1
|
Feng X, Xu D, Xing Z, Zhang Q. Apatinib Mesylate Inhibits Cell Proliferation and the Metastasis of Esophageal Squamous Cell Carcinoma Through ERK/ELK-1/Snail Pathway. Cell Biochem Biophys 2025; 83:2201-2211. [PMID: 39709316 DOI: 10.1007/s12013-024-01631-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 11/19/2024] [Indexed: 12/23/2024]
Abstract
This study aimed to evaluate the impact of apatinib (APT) mesylate on the growth, migration ability, and underlying mechanisms in esophageal squamous cell carcinoma (ESCC) cell lines Kyse30 and Kyse150. Additionally, the anti-metastatic effects of APT mesylate were further validated in a nude mouse xenograft metastasis model. In vitro, APT mesylate treatment significantly reduced cell viability and migration ability in both cell lines in a dose- and time-dependent manner. Western blot analysis showed that APT mesylate inhibited the expression of proteins involved in the ERK/ELK-1/Snail signaling pathway, including ERK1/2, Snail, N-cadherin, and Vimentin, while upregulating E-cadherin expression. In vivo, APT mesylate administration notably decreased the number of pulmonary metastatic nodules in nude mice, with higher doses showing more pronounced effects. The 200 mg/kg high-dose group exhibited a significantly lower number of metastatic nodules compared to the cisplatin (CIS) group. The results suggest that APT mesylate inhibits ESCC cell proliferation and migration primarily by suppressing the ERK/ELK-1/Snail signaling pathway, which mediates epithelial-mesenchymal transition (EMT) and reduces metastasis and invasiveness. This study provides experimental evidence for the potential clinical application of APT mesylate in targeted therapy for ESCC, indicating its promising clinical value.
Collapse
Affiliation(s)
- Xiang Feng
- Department of Pharmacy, Dangtu People's Hospital, Ma'anshan, Anhui Province, China.
| | - Di Xu
- Department of Medical Equipment, Dangtu People's Hospital, Ma'anshan, Anhui Province, China
| | - Zhuqin Xing
- Department of Oncology, Dangtu People's Hospital, Ma'anshan, Anhui Province, China
| | - Qian Zhang
- Department of Pharmacy, The Affiliated Bozhou Hospital of Anhui Medical University, Bozhou, Anhui Province, China.
| |
Collapse
|
2
|
Yang Y, Cao X, Wang Y, Wu X, Zhou P, Miao L, Deng X. Neurokinin-1 receptor antagonist aprepitant regulates autophagy and apoptosis via ROS/JNK in intrahepatic cholangiocarcinoma. Liver Int 2024; 44:1651-1667. [PMID: 38554043 DOI: 10.1111/liv.15904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 04/01/2024]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) has a poor prognosis and limited treatment options. Aprepitant, a selective NK-1R antagonist, can inhibit the growth of various tumours in vitro and in vivo. However, it remains unclear whether aprepitant has cytotoxic effects on iCCA. METHODS We measured the expression of SP/NK-1R in clinical samples of iCCA by immunohistochemistry. Then, we detected the cytotoxic effects of aprepitant on iCCA cells via MTT, EdU and colony formation assay. We constructed a subcutaneous xenograft model of BALB/c nude mice by using HCCC-9810 and RBE cell lines to explore the effects of aprepitant in vivo. To elucidate the potential mechanisms, we explored the pro-apoptotic effect of aprepitant by flow cytometric, western blotting, ROS detection and JC-1 staining. Furthermore, we detected the autophagic level of HCCC-9810 and RBE by western blotting, mRFP-eGFP-LC3 adenovirus transfection and electron microscope. RESULTS SP/NK-1R is significantly expressed in iCCA. Aprepitant inhibited human iCCA xenograft growth and dose-dependently decreased the viability of RBE and HCCC-9810 cells. Aprepitant-induced mitochondria-dependent apoptosis through ROS/JNK pathway. Additionally, pretreatment with z-VAD-fmk partly reversed the effect of aprepitant on cell viability, while NAC completely attenuated the cytotoxic effects of aprepitant in vitro. Furthermore, we observed the dynamic changes of autophagosome in RBE and HCCC-9810 cells treated with aprepitant. CONCLUSION SP/NK-1R signalling is significantly activated in iCCA and promotes the proliferation of iCCA cells. By contrast, aprepitant can induce autophagy and apoptosis in iCCA cells via ROS accumulation and subsequent activation of JNK.
Collapse
Affiliation(s)
- Yang Yang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueyan Cao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuting Wang
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyu Wu
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Zhou
- Lab Center, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Miao
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xueting Deng
- Institute of Digestive Endoscopy and Medical Center for Digestive Diseases, Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Mardelle U, Bretaud N, Daher C, Feuillet V. From pain to tumor immunity: influence of peripheral sensory neurons in cancer. Front Immunol 2024; 15:1335387. [PMID: 38433844 PMCID: PMC10905387 DOI: 10.3389/fimmu.2024.1335387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
The nervous and immune systems are the primary sensory interfaces of the body, allowing it to recognize, process, and respond to various stimuli from both the external and internal environment. These systems work in concert through various mechanisms of neuro-immune crosstalk to detect threats, provide defense against pathogens, and maintain or restore homeostasis, but can also contribute to the development of diseases. Among peripheral sensory neurons (PSNs), nociceptive PSNs are of particular interest. They possess a remarkable capability to detect noxious stimuli in the periphery and transmit this information to the brain, resulting in the perception of pain and the activation of adaptive responses. Pain is an early symptom of cancer, often leading to its diagnosis, but it is also a major source of distress for patients as the disease progresses. In this review, we aim to provide an overview of the mechanisms within tumors that are likely to induce cancer pain, exploring a range of factors from etiological elements to cellular and molecular mediators. In addition to transmitting sensory information to the central nervous system, PSNs are also capable, when activated, to produce and release neuropeptides (e.g., CGRP and SP) from their peripheral terminals. These neuropeptides have been shown to modulate immunity in cases of inflammation, infection, and cancer. PSNs, often found within solid tumors, are likely to play a significant role in the tumor microenvironment, potentially influencing both tumor growth and anti-tumor immune responses. In this review, we discuss the current state of knowledge about the degree of sensory innervation in tumors. We also seek to understand whether and how PSNs may influence the tumor growth and associated anti-tumor immunity in different mouse models of cancer. Finally, we discuss the extent to which the tumor is able to influence the development and functions of the PSNs that innervate it.
Collapse
Affiliation(s)
- Ugo Mardelle
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Ninon Bretaud
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Clara Daher
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| | - Vincent Feuillet
- Aix-Marseille Université, Centre National de la Recherche Scientifique (CNRS), Institut National de la Santé et de la Recherche Médicale (INSERM), CIML, Centre d'Immunologie de Marseille-Luminy, Marseille, France
| |
Collapse
|
4
|
Shalabi S, Belayachi A, Larrivée B. Involvement of neuronal factors in tumor angiogenesis and the shaping of the cancer microenvironment. Front Immunol 2024; 15:1284629. [PMID: 38375479 PMCID: PMC10875004 DOI: 10.3389/fimmu.2024.1284629] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024] Open
Abstract
Emerging evidence suggests that nerves within the tumor microenvironment play a crucial role in regulating angiogenesis. Neurotransmitters and neuropeptides released by nerves can interact with nearby blood vessels and tumor cells, influencing their behavior and modulating the angiogenic response. Moreover, nerve-derived signals may activate signaling pathways that enhance the production of pro-angiogenic factors within the tumor microenvironment, further supporting blood vessel growth around tumors. The intricate network of communication between neural constituents and the vascular system accentuates the potential of therapeutically targeting neural-mediated pathways as an innovative strategy to modulate tumor angiogenesis and, consequently, neoplastic proliferation. Hereby, we review studies that evaluate the precise molecular interplay and the potential clinical ramifications of manipulating neural elements for the purpose of anti-angiogenic therapeutics within the scope of cancer treatment.
Collapse
Affiliation(s)
- Sharif Shalabi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Ali Belayachi
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
| | - Bruno Larrivée
- Maisonneuve-Rosemont Hospital Research Center, Boulevard de l’Assomption, Montréal, QC, Canada
- Department of Biochemistry and Molecular Medicine, Montréal, QC, Canada
- Ophthalmology, Université de Montréal, boul. Édouard-Montpetit, Montréal, QC, Canada
| |
Collapse
|
5
|
Coveñas R, Rodríguez FD, Robinson P, Muñoz M. The Repurposing of Non-Peptide Neurokinin-1 Receptor Antagonists as Antitumor Drugs: An Urgent Challenge for Aprepitant. Int J Mol Sci 2023; 24:15936. [PMID: 37958914 PMCID: PMC10650658 DOI: 10.3390/ijms242115936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
The substance P (SP)/neurokinin-1 receptor (NK-1R) system is involved in cancer progression. NK-1R, activated by SP, promotes tumor cell proliferation and migration, angiogenesis, the Warburg effect, and the prevention of apoptosis. Tumor cells overexpress NK-1R, which influences their viability. A typical specific anticancer strategy using NK-1R antagonists, irrespective of the tumor type, is possible because these antagonists block all the effects mentioned above mediated by SP on cancer cells. This review will update the information regarding using NK-1R antagonists, particularly Aprepitant, as an anticancer drug. Aprepitant shows a broad-spectrum anticancer effect against many tumor types. Aprepitant alone or in combination therapy with radiotherapy or chemotherapy could reduce the sequelae and increase the cure rate and quality of life of patients with cancer. Current data open the door to new cancer research aimed at antitumor therapeutic strategies using Aprepitant. To achieve this goal, reprofiling the antiemetic Aprepitant as an anticancer drug is urgently needed.
Collapse
Affiliation(s)
- Rafael Coveñas
- Laboratory of Neuroanatomy of the Peptidergic Systems, Institute of Neurosciences of Castilla y León (INCYL), University of Salamanca, 37007 Salamanca, Spain;
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain;
| | - Francisco D. Rodríguez
- Group GIR-BMD (Bases Moleculares del Desarrollo), University of Salamanca, 37007 Salamanca, Spain;
- Department of Biochemistry and Molecular Biology, Faculty of Chemical Sciences, University of Salamanca, 37007 Salamanca, Spain
| | - Prema Robinson
- Department of Infectious Diseases, Infection Control, and Employee Health, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Miguel Muñoz
- Pediatric Intensive Care Unit, Research Laboratory on Neuropeptides (IBIS), Virgen del Rocío University Hospital, 41013 Seville, Spain;
| |
Collapse
|
6
|
Kast RE. The OSR9 Regimen: A New Augmentation Strategy for Osteosarcoma Treatment Using Nine Older Drugs from General Medicine to Inhibit Growth Drive. Int J Mol Sci 2023; 24:15474. [PMID: 37895152 PMCID: PMC10607234 DOI: 10.3390/ijms242015474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/13/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
As things stand in 2023, metastatic osteosarcoma commonly results in death. There has been little treatment progress in recent decades. To redress the poor prognosis of metastatic osteosarcoma, the present regimen, OSR9, uses nine already marketed drugs as adjuncts to current treatments. The nine drugs in OSR9 are: (1) the antinausea drug aprepitant, (2) the analgesic drug celecoxib, (3) the anti-malaria drug chloroquine, (4) the antibiotic dapsone, (5) the alcoholism treatment drug disulfiram, (6) the antifungal drug itraconazole, (7) the diabetes treatment drug linagliptin, (8) the hypertension drug propranolol, and (9) the psychiatric drug quetiapine. Although none are traditionally used to treat cancer, all nine have attributes that have been shown to inhibit growth-promoting physiological systems active in osteosarcoma. In their general medicinal uses, all nine drugs in OSR9 have low side-effect risks. The current paper reviews the collected data supporting the role of OSR9.
Collapse
|
7
|
Isorna I, González-Moles MÁ, Muñoz M, Esteban F. Substance P and Neurokinin-1 Receptor System in Thyroid Cancer: Potential Targets for New Molecular Therapies. J Clin Med 2023; 12:6409. [PMID: 37835053 PMCID: PMC10573850 DOI: 10.3390/jcm12196409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/11/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023] Open
Abstract
In recent years, numerous approaches have been developed to comprehend the molecular alterations underlying thyroid cancer (TC) oncogenesis and explore novel therapeutic strategies for TC. It is now well established that the neurokinin-1 receptor (NK-1R) is overexpressed in cancer cells and that NK-1R is essential for the viability of cancer cells. The binding of substance P (SP) to NK-1R in neoplastic cells plays a pivotal role in cancer progression by promoting neoplastic cell growth, protecting tumor cells from apoptosis, triggering invasion and metastasis through the enhanced migration of cancer cells, and stimulating endothelial cell proliferation for tumor angiogenesis. Remarkably, all types of human TC (papillary, follicular, medullary, anaplastic), as well as metastatic lesions, exhibit the overexpression of SP and NK-1R compared to the normal thyroid gland. TC cells synthesize and release SP, which exerts its multiple functions through autocrine, paracrine, intracrine, and neuroendocrine processes, including the regulation of tumor burden. Consequently, the secretion of SP from TC results in increased SP levels in plasma, which are significantly higher in TC patients compared to controls. Additionally, NK-1R antagonists have demonstrated a dose-dependent antitumor action. They impair cancer cell proliferation on one side and induce apoptosis of tumor cells on the other side. Furthermore, it has been demonstrated that NK-1R antagonists inhibit neoplastic cell migration, thereby impairing both invasiveness and metastatic abilities, as well as angiogenesis. Given the consistent overexpression of NK-1R in all types of TC, targeting this receptor represents a promising therapeutic approach for TC. Therefore, NK-1R antagonists, such as the drug aprepitant, may represent novel drugs for TC treatment.
Collapse
Affiliation(s)
- Inmaculada Isorna
- Department of Otorhinolaryngology, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain; (I.I.); (F.E.)
| | | | - Miguel Muñoz
- Research Laboratory on Neuropeptides, Institute of Biomedicine of Seville (IBiS), 41013 Seville, Spain
| | - Francisco Esteban
- Department of Otorhinolaryngology, Hospital Universitario Virgen del Rocio, 41013 Seville, Spain; (I.I.); (F.E.)
- School of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
8
|
Movahhed M, pazhouhi M, Ghaleh HEG, Kondori BJ. Anti-metastatic effect of taraxasterol on prostate cancer cell lines. Res Pharm Sci 2023; 18:439-448. [PMID: 37614618 PMCID: PMC10443670 DOI: 10.4103/1735-5362.378090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 05/30/2023] [Indexed: 08/25/2023] Open
Abstract
Background and purpose Prostate cancer is the second cause of death among men. Nowadays, treating various cancers with medicinal plants is more common than other therapeutic agents due to their minor side effects. This study aimed to evaluate the effect of taraxasterol on the prostate cancer cell line. Experimental approach The prostate cancer cell line (PC3) was cultured in a nutrient medium. MTT method and trypan blue staining were used to evaluate the viability of cells in the presence of different concentrations of taraxasterol, and IC50 was calculated. Real-time PCR was used to measure the expression of MMP-9, MMP-2, uPA, uPAR, TIMP-2, and TIMP-1 genes. Gelatin zymography was used to determine MMP-9 and MMP-2 enzyme activity levels. Finally, the effect of taraxasterol on cell invasion, migration, and adhesion was investigated. Findings/Results Taraxasterol decreased the survival rate of PC3 cells at IC50 time-dependently (24, 48, and 72 h). Taraxasterol reduced the percentage of PC3 cell adhesion, invasion, and migration by 74, 56, and 76 percent, respectively. Real-time PCR results revealed that uPA, uPAR, MMP-9, and MMP-2 gene expressions decreased in the taraxasterol-treated groups, but TIMP-2 and TIMP-1 gene expressions increased significantly. Also, a significant decrease in the level of MMP-9 and MMP-2 enzymes was observed in the PC3 cell line treated with taraxasterol. Conclusion and implications The present study confirmed the therapeutic role of taraxasterol in preventing prostate cancer cell metastasis in the in-vitro study.
Collapse
Affiliation(s)
- Morteza Movahhed
- Department of Pathology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mona pazhouhi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, I.R. Iran
| | | | - Bahman Jalali Kondori
- Department of Anatomical Sciences, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Ebrahimi S, Mirzavi F, Hashemy SI, Khaleghi Ghadiri M, Stummer W, Gorji A. The in vitro anti-cancer synergy of neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid in glioblastoma. Biofactors 2023; 49:900-911. [PMID: 37092793 DOI: 10.1002/biof.1953] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Glioblastoma multiforme (GBM) is the most malignant type of cerebral neoplasm in adults with a poor prognosis. Currently, combination therapy with different anti-cancer agents is at the forefront of GBM research. Hence, this study aims to evaluate the potential anti-cancer synergy of a clinically approved neurokinin-1 receptor antagonist, aprepitant, and 5-aminolevulinic acid (5-ALA), a prodrug that elicits fluorescent porphyrins in gliomas on U-87 human GBM cells. We found that aprepitant and 5-ALA effectively inhibited GBM cell viability. The combinatorial treatment of these drugs exerted potent synergistic growth inhibitory effects on GBM cells. Moreover, aprepitant and 5-ALA induced apoptosis and altered the levels of apoptotic genes (up-regulation of Bax and P53 along with downregulation of Bcl-2). Furthermore, aprepitant and 5-ALA increased the accumulation of protoporphyrin IX, a highly pro-apoptotic and fluorescent photosensitizer. Aprepitant and 5-ALA significantly inhibited GBM cell migration and reduced matrix metalloproteinases (MMP-2 and MMP-9) activities. Importantly, all these effects were more prominent following aprepitant-5-ALA combination treatment than either drug alone. Collectively, the combination of aprepitant and 5-ALA leads to considerable synergistic anti-proliferative, pro-apoptotic, and anti-migratory effects on GBM cells and provides a firm basis for further evaluation of this combination as a novel therapeutic approach for GBM.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Walter Stummer
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
| | - Ali Gorji
- Epilepsy Research Center, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Cao X, Yang Y, Zhou W, Wang Y, Wang X, Ge X, Wang F, Zhou F, Deng X, Miao L. Aprepitant inhibits the development and metastasis of gallbladder cancer via ROS and MAPK activation. BMC Cancer 2023; 23:471. [PMID: 37221457 DOI: 10.1186/s12885-023-10954-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/12/2023] [Indexed: 05/25/2023] Open
Abstract
BACKGROUND Aprepitant, as a neurokinin-1 receptor (NK-1R) antagonist, originally applied for curing chemotherapy-induced nausea and vomiting, has been reported to have significant antitumor effect on several malignant tumors. However, the effect of aprepitant on gallbladder cancer (GBC) is not clear yet. This study aimed to investigate the anti-tumor activity of aprepitant on GBC and the potential mechanisms. METHODS The NK-1R expression of gallbladder cancer cells were examined by immunofluorescence. MTT assay, wound healing and transwell migration assay were applied to detect the effect of aprepitant on cell proliferation, migration and invasion. Flow cytometry was used to detect the apoptosis rate. The effects of aprepitant on the expressions of cytokine were examined by real-time quantitative PCR and MAPK activation were detected via immunofluorescence and western blotting. Besides, xenograft model was established to investigate the effect of aprepitant in vivo. RESULTS Our results indicated that NK-1R was markedly expressed in gallbladder cancer cells and aprepitant effectively inhibited the proliferation, migration and invasion. Furthermore, the apoptosis, ROS and inflammation response were significantly boosted by aprepitant in GBC. Aprepitant induced NF-κB p65 nuclear translocationin and increased the expressions of p-P65, p-Akt, p-JNK, p-ERK and p-P38, as well as the mRNA levels of inflammatory cytokines IL-1β, IL-6 and TNF-α. Consistently, aprepitant suppressed the growth of GBC in xenograft mice model. CONCLUSION Our study demonstrated that aprepitant could inhibit the development of gallbladder cancer via inducing ROS and MAPK activation, which suggested that aprepitant may become a promising therapeutic drug against GBC.
Collapse
Affiliation(s)
- Xueyan Cao
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Yang Yang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Wei Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Xue Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Xianxiu Ge
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Fei Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China
| | - Fangfang Zhou
- Burn and Plastic Surgery, Jiangsu University Affiliated Hospital, Zhenjiang, China
| | - Xueting Deng
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China.
| | - Lin Miao
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, 121 Jiangjiayuan Road, Gulou District, Nanjing, Jiangsu, China.
| |
Collapse
|
11
|
Prognostic Significance of Substance P and Neurokinin-1 Receptor in Bladder Cancer. Rep Biochem Mol Biol 2022; 11:411-420. [PMID: 36718293 PMCID: PMC9883027 DOI: 10.52547/rbmb.11.3.411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/25/2022] [Indexed: 01/18/2023]
Abstract
Background Bladder cancer is one of the most common genitourinary cancers with significant mortality. Finding reliable tumor markers and potential drug targets can improve early diagnosis, prognosis, and more effective therapeutic protocols. Previous studies have reported the involvement of the substance P (SP)/neurokinin-1 receptor (NK-1R) system in cancers. The potential prognostic role and the interaction of SP and NK-1R in bladder tumor are yet to be elucidated. Methods Serum samples from 22 primarily diagnosed patients with bladder cancer as well as 22 healthy controls were examined for SP level using ELISA method. Tissue distribution of NK-1R in tumor samples and their adjacent normal tissues was evaluated through immunohistochemistry. Results Serum SP levels in patients with bladder cancer were higher than the healthy group (p< 0.001) and had a significant correlation with NK-1R staining intensity (p< 0.001), percentage of stained cells (p< 0.001), and NK-1R tissue distribution. Also, the immunoreactivity of NK-1R in cancer samples increased significantly without correlation with tumor characteristics. However, no significant association was found between SP and NK-1R levels with clinical characteristics including tumor size (p= 0.33), tumor stage (p= 0.29), grade (p= 0.93), NK-1R staining intensity (p= 0.53), and percentage of stained cells (p= 0.32). Discussion According to our findings, despite the lack of association between SP and NK-1R with clinical characteristics of bladder cancer, their serum levels were higher in patients with bladder cancer. Further studies are needed to confirm the potential prognostic role of SP and NK-1R in bladder cancer.
Collapse
|
12
|
Momen Razmgah M, Ghahremanloo A, Javid H, AlAlikhan A, Afshari AR, Hashemy SI. The effect of substance P and its specific antagonist (aprepitant) on the expression of MMP-2, MMP-9, VEGF, and VEGFR in ovarian cancer cells. Mol Biol Rep 2022; 49:9307-9314. [PMID: 35960409 DOI: 10.1007/s11033-022-07771-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/05/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Substance P (SP) has a crucial role in cancer initiation and progression via binding to its specific receptor (NK1R). Various evidence confirmed the overexpression of NK1R and SP in the tissue of multiple cancers, including ovarian cancer. Despite numerous studies, the mechanism of the SP/NK1R system on migration and angiogenesis of ovarian cancer cells has not yet been deciphered. In this study, considering the critical factors in cell migration (MMP-2, MMP-9) and angiogenesis (VEGF, VEGFR), we investigated the possible mechanism of this system in inducing migration and angiogenesis of ovarian cancer cells. METHODS AND RESULTS First, the resazurin assay was conducted to evaluate the cytotoxic effect of aprepitant (NK1R antagonist) on the viability of A2780 ovarian cancer cells. After that, the impact of this system and aprepitant on the mRNA expression of the factors mentioned above were studied using RT-PCR. Besides, the scratch assay was performed to confirm the effect of the SP/NK-1R system and aprepitant on cell migration. Our results implied that this system induced cell migration and angiogenesis by increasing the mRNA expression of MMP-2, MMP-9, VEGF, and VEGFR. The obtained results from the scratch assay also confirmed the positive effect of this system on cell migration. Meanwhile, the blocking of NK1R by aprepitant suppresses the SP effects on cell migration and angiogenesis. CONCLUSIONS Overall, the SP/NK1R system plays a vital role in ovarian cancer progression, and the inhibition of NK1Rusing aprepitant could inhibit the spread of ovarian cancer cells through metastasis and angiogenesis.
Collapse
Affiliation(s)
- Maryam Momen Razmgah
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Ghahremanloo
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Abbas AlAlikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Clinical Biochemistry Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
The Potential In Vitro Inhibitory Effects of Neurokinin-1 Receptor (NK-1R) Antagonist, Aprepitant, in Osteosarcoma Cell Migration and Metastasis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8082608. [PMID: 36177059 PMCID: PMC9514929 DOI: 10.1155/2022/8082608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/14/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022]
Abstract
Background Osteosarcoma, the most frequent osteogenic malignancy, has become a serious public health challenge due to its high morbidity rates and metastatic potential. Recently, the neurokinin-1 receptor (NK-1R) is proved to be a promising target in cancer therapy. This study is aimed at determining the effect of aprepitant, a safe and Food and Drug Administration (FDA) approved NK-1R antagonist, on osteosarcoma cell migration and metastasis, and to explore its underlying mechanism of action. Methods Colorimetric MTT assay was employed to assess cell viability and cytotoxicity. A wound-healing assay was used to examine migration ability. The desired genes' protein and mRNA expression levels were measured by western blot assay and quantitative real-time PCR (qRT-PCR), respectively. Gelatinase activity was also measured by zymography. Results We found that aprepitant inhibited MG-63 osteosarcoma cell viability in a dose-dependent manner. We also observed that aprepitant inhibited the migrative phenotype of osteosarcoma cells and reduced the expression levels and activities of matrix metalloproteinases (MMP-2 and MMP-9). Aprepitant also reduced the expression of an angiogenic factor, VEGF protein, and NF-κB as an important transcriptional regulator of metastasis-related genes. Conclusion Collectively, our observations indicate that aprepitant modulates the metastatic behavior of human osteosarcoma cells, which may be applied to an effective therapeutic approach for patients with metastatic osteosarcoma.
Collapse
|
14
|
Javid H, Hashemian P, Yazdani S, Sharbaf Mashhad A, Karimi-Shahri M. The role of heat shock proteins in metastatic colorectal cancer: A review. J Cell Biochem 2022; 123:1704-1735. [PMID: 36063530 DOI: 10.1002/jcb.30326] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Heat shock proteins (HSPs) are a large molecular chaperone family classified by their molecular weights, including HSP27, HSP40, HSP60, HSP70, HSP90, and HSP110. HSPs are likely to have antiapoptotic properties and participate actively in various processes such as tumor cell proliferation, invasion, metastases, and death. In this review, we discuss comprehensively the functions of HSPs associated with the progression of colorectal cancer (CRC) and metastasis and resistance to cancer therapy. Taken together, HSPs have numerous clinical applications as biomarkers for cancer diagnosis and prognosis and potential therapeutic targets for CRC and its related metastases.
Collapse
Affiliation(s)
- Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Pedram Hashemian
- Jahad Daneshgahi Research Committee, Jahad Daneshgahi Institute, Mashhad, Iran
| | - Shaghayegh Yazdani
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medical Laboratory Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Alireza Sharbaf Mashhad
- Department of Medical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| |
Collapse
|
15
|
Yang Y, Wu JJ, Xia J, Wan Y, Xu JF, Zhang L, Liu D, Chen L, Tang F, Ao H, Peng C. Can aloin develop to medicines or healthcare products? Biomed Pharmacother 2022; 153:113421. [DOI: 10.1016/j.biopha.2022.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/02/2022] Open
|
16
|
Song X, Greiner-Tollersrud OK, Zhou H. Oral Microbiota Variation: A Risk Factor for Development and Poor Prognosis of Esophageal Cancer. Dig Dis Sci 2022; 67:3543-3556. [PMID: 34505256 DOI: 10.1007/s10620-021-07245-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/23/2021] [Indexed: 12/24/2022]
Abstract
Recent studies have shown that oral microbiota play an important role in the esophageal cancer (EC) initiation and progression, suggesting that oral microbiota is a new risk factor for EC. The composition of the microbes inhabiting the oral cavity could be perturbed with continuous factors such as smoking, alcohol consumption, and inflammation. The microbial alteration involves the decrease of beneficial species and the increase of pathogenic species. Experimental evidences suggest a significant role of oral commensal organisms in protecting hosts against EC. By contrast, oral pathogens, especially Porphyromonas gingivalis and Fusobacterium nucleatum, give rise to the risk for developing EC through their pro-inflammatory and pro-tumorigenic activities. The presences of oral dysbiosis, microbial biofilm, and periodontitis in EC patients are found to be associated with invasive cancer phenotypes and poor prognosis. The mechanism of oral bacteria in EC progression is complex, which involves a combination of cytokines, chemokines, oncogenic signaling pathways, cell surface receptors, the degradation of extracellular matrix, and cell apoptosis. From a clinical perspective, good oral hygiene, professional oral care, and rational use of antibiotics bring positive impacts on oral microbial balance, thus helping individuals reduce the risk of EC, inhibiting postoperative complications among EC patients, and improving the efficiency of chemoradiotherapy. However, current oral hygiene practices mainly focus on the oral bacteria-based predictive and preventive purposes. It is still far from implementing microbiota-dependent regulation as a therapy for EC. Further explorations are needed to render oral microbiota a potential target for treating EC.
Collapse
Affiliation(s)
- Xiaobo Song
- Department of Microbiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China.,Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Ole K Greiner-Tollersrud
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø, 9037, Tromsø, Norway
| | - Huimin Zhou
- Department of Microbiology, Dalian Medical University, No.9 West Section Lvshun South Road, Dalian, 116044, Liaoning Province, China.
| |
Collapse
|
17
|
Zheng S, Liu B, Guan X. The Role of Tumor Microenvironment in Invasion and Metastasis of Esophageal Squamous Cell Carcinoma. Front Oncol 2022; 12:911285. [PMID: 35814365 PMCID: PMC9257257 DOI: 10.3389/fonc.2022.911285] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/18/2022] [Indexed: 12/24/2022] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers in the world, with a high rate of morbidity. The invasion and metastasis of ESCC is the main reason for high mortality. More and more evidence suggests that metastasized cancer cells require cellular elements that contribute to ESCC tumor microenvironment (TME) formation. TME contains many immune cells and stromal components, which are critical to epithelial–mesenchymal transition, immune escape, angiogenesis/lymphangiogenesis, metastasis niche formation, and invasion/metastasis. In this review, we will focus on the mechanism of different microenvironment cellular elements in ESCC invasion and metastasis and discuss recent therapeutic attempts to restore the tumor-suppressing function of cells within the TME. It will represent the whole picture of TME in the metastasis and invasion process of ESCC.
Collapse
Affiliation(s)
- Shuyue Zheng
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Beilei Liu
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Xinyuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- State Key Laboratory of Oncology in Southern China, Sun Yat-sen University Cancer Center, Guangzhou, China
- *Correspondence: Xinyuan Guan,
| |
Collapse
|
18
|
Tajaldini M, Saeedi M, Amiriani T, Amiriani AH, Sedighi S, Mohammad Zadeh F, Dehghan M, Jahanshahi M, Zanjan Ghandian M, Khalili P, Poorkhani AH, Alizadeh AM, Khori V. Cancer-associated fibroblasts (CAFs) and tumor-associated macrophages (TAMs); where do they stand in tumorigenesis and how they can change the face of cancer therapy? Eur J Pharmacol 2022; 928:175087. [PMID: 35679891 DOI: 10.1016/j.ejphar.2022.175087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 06/03/2022] [Indexed: 11/03/2022]
Abstract
The tumor microenvironment (TME) and its components have recently attracted tremendous attention in cancer treatment strategies, as alongside the genetic and epigenetic alterations in tumor cells, TME could also provide a fertile background for malignant cells to survive and proliferate. Interestingly, TME plays a vital role in the mediation of cancer metastasis and drug resistance even against immunotherapeutic agents. Among different cells that are presenting in TME, tumor-associated macrophages (TAMs) and cancer-associated fibroblasts (CAFs) have shown to have significant value in the regulation of angiogenesis, tumor metastasis, and drug-resistance through manipulating the composition as well as the organization of extracellular matrix (ECM). Evidence has shown that the presence of both TAMs and CAFs in TME is associated with poor prognosis and failure of chemotherapeutic agents. It seems that these cells together with ECM form a shield around tumor cells to protect them from the toxic agents and even the adaptive arm of the immune system, which is responsible for tumor surveillance. Given this, targeting TAMs and CAFs seems to be an essential approach to potentiate the cytotoxic effects of anti-cancer agents, either conventional chemotherapeutic drugs or immunotherapies. In the present review, we aimed to take a deep look at the mechanobiology of CAFs and TAMs in tumor progression and to discuss the available therapeutic approaches for harnessing these cells in TME.
Collapse
Affiliation(s)
- Mahboubeh Tajaldini
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohsen Saeedi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Taghi Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Amir Hossein Amiriani
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sima Sedighi
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Fatemeh Mohammad Zadeh
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mohammad Dehghan
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehrdad Jahanshahi
- Neuroscience Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maziar Zanjan Ghandian
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Pedram Khalili
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | | | - Ali Mohammad Alizadeh
- Cancer Research Center, Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Khori
- Ischemic Disorder Research Center, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
19
|
The Emerging Role of Neurokinin-1 Receptor Blockade Using Aprepitant in the Redox System of Esophageal Squamous Cell Carcinoma. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10399-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
The Neurokinin-1 Receptor Is Essential for the Viability of Human Glioma Cells: A Possible Target for Treating Glioblastoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6291504. [PMID: 35434136 PMCID: PMC9006081 DOI: 10.1155/2022/6291504] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 01/20/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022]
Abstract
Background Glioblastoma or glioma is the most common malignant brain tumor. Patients have a prognosis of approximately 15 months, despite the current aggressive treatment. Neurokinin-1 receptor (NK-1R) occurs naturally in human glioma, and it is necessary for the tumor development. Objective The purpose of the study was to increase the knowledge about the involvement of the substance P (SP)/NK-1R system in human glioma. Methods Cellular localization of NK-1R and SP was studied in GAMG and U-87 MG glioma cell lines by immunofluorescence. The contribution of both SP and NK-1R to the viability of these cells was also assessed after applying the tachykinin 1 receptor (TAC1R) or the tachykinin 1 (TAC1) small interfering RNA gene silencing method, respectively. Results Both SP and the NK-1R (full-length and truncated isoforms) were localized in the nucleus and cytoplasm of GAMG and U-87 MG glioma cells. The presence of full-length NK-1R isoform was mainly observed in the nucleus, while the level of truncated isoform was higher in the cytoplasm. Cell proliferation was decreased when glioma cells were transfected with TAC1R siRNA, but not with TAC1. U-87 MG cells were more sensitive to the effect of the TAC1R inhibition than GAMG cells. The decrease in the number of glioma cells after silencing of the TAC1R siRNA gene was due to apoptotic and necrotic mechanisms. In human primary fibroblast cultured cells, TAC1R silencing by siRNA did not produce any change in cell viability. Conclusions Our results show for the first time that the expression of the TAC1R gene (NK-1R) is essential for the viability of GAMG and U-87 MG glioma cells. On the contrary, the TAC1R gene is not essential for the viability of normal cells, confirming that NK-1R could be a promising and specific therapeutic target for the treatment of glioma.
Collapse
|
21
|
SP/NK1R system regulates carcinogenesis in prostate cancer: Shedding light on the antitumoral function of aprepitant. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119221. [PMID: 35134443 DOI: 10.1016/j.bbamcr.2022.119221] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 12/27/2021] [Accepted: 01/19/2022] [Indexed: 12/28/2022]
Abstract
AIMS Prostate cancer continues to be one of the main global health issues in men. Neuropeptide substance P (SP) acting via neurokinin-1receptor (NK1R) promotes tumorigenicity in many human malignant tumors. However, its pro-tumorigenic functions and the therapeutic effects of its inhibition in prostate cancer remain unclear. METHODS MTT assay was employed for measuring cellular proliferation and cytotoxicity. mRNAs and proteins expression levels were evaluated by qRT-PCR and western blot assay, respectively. Gelatinase activity was assessed by zymography. The migration ability was defined using wound-healing assay. Flow cytometry was employed to evaluate the cell cycle distribution. We also performed an in vivo experiment in a mouse model of prostate cancer to confirm the in vitro therapeutic effect of targeting the SP/NK1R system. RESULTS We found a noticeable increase in the expression of the truncated isoform of NK1R as an oncogenic NK1R splice variant in tumor cells. We also demonstrated that SP promotes both proliferative and migrative phenotypes of prostate cancer through modifying cell cycle-related proteins (c-Myc, cyclin D1, cyclin B1, p21), and apoptosis-related genes (Bcl-2 and Bax), promoting cell migration and increasing MMP-2 and MMP-9 expression and activity, while aprepitant administration could remarkably reverse these effects. SP also stimulated tumor growth in vivo, which was correlated with shorter survival times, while aprepitant reversed this effect and led to significantly longer survival time. SIGNIFICANCE Our findings suggest that SP/NK1R system may serve as a novel therapeutic target in prostate cancer and support the possible candidacy of aprepitant in future prostate cancer therapy.
Collapse
|
22
|
Gam DH, Park JH, Kim JH, Beak DH, Kim JW. Effects of Allium sativum Stem Extract on Growth and Migration in Melanoma Cells through Inhibition of VEGF, MMP-2, and MMP-9 Genes Expression. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010021. [PMID: 35011253 PMCID: PMC8746369 DOI: 10.3390/molecules27010021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 12/13/2022]
Abstract
The present study investigated the effects of Allium sativum stem extract (ASE) on B16-F0 cell growth and metastasis. Evaluation of the effects of ASE on B16-F0 cells’ viability and migration showed that 0.5 mg/mL ASE inhibited B16-F0 cells’ growth by 30.2% and migration by 38.5%, which indicates that the ASE has anticancer and antimetastatic effects on B16-F0 cells. To study the anticancer and antimetastatic mechanism, mRNA levels of vascular endothelial growth factor (VEGF), matrix metalloproteinases-2 (MMP-2), and matrix metalloproteinases-9 (MMP-9) expressions were evaluated with reverse transcription polymerase chain reaction, and 0.25 and 0.5 mg/mL ASE was found to exert significant inhibition on mRNA expressions of VEGF, MMP-2, and MMP-9 in B16-F0 cells. Thus, ASE reduce extracellular matrix degradation through inhibitions of expression of MMP-2 and MMP-9, and also showed an angiogenesis inhibitory effect through reduction of VEGF expression. High-performance liquid chromatography analysis showed that among various polyphenols, gallic acid (2.1 mg/g) was a major compound of ASE. Overall, our results demonstrated that ASE inhibited the growth and migration of B16-F0 cells through downregulation of the VEGF, MMP-2, and MMP-9 genes expression, which indicates ASE could be applied for the prevention and treatment of melanoma.
Collapse
Affiliation(s)
- Da-Hye Gam
- Department of Food Science, Sun Moon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea; (D.-H.G.); (J.-H.P.); (J.-H.K.); (D.-H.B.)
| | - Jae-Hyun Park
- Department of Food Science, Sun Moon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea; (D.-H.G.); (J.-H.P.); (J.-H.K.); (D.-H.B.)
| | - Jun-Hee Kim
- Department of Food Science, Sun Moon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea; (D.-H.G.); (J.-H.P.); (J.-H.K.); (D.-H.B.)
| | - Dong-Ho Beak
- Department of Food Science, Sun Moon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea; (D.-H.G.); (J.-H.P.); (J.-H.K.); (D.-H.B.)
| | - Jin-Woo Kim
- Department of Food Science, Sun Moon University, Natural Science 118, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea; (D.-H.G.); (J.-H.P.); (J.-H.K.); (D.-H.B.)
- FlexPro Biotechnology, Natural Science 128, 70 Sunmoon-ro 221, Tangjeong-myeon, Asan-si 336-708, Korea
- Correspondence: ; Tel.: +82-41-530-2226
| |
Collapse
|
23
|
Yang S, Chang Y, Hazoor S, Brautigam C, Foss FW, Pan Z, Dong H. Modular Design of Supramolecular Ionic Peptides with Cell-Selective Membrane Activity. Chembiochem 2021; 22:3164-3168. [PMID: 34506664 PMCID: PMC11261884 DOI: 10.1002/cbic.202100323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/09/2021] [Indexed: 11/10/2022]
Abstract
The rational design of materials with cell-selective membrane activity is an effective strategy for the development of targeted molecular imaging and therapy. Here we report a new class of cationic multidomain peptides (MDPs) that can undergo enzyme-mediated molecular transformation followed by supramolecular assembly to form nanofibers in which cationic clusters are presented on a rigid β-sheet backbone. This structural transformation, which is induced by cells overexpressing the specific enzymes, led to a shift in the membrane perturbation potential of the MDPs, and consequently enhanced cell uptake and drug delivery efficacy. We envision the directed self-assembly based on modularly designed MDPs as a highly promising approach to generate dynamic supramolecular nanomaterials with emerging membrane activity for a range of disease targeted molecular imaging and therapy applications.
Collapse
Affiliation(s)
- Su Yang
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Yan Chang
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Shan Hazoor
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chad Brautigam
- Department of Biophysics, The University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Frank W Foss
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Zui Pan
- College of Nursing and Health Innovation, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - He Dong
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
24
|
Potential in vitro therapeutic effects of targeting SP/NK1R system in cervical cancer. Mol Biol Rep 2021; 49:1067-1076. [PMID: 34766230 DOI: 10.1007/s11033-021-06928-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/30/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Cervical cancer, an aggressive gynecological cancer, seriously threatens women's health worldwide. It is recently reported that neuropeptide substance P (SP) regulates many tumor-associated processes through neurokinin-1 receptor (NK1R). Therefore, we used cervical cancer cell line (HeLa) to investigate the functional relevance of the SP/NK1R system in cervical cancer pathogenesis. METHODS Cellular proliferation and cytotoxicity were analyzed by colorimetric MTT assay. Quantitative real-time PCR (qRT-PCR) was used to measure mRNA expression levels of desired genes. Cell cycle distribution and apoptosis were evaluated by flow cytometry. A wound-healing assay was employed to assess migration ability. RESULTS We found that the truncated isoform of NK1R(NK1R-Tr) is the dominantly expressed form of the receptor in Hela cells. We also indicated that that SP increased HeLa cell proliferation while treatment with NK1R antagonist, aprepitant, inhibited HeLa cell viability in a dose and time-dependent manner. SP also alters the levels of cell cycle regulators (up-regulation of cyclin B1 along with downregulation of p21) and apoptosis-related genes (up-regulation of Bcl-2 along with downregulation of Bax) while aprepitant reversed these effects. Aprepitant also induced arrest within the G2 phase of the cell cycle and subsequent apoptosis. Furthermore, SP promoted the migrative phenotype of HeLa cells and increased MMP-2 and MMP-9 expression while aprepitant exposure significantly reversed these effects. CONCLUSION Collectively, our results indicate the importance of the SP / NK1R system in promoting both proliferative and migrative phenotypes of cervical cancer cells and suggest that aprepitant may be developed as a novel treatment for combating cervical cancer.
Collapse
|
25
|
Lee SJ, Im ST, Wu J, Cho CS, Jo DH, Chen Y, Dana R, Kim JH, Lee SM. Corneal lymphangiogenesis in dry eye disease is regulated by substance P/neurokinin-1 receptor system through controlling expression of vascular endothelial growth factor receptor 3. Ocul Surf 2021; 22:72-79. [PMID: 34311077 DOI: 10.1016/j.jtos.2021.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate the role of substance P (SP)/neurokinin-1 receptor (NK1R) system in the regulation of pathologic corneal lymphangiogenesis in dry eye disease (DED). METHODS Immunocytochemistry, angiogenesis assay, and Western blot analysis of human dermal lymphatic endothelial cells (HDLECs) were conducted to assess the involvement of SP/NK1R system in lymphangiogenesis. DED was induced in wild-type C57BL/6 J mice using controlled-environment chamber without scopolamine. Immunohistochemistry, corneal fluorescein staining, and phenol red thread test were used to evaluate the effect of SP signaling blockade in the corneal lymphangiogenesis. The expression of lymphangiogenic factors in the corneal and conjunctival tissues of DED mouse model was quantified by real-time polymerase chain reaction. RESULTS NK1R expression and pro-lymphangiogenic property of SP/NK1R system in HDLECs were confirmed by Western blot analysis and angiogenesis assay. Blockade of SP signaling with L733,060, an antagonist of NK1R, or NK1R-targeted siRNA significantly inhibited lymphangiogenesis and expression of vascular endothelial growth factor (VEGF) receptor 3 stimulated by SP in HDLECs. NK1R antagonist also suppressed pathological corneal lymphangiogenesis and ameliorated the clinical signs of dry eye in vivo. Furthermore, NK1R antagonist effectively suppressed the lymphangiogenic factors, including VEGF-C, VEGF-D, and VEGF receptor 3 in the corneal and conjunctival tissues of DED. CONCLUSIONS SP/NK1R system promotes lymphangiogenesis in vitro and NK1R antagonism suppresses pathologic corneal lymphangiogenesis in DED in vivo.
Collapse
Affiliation(s)
- Seok Jae Lee
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sang-Taek Im
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jun Wu
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Chang Sik Cho
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Dong Hyun Jo
- Department of Anatomy & Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yihe Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Schepens Eye Research Institute of Massachusetts Eye and Ear, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jeong Hun Kim
- Fight Against Angiogenesis-Related Blindness (FARB) Laboratory, Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Ophthalmology, College of Medicine, Seoul National University, Seoul, Republic of Korea; Advanced Biomedical Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, Republic of Korea.
| | - Sang-Mok Lee
- Department of Cornea, External Disease & Refractive Surgery, HanGil Eye Hospital, Incheon, Republic of Korea; Department of Ophthalmology, Catholic Kwandong University College of Medicine, Gangneung-si, Republic of Korea.
| |
Collapse
|
26
|
Taghehchian N, Moghbeli M, Mashkani B, Abbaszadegan MR. The Level of Mesenchymal-Epithelial Transition Autophosphorylation is Correlated with Esophageal Squamous Cell Carcinoma Migration. IRANIAN BIOMEDICAL JOURNAL 2021; 25:243-54. [PMID: 34217156 PMCID: PMC8334392 DOI: 10.52547/ibj.25.4.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 02/09/2021] [Indexed: 12/03/2022]
Abstract
Background The MET receptor is a critical member of cancer-associated receptor tyrosine kinases and plays an important role in different biological activities, including differentiation, migration, and cell proliferation. Methods In this study, novel MET inhibitors were introduced and applied on esophageal squamous carcinoma cell line KYSE-30, and the level of proliferation and migration, as well as the activated form of MET receptor protein were assessed in the examined cells. The human KYSE-30 cell line was cultured according to ATCC recommendations. The mRNA level of the MET gene was measured in the examined cell line using the quantitative RT-PCR assay. Cytotoxicity evaluation test was performed at different concentrations of heterocyclic anti-MET compounds (i.e. D1, D2, D5, D6, D7, and D8). Finally, the capability of these compounds in MET receptor inhibition was evaluated using the migration assay and Western blot. All experiments were performed in triplicate and repeated three times with similar results. Results Cell growth and proliferation were significantly inhibited (p ≤ 0.05) by all the above-mentioned compounds. Moreover, the majority of compounds significantly prevented the cell migration (p ≤ 0.05) and inhibited MET autophosphorylation. Interestingly, the level of phosphorylated MET was significantly correlated with KYSE-30 cell migration. Conclusion The obtained data introduced and confirmed the biological activities of the mentioned novel compounds in KYSE-30 cells and proposed that the therapeutic inhibition of MET with these compounds may be a powerful approach for inhibiting cancer cell migration and proliferation although some structural optimizations are needed to improve their inhibitory functions.
Collapse
Affiliation(s)
- Negin Taghehchian
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Baratali Mashkani
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
27
|
The Effect of SP/NK1R on the Expression and Activity of Catalase and Superoxide Dismutase in Glioblastoma Cancer Cells. Biochem Res Int 2021; 2021:6620708. [PMID: 33976938 PMCID: PMC8084669 DOI: 10.1155/2021/6620708] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 01/29/2023] Open
Abstract
Introduction Glioblastoma is the most malignant brain tumor with different therapeutic protocols, including surgery, radiotherapy, and chemotherapy. Substance P (SP), a peptide released by sensory nerves, increases cellular excitability by activating the neurokinin-1 receptor (NK1R) in several human tumor cells. Aprepitant is a potent and long-lasting NK1R antagonist, considered a new agent for inhibiting proliferation and induction of apoptosis in malignant cells. This study aimed to evaluate the effects of the SP/NK1R system on the expression and activity of catalase and superoxide dismutase (SOD) in the glioblastoma U87 cancer cell line. Methods Cytotoxicity was measured by the resazurin test, 24 hours after treatment, with increasing aprepitant concentrations. The production of reactive oxygen species (ROS) was also measured 24 hours after treatment with SP and aprepitant. Enzymes activity of catalase and SOD was measured using the corresponding assay kits. Real-time PCR also measured their expression. Results Aprepitant significantly reduced the viability of U87 cells in a concentration-dependent manner. ROS production was significantly reduced, and the activity of catalase and SOD increased after treatment with aprepitant. The expression of catalase and SOD enzymes also increased significantly in the presence of aprepitant. Conclusion The present study showed that aprepitant inhibited SP's oxidizing effects via inducing the antioxidant effects of catalase and SOD in the U87 cell line. Therefore, this drug might be introduced as a potential candidate for controlling glioblastoma cancer in animal models and clinical trials.
Collapse
|
28
|
Ghahremani F, Sabbaghzadeh R, Ebrahimi S, Javid H, Ghahremani J, Hashemy SI. Pathogenic role of the SP/ NK1R system in GBM cells through inhibiting the thioredoxin system. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:499-505. [PMID: 34094032 PMCID: PMC8143719 DOI: 10.22038/ijbms.2021.52902.11945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/16/2021] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Glioblastoma multiforme (GBM), a highly aggressive Grade IV brain tumor, is a significant public health issue due to its poor prognosis and incurability. Neuropeptide substance P (SP) plays a critical role in GBM tumor growth and development via activation of neurokinin-1receptor (NK1R). Moreover, SP is a pro-oxidant factor contributing to oxidative stress in various cell types. However, the link between SP and oxidative stress in cancer cells is not fully investigated. Here, we aimed to identify the effects of SP and NK1R antagonist, aprepitant, on the redox status of GBM cells. MATERIALS AND METHODS Resazurin assay was employed to determine the effect of aprepitant on viability of U87 glioblastoma cells. 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) assay was employed to measure the levels of intracellular reactive oxygen species (ROS). A quantitative real-time polymerase chain reaction was applied to measure the expression of proteins of the thioredoxin system. Commercial kits (ZellBio GmbH) were also used to measure the enzymatic activity of these proteins. RESULTS We found that SP increased ROS level in U87 GBM cells, and aprepitant significantly reduced this effect. Furthermore, we found that SP could also affect the thioredoxin system, a central antioxidant enzyme defense system. SP reduced both expression and enzymatic activity of the thioredoxin system's proteins, Trx and thioredoxin reductase (TrxR) and these effects were significantly reduced by aprepitant. CONCLUSION Our results indicated that SP activation of NK1R represented a link between oxidative stress and GBM and highlighted the need for further validations in future studies.
Collapse
Affiliation(s)
- Fatemeh Ghahremani
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Reihaneh Sabbaghzadeh
- Department of Biology, Faculty of Science, Hakim Sabzevari University, Sabzevar, Iran
| | - Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosein Javid
- Medical Laboratory Sciences Department, Varastegan Institute for Medical Sciences, Mashhad, Iran
| | - Javad Ghahremani
- Department of Medicine, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Kong H, Li Y, Wang D, Liu H, Pan H. Physicochemical parameters and thermodynamic behavior of aprepitant/HS15 micellar system at different temperatures: Effect of electrolytes concentration. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Leroux A, Paiva Dos Santos B, Leng J, Oliveira H, Amédée J. Sensory neurons from dorsal root ganglia regulate endothelial cell function in extracellular matrix remodelling. Cell Commun Signal 2020; 18:162. [PMID: 33076927 PMCID: PMC7574530 DOI: 10.1186/s12964-020-00656-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/06/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Recent physiological and experimental data highlight the role of the sensory nervous system in bone repair, but its precise role on angiogenesis in a bone regeneration context is still unknown. Our previous work demonstrated that sensory neurons (SNs) induce the osteoblastic differentiation of mesenchymal stem cells, but the influence of SNs on endothelial cells (ECs) was not studied. METHODS Here, in order to study in vitro the interplay between SNs and ECs, we used microfluidic devices as an indirect co-culture model. Gene expression analysis of angiogenic markers, as well as measurements of metalloproteinases protein levels and enzymatic activity, were performed. RESULTS We were able to demonstrate that two sensory neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP), were involved in the transcriptional upregulation of angiogenic markers (vascular endothelial growth factor, angiopoietin 1, type 4 collagen, matrix metalloproteinase 2) in ECs. Co-cultures of ECs with SNs also increased the protein level and enzymatic activity of matrix metalloproteinases 2 and 9 (MMP2/MMP9) in ECs. CONCLUSIONS Our results suggest a role of sensory neurons, and more specifically of CGRP and SP, in the remodelling of endothelial cells extracellular matrix, thus supporting and enhancing the angiogenesis process. Video abstract.
Collapse
Affiliation(s)
- Alice Leroux
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000, Bordeaux, France.
| | | | - Jacques Leng
- Univ. Bordeaux, CNRS, Solvay, LOF, UMR 5258, F-33006, Pessac, France
| | - Hugo Oliveira
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000, Bordeaux, France
| | - Joëlle Amédée
- Univ. Bordeaux, INSERM, BIOTIS, U1026, F-33000, Bordeaux, France
| |
Collapse
|
31
|
The Neurokinin-1 Receptor Antagonist Aprepitant: An Intelligent Bullet against Cancer? Cancers (Basel) 2020; 12:cancers12092682. [PMID: 32962202 PMCID: PMC7564414 DOI: 10.3390/cancers12092682] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 12/21/2022] Open
Abstract
Neurokinin-1 receptor (NK-1R) antagonists exert antitumor action, are safe and do not cause serious side-effects. These antagonists (via the NK-1R) exert multiple actions against cancer: antiproliferative and anti-Warburg effects and apoptotic, anti-angiogenic and antimetastatic effects. These multiple effects have been shown for a broad spectrum of cancers. The drug aprepitant (an NK-1R antagonist) is currently used in clinical practice as an antiemetic. In in vivo and in vitro studies, aprepitant also showed the aforementioned multiple antitumor actions against many types of cancer. A successful combination therapy (aprepitant and radiotherapy) has recently been reported in a patient suffering from lung carcinoma: the tumor mass disappeared and side-effects were not observed. Aprepitant could be considered as an intelligent bullet against cancer. The administration of aprepitant in cancer patients to prevent recurrence and metastasis after surgical procedures, thrombosis and thromboembolism is discussed, as is the possible link, through the substance P (SP)/NK-1R system, between cancer and depression. Our main aim is to review the multiple antitumor actions exerted by aprepitant, and the use of this drug is suggested in cancer patients. Altogether, the data support the reprofiling of aprepitant for a new therapeutic use as an antitumor agent.
Collapse
|