1
|
Trefz F, Frauendienst-Egger G, Dienel G, Cannet C, Schmidt-Mader B, Haas D, Blau N, Himmelreich N, Spraul M, Freisinger P, Dobrowolski S, Berg D, Pilotto A. Does hyperphenylalaninemia induce brain glucose hypometabolism? Cerebral spinal fluid findings in treated adult phenylketonuric patients. Mol Genet Metab 2024; 142:108464. [PMID: 38537426 DOI: 10.1016/j.ymgme.2024.108464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 05/08/2024]
Abstract
Despite numerous studies in human patients and animal models for phenylketonuria (PKU; OMIM#261600), the pathophysiology of PKU and the underlying causes of brain dysfunction and cognitive problems in PKU patients are not well understood. In this study, lumbar cerebral spinal fluid (CSF) was obtained immediately after blood sampling from early-treated adult PKU patients who had fasted overnight. Metabolite and amino acid concentrations in the CSF of PKU patients were compared with those of non-PKU controls. The CSF concentrations and CSF/plasma ratios for glucose and lactate were found to be below normal, similar to what has been reported for glucose transporter1 (GLUT1) deficiency patients who exhibit many of the same clinical symptoms as untreated PKU patients. CSF glucose and lactate levels were negatively correlated with CSF phenylalanine (Phe), while CSF glutamine and glutamate levels were positively correlated with CSF Phe levels. Plasma glucose levels were negatively correlated with plasma Phe concentrations in PKU subjects, which partly explains the reduced CSF glucose concentrations. Although brain glucose concentrations are unlikely to be low enough to impair brain glucose utilization, it is possible that the metabolism of Phe in the brain to produce phenyllactate, which can be transported across the blood-brain barrier to the blood, may consume glucose and/or lactate to generate the carbon backbone for glutamate. This glutamate is then converted to glutamine and carries the Phe-derived ammonia from the brain to the blood. While this mechanism remains to be tested, it may explain the correlations of CSF glutamine, glucose, and lactate concentrations with CSF Phe.
Collapse
Affiliation(s)
- Friedrich Trefz
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany.
| | | | - Gerald Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, Little Rock, AR, United States; Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM, United States
| | | | - Brigitte Schmidt-Mader
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Dorothea Haas
- Heidelberg University, Medical Faculty of Heidelberg, Center for Child and Adolescent Medicine, Division of Child Neurology and Metabolic Medicine, Heidelberg, Germany
| | - Nenad Blau
- University Children's Hospital Zürich, Zürich, Switzerland
| | | | | | - Peter Freisinger
- Klinikum Reutlingen, Department of Pediatrics, Reutlingen, Germany
| | - Steven Dobrowolski
- Department of Pathology, University of Pittsburgh, School of Medicine, Pittsburgh, PA 15224, United States
| | - Daniela Berg
- Department of Neurology, University Hospital of Schleswig-Holstein, Kiel, Germany
| | | |
Collapse
|
2
|
Kukułowicz J, Pietrzak-Lichwa K, Klimończyk K, Idlin N, Bajda M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol Rev 2023; 76:142-193. [PMID: 37940347 DOI: 10.1124/pharmrev.123.000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/07/2023] [Accepted: 11/02/2023] [Indexed: 11/10/2023] Open
Abstract
The neutral amino acid transporter subfamily that consists of six members, consecutively SLC6A15-SLC620, also called orphan transporters, represents membrane, sodium-dependent symporter proteins that belong to the family of solute carrier 6 (SLC6). Primarily, they mediate the transport of neutral amino acids from the extracellular milieu toward cell or storage vesicles utilizing an electric membrane potential as the driving force. Orphan transporters are widely distributed throughout the body, covering many systems; for instance, the central nervous, renal, or intestinal system, supplying cells into molecules used in biochemical, signaling, and building pathways afterward. They are responsible for intestinal absorption and renal reabsorption of amino acids. In the central nervous system, orphan transporters constitute a significant medium for the provision of neurotransmitter precursors. Diseases related with aforementioned transporters highlight their significance; SLC6A19 mutations are associated with metabolic Hartnup disorder, whereas altered expression of SLC6A15 has been associated with a depression/stress-related disorders. Mutations of SLC6A18-SLCA20 cause iminoglycinuria and/or hyperglycinuria. SLC6A18-SLC6A20 to reach the cellular membrane require an ancillary unit ACE2 that is a molecular target for the spike protein of the SARS-CoV-2 virus. SLC6A19 has been proposed as a molecular target for the treatment of metabolic disorders resembling gastric surgery bypass. Inhibition of SLC6A15 appears to have a promising outcome in the treatment of psychiatric disorders. SLC6A19 and SLC6A20 have been suggested as potential targets in the treatment of COVID-19. In this review, we gathered recent advances on orphan transporters, their structure, functions, related disorders, and diseases, and in particular their relevance as therapeutic targets. SIGNIFICANCE STATEMENT: The following review systematizes current knowledge about the SLC6A15-SLCA20 neutral amino acid transporter subfamily and their therapeutic relevance in the treatment of different diseases.
Collapse
Affiliation(s)
- Jędrzej Kukułowicz
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Krzysztof Pietrzak-Lichwa
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Klimończyk
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Nathalie Idlin
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
3
|
Chen A, Pan Y, Chen J. Clinical, genetic, and experimental research of hyperphenylalaninemia. Front Genet 2023; 13:1051153. [PMID: 36685931 PMCID: PMC9845280 DOI: 10.3389/fgene.2022.1051153] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/06/2022] [Indexed: 01/06/2023] Open
Abstract
Hyperphenylalaninemia (HPA) is the most common amino acid metabolism defect in humans. It is an autosomal-recessive disorder of the phenylalanine (Phe) metabolism, in which high Phe concentrations and low tyrosine (Tyr) concentrations in the blood cause phenylketonuria (PKU), brain dysfunction, light pigmentation and musty odor. Newborn screening data of HPA have revealed that the prevalence varies worldwide, with an average of 1:10,000. Most cases of HPA result from phenylalanine hydroxylase (PAH) deficiency, while a small number of HPA are caused by defects in the tetrahydrobiopterin (BH4) metabolism and DnaJ heat shock protein family (Hsp40) member C12 (DNAJC12) deficiency. Currently, the molecular pathophysiology of the neuropathology associated with HPA remains incompletely understood. Dietary restriction of Phe has been highly successful, although outcomes are still suboptimal and patients find it difficult to adhere to the treatment. Pharmacological treatments, such as BH4 and phenylalanine ammonia lyase, are available. Gene therapy for HPA is still in development.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Forensic Medicine, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yukun Pan
- Barbell Therapeutics Co. Ltd., Shanghai, China,*Correspondence: Yukun Pan, ; Jinzhong Chen,
| | - Jinzhong Chen
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, China,*Correspondence: Yukun Pan, ; Jinzhong Chen,
| |
Collapse
|
4
|
Hong S, Zhu T, Zheng S, Zhan X, Xu F, Gu X, Liang L. Gene expression profiles in the brain of phenylketonuria mouse model reversed by the low phenylalanine diet therapy. Metab Brain Dis 2021; 36:2405-2414. [PMID: 34524592 DOI: 10.1007/s11011-021-00818-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022]
Abstract
To gain insight into the potential protective mechanisms of low phenylalanine diet (LPD) in phenylketonuria (PKU), gene expression profiles were studied in the cerebral cortex and hippocampus of a PKU mouse model (BTBR-Pahenu2). PKU mice were fed with low Phe diet (LPD-PKU group) and normal diet (PKU group). Wild-type mice were treated with normal diet (WT group) as control. After 12 weeks, we detected gene expression in the cerebral cortex and hippocampus of the three groups by RNA-sequencing, and then screened the differentially-expressed genes (DEGs) among the groups by bioinformatics analyses. We found that the transcriptional profiles of both cerebral cortex and hippocampus changed markedly between PKU and WT mice. Furthermore, LPD changed the transcriptional profiles of the cerebral cortex and the hippocampus of PKU mice significantly, especially in the cerebral cortex, with overlaps of genes that changed with the disease and altered by LPD treatment. In the cerebral cortex, hundreds of DEGs enriched in a wide spectrum of biological processes, molecular function, and cellular component, including nervous system development, axon development and guidance, calcium ion binding, modulation of chemical synaptic transmission, and regulation of protein kinase activity. In the hippocampus, the overlapping genes were enriched in positive regulation of long term synaptic, negative regulation of excitatory postsynaptic potential, positive regulation of synapse assembly. Our results showed that genes impaired in PKU and then rescued by LPD might indicate the potential protective capability of LPD in the PKU brain.
Collapse
Affiliation(s)
- Sha Hong
- Department of Neonatal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianwen Zhu
- Department of Neonatal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Simin Zheng
- Department of Neonatal Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xia Zhan
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665#, Shanghai, 200092, China
| | - Feng Xu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665#, Shanghai, 200092, China
| | - Xuefan Gu
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665#, Shanghai, 200092, China.
| | - Lili Liang
- Department of Pediatric Endocrinology and Genetic Metabolism, Shanghai Institute for Pediatric Research, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Kongjiang Road 1665#, Shanghai, 200092, China.
| |
Collapse
|
5
|
McGinnity CJ, Riaño Barros DA, Guedj E, Girard N, Symeon C, Walker H, Barrington SF, Summers M, Pitkanen M, Rahman Y. A Retrospective Case Series Analysis of the Relationship Between Phenylalanine: Tyrosine Ratio and Cerebral Glucose Metabolism in Classical Phenylketonuria and Hyperphenylalaninemia. Front Neurosci 2021; 15:664525. [PMID: 34220424 PMCID: PMC8248344 DOI: 10.3389/fnins.2021.664525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
We retrospectively examined the relationship between blood biomarkers, in particular the historical mean phenylalanine to tyrosine (Phe:Tyr) ratio, and cerebral glucose metabolism. We hypothesized that the historical mean Phe:Tyr ratio would be more predictive of cerebral glucose metabolism than the phenylalanine (Phe) level alone. We performed a retrospective case series analysis involving 11 adult classical phenylketonuria/hyperphenylalaninemia patients under the care of an Inherited Metabolic & Neuropsychiatry Clinic who had complained of memory problems, collating casenote data from blood biochemistry, and clinical [18F]fluorodeoxyglucose positron emission tomography ([18F]FDG PET). The Phe:Tyr ratio was calculated for individual blood samples and summarized as historical mean Phe:Tyr ratio (Phe:Tyr) and historical standard deviation in Phe:Tyr ratio (SD-Phe:Tyr), for each patient. Visual analyses of [18F]FDG PET revealed heterogeneous patterns of glucose hypometabolism for eight patients. [18F]FDG PET standardized uptake was negatively correlated with Phe in a large cluster with peak localized to right superior parietal gyrus. Even larger clusters of negative correlation that encompassed most of the brain, with frontal peaks, were observed with Phe:Tyr, and SD-Phe:Tyr. Our case series analysis provides further evidence for the association between blood biomarkers, and cerebral glucose hypometabolism. Mean historical blood Phe:Tyr ratio, and its standard deviation over time, appear to be more indicative of global cerebral glucose metabolism in patients with memory problems than Phe.
Collapse
Affiliation(s)
- Colm J McGinnity
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | | | - Eric Guedj
- APHM, CNRS, Centrale Marseille, Institut Fresnel, Timone Hospital, CERIMED, Nuclear Medicine Department, Aix-Marseille University, Marseille, France
| | - Nadine Girard
- Aix-Marseille University, APHM, CNRS, CRMBM, Marseille, France
| | - Christopher Symeon
- South London and Maudsley NHS Foundation Trust, London, United Kingdom.,Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Helen Walker
- South London and Maudsley NHS Foundation Trust, London, United Kingdom.,West London NHS Trust, London, United Kingdom
| | - Sally F Barrington
- King's College London and Guy's and St Thomas' PET Centre, School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Mary Summers
- South London and Maudsley NHS Foundation Trust, London, United Kingdom
| | - Mervi Pitkanen
- South London and Maudsley NHS Foundation Trust, London, United Kingdom.,Institute of Psychiatry, Psychology & Neuroscience, King's Health Partners, King's College London, London, United Kingdom
| | - Yusof Rahman
- Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
6
|
Abstract
Phenylketonuria (PKU; also known as phenylalanine hydroxylase (PAH) deficiency) is an autosomal recessive disorder of phenylalanine metabolism, in which especially high phenylalanine concentrations cause brain dysfunction. If untreated, this brain dysfunction results in severe intellectual disability, epilepsy and behavioural problems. The prevalence varies worldwide, with an average of about 1:10,000 newborns. Early diagnosis is based on newborn screening, and if treatment is started early and continued, intelligence is within normal limits with, on average, some suboptimal neurocognitive function. Dietary restriction of phenylalanine has been the mainstay of treatment for over 60 years and has been highly successful, although outcomes are still suboptimal and patients can find the treatment difficult to adhere to. Pharmacological treatments are available, such as tetrahydrobiopterin, which is effective in only a minority of patients (usually those with milder PKU), and pegylated phenylalanine ammonia lyase, which requires daily subcutaneous injections and causes adverse immune responses. Given the drawbacks of these approaches, other treatments are in development, such as mRNA and gene therapy. Even though PAH deficiency is the most common defect of amino acid metabolism in humans, brain dysfunction in individuals with PKU is still not well understood and further research is needed to facilitate development of pathophysiology-driven treatments.
Collapse
Affiliation(s)
- Francjan J van Spronsen
- Beatrix Children's Hospital, University Medical Centre Groningen, University of Groningen, Groningen, Netherlands.
| | - Nenad Blau
- University Children's Hospital in Zurich, Zurich, Switzerland
| | - Cary Harding
- Department of Molecular and Medical Genetics and Department of Pediatrics, Oregon Health & Science University, Oregon, USA
| | | | - Nicola Longo
- Department of Pediatrics, University of Utah, Salt Lake City, Utah, USA
| | - Annet M Bosch
- University of Amsterdam, Department of Pediatrics, Division of Metabolic Disorders, Emma Children's Hospital, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
7
|
Evers RAF, van Vliet D, van Spronsen FJ. Tetrahydrobiopterin treatment in phenylketonuria: A repurposing approach. J Inherit Metab Dis 2020; 43:189-199. [PMID: 31373030 DOI: 10.1002/jimd.12151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 12/24/2022]
Abstract
In phenylketonuria (PKU) patients, early diagnosis by neonatal screening and immediate institution of a phenylalanine-restricted diet can prevent severe intellectual impairment. Nevertheless, outcome remains suboptimal in some patients asking for additional treatment strategies. Tetrahydrobiopterin (BH4 ) could be one of those treatment options, as it may not only increase residual phenylalanine hydroxylase activity in BH4 -responsive PKU patients, but possibly also directly improves neurocognitive functioning in both BH4 -responsive and BH4 -unresponsive PKU patients. In the present review, we aim to further define the theoretical working mechanisms by which BH4 might directly influence neurocognitive functioning in PKU having passed the blood-brain barrier. Further research should investigate which of these mechanisms are actually involved, and should contribute to the development of an optimal BH4 treatment regimen to directly improve neurocognitive functioning in PKU. Such possible repurposing approach of BH4 treatment in PKU may improve neuropsychological outcome and mental health in both BH4 -responsive and BH4 -unresponsive PKU patients.
Collapse
Affiliation(s)
- Roeland A F Evers
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Danique van Vliet
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| | - Francjan J van Spronsen
- Division of Metabolic Diseases, University of Groningen, University Medical Center Groningen, Beatrix Children's Hospital, Groningen, The Netherlands
| |
Collapse
|
8
|
Belanger AM, Przybylska M, Gefteas E, Furgerson M, Geller S, Kloss A, Cheng SH, Zhu Y, Yew NS. Inhibiting neutral amino acid transport for the treatment of phenylketonuria. JCI Insight 2018; 3:121762. [PMID: 30046012 DOI: 10.1172/jci.insight.121762] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/19/2018] [Indexed: 12/21/2022] Open
Abstract
The neuropathological effects of phenylketonuria (PKU) stem from the inability of the body to metabolize excess phenylalanine (Phe), resulting in accumulation of Phe in the blood and brain. Since the kidney normally reabsorbs circulating amino acids with high efficiency, we hypothesized that preventing the renal uptake of Phe might provide a disposal pathway that could lower systemic Phe levels. SLC6A19 is a neutral amino acid transporter responsible for absorption of the majority of free Phe in the small intestine and reuptake of Phe by renal proximal tubule cells. Transgenic KO mice lacking SLC6A19 have elevated levels of Phe and other amino acids in their urine but are otherwise healthy. Here, we crossed the Pahenu2 mouse model of PKU with the Slc6a19-KO mouse. These mutant/KO mice exhibited abundant excretion of Phe in the urine and an approximately 70% decrease in plasma Phe levels. Importantly, brain Phe levels were decreased by 50%, and the levels of key neurotransmitters were increased in the mutant/KO mice. In addition, a deficit in spatial working memory and markers of neuropathology were corrected. Finally, treatment of Pahenu2 mice with Slc6a19 antisense oligonucleotides lowered Phe levels. The results suggest that inhibition of SLC6A19 may represent a novel approach for the treatment of PKU and related aminoacidopathies.
Collapse
MESH Headings
- Amines
- Amino Acid Transport Systems, Neutral/analysis
- Amino Acid Transport Systems, Neutral/genetics
- Amino Acid Transport Systems, Neutral/metabolism
- Amino Acids, Neutral/blood
- Amino Acids, Neutral/metabolism
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Biological Transport/drug effects
- Brain/metabolism
- Disease Models, Animal
- Female
- Gene Expression Regulation
- Genetic Diseases, Inborn/therapy
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Male
- Memory, Short-Term
- Mice
- Mice, Knockout
- Morpholinos/pharmacology
- Oligonucleotides/pharmacology
- Phenylalanine/blood
- Phenylalanine/metabolism
- Phenylketonurias/pathology
- Phenylketonurias/therapy
- Renal Reabsorption/drug effects
Collapse
|
9
|
Mazzola PN, Bruinenberg V, Anjema K, van Vliet D, Dutra-Filho CS, van Spronsen FJ, van der Zee EA. Voluntary Exercise Prevents Oxidative Stress in the Brain of Phenylketonuria Mice. JIMD Rep 2015; 27:69-77. [PMID: 26440798 DOI: 10.1007/8904_2015_498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/14/2015] [Accepted: 09/15/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND High phenylalanine levels in phenylketonuria (PKU) have been associated with brain oxidative stress and amino acid imbalance. Exercise has been shown to improve brain function in hyperphenylalaninemia and neurodegenerative diseases. This study aimed to verify the effects of exercise on coordination and balance, plasma and brain amino acid levels, and brain oxidative stress markers in PKU mice. METHODS Twenty wild-type (WT) and 20 PAH(enu2) (PKU) C57BL/6 mice were placed in cages with (exercise, Exe) or without (sedentary, Sed) running wheels during 53 days. At day 43, a balance beam test was performed. Plasma and brain were collected for analyses of amino acid levels and the oxidative stress parameters superoxide dismutase (SOD) activity, sulfhydryl and reduced glutathione (GSH) contents, total radical-trapping antioxidant potential (TRAP), and total antioxidant reactivity (TAR). RESULTS SedPKU showed poor coordination (p < 0.001) and balance (p < 0.001), higher plasma and brain phenylalanine (p < 0.001), and increased brain oxidative stress (p < 0.05) in comparison to SedWT. ExePKU animals ran less than ExeWT (p = 0.018). Although no improvement was seen in motor coordination and balance, exercise in PKU restored SOD, sulfhydryl content, and TRAP levels to controls. TAR levels were increased in ExePKU in comparison to SedPKU (p = 0.012). Exercise decreased plasma and brain glucogenic amino acids in ExePKU, but did not change plasma and brain phenylalanine in both WT and PKU. CONCLUSIONS Exercise prevents oxidative stress in the brain of PKU mice without modifying phenylalanine levels. Hence, exercise positively affects the brain, demonstrating its value as an intervention to improve brain quality in PKU.
Collapse
Affiliation(s)
- Priscila Nicolao Mazzola
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES) - University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands. .,Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands. .,Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Vibeke Bruinenberg
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES) - University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Karen Anjema
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Danique van Vliet
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Carlos Severo Dutra-Filho
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Francjan J van Spronsen
- Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eddy A van der Zee
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES) - University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
10
|
Dienel GA, Cruz NF. Biochemical, Metabolic, and Behavioral Characteristics of Immature Chronic Hyperphenylalanemic Rats. Neurochem Res 2015. [PMID: 26224289 DOI: 10.1007/s11064-015-1678-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phenylketonuria and hyperphenylalanemia are inborn errors in metabolism of phenylalanine arising from defects in steps to convert phenylalanine to tyrosine. Phe accumulation causes severe mental retardation that can be prevented by timely identification of affected individuals and their placement on a Phe-restricted diet. In spite of many studies in patients and animal models, the basis for acquisition of mental retardation during the critical period of brain development is not adequately understood. All animal models for human disease have advantages and limitations, and characteristics common to different models are most likely to correspond to the disorder. This study established similar levels of Phe exposure in developing rats between 3 and 16 days of age using three models to produce chronic hyperphenylalanemia, and identified changes in brain amino acid levels common to all models that persist for ~16 h of each day. In a representative model, local rates of glucose utilization (CMRglc) were determined at 25-27 days of age, and only selective changes that appeared to depend on Phe exposure were observed. CMRglc was reduced in frontal cortex and thalamus and increased in hippocampus and globus pallidus. Behavioral testing to evaluate neuromuscular competence revealed poor performance in chronically-hyperphenylalanemic rats that persisted for at least 3 weeks after cessation of Phe injections and did not occur with mild or acute hyperphenylalanemia. Thus, the abnormal amino acid environment, including hyperglycinemia, in developing rat brain is associated with selective regional changes in glucose utilization and behavioral abnormalities that are not readily reversed after they are acquired.
Collapse
Affiliation(s)
- Gerald A Dienel
- Department of Neurology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Mail Slot 500, Little Rock, AR, 72205, USA.
| | - Nancy F Cruz
- Department of Neurology, University of Arkansas for Medical Sciences, 4301 W. Markham St., Mail Slot 500, Little Rock, AR, 72205, USA
| |
Collapse
|
11
|
Imperlini E, Orrù S, Corbo C, Daniele A, Salvatore F. Altered brain protein expression profiles are associated with molecular neurological dysfunction in the PKU mouse model. J Neurochem 2014; 129:1002-12. [PMID: 24548049 PMCID: PMC4286000 DOI: 10.1111/jnc.12683] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/07/2014] [Accepted: 02/02/2014] [Indexed: 12/14/2022]
Abstract
Phenylketonuria (PKU), if not detected and treated in newborns, causes severe neurological dysfunction and cognitive and behavioral deficiencies. Despite the biochemical characterization of PKU, the molecular mechanisms underlying PKU-associated brain dysfunction remain poorly understood. The aim of this study was to gain insights into the pathogenesis of this neurological damage by analyzing protein expression profiles in brain tissue of Black and Tan BRachyury-PahEnu2 mice (a mouse model of PKU). We compared the cerebral protein expression of homozygous PKU mice with that of their heterozygous counterparts using two-dimensional difference gel electrophoresis analysis, and identified 21 differentially expressed proteins, four of which were over-expressed and 17 under-expressed. An in silico bioinformatic approach indicated that protein under-expression was related to neuronal differentiation and dendritic growth, and to such neurological disorders as progressive motor neuropathy and movement disorders. Moreover, functional annotation analyses showed that some identified proteins were involved in oxidative metabolism. To further investigate the proteins involved in the neurological damage, we validated two of the proteins that were most strikingly under-expressed, namely, Syn2 and Dpysl2, which are involved in synaptic function and neurotransmission. We found that Glu2/3 and NR1 receptor subunits were over-expressed in PKU mouse brain. Our results indicate that differential expression of these proteins may be associated with the processes underlying PKU brain dysfunction, namely, decreased synaptic plasticity and impaired neurotransmission.
Collapse
|
12
|
Davis RM, Sowers AL, DeGraff W, Bernardo M, Thetford A, Krishna MC, Mitchell JB. A novel nitroxide is an effective brain redox imaging contrast agent and in vivo radioprotector. Free Radic Biol Med 2011; 51:780-90. [PMID: 21664459 PMCID: PMC3131550 DOI: 10.1016/j.freeradbiomed.2011.05.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 05/10/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
Individuals are exposed to ionizing radiation during medical procedures and nuclear disasters, and this exposure can be carcinogenic, toxic, and sometimes fatal. Drugs that protect individuals from the adverse effects of radiation may therefore be valuable countermeasures against the health risks of exposure. In the current study, the LD(50/30) (the dose resulting in 50% of exposed mice surviving 30 days after exposure) was determined in control C3H mice and mice treated with the nitroxide radioprotectors Tempol, 3-CP, 16c, 22c, and 23c. The pharmacokinetics of 22c and 23c were measured with magnetic resonance imaging (MRI) in the brain, blood, submandibular salivary gland, liver, muscle, tongue, and myocardium. It was found that 23c was the most effective radioprotector of the five studied: 23c increased the LD(50/30) in mice from 7.9±0.15Gy (treated with saline) to 11.47±0.13Gy (an increase of 45%). Additionally, MRI-based pharmacokinetic studies revealed that 23c is an effective redox imaging agent in the mouse brain, and that 23c may allow functional imaging of the myocardium. The data in this report suggest that 23c is currently the most potent known nitroxide radioprotector, and that it may also be useful as a contrast agent for functional imaging.
Collapse
Affiliation(s)
- Ryan M Davis
- Radiation Biology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Park JW, Park ES, Choi EN, Park HY, Jung SC. Altered brain gene expression profiles associated with the pathogenesis of phenylketonuria in a mouse model. Clin Chim Acta 2008; 401:90-9. [PMID: 19073163 DOI: 10.1016/j.cca.2008.11.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 09/15/2008] [Accepted: 11/18/2008] [Indexed: 12/28/2022]
Abstract
BACKGROUND Phenylketonuria (PKU) is an autosomal recessive disorder caused by a deficiency of phenylalanine hydroxylase (PAH), which catalyzes the conversion of phenylalanine to tyrosine. The resultant hyperphenylalaninemia causes mental retardation, seizure, and abnormalities in behavior and movement. METHODS We analyzed gene expression profiles in brain tissues of Pah(enu2) mice to elucidate the mechanisms involved in phenylalanine-induced neurological damage. The altered gene expression was confirmed by real-time PCR and Western blotting. To identify markers associated with neurological damage, we examined TTR expression in serum by Western blotting. RESULTS Gene expression profiling of brain tissue from a mouse model of PKU revealed overexpression of transthyretin (Ttr), sclerostin domain containing 1 (Sostdc1), alpha-Klotho (Kl), prolactin receptor (Prlr), and early growth response 2 (Egr2). In contrast to its overexpression in the brain, TTR expression was low in the sera of PKU mice offered unrestricted access to a diet containing phenylalanine. Expression of TTR decreased in a time-dependent manner in phenylalanine-treated HepG2 cells. CONCLUSIONS These findings indicate that Ttr, Sostdc1, Kl, Prlr, and Egr2 can be involved in the pathogenesis of PKU and that phenylalanine might have a direct effect on the level of TTR in serum.
Collapse
Affiliation(s)
- Joo-Won Park
- Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul, South Korea
| | | | | | | | | |
Collapse
|
14
|
Kölker S, Sauer SW, Hoffmann GF, Müller I, Morath MA, Okun JG. Pathogenesis of CNS involvement in disorders of amino and organic acid metabolism. J Inherit Metab Dis 2008; 31:194-204. [PMID: 18392748 DOI: 10.1007/s10545-008-0823-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 02/12/2008] [Accepted: 02/14/2008] [Indexed: 12/21/2022]
Abstract
Inherited disorders of amino and organic acid metabolism have a high cumulative frequency, and despite heterogeneous aetiology and varying clinical presentation, the manifestation of neurological disease is common. It has been demonstrated for some of these diseases that accumulating pathological metabolites are directly involved in the manifestation of neurological disease. Various pathomechanisms have been suggested in different in vitro and in vivo models including an impairment of brain energy metabolism, an imbalance of excitatory and inhibitory neurotransmission, altered transport across the blood-brain barrier and between glial cells and neurons, impairment of myelination and disturbed neuronal efflux of metabolic water. This review summarizes recent knowledge on pathomechanisms involved in phenylketonuria, glutaric aciduria type I, succinic semialdehyde dehydrogenase deficiency and aspartoacylase deficiency with examples, highlighting general as well as disease-specific concepts and their putative impact on treatment.
Collapse
Affiliation(s)
- S Kölker
- Department of General Pediatrics, Division of Inherited Metabolic Disease, University Children’s Hospital Heidelberg, Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|