1
|
Deng M, Hou T, Zhang J, Mao X, Yang F, Wei Y, Tang Y, Zeng W, Huang W, Li N, Xiao L, Feng Y, Guo Y. Cultivation, cryopreservation, and transcriptomic studies of host-adapted Cryptosporidium parvum and Cryptosporidium hominis using enteroids. iScience 2024; 27:109563. [PMID: 38623332 PMCID: PMC11016910 DOI: 10.1016/j.isci.2024.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Cryptosporidium hominis and Cryptosporidium parvum are major causes of severe diarrhea. Comparative studies of them are hampered by the lack of effective cultivation and cryopreservation methods, especially for C. hominis. Here, we describe adapted murine enteroids for the cultivation and complete development of host-adapted C. parvum and C. hominis subtypes, producing oocysts infectious to mice. Using the system, we developed a cryopreservation method for Cryptosporidium isolates. In comparative RNA-seq analyses of C. hominis cultures, the enteroid system generated significantly more host and pathogen responses than the conventional HCT-8 cell system. In particular, the infection was shown to upregulate PI3K-Akt, Ras, TNF, NF-κB, IL-17, MAPK, and innate immunity signaling pathways and downregulate host cell metabolism, and had significantly higher expression of parasite genes involved in oocyst formation. Therefore, the enteroid system provides a valuable tool for comparative studies of the biology of divergent Cryptosporidium species and isolates.
Collapse
Affiliation(s)
- Miner Deng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xinjie Mao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fuxian Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanting Wei
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongping Tang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wanting Zeng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wanyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Jaskiewicz JJ, Dayao DAE, Girouard D, Sevenler D, Widmer G, Toner M, Tzipori S, Sandlin RD. Scalable cryopreservation of infectious Cryptosporidium hominis oocysts by vitrification. PLoS Pathog 2023; 19:e1011425. [PMID: 37289815 PMCID: PMC10284403 DOI: 10.1371/journal.ppat.1011425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/21/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Cryptosporidium hominis is a serious cause of childhood diarrhea in developing countries. The development of therapeutics is impeded by major technical roadblocks including lack of cryopreservation and simple culturing methods. This impacts the availability of optimized/standardized singular sources of infectious parasite oocysts for research and human challenge studies. The human C. hominis TU502 isolate is currently propagated in gnotobiotic piglets in only one laboratory, which limits access to oocysts. Streamlined cryopreservation could enable creation of a biobank to serve as an oocyst source for research and distribution to other investigators requiring C. hominis. Here, we report cryopreservation of C. hominis TU502 oocysts by vitrification using specially designed specimen containers scaled to 100 μL volume. Thawed oocysts exhibit ~70% viability with robust excystation and 100% infection rate in gnotobiotic piglets. The availability of optimized/standardized sources of oocysts may streamline drug and vaccine evaluation by enabling wider access to biological specimens.
Collapse
Affiliation(s)
- Justyna J. Jaskiewicz
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children`s Boston, Boston, Massachusetts, United States of America
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Denise Ann E. Dayao
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Donald Girouard
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Derin Sevenler
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children`s Boston, Boston, Massachusetts, United States of America
| | - Giovanni Widmer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Mehmet Toner
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children`s Boston, Boston, Massachusetts, United States of America
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Rebecca D. Sandlin
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Children`s Boston, Boston, Massachusetts, United States of America
| |
Collapse
|
3
|
Jaskiewicz JJ, Sevenler D, Swei AA, Widmer G, Toner M, Tzipori S, Sandlin RD. Cryopreservation of infectious Cryptosporidium parvum oocysts achieved through vitrification using high aspect ratio specimen containers. Sci Rep 2020; 10:11711. [PMID: 32678171 PMCID: PMC7366687 DOI: 10.1038/s41598-020-68643-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/16/2020] [Indexed: 01/11/2023] Open
Abstract
Infection with protozoa of the genus Cryptosporidium is a leading cause of child morbidity and mortality associated with diarrhea in the developing world. Research on this parasite has been impeded by many technical limitations, including the lack of cryopreservation methods. While cryopreservation of Cryptosporidium oocysts by vitrification was recently achieved, the method is restricted to small sample volumes, thereby limiting widespread implementation of this procedure. Here, a second-generation method is described for cryopreservation of C. parvum oocysts by vitrification using custom high aspect ratio specimen containers, which enable a 100-fold increase in sample volume compared to previous methods. Oocysts cryopreserved using the described protocol exhibit high viability, maintain in vitro infectivity, and are infectious to interferon-gamma (IFN-γ) knockout mice. Importantly, the course of the infection is comparable to that observed in mice infected with unfrozen oocysts. Vitrification of C. parvum oocysts in larger volumes will expedite progress of research by enabling the sharing of isolates among different laboratories and the standardization of clinical trials.
Collapse
Affiliation(s)
- Justyna J Jaskiewicz
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Derin Sevenler
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA, USA
| | - Anisa A Swei
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA, USA
| | - Giovanni Widmer
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA
| | - Mehmet Toner
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA, USA
| | - Saul Tzipori
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA.
| | - Rebecca D Sandlin
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, and Shriners Hospitals for Children, Boston, MA, USA.
| |
Collapse
|
4
|
Cryopreservation of infectious Cryptosporidium parvum oocysts. Nat Commun 2018; 9:2883. [PMID: 30038430 PMCID: PMC6056504 DOI: 10.1038/s41467-018-05240-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/19/2018] [Indexed: 11/09/2022] Open
Abstract
Cryptosporidiosis in an enteric infection caused by Cryptosporidium parasites and is a major cause of acute infant diarrhea in the developing world. A major bottleneck to research progress is the lack of methods to cryopreserve Cryptosporidium oocysts, thus requiring routine propagation in laboratory animals. Here, we report a method to cryopreserve C. parvum oocysts by ultra-fast cooling. Cryopreserved oocysts exhibit high viability and robust in vitro excystation, and are infectious to interferon-γ knockout mice. The course of the infection is comparable to what we observe with unfrozen oocysts. Oocyst viability and infectivity is not visibly changed after several weeks of cryogenic storage. Cryopreservation will facilitate the sharing of oocysts from well-characterized isolates and transgenic strains among different laboratories.
Collapse
|
5
|
Paziewska-Harris A, Schoone G, Schallig HDFH. Long-Term Storage of Cryptosporidium parvum for In Vitro Culture. J Parasitol 2018; 104:96-100. [PMID: 29095102 DOI: 10.1645/16-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The long-term storage of Cryptosporidium life-cycle stages is a prerequisite for in vitro culture of the parasite. Cryptosporidium parvum oocysts, sporozoites, and intracellular forms inside infected host cells were stored for 6-12 mo in liquid nitrogen utilizing different cryoprotectants (dimethyl sulfoxide [DMSO], glycerol and fetal calf serum [FCS]), then cultured in vitro. Performance in vitro was quantified by estimating the total Cryptosporidium copy number with quantitative polymerase chain reaction (qPCR) in 3- and 7-day-old cultures. Although few parasites were recovered either from stored oocysts or from infected host cells, sporozoites stored in liquid nitrogen recovered from freezing successfully. More copies of parasite DNA were obtained from culturing those sporozoites than sporozoites excysted from oocysts kept at 4 C for the same period. The best performance was observed for sporozoites stored in Roswell Park Memorial Institute (RPMI) medium with 10% FCS and 5% DMSO, which generated 240% and 330% greater number of parasite DNA copies (on days 3 and 7 post-infection, respectively) compared to controls. Storage of sporozoites in liquid nitrogen is more effective than oocyst storage at 4 C and represents a more consistent approach for storage of viable infective Cryptosporidium aliquots for in vitro culture.
Collapse
Affiliation(s)
- A Paziewska-Harris
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, U.K
| | - G Schoone
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, U.K
| | - H D F H Schallig
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, U.K
| |
Collapse
|
6
|
Reinoso R, Becares E, Smith HV. Effect of various environmental factors on the viability of Cryptosporidium parvum oocysts. J Appl Microbiol 2007; 104:980-6. [PMID: 17973913 DOI: 10.1111/j.1365-2672.2007.03620.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate individual and combined effects of temperature (4, 18 and 25 degrees C), pH (7 and 10), ammonia (5 and 50 mg l(-1)) and exposure time (1, 2, 4 and 6 days) on the viability of Cryptosporidium parvum oocysts in water. METHODS AND RESULTS The viability of oocysts was evaluated using the fluorogenic vital dyes assay (4',6-diamidino-2-phenylindole and propidium iodide). All the factors analysed (temperature, pH, ammonia and exposure time) and their interaction were statistically significant (P < 0.005). Exposure of oocysts to pH 10 for 6 days at 25 degrees C reduced oocyst viability from approximately 80% to 51%. Similarly, the exposure of C. parvum oocysts to 5 mg NH(3) l(-1) and 50 mg NH(3) l(-1) for 4 days reduced their viability from between approximately 80% to 41.5% and 14.8%, respectively. CONCLUSIONS The interaction between pH, temperature and exposure time may have adverse effects on the survival of C. parvum oocysts in water. Low concentrations of ammonia, as commonly found in alga-based wastewater systems, over a long period of time can produce high C. parvum oocyst inactivation rates. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides relevant data on the inactivation of C. parvum oocysts in alga-based wastewater-treatment systems in the northwest of Spain.
Collapse
Affiliation(s)
- R Reinoso
- Environmental Research Institute, University of León, León, Spain.
| | | | | |
Collapse
|
7
|
Hildreth MB, Blunt DS, Oaks JA. LETHAL EFFECTS OF FREEZING ECHINOCOCCUS MULTILOCULARIS EGGS AT ULTRALOW TEMPERATURES. J Parasitol 2004; 90:841-4. [PMID: 15357079 DOI: 10.1645/ge-221r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Methods for killing Echinococcus multilocularis eggs within stool or intestinal samples, without damaging the diagnostic value of the sample, would significantly reduce the risk of animal health providers acquiring alveolar hydatid disease. The first objective of this study was to determine whether E. multilocularis eggs located in fox intestines can survive storage at -70 C for at least 4 days. Results showed that none of 72,000 E. multilocularis eggs remained infectious to defined strains of mice under these conditions, yet, similar eggs recovered from nonfrozen carcasses stored at 4 C for the same time period were viable. The structural identities of adult worms and eggs were not significantly altered by the freezing and thawing processes. These results indicate that ultracold temperatures can be used to kill or inactivate E. multilocularis eggs, making them safe to handle when diagnosing this parasite in definitive hosts. The second objective of this study was to determine whether E. multilocularis eggs could survive freezing to -70 C if commonly used cryopreservation protocols were used. The use of the cryoprotectant solution, 5% dimethyl sulfoxide-35% saline-60% lamb serum, with a -1 C/min freezing rate was unable to prevent the eggs from being killed by freezing to -70 C. Rapid cooling by plunge freezing into liquid nitrogen was also lethal to E. multilocularis eggs. Only a few of the many potential cryopreservation protocols were tested in this study, so it is not yet possible to completely rule out the possibility of preserving these eggs at ultralow temperatures, but it does indicate that temperatures below -70 C are lethal to eggs even under favorable storage conditions.
Collapse
Affiliation(s)
- M B Hildreth
- Department of Veterinary Science, South Dakota State University, Brookings, South Dakota 57007, USA.
| | | | | |
Collapse
|
8
|
Abstract
The in vitro cultivation of protozoan parasites of the genus Cryptosporidium has advanced significantly in recent years. These obligate, intracellular parasites colonize the epithelium of the digestive and respiratory tracts, are often difficult to obtain in significant numbers, produce durable oocysts that defy conventional chemical disinfection methods, and are persistently infectious when stored at refrigerated temperatures (4 to 8 degrees C). While continuous culture and efficient life cycle completion (oocyst production) have not yet been achieved in vitro, routine methods for parasite preparation and cell culture infection and assays for parasite life cycle development have been established. Parasite yields may be limited, but in vitro growth is sufficient to support a variety of research studies, including assessing potential drug therapies, evaluating oocyst disinfection methods, and characterizing life cycle stage development and differentiation.
Collapse
Affiliation(s)
- Michael J Arrowood
- Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Service, U.S. Department of Health and Human Services, Atlanta, Georgia 30341, USA.
| |
Collapse
|
9
|
Rhee JK, Park BK. Survival of Cryptosporidium muris (strain MCR) oocysts under cryopreservation. THE KOREAN JOURNAL OF PARASITOLOGY 1996; 34:155-7. [PMID: 8925249 DOI: 10.3347/kjp.1996.34.2.155] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have successfully maintained Cryptosporidium muris by cryopreservation. Oocysts were suspended in distilled water, stored at -20 degrees C for 24 hrs, and then cryopreserved at -70 degrees C. Cryopreserved specimens were slowly thawed at 5 degrees C. Oocysts, which had been cryopreserved for 15 months without cryoprotective agents, retained their infectivity by the mouse titration method. Oocysts stored at 5 degrees C in 2.5% potassium dichromate failed to retain their infectivity beyond 6.5 months.
Collapse
Affiliation(s)
- J K Rhee
- Department of Parasitology, School of Veterinary Medicine, Chonbuk National University, Chonju, Korea
| | | |
Collapse
|
10
|
Fayer R, Nerad T. Effects of low temperatures on viability of Cryptosporidium parvum oocysts. Appl Environ Microbiol 1996; 62:1431-3. [PMID: 8919806 PMCID: PMC167911 DOI: 10.1128/aem.62.4.1431-1433.1996] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Microcentrifuge tubes containing 8 x 10(6) purified oocysts of Cryptosporidium parvum suspended in 400 microliters of deionized water were stored at 5 degrees C for 168 h or frozen at -10, -15, -20, and -70 degrees C for 1 h to 168 h and then thawed at room temperature (21 degrees C). Fifty microliters containing 10(6) oocysts was administered to each of five to seven neonatal BALB/c mice by gastric intubation. Segments of ileum, cecum, and colon were taken for histology from each mouse 72 or 96 h later. Freeze-thawed oocysts were considered viable and infectious only when developmental-stage C. parvum organisms were found microscopically in the tissue sections. Developmental-stage parasites were not found in tissues from any mice that received oocysts frozen at -70 degrees C for 1, 8, or 24 h. All mice that received oocysts frozen at -20 degrees C for 1, 3, and 5 h had developmental-stage C. parvum; one of 6 mice that received oocysts frozen at -20 degrees C for 8 h had a few developmental-stage parasites; mice that received oocysts frozen at -20 degrees C for 24 and 168 h had no parasites. All mice that received oocysts frozen at -15 degrees C for 8 and 24 h had developmental-stage parasites; mice that received oocysts frozen at -15 degrees C for 168 h had no parasites. All mice that received oocysts frozen at -10 degrees C for 8, 24, and 168 h and those that received oocysts stored at 5 degrees C for 168 h had developmental-stage parasites. These findings demonstrate for the first time that oocysts of C. parvum in water can retain viability and infectivity after freezing and that oocysts survive longer at higher freezing temperatures.
Collapse
Affiliation(s)
- R Fayer
- Livestock and Poultry Sciences Institute, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland 20705, USA
| | | |
Collapse
|
11
|
Affiliation(s)
- P J O'Donoghue
- Parasitology Section, VETLAB, Department of Primary Industries, Adelaide, Australia
| |
Collapse
|
12
|
Robertson LJ, Campbell AT, Smith HV. Survival of Cryptosporidium parvum oocysts under various environmental pressures. Appl Environ Microbiol 1992; 58:3494-500. [PMID: 1482175 PMCID: PMC183134 DOI: 10.1128/aem.58.11.3494-3500.1992] [Citation(s) in RCA: 275] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The survival of various isolates of Cryptosporidium parvum oocysts under a range of environmental pressures including freezing, desiccation, and water treatment processes and in physical environments commonly associated with oocysts such as feces and various water types was monitored. Oocyst viability was assessed by in vitro excystation and by a viability assay based on the exclusion or inclusion of two fluorogenic vital dyes. Although desiccation was found to be lethal, a small proportion of oocysts were able to withstand exposure to temperatures as low as -22 degrees C. The water treatment processes investigated did not affect the survival of oocysts when pH was corrected. However, contact with lime, ferric sulfate, or alum had a significant impact on oocyst survival if the pH was not corrected. Oocysts demonstrated longevity in all water types investigated, including seawater, and when in contact with feces were considered to develop an enhanced impermeability to small molecules which might increase the robustness of the oocysts when exposed to environmental pressures.
Collapse
Affiliation(s)
- L J Robertson
- Scottish Parasite Diagnostic Laboratory, Stobhill General Hospital, Springburn, Glasgow
| | | | | |
Collapse
|