66-NH2. This work provides an efficient fluorescence probe for highly sensitive U(VI) detection in water, and a new strategy of tailored plasma functionalization for developing a practical MOF sensor platform for enhanced fluorescence emission, sensitivity, and selectivity for detecting trace amounts of radioactive species in the environment.
Collapse
Affiliation(s)
- Jiali Liu
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Xianbiao Wang
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Yangyang Zhao
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Yongfei Xu
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Yang Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, PR China
| | - Shaojie Feng
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Jin Liu
- Anhui Province International Research Center on Advanced Building Materials, School of Materials Science and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, PR China
| | - Xianhuai Huang
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei 230601, PR China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
49
|
Chelating Agents in Assisting Phytoremediation of Uranium-Contaminated Soils: A Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14106379] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Massive stockpiles of uranium (U) mine tailings have resulted in soil contamination with U. Plants for soil remediation have low extraction efficiency of U. Chelating agents can mobilize U in soils and, hence, enhance phytoextraction of U from the soil. However, the rapid mobilization rate of soil U by chelating agents in a short period than plant uptake rate could increase the risk of groundwater contamination with soluble U leaching down the soil profile. This review summarizes recent progresses in synthesis and application of chelating agents for assisting phytoremediation of U-contaminated soils. In detail, the interactions between chelating agents and U ions are initially elucidated. Subsequently, the mechanisms of phytoextraction and effectiveness of different chelating agents for phytoremediation of U-contaminated soils are given. Moreover, the potential risks associated with chelating agents are discussed. Finally, the synthesis and application of slow-release chelating agents for slowing down metal mobilization in soils are presented. The application of slow-release chelating agents for enhancing phytoextraction of soil U is still scarce. Hence, we propose the preparation of slow-release biodegradable chelating agents, which can control the release speed of chelating agent into the soil in order to match the mobilization rate of soil U with plant uptake rate, while diminishing the risk of residual chelating agent leaching to groundwater.
Collapse
|
50
|
Goutam Mukherjee A, Ramesh Wanjari U, Renu K, Vellingiri B, Valsala Gopalakrishnan A. Heavy metal and metalloid - induced reproductive toxicity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103859. [PMID: 35358731 DOI: 10.1016/j.etap.2022.103859] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals and metalloid exposure are among the most common factors responsible for reproductive toxicity in human beings. Several studies have indicated that numerous metals and metalloids can display severe adverse properties on the human reproductive system. Metals like lead, silver, cadmium, uranium, vanadium, and mercury and metalloids like arsenic have been known to induce reproductive toxicity. Moderate to minute quantities of lead may affect several reproductive parameters and even affect semen quality. The ecological and industrial exposures to the various heavy metals and metalloids have disastrous effects on the reproductive system ensuing in infertility. This work emphasizes the mechanism and pathophysiology of the aforementioned heavy metals and metalloids in reproductive toxicity. Additionally, this work aims to cover the classical protective mechanisms of zinc, melatonin, chelation therapy, and other trending methods to prevent heavy metal-induced reproductive toxicity.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India; Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077 Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641046, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|