1
|
Padmavathi G, Bangale U, Rao K, Balakrishnan D, Arun M, Singh RK, Sundaram RM. Progress and prospects in harnessing wild relatives for genetic enhancement of salt tolerance in rice. FRONTIERS IN PLANT SCIENCE 2024; 14:1253726. [PMID: 38371332 PMCID: PMC10870985 DOI: 10.3389/fpls.2023.1253726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/13/2023] [Indexed: 02/20/2024]
Abstract
Salt stress is the second most devastating abiotic stress after drought and limits rice production globally. Genetic enhancement of salinity tolerance is a promising and cost-effective approach to achieve yield gains in salt-affected areas. Breeding for salinity tolerance is challenging because of the genetic complexity of the response of rice plants to salt stress, as it is governed by minor genes with low heritability and high G × E interactions. The involvement of numerous physiological and biochemical factors further complicates this complexity. The intensive selection and breeding efforts targeted towards the improvement of yield in the green-revolution era inadvertently resulted in the gradual disappearance of the loci governing salinity tolerance and a significant reduction in genetic variability among cultivars. The limited utilization of genetic resources and narrow genetic base of improved cultivars have resulted in a plateau in response to salinity tolerance in modern cultivars. Wild species are an excellent genetic resource for broadening the genetic base of domesticated rice. Exploiting novel genes of underutilized wild rice relatives to restore salinity tolerance loci eliminated during domestication can result in significant genetic gain in rice cultivars. Wild species of rice, Oryza rufipogon and Oryza nivara, have been harnessed in the development of a few improved rice varieties like Jarava and Chinsura Nona 2. Furthermore, increased access to sequence information and enhanced knowledge about the genomics of salinity tolerance in wild relatives has provided an opportunity for the deployment of wild rice accessions in breeding programs, while overcoming the cross-incompatibility and linkage drag barriers witnessed in wild hybridization. Pre-breeding is another avenue for building material that are ready for utilization in breeding programs. Efforts should be directed towards systematic collection, evaluation, characterization, and deciphering salt tolerance mechanisms in wild rice introgression lines and deploying untapped novel loci to improve salinity tolerance in rice cultivars. This review highlights the potential of wild relatives of Oryza to enhance tolerance to salinity, track the progress of work, and provide a perspective for future research.
Collapse
Affiliation(s)
- Guntupalli Padmavathi
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Umakanth Bangale
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - K. Nagendra Rao
- Genetics and Plant Breeding, Sugarcane Research Station, Vuyyuru, India
| | - Divya Balakrishnan
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Melekote Nagabhushan Arun
- Crop Production Section, Agronomy, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| | - Rakesh Kumar Singh
- Crop Diversification and Genetics Section, International Center for Biosaline Agriculture (ICBA), Dubai, United Arab Emirates
| | - Raman Meenakshi Sundaram
- Crop Improvement Section, Plant Breeding, ICAR-Indian Institute of Rice Research (ICAR-IIRR), Hyderabad, India
| |
Collapse
|
2
|
Xu S, Cui J, Cao H, Liang S, Ma T, Liu H, Wang J, Yang L, Xin W, Jia Y, Zou D, Zheng H. Identification of candidate genes for salinity tolerance in Japonica rice at the seedling stage based on genome-wide association study and linkage mapping. FRONTIERS IN PLANT SCIENCE 2023; 14:1184416. [PMID: 37235029 PMCID: PMC10206223 DOI: 10.3389/fpls.2023.1184416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023]
Abstract
Background Salinity tolerance plays a vital role in rice cultivation because the strength of salinity tolerance at the seedling stage directly affects seedling survival and final crop yield in saline soils. Here, we combined a genome-wide association study (GWAS) and linkage mapping to analyze the candidate intervals for salinity tolerance in Japonica rice at the seedling stage. Results We used the Na+ concentration in shoots (SNC), K+ concentration in shoots (SKC), Na+/K+ ratio in shoots (SNK), and seedling survival rate (SSR) as indices to assess the salinity tolerance at the seedling stage in rice. The GWAS identified the lead SNP (Chr12_20864157), associated with an SNK, which the linkage mapping detected as being in qSK12. A 195-kb region on chromosome 12 was selected based on the overlapping regions in the GWAS and the linkage mapping. Based on haplotype analysis, qRT-PCR, and sequence analysis, we obtained LOC_Os12g34450 as a candidate gene. Conclusion Based on these results, LOC_Os12g34450 was identified as a candidate gene contributing to salinity tolerance in Japonica rice. This study provides valuable guidance for plant breeders to improve the response of Japonica rice to salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Detang Zou
- *Correspondence: Detang Zou, ; Hongliang Zheng,
| | | |
Collapse
|
3
|
Javid S, Bihamta MR, Omidi M, Abbasi AR, Alipour H, Ingvarsson PK. Genome-Wide Association Study (GWAS) and genome prediction of seedling salt tolerance in bread wheat (Triticum aestivum L.). BMC PLANT BIOLOGY 2022; 22:581. [PMID: 36513980 PMCID: PMC9746167 DOI: 10.1186/s12870-022-03936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Salinity tolerance in wheat is imperative for improving crop genetic capacity in response to the expanding phenomenon of soil salinization. However, little is known about the genetic foundation underlying salinity tolerance at the seedling growth stage of wheat. Herein, a GWAS analysis was carried out by the random-SNP-effect mixed linear model (mrMLM) multi-locus model to uncover candidate genes responsible for salt tolerance at the seedling stage in 298 Iranian bread wheat accessions, including 208 landraces and 90 cultivars. RESULTS A total of 29 functional marker-trait associations (MTAs) were detected under salinity, 100 mM NaCl (sodium chloride). Of these, seven single nucleotide polymorphisms (SNPs) including rs54146, rs257, rs37983, rs18682, rs55629, rs15183, and rs63185 with R2 ≥ 10% were found to be linked with relative water content, root fresh weight, root dry weight, root volume, shoot high, proline, and shoot potassium (K+), respectively. Further, a total of 27 candidate genes were functionally annotated to be involved in response to the saline environment. Most of these genes have key roles in photosynthesis, response to abscisic acid, cell redox homeostasis, sucrose and carbohydrate metabolism, ubiquitination, transmembrane transport, chromatin silencing, and some genes harbored unknown functions that all together may respond to salinity as a complex network. For genomic prediction (GP), the genomic best linear unbiased prediction (GBLUP) model reflected genetic effects better than both bayesian ridge regression (BRR) and ridge regression-best linear unbiased prediction (RRBLUP), suggesting GBLUP as a favorable tool for wheat genomic selection. CONCLUSION The SNPs and candidate genes identified in the current work can be used potentially for developing salt-tolerant varieties at the seedling growth stage by marker-assisted selection.
Collapse
Affiliation(s)
- Saeideh Javid
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | | | - Mansour Omidi
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Ali Reza Abbasi
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Hadi Alipour
- Department of Plant Production and Genetics, Urmia University, Urmia, Iran
| | - Pär K Ingvarsson
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
4
|
Dai L, Li P, Li Q, Leng Y, Zeng D, Qian Q. Integrated Multi-Omics Perspective to Strengthen the Understanding of Salt Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23095236. [PMID: 35563627 PMCID: PMC9105537 DOI: 10.3390/ijms23095236] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Salt stress is one of the major constraints to rice cultivation worldwide. Thus, the development of salt-tolerant rice cultivars becomes a hotspot of current rice breeding. Achieving this goal depends in part on understanding how rice responds to salt stress and uncovering the molecular mechanism underlying this trait. Over the past decade, great efforts have been made to understand the mechanism of salt tolerance in rice through genomics, transcriptomics, proteomics, metabolomics, and epigenetics. However, there are few reviews on this aspect. Therefore, we review the research progress of omics related to salt tolerance in rice and discuss how these advances will promote the innovations of salt-tolerant rice breeding. In the future, we expect that the integration of multi-omics salt tolerance data can accelerate the solution of the response mechanism of rice to salt stress, and lay a molecular foundation for precise breeding of salt tolerance.
Collapse
Affiliation(s)
- Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Peiyuan Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Qing Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (Q.Q.)
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- Correspondence: (Y.L.); (Q.Q.)
| |
Collapse
|
5
|
Mei S, Zhang G, Jiang J, Lu J, Zhang F. Combining Genome-Wide Association Study and Gene-Based Haplotype Analysis to Identify Candidate Genes for Alkali Tolerance at the Germination Stage in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:887239. [PMID: 35463411 PMCID: PMC9033254 DOI: 10.3389/fpls.2022.887239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/01/2023]
Abstract
Salinity-alkalinity stress is one of the main abiotic factors limiting rice production worldwide. With the widespread use of rice direct seeding technology, it has become increasingly important to improve the tolerance to salinity-alkalinity of rice varieties at the germination stage. Although we have a more comprehensive understanding of salt tolerance in rice, the genetic basis of alkali tolerance in rice is still poorly understood. In this study, we measured seven germination-related traits under alkali stress and control conditions using 428 diverse rice accessions. The alkali tolerance levels of rice germplasms varied considerably during germination. Xian/indica accessions had generally higher tolerance to alkali stress than Geng/japonica accessions at the germination stage. Using genome-wide association analysis, 90 loci were identified as significantly associated with alkali tolerance. Eight genes (LOC_Os01g12000, LOC_Os03g60240, LOC_Os03g08960, LOC_Os04g41410, LOC_Os09g25060, LOC_Os11g35350, LOC_Os12g09350, and LOC_Os12g13300) were selected as important candidate genes for alkali tolerance based on the gene functional annotation and gene-CDS-haplotype analysis. According to the expression levels of LOC_Os09g25060 (OsWRKY76), it is likely to play a negative regulatory role in alkali tolerance during rice germination. An effective strategy for improving rice alkali tolerance may be to pyramid alkali-tolerant haplotypes of multiple candidate genes to obtain the optimal haplotype combination. Our findings may provide valuable genetic information and expand the use of alkali tolerance germplasm resources in rice molecular breeding to improve the alkali tolerance at the germination stage.
Collapse
Affiliation(s)
- Song Mei
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guogen Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jing Jiang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingbing Lu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
6
|
Abdirad S, Ghaffari MR, Majd A, Irian S, Soleymaniniya A, Daryani P, Koobaz P, Shobbar ZS, Farsad LK, Yazdanpanah P, Sadri A, Mirzaei M, Ghorbanzadeh Z, Kazemi M, Hadidi N, Haynes PA, Salekdeh GH. Genome-Wide Expression Analysis of Root Tips in Contrasting Rice Genotypes Revealed Novel Candidate Genes for Water Stress Adaptation. FRONTIERS IN PLANT SCIENCE 2022; 13:792079. [PMID: 35265092 PMCID: PMC8899714 DOI: 10.3389/fpls.2022.792079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/05/2022] [Indexed: 06/02/2023]
Abstract
Root system architecture (RSA) is an important agronomic trait with vital roles in plant productivity under water stress conditions. A deep and branched root system may help plants to avoid water stress by enabling them to acquire more water and nutrient resources. Nevertheless, our knowledge of the genetics and molecular control mechanisms of RSA is still relatively limited. In this study, we analyzed the transcriptome response of root tips to water stress in two well-known genotypes of rice: IR64, a high-yielding lowland genotype, which represents a drought-susceptible and shallow-rooting genotype; and Azucena, a traditional, upland, drought-tolerant and deep-rooting genotype. We collected samples from three zones (Z) of root tip: two consecutive 5 mm sections (Z1 and Z2) and the following next 10 mm section (Z3), which mainly includes meristematic and maturation regions. Our results showed that Z1 of Azucena was enriched for genes involved in cell cycle and division and root growth and development whereas in IR64 root, responses to oxidative stress were strongly enriched. While the expansion of the lateral root system was used as a strategy by both genotypes when facing water shortage, it was more pronounced in Azucena. Our results also suggested that by enhancing meristematic cell wall thickening for insulation purposes as a means of confronting stress, the sensitive IR64 genotype may have reduced its capacity for root elongation to extract water from deeper layers of the soil. Furthermore, several members of gene families such as NAC, AP2/ERF, AUX/IAA, EXPANSIN, WRKY, and MYB emerged as main players in RSA and drought adaptation. We also found that HSP and HSF gene families participated in oxidative stress inhibition in IR64 root tip. Meta-quantitative trait loci (QTL) analysis revealed that 288 differentially expressed genes were colocalized with RSA QTLs previously reported under drought and normal conditions. This finding warrants further research into their possible roles in drought adaptation. Overall, our analyses presented several major molecular differences between Azucena and IR64, which may partly explain their differential root growth responses to water stress. It appears that Azucena avoided water stress through enhancing growth and root exploration to access water, whereas IR64 might mainly rely on cell insulation to maintain water and antioxidant system to withstand stress. We identified a large number of novel RSA and drought associated candidate genes, which should encourage further exploration of their potential to enhance drought adaptation in rice.
Collapse
Affiliation(s)
- Somayeh Abdirad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Ahmad Majd
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Saeed Irian
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Parisa Daryani
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Parisa Koobaz
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Laleh Karimi Farsad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Parisa Yazdanpanah
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
- Department of Plant Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Amirhossein Sadri
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Mehdi Mirzaei
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Zahra Ghorbanzadeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Mehrbano Kazemi
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
| | - Naghmeh Hadidi
- Department of Clinical Research and Electronic Microscope, Pasteur Institute of Iran, Tehran, Iran
| | - Paul A. Haynes
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research, Education and Extension Organization, Karaj, Iran
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
7
|
Si A, Sun Z, Li Z, Chen B, Gu Q, Zhang Y, Wu L, Zhang G, Wang X, Ma Z. A Genome Wide Association Study Revealed Key Single Nucleotide Polymorphisms/Genes Associated With Seed Germination in Gossypium hirsutum L. FRONTIERS IN PLANT SCIENCE 2022; 13:844946. [PMID: 35371175 PMCID: PMC8967292 DOI: 10.3389/fpls.2022.844946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/21/2022] [Indexed: 05/17/2023]
Abstract
Fast and uniform seed germination is essential to stabilize crop yields in agricultural production. It is important to understand the genetic basis of seed germination for improving the vigor of crop seeds. However, little is known about the genetic basis of seed vigor in cotton. In this study, we evaluated four seed germination-related traits of a core collection consisting of 419 cotton accessions, and performed a genome-wide association study (GWAS) to explore important loci associated with seed vigor using 3.66 million high-quality single nucleotide polymorphisms (SNPs). The results showed that four traits, including germination potential, germination rate, germination index, and vigor index, exhibited broad variations and high correlations. A total of 92 significantly associated SNPs located within or near 723 genes were identified for these traits, of which 13 SNPs could be detected in multiple traits. Among these candidate genes, 294 genes were expressed at seed germination stage. Further function validation of the two genes of higher expression showed that Gh_A11G0176 encoding Hsp70-Hsp90 organizing protein negatively regulated Arabidopsis seed germination, while Gh_A09G1509 encoding glutathione transferase played a positive role in regulating tobacco seed germination and seedling growth. Furthermore, Gh_A09G1509 might promote seed germination and seedling establishment through regulating glutathione metabolism in the imbibitional seeds. Our findings provide unprecedented information for deciphering the genetic basis of seed germination and performing molecular breeding to improve field emergence through genomic selection in cotton.
Collapse
Affiliation(s)
- Aijun Si
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
- Key Laboratory of China Northwestern Inland Region, Ministry of Agriculture, Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Shihezi, China
| | - Zhengwen Sun
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Zhikun Li
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Bin Chen
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Qishen Gu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
- Xingfen Wang,
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
- *Correspondence: Zhiying Ma,
| |
Collapse
|
8
|
Zhang G, Peng Y, Zhou J, Tan Z, Jin C, Fang S, Zhong S, Jin C, Wang R, Wen X, Li B, Lu S, Zhou G, Fu T, Guo L, Yao X. Genome-Wide Association Studies of Salt-Alkali Tolerance at Seedling and Mature Stages in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:857149. [PMID: 35574128 PMCID: PMC9094488 DOI: 10.3389/fpls.2022.857149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/28/2022] [Indexed: 05/19/2023]
Abstract
Most plants are sensitive to salt-alkali stress, and the degree of tolerance to salt-alkali stress varies from different species and varieties. In order to explore the salt-alkali stress adaptability of Brassica napus, we collected the phenotypic data of 505 B. napus accessions at seedling and mature stages under control, low and high salt-alkali soil stress conditions in Inner Mongolia of China. Six resistant and 5 sensitive materials, respectively, have been identified both in Inner Mongolia and Xinjiang Uygur Autonomous Region of China. Genome-wide association studies (GWAS) for 15 absolute values and 10 tolerance coefficients (TCs) of growth and agronomic traits were applied to investigate the genetic basis of salt-alkali tolerance of B. napus. We finally mapped 9 significant QTLs related to salt-alkali stress response and predicted 20 candidate genes related to salt-alkali stress tolerance. Some important candidate genes, including BnABA4, BnBBX14, BnVTI12, BnPYL8, and BnCRR1, were identified by combining sequence variation annotation and expression differences. The identified valuable loci and germplasms could be useful for breeding salt-alkali-tolerant B.napus varieties. This study laid a foundation for understanding molecular mechanism of salt-alkali stress adaptation and provides rich genetic resources for the large-scale production of B. napus on salt-alkali land in the future.
Collapse
Affiliation(s)
- Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jinzhi Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shengzhu Zhong
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Cunwang Jin
- Green Industry Development Center, Inner Mongolia, China
| | - Ruizhen Wang
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Xiaoliang Wen
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Binrui Li
- Agriculture and Animal Husbandry Technology Promotion Center, Inner Mongolia, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Guangsheng Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- *Correspondence: Xuan Yao
| |
Collapse
|
9
|
Alam MNU, Jewel GMNA, Azim T, Seraj ZI. Novel QTLs for salinity tolerance revealed by genome-wide association studies of biomass, chlorophyll and tissue ion content in 176 rice landraces from Bangladesh. PLoS One 2021; 16:e0259456. [PMID: 34739483 PMCID: PMC8570475 DOI: 10.1371/journal.pone.0259456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
Farmland is on the decline and worldwide food security is at risk. Rice is the staple of choice for over half the Earth's people. To sustain current demands and ascertain a food secure future, substandard farmland affected by abiotic stresses must be utilized. For rapid crop improvement, a broader understanding of polygenic traits like stress tolerance and crop yield is indispensable. To this end, the hidden diversity of resilient and neglected wild varieties must be traced back to their genetic roots. In this study, we separately assayed 11 phenotypes in a panel of 176 diverse accessions predominantly comprised of local landraces from Bangladesh. We compiled high resolution sequence data for these accessions. We collectively studied the ties between the observed phenotypic differences and the examined additive genetic effects underlying these variations. We applied a fixed effect model to associate phenotypes with genotypes on a genomic scale. Discovered QTLs were mapped to known genes. Our explorations yielded 13 QTLs related to various traits in multiple trait classes. 10 identified QTLs were equivalent to findings from previous studies. Integrative analysis assumes potential novel functionality for a number of candidate genes. These findings will usher novel avenues for the bioengineering of high yielding crops of the future fortified with genetic defenses against abiotic stressors.
Collapse
Affiliation(s)
- Md Nafis Ul Alam
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - G. M. Nurnabi Azad Jewel
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Tomalika Azim
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Zeba I. Seraj
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
10
|
Fan X, Jiang H, Meng L, Chen J. Gene Mapping, Cloning and Association Analysis for Salt Tolerance in Rice. Int J Mol Sci 2021; 22:11674. [PMID: 34769104 PMCID: PMC8583862 DOI: 10.3390/ijms222111674] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Soil salinization caused by the accumulation of sodium can decrease rice yield and quality. Identification of rice salt tolerance genes and their molecular mechanisms could help breeders genetically improve salt tolerance. We studied QTL mapping of populations for rice salt tolerance, period and method of salt tolerance identification, salt tolerance evaluation parameters, identification of salt tolerance QTLs, and fine-mapping and map cloning of salt tolerance QTLs. We discuss our findings as they relate to other genetic studies of salt tolerance association.
Collapse
Affiliation(s)
- Xiaoru Fan
- School of Chemistry and Life Science, Anshan Normal University, Anshan 114007, China;
| | - Hongzhen Jiang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Lijun Meng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528200, China
| | - Jingguang Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
11
|
Le TD, Gathignol F, Vu HT, Nguyen KL, Tran LH, Vu HTT, Dinh TX, Lazennec F, Pham XH, Véry AA, Gantet P, Hoang GT. Genome-Wide Association Mapping of Salinity Tolerance at the Seedling Stage in a Panel of Vietnamese Landraces Reveals New Valuable QTLs for Salinity Stress Tolerance Breeding in Rice. PLANTS 2021; 10:plants10061088. [PMID: 34071570 PMCID: PMC8228224 DOI: 10.3390/plants10061088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 01/18/2023]
Abstract
Rice tolerance to salinity stress involves diverse and complementary mechanisms, such as the regulation of genome expression, activation of specific ion-transport systems to manage excess sodium at the cell or plant level, and anatomical changes that avoid sodium penetration into the inner tissues of the plant. These complementary mechanisms can act synergistically to improve salinity tolerance in the plant, which is then interesting in breeding programs to pyramidize complementary QTLs (quantitative trait loci), to improve salinity stress tolerance of the plant at different developmental stages and in different environments. This approach presupposes the identification of salinity tolerance QTLs associated with different mechanisms involved in salinity tolerance, which requires the greatest possible genetic diversity to be explored. To contribute to this goal, we screened an original panel of 179 Vietnamese rice landraces genotyped with 21,623 SNP markers for salinity stress tolerance under 100 mM NaCl treatment, at the seedling stage, with the aim of identifying new QTLs involved in the salinity stress tolerance via a genome-wide association study (GWAS). Nine salinity tolerance-related traits, including the salt injury score, chlorophyll and water content, and K+ and Na+ contents were measured in leaves. GWAS analysis allowed the identification of 26 QTLs. Interestingly, ten of them were associated with several different traits, which indicates that these QTLs act pleiotropically to control the different levels of plant responses to salinity stress. Twenty-one identified QTLs colocalized with known QTLs. Several genes within these QTLs have functions related to salinity stress tolerance and are mainly involved in gene regulation, signal transduction or hormone signaling. Our study provides promising QTLs for breeding programs to enhance salinity tolerance and identifies candidate genes that should be further functionally studied to better understand salinity tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Thao Duc Le
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi 00000, Vietnam; (T.D.L.); (H.T.V.); (L.H.T.); (X.H.P.)
| | - Floran Gathignol
- UMR DIADE, Université de Montpellier, IRD, 34095 Montpellier, France; (F.G.); (F.L.)
| | - Huong Thi Vu
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi 00000, Vietnam; (T.D.L.); (H.T.V.); (L.H.T.); (X.H.P.)
| | - Khanh Le Nguyen
- Faculty of Agricultural Technology, University of Engineering and Technology, Hanoi 00000, Vietnam;
| | - Linh Hien Tran
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi 00000, Vietnam; (T.D.L.); (H.T.V.); (L.H.T.); (X.H.P.)
| | - Hien Thi Thu Vu
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi 00000, Vietnam;
| | - Tu Xuan Dinh
- Incubation and Support Center for Technology and Science Enterprises, Hanoi 00000, Vietnam;
| | - Françoise Lazennec
- UMR DIADE, Université de Montpellier, IRD, 34095 Montpellier, France; (F.G.); (F.L.)
| | - Xuan Hoi Pham
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi 00000, Vietnam; (T.D.L.); (H.T.V.); (L.H.T.); (X.H.P.)
| | - Anne-Aliénor Véry
- UMR BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France;
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, 34095 Montpellier, France; (F.G.); (F.L.)
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Correspondence: (P.G.); (G.T.H.); Tel.: +33-467-416-414 (P.G.); +84-397-600-496 (G.T.H.)
| | - Giang Thi Hoang
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi 00000, Vietnam; (T.D.L.); (H.T.V.); (L.H.T.); (X.H.P.)
- Correspondence: (P.G.); (G.T.H.); Tel.: +33-467-416-414 (P.G.); +84-397-600-496 (G.T.H.)
| |
Collapse
|
12
|
Zhang G, Zhou J, Peng Y, Tan Z, Li L, Yu L, Jin C, Fang S, Lu S, Guo L, Yao X. Genome-Wide Association Studies of Salt Tolerance at Seed Germination and Seedling Stages in Brassica napus. FRONTIERS IN PLANT SCIENCE 2021; 12:772708. [PMID: 35069628 PMCID: PMC8766642 DOI: 10.3389/fpls.2021.772708] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/25/2021] [Indexed: 05/19/2023]
Abstract
Most crops are sensitive to salt stress, but their degree of susceptibility varies among species and cultivars. In order to understand the salt stress adaptability of Brassica napus to salt stress, we collected the phenotypic data of 505 B. napus accessions at the germination stage under 150 or 215 mM sodium chloride (NaCl) and at the seedling stage under 215 mM NaCl. Genome-wide association studies (GWAS) of 16 salt tolerance coefficients (STCs) were applied to investigate the genetic basis of salt stress tolerance of B. napus. In this study, we mapped 31 salts stress-related QTLs and identified 177 and 228 candidate genes related to salt stress tolerance were detected at germination and seedling stages, respectively. Overexpression of two candidate genes, BnCKX5 and BnERF3 overexpression, were found to increase the sensitivity to salt and mannitol stresses at the germination stage. This study demonstrated that it is a feasible method to dissect the genetic basis of salt stress tolerance at germination and seedling stages in B. napus by GWAS, which provides valuable loci for improving the salt stress tolerance of B. napus. Moreover, these candidate genes are rich genetic resources for the following exploration of molecular mechanisms in adaptation to salt stress in B. napus.
Collapse
Affiliation(s)
- Guofang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Jinzhi Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yan Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zengdong Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Long Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liangqian Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Cheng Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Shuai Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shaoping Lu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Liang Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Xuan Yao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
- *Correspondence: Xuan Yao,
| |
Collapse
|
13
|
He F, Wei C, Zhang Y, Long R, Li M, Wang Z, Yang Q, Kang J, Chen L. Genome-Wide Association Analysis Coupled With Transcriptome Analysis Reveals Candidate Genes Related to Salt Stress in Alfalfa ( Medicago sativa L.). FRONTIERS IN PLANT SCIENCE 2021; 12:826584. [PMID: 35185967 PMCID: PMC8850473 DOI: 10.3389/fpls.2021.826584] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 12/28/2021] [Indexed: 05/12/2023]
Abstract
Salt stress is the main abiotic factor affecting alfalfa yield and quality. However, knowledge of the genetic basis of the salt stress response in alfalfa is still limited. Here, a genome-wide association study (GWAS) involving 875,023 single-nucleotide polymorphisms (SNPs) was conducted on 220 alfalfa varieties under both normal and salt-stress conditions. Phenotypic analysis showed that breeding status and geographical origin play important roles in the alfalfa salt stress response. For germination ability under salt stress, a total of 15 significant SNPs explaining 9%-14% of the phenotypic variation were identified. For tolerance to salt stress in the seedling stage, a total of 18 significant SNPs explaining 12%-23% of the phenotypic variation were identified. Transcriptome analysis revealed 2,097 and 812 differentially expressed genes (DEGs) that were upregulated and 2,445 and 928 DEGs that were downregulated in the leaves and roots, respectively, under salt stress. Among these DEGs, many encoding transcription factors (TFs) were found, including MYB-, CBF-, NAC-, and bZIP-encoding genes. Combining the results of our GWAS analysis and transcriptome analysis, we identified a total of eight candidate genes (five candidate genes for tolerance to salt stress and three candidate genes for germination ability under salt stress). Two SNPs located within the upstream region of MsAUX28, which encodes an auxin response protein, were significantly associated with tolerance to salt stress. The two significant SNPs within the upstream region of MsAUX28 existed as three different haplotypes in this panel. Hap 1 (G/G, A/A) was under selection in the alfalfa domestication and improvement process.
Collapse
|
14
|
Gazara RK, Khan S, Iqrar S, Ashrafi K, Abdin MZ. Comparative transcriptome profiling of rice colonized with beneficial endophyte, Piriformospora indica, under high salinity environment. Mol Biol Rep 2020; 47:7655-7673. [PMID: 32979167 DOI: 10.1007/s11033-020-05839-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023]
Abstract
The salinity stress tolerance in plants has been studied enormously, reflecting its agronomic relevance. Despite the extensive research, limited success has been achieved in relation to the plant tolerance mechanism. The beneficial interaction between Piriformospora indica and rice could essentially improve the performance of the plant during salt stress. In this study, the transcriptomic data between P. indica treated and untreated rice roots were compared under control and salt stress conditions. Overall, 661 salt-responsive differentially expressed genes (DEGs) were detected with 161 up- and 500 down-regulated genes in all comparison groups. Gene ontology analyses indicated the DEGs were mainly enriched in "auxin-activated signaling pathway", "water channel activity", "integral component of plasma membrane", "stress responses", and "metabolic processes". Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the DEGs were primarily related to "Zeatin biosynthesis", "Fatty acid elongation", "Carotenoid biosynthesis", and "Biosynthesis of secondary metabolites". Particularly, genes related to cell wall modifying enzymes (e.g. invertase/pectin methylesterase inhibitor protein and arabinogalactans), phytohormones (e.g. Auxin-responsive Aux/IAA gene family, ent-kaurene synthase, and 12-oxophytodienoate reductase) and receptor-like kinases (e.g. AGC kinase and receptor protein kinase) were induced in P. indica colonized rice under salt stress condition. The differential expression of these genes implies that the coordination between hormonal crosstalk, signaling, and cell wall dynamics contributes to the higher growth and tolerance in P. indica-inoculated rice. Our results offer a valuable resource for future functional studies on salt-responsive genes that should improve the resilience and adaptation of rice against salt stress.
Collapse
Affiliation(s)
- Rajesh K Gazara
- Centro de Bioiências e Biotecnologia, Universidade Estadual do Norte Fluminense "Darcy Ribeiro" University, Campos dos goytacazes, Rio de Janeiro, Brazil
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, India
- Department of Electrical Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Shazia Khan
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Sadia Iqrar
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Kudsiya Ashrafi
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India
| | - Malik Z Abdin
- Department of Biotechnology, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
15
|
Yuan J, Wang X, Zhao Y, Khan NU, Zhao Z, Zhang Y, Wen X, Tang F, Wang F, Li Z. Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Sci Rep 2020; 10:9958. [PMID: 32561778 PMCID: PMC7305297 DOI: 10.1038/s41598-020-66604-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 04/24/2020] [Indexed: 12/29/2022] Open
Abstract
Soil salinity is a major factor affecting rice growth and productivity worldwide especially at seedling stage. Many genes for salt tolerance have been identified and applied to rice breeding, but the actual mechanism of salt tolerance remains unclear. In this study, seedlings of 664 cultivated rice varieties from the 3000 Rice Genome Project (3K-RG) were cultivated by hydroponic culture with 0.9% salt solution for trait identification. A genome-wide association study (GWAS) of salt tolerance was performed using different models of analysis. Twenty-one QTLs were identified and two candidate genes named OsSTL1 (Oryza sativa salt tolerance level 1) and OsSTL2 (Oryza sativa salt tolerance level 2) were confirmed using sequence analysis. Haplotype and sequence analysis revealed that gene OsSTL1 was a homolog of salt tolerance gene SRP1 (Stress associated RNA-binding protein 1) in Arabidopsis. The hap1 of OsSTL1 was identified as the superior haplotype and a non-synonymous SNP was most likely to be the functional site. We also determined that the level of salt tolerance was improved by combining haplotypes of different genes. Our study provides a foundation for molecular breeding and functional analysis of salt tolerance in rice seedlings.
Collapse
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.,Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Xueqiang Wang
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yan Zhao
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Najeeb Ullah Khan
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhao
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Yanhong Zhang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Xiaorong Wen
- Rice Experiment Stations in WenSu, Xinjiang Academy of Agricultural Sciences, Aksu, 843000, China
| | - Fusen Tang
- Rice Experiment Stations in WenSu, Xinjiang Academy of Agricultural Sciences, Aksu, 843000, China
| | - Fengbin Wang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
16
|
Yuan J, Wang X, Zhao Y, Khan NU, Zhao Z, Zhang Y, Wen X, Tang F, Wang F, Li Z. Genetic basis and identification of candidate genes for salt tolerance in rice by GWAS. Sci Rep 2020. [PMID: 32561778 DOI: 10.1038/s41598-020-66604-66607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Soil salinity is a major factor affecting rice growth and productivity worldwide especially at seedling stage. Many genes for salt tolerance have been identified and applied to rice breeding, but the actual mechanism of salt tolerance remains unclear. In this study, seedlings of 664 cultivated rice varieties from the 3000 Rice Genome Project (3K-RG) were cultivated by hydroponic culture with 0.9% salt solution for trait identification. A genome-wide association study (GWAS) of salt tolerance was performed using different models of analysis. Twenty-one QTLs were identified and two candidate genes named OsSTL1 (Oryza sativa salt tolerance level 1) and OsSTL2 (Oryza sativa salt tolerance level 2) were confirmed using sequence analysis. Haplotype and sequence analysis revealed that gene OsSTL1 was a homolog of salt tolerance gene SRP1 (Stress associated RNA-binding protein 1) in Arabidopsis. The hap1 of OsSTL1 was identified as the superior haplotype and a non-synonymous SNP was most likely to be the functional site. We also determined that the level of salt tolerance was improved by combining haplotypes of different genes. Our study provides a foundation for molecular breeding and functional analysis of salt tolerance in rice seedlings.
Collapse
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Xueqiang Wang
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yan Zhao
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Najeeb Ullah Khan
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Zhao
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Yanhong Zhang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Xiaorong Wen
- Rice Experiment Stations in WenSu, Xinjiang Academy of Agricultural Sciences, Aksu, 843000, China
| | - Fusen Tang
- Rice Experiment Stations in WenSu, Xinjiang Academy of Agricultural Sciences, Aksu, 843000, China
| | - Fengbin Wang
- Institute of Nuclear and Biological Technologies, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology / Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Chen C, Norton GJ, Price AH. Genome-Wide Association Mapping for Salt Tolerance of Rice Seedlings Grown in Hydroponic and Soil Systems Using the Bengal and Assam Aus Panel. FRONTIERS IN PLANT SCIENCE 2020; 11:576479. [PMID: 33193518 PMCID: PMC7644878 DOI: 10.3389/fpls.2020.576479] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 10/02/2020] [Indexed: 05/04/2023]
Abstract
Salinity is a major abiotic stress which inhibits rice production in coastal, arid and semi-aid areas in many countries, such as India and Bangladesh. Identification of salt tolerant cultivars, quantitative trait loci (QTLs) and genes is essential for breeding salt tolerant rice. The aus subpopulation of rice is considered to have originated predominantly from Bangladesh and India and have rich genetic diversity with wide variation in abiotic stress resistance. The objective of this study was to identify QTLs, and subsequently candidate genes using cultivars from the aus subpopulation and compare the results of two different seedling stage screening methods. Salt tolerance at the rice seedling stage was evaluated on 204 rice accessions from the Bengal and Assam Aus Panel (BAAP) grown in both hydroponics and soil under control and salt stress conditions. Ten salt related traits of stress symptoms, plant growth and the content of sodium and potassium were measured. Three cultivars, BRRI dhan 47, Goria, and T 1 showed more salt tolerance than the tolerant check Pokkali in both systems. Genome-wide association mapping was conducted on salt indices traits with 2 million SNPs using an efficient mixed model (EMMA) controlling population structure and kinship, and a significance threshold of P < 0.0001 was used to determine significant SNPs. A total of 97 and 74 QTLs associated with traits in hydroponic and soil systems were identified, respectively, including 11 QTLs identified in both systems. A total of 65 candidate genes were found including a well-known major gene OsHKT1;5. The most significant QTL was detected at around 40 Mb on chromosome 1 coinciding with two post-translational modifications SUMOylation genes (OsSUMO1 and OsSUMO2), this QTL was investigated. The salt tolerance rice cultivars and QTLs/genes identified here will provide useful information for future studies on genetics and breeding salt tolerant rice.
Collapse
|
18
|
Comparison between the Transcriptomes of 'KDML105' Rice and a Salt-Tolerant Chromosome Segment Substitution Line. Genes (Basel) 2019; 10:genes10100742. [PMID: 31554292 PMCID: PMC6827086 DOI: 10.3390/genes10100742] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/17/2019] [Accepted: 09/20/2019] [Indexed: 11/19/2022] Open
Abstract
‘KDML105’ rice, known as jasmine rice, is grown in northeast Thailand. The soil there has high salinity, which leads to low productivity. Chromosome substitution lines (CSSLs) with the ‘KDML105’ rice genetic background were evaluated for salt tolerance. CSSL18 showed the highest salt tolerance among the four lines tested. Based on a comparison between the CSSL18 and ‘KDML105’ transcriptomes, more than 27,000 genes were mapped onto the rice genome. Gene ontology enrichment of the significantly differentially expressed genes (DEGs) revealed that different mechanisms were involved in the salt stress responses between these lines. Biological process and molecular function enrichment analysis of the DEGs from both lines revealed differences in the two-component signal transduction system, involving LOC_Os04g23890, which encodes phototropin 2 (PHOT2), and LOC_Os07g44330, which encodes pyruvate dehydrogenase kinase (PDK), the enzyme that inhibits pyruvate dehydrogenase in respiration. OsPHOT2 expression was maintained in CSSL18 under salt stress, whereas it was significantly decreased in ‘KDML105’, suggesting OsPHOT2 signaling may be involved in salt tolerance in CSSL18. PDK expression was induced only in ‘KDML105’. These results suggested respiration was more inhibited in ‘KDML105’ than in CSSL18, and this may contribute to the higher salt susceptibility of ‘KDML105’ rice. Moreover, the DEGs between ‘KDML105’ and CSSL18 revealed the enrichment in transcription factors and signaling proteins located on salt-tolerant quantitative trait loci (QTLs) on chromosome 1. Two of them, OsIRO2 and OsMSR2, showed the potential to be involved in salt stress response, especially, OsMSR2, whose orthologous genes in Arabidopsis had the potential role in photosynthesis adaptation under salt stress.
Collapse
|
19
|
Li N, Zheng H, Cui J, Wang J, Liu H, Sun J, Liu T, Zhao H, Lai Y, Zou D. Genome-wide association study and candidate gene analysis of alkalinity tolerance in japonica rice germplasm at the seedling stage. RICE (NEW YORK, N.Y.) 2019; 12:24. [PMID: 30976929 PMCID: PMC6459459 DOI: 10.1186/s12284-019-0285-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/02/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND Salinity-alkalinity stress is one of the major factors limiting rice production. The damage caused by alkaline salt stress to rice growth is more severe than that caused by neutral salt stress. At present, the genetic resources (quantitative trait loci (QTLs) and genes) that can be used by rice breeders to improve alkalinity tolerance are limited. Here, we assessed the alkalinity tolerance of rice at the seedling stage and performed a genome-wide association study (GWAS) based on genotypic data including 788,396 single-nucleotide polymorphisms (SNPs) developed by re-sequencing 295 japonica rice varieties. RESULTS We used the score of alkalinity tolerance (SAT), the concentrations of Na+ and K+ in the shoots (SNC and SKC, respectively) and the Na+/K+ ratio of shoots (SNK) as indices to assess alkalinity tolerance at the seedling stage in rice. Based on population structure analysis, the japonica rice panel was divided into three subgroups. Linkage disequilibrium (LD) analysis showed that LD decay occurred at 109.77 kb for the whole genome and varied between 13.79 kb and 415.77 kb across the 12 chromosomes, at which point the pairwise squared correlation coefficient (r2) decreased to half of its maximum value. A total of eight QTLs significantly associated with the SAT, SNC and SNK were identified by genome-wide association mapping. A common QTL associated with the SAT, SNC and SNK on chromosome 3 at the position of 15.0 Mb, which explaining 13.36~13.64% of phenotypic variation, was selected for further analysis. The candidate genes were filtered based on LD decay, Gene Ontology (GO) enrichment, RNA sequencing data, and quantitative real-time PCR (qRT-PCR) analysis. Moreover, sequence analysis revealed one 7-bp insertion/deletion (indel) difference in LOC_Os03g26210 (OsIRO3) between the alkalinity-tolerant and alkalinity-sensitive rice varieties. OsIRO3 encodes a bHLH-type transcription factor and has been shown to be a negative regulator of the Fe-deficiency response in rice. CONCLUSION Based on these results, OsIRO3 maybe a novel functional gene associated with alkalinity tolerance in japonica rice. This study provides resources for improving alkalinity tolerance in rice, and the functional molecular marker could be verified to breed new rice varieties with alkalinity tolerance via marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150030, China
| | - Jingnan Cui
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jian Sun
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Tongtong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Yongcai Lai
- Heilongjiang Academy of Agricultural Sciences Postdoctoral Programme, Harbin, 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
20
|
He Y, Yang B, He Y, Zhan C, Cheng Y, Zhang J, Zhang H, Cheng J, Wang Z. A quantitative trait locus, qSE3, promotes seed germination and seedling establishment under salinity stress in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:1089-1104. [PMID: 30537381 PMCID: PMC6850641 DOI: 10.1111/tpj.14181] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/05/2018] [Accepted: 11/27/2018] [Indexed: 05/22/2023]
Abstract
Seed germination is a complex trait determined by both quantitative trait loci (QTLs) and environmental factors and also their interactions. In this study, we mapped one major QTLqSE3 for seed germination and seedling establishment under salinity stress in rice. To understand the molecular basis of this QTL, we isolated qSE3 by map-based cloning and found that it encodes a K+ transporter gene, OsHAK21. The expression of qSE3 was significantly upregulated by salinity stress in germinating seeds. Physiological analysis suggested that qSE3 significantly increased K+ and Na+ uptake in germinating seeds under salinity stress, resulting in increased abscisic acid (ABA) biosynthesis and activated ABA signaling responses. Furthermore, qSE3 significantly decreased the H2 O2 level in germinating seeds under salinity stress. All of these seed physiological changes modulated by qSE3 might contribute to seed germination and seedling establishment under salinity stress. Based on analysis of single-nucleotide polymorphism data of rice accessions, we identified a HAP3 haplotype of qSE3 that was positively correlated with seed germination under salinity stress. This study provides important insights into the roles of qSE3 in seed germination and seedling establishment under salinity stress and facilitates the practical use of qSE3 in rice breeding.
Collapse
Affiliation(s)
- Yongqi He
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095People's Republic of China
| | - Bin Yang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095People's Republic of China
| | - Ying He
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095People's Republic of China
| | - Chengfang Zhan
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095People's Republic of China
| | - Yanhao Cheng
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095People's Republic of China
| | - Jiahui Zhang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095People's Republic of China
| | - Hongsheng Zhang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095People's Republic of China
| | - Jinping Cheng
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095People's Republic of China
| | - Zhoufei Wang
- The Laboratory of Seed Science and TechnologyState Key Laboratory of Crop Genetics and Germplasm EnhancementJiangsu Collaborative Innovation Center for Modern Crop ProductionNanjing Agricultural UniversityNanjing210095People's Republic of China
- The Laboratory of Seed Science and TechnologyGuangdong Key Laboratory of Plant Molecular BreedingState Key Laboratory for Conservation and Utilization of Subtropical Agro‐BioresourcesSouth China Agricultural UniversityGuangzhou510642People's Republic of China
| |
Collapse
|
21
|
Yu J, Zhao W, Tong W, He Q, Yoon MY, Li FP, Choi B, Heo EB, Kim KW, Park YJ. A Genome-Wide Association Study Reveals Candidate Genes Related to Salt Tolerance in Rice ( Oryza sativa) at the Germination Stage. Int J Mol Sci 2018; 19:ijms19103145. [PMID: 30322083 PMCID: PMC6213974 DOI: 10.3390/ijms19103145] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/02/2023] Open
Abstract
Salt toxicity is the major factor limiting crop productivity in saline soils. In this paper, 295 accessions including a heuristic core set (137 accessions) and 158 bred varieties were re-sequenced and ~1.65 million SNPs/indels were used to perform a genome-wide association study (GWAS) of salt-tolerance-related phenotypes in rice during the germination stage. A total of 12 associated peaks distributed on seven chromosomes using a compressed mixed linear model were detected. Determined by linkage disequilibrium (LD) blocks analysis, we finally obtained a total of 79 candidate genes. By detecting the highly associated variations located inside the genic region that overlapped with the results of LD block analysis, we characterized 17 genes that may contribute to salt tolerance during the seed germination stage. At the same time, we conducted a haplotype analysis of the genes with functional variations together with phenotypic correlation and orthologous sequence analyses. Among these genes, OsMADS31, which is a MADS-box family transcription factor, had a down-regulated expression under the salt condition and it was predicted to be involved in the salt tolerance at the rice germination stage. Our study revealed some novel candidate genes and their substantial natural variations in the rice genome at the germination stage. The GWAS in rice at the germination stage would provide important resources for molecular breeding and functional analysis of the salt tolerance during rice germination.
Collapse
Affiliation(s)
- Jie Yu
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Weiguo Zhao
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea.
- School of Biotechnology, Jiangsu University of Science and Technology, Sibaidu, Zhenjiang, Jiangsu 212018, China.
| | - Wei Tong
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea.
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei 230036, China.
| | - Qiang He
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea.
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Min-Young Yoon
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea.
- Leader of Eco. Energy & Bio (LEEBCOR), 190-26 Hwangyeonggongwon-ro, Asan-si, Chungcheongnam-do 31529, Korea.
| | - Feng-Peng Li
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea.
- Suzhou GENEWIZ Biotechnology Co. LTD, C3 218 Xinghu Road Suzhou Industrial Park, Suzhou 215123, China.
| | - Buung Choi
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea.
- Chemical Safety Division, National Institute of Agricultural Sciences (NIAS), Wanju 55365, Korea.
| | - Eun-Beom Heo
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea.
- Breeding & Research Institute, Koregon Co. LTD, Anseong Center 60-34, Gokcheon-gil, Bogae-Myeon, Anseong-Si, Gyeonggi-Do 17509, Korea.
| | - Kyu-Won Kim
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Korea.
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 32439, Korea.
- Center of Crop Breeding on Omics and Artificial Intelligence, Kongju National University, Yesan 32439, Korea.
| |
Collapse
|
22
|
Biradar H, Karan R, Subudhi PK. Transgene Pyramiding of Salt Responsive Protein 3-1 ( SaSRP3-1) and SaVHAc1 From Spartina alterniflora L. Enhances Salt Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:1304. [PMID: 30258451 PMCID: PMC6143679 DOI: 10.3389/fpls.2018.01304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/17/2018] [Indexed: 05/13/2023]
Abstract
The transgenic technology using a single gene has been widely used for crop improvement. But the transgenic pyramiding of multiple genes, a promising alternative especially for enhancing complexly inherited abiotic stress tolerance, has received little attention. Here, we developed and evaluated transgenic rice lines with a single Salt Responsive Protein 3-1 (SaSRP3-1) gene as well as pyramids with two-genes SaSRP3-1 and Vacuolar H+-ATPase subunit c1 (SaVHAc1) derived from a halophyte grass Spartina alterniflora L. for salt tolerance at seedling, vegetative, and reproductive stages. The overexpression of this novel gene SaSRP3-1 resulted in significantly better growth of E. coli with the recombinant plasmid under 600 mM NaCl stress condition compared with the control. During early seedling and vegetative stages, the single gene and pyramided transgenic rice plants showed enhanced tolerance to salt stress with minimal wilting and drying symptoms, improved shoot and root growth, and significantly higher chlorophyll content, relative water content, and K+/Na+ ratio than the control plants. The salt stress screening during reproductive stage revealed that the transgenic plants with single gene and pyramids had better grain filling, whereas the pyramided plants showed significantly higher grain yield and higher grain weight compared to control plants. Our study demonstrated transgenic pyramiding as a viable approach to achieve higher level of salt tolerance in crop plants.
Collapse
Affiliation(s)
- Hanamareddy Biradar
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
| | - Ratna Karan
- Department of Agronomy, University of Florida, Gainesville, FL, United States
| | - Prasanta K. Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, United States
- *Correspondence: Prasanta K. Subudhi,
| |
Collapse
|