1
|
Buranaamnuay K. Male reproductive phenotypes of genetically altered laboratory mice ( Mus musculus): a review based on pertinent literature from the last three decades. Front Vet Sci 2024; 11:1272757. [PMID: 38500604 PMCID: PMC10944935 DOI: 10.3389/fvets.2024.1272757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/20/2024] [Indexed: 03/20/2024] Open
Abstract
Laboratory mice (Mus musculus) are preferred animals for biomedical research due to the close relationship with humans in several aspects. Therefore, mice with diverse genetic traits have been generated to mimic human characteristics of interest. Some genetically altered mouse strains, on purpose or by accident, have reproductive phenotypes and/or fertility deviating from wild-type mice. The distinct reproductive phenotypes of genetically altered male mice mentioned in this paper are grouped based on reproductive organs, beginning with the brain (i.e., the hypothalamus and anterior pituitary) that regulates sexual maturity and development, the testis where male gametes and sex steroid hormones are produced, the epididymis, the accessory sex glands, and the penis which involve in sperm maturation, storage, and ejaculation. Also, distinct characteristics of mature sperm from genetically altered mice are described here. This repository will hopefully be a valuable resource for both humans, in terms of future biomedical research, and mice, in the aspect of the establishment of optimal sperm preservation protocols for individual mouse strains.
Collapse
Affiliation(s)
- Kakanang Buranaamnuay
- Molecular Agricultural Biosciences Cluster, Institute of Molecular Biosciences (MB), Mahidol University, Nakhon Pathom, Thailand
| |
Collapse
|
2
|
Jacob JB, Wei KC, Bepler G, Reyes JD, Cani A, Polin L, White K, Kim S, Viola N, McGrath J, Guastella A, Yin C, Mi QS, Kidder BL, Wagner KU, Ratner S, Phillips V, Xiu J, Parajuli P, Wei WZ. Identification of actionable targets for breast cancer intervention using a diversity outbred mouse model. iScience 2023; 26:106320. [PMID: 36968078 PMCID: PMC10034465 DOI: 10.1016/j.isci.2023.106320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 01/16/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
HER2-targeted therapy has improved breast cancer survival, but treatment resistance and disease prevention remain major challenges. Genes that enable HER2/Neu oncogenesis are the next intervention targets. A bioinformatics discovery platform of HER2/Neu-expressing Diversity Outbred (DO) F1 Mice was established to identify cancer-enabling genes. Quantitative Trait Loci (QTL) associated with onset ages and growth rates of spontaneous mammary tumors were sought. Twenty-six genes in 3 QTL contain sequence variations unique to the genetic backgrounds that are linked to aggressive tumors and 21 genes are associated with human breast cancer survival. Concurrent identification of TSC22D3, a transcription factor, and its target gene LILRB4, a myeloid cell checkpoint receptor, suggests an immune axis for regulation, or intervention, of disease. We also investigated TIEG1 gene that impedes tumor immunity but suppresses tumor growth. Although not an actionable target, TIEG1 study revealed genetic regulation of tumor progression, forming the basis of the genetics-based discovery platform.
Collapse
Affiliation(s)
- Jennifer B. Jacob
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Kuang-Chung Wei
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Gerold Bepler
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Joyce D. Reyes
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Andi Cani
- Department of Internal Medicine, Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Lisa Polin
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Kathryn White
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Seongho Kim
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Nerissa Viola
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Julie McGrath
- Clinical and Translational Research, Caris Life Sciences, Irving, TX75039, USA
| | - Anthony Guastella
- Clinical and Translational Research, Caris Life Sciences, Irving, TX75039, USA
| | - CongCong Yin
- Department of Immunology, Henry Ford Health System, Detroit, MI48202, USA
| | - Qing-Shen Mi
- Department of Immunology, Henry Ford Health System, Detroit, MI48202, USA
| | - Benjamin L. Kidder
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Kay-Uwe Wagner
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Stuart Ratner
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Victoria Phillips
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Joanne Xiu
- Clinical and Translational Research, Caris Life Sciences, Irving, TX75039, USA
| | - Prahlad Parajuli
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| | - Wei-Zen Wei
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, 48201, USA
| |
Collapse
|
3
|
Perrone M, Chiodoni C, Lecchi M, Botti L, Bassani B, Piva A, Jachetti E, Milani M, Lecis D, Tagliabue E, Verderio P, Sangaletti S, Colombo MP. ATF3 Reprograms the Bone Marrow Niche in Response to Early Breast Cancer Transformation. Cancer Res 2023; 83:117-129. [PMID: 36318106 PMCID: PMC9811157 DOI: 10.1158/0008-5472.can-22-0651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/13/2022] [Accepted: 10/28/2022] [Indexed: 11/05/2022]
Abstract
Cancer is a systemic disease able to reprogram the bone marrow (BM) niche towards a protumorigenic state. The impact of cancer on specific BM subpopulations can qualitatively differ according to the signals released by the tumor, which can vary on the basis of the tissue of origin. Using a spontaneous model of mammary carcinoma, we identified BM mesenchymal stem cells (MSC) as the first sensors of distal cancer cells and key mediators of BM reprogramming. Through the release of IL1B, BM MSCs induced transcriptional upregulation and nuclear translocation of the activating transcription factor 3 (ATF3) in hematopoietic stem cells. ATF3 in turn promoted the formation of myeloid progenitor clusters and sustained myeloid cell differentiation. Deletion of Atf3 specifically in the myeloid compartment reduced circulating monocytes and blocked their differentiation into tumor-associated macrophages. In the peripheral blood, the association of ATF3 expression in CD14+ mononuclear cells with the expansion CD11b+ population was able to discriminate between women with malignant or benign conditions at early diagnosis. Overall, this study identifies the IL1B/ATF3 signaling pathway in the BM as a functional step toward the establishment of a tumor-promoting emergency myelopoiesis, suggesting that ATF3 could be tested in a clinical setting as a circulating marker of early transformation and offering the rationale for testing the therapeutic benefits of IL1B inhibition in patients with breast cancer. Significance: Bone marrow mesenchymal stem cells respond to early breast tumorigenesis by upregulating IL1B to promote ATF3 expression in hematopoietic stem cells and to induce myeloid cell differentiation that supports tumor development.
Collapse
Affiliation(s)
- Milena Perrone
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Lecchi
- Bioinformatics and Biostatistics Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Barbara Bassani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Annamaria Piva
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Jachetti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Milani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Daniele Lecis
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Paolo Verderio
- Bioinformatics and Biostatistics Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Corresponding Authors: Mario P. Colombo, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy. Phone: 223-902-252; Fax: 223-902-630; E-mail: ; and Sabina Sangaletti,
| | - Mario P. Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.,Corresponding Authors: Mario P. Colombo, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy. Phone: 223-902-252; Fax: 223-902-630; E-mail: ; and Sabina Sangaletti,
| |
Collapse
|
4
|
Garner A, Ginzel JD, Snyder JC, Everitt JI, Landon CD. Veterinary Management of Harderian Gland Tumors in Cancer Rainbow (crainbow) HER2-Positive Mice. Comp Med 2022; 72:403-409. [PMID: 36744508 PMCID: PMC9827610 DOI: 10.30802/aalas-cm-22-000061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/26/2022] [Accepted: 10/27/2022] [Indexed: 12/14/2022]
Abstract
A Cancer Rainbow mouse line that expresses 3 fluorescently labeled isoforms of the tumor-driver gene HER2 (HER2BOW) was developed recently for the study of tumorigenesis in the mammary gland. The expression of 1 of the 3 HER2 isoforms in HER2BOW mice is induced through the Cre/lox system. However, in addition to developing palpable mammary tumors, HER2BOW mice developed orbital tumors, specifically of the Harderian gland. Mice were euthanized, and histopathologic examination of the Harderian gland tumors was performed. Tumors were characterized by adenomatous hyperplasia to multinodular adenomas of the Harderian gland. Fluorescent imaging of the Harderian gland tissue confirmed the expression of HER2 in the tumors. Here we discuss monitoring and palliative approaches to allow attainment of humane experimental endpoints of mammary tumor growth in this mouse line. We describe a range of interventions, including close monitoring, topical palliative care, and surgical bilateral enucleation. Based on our data and previous reports in the literature, the overexpression of HER2 in Harderian gland tissue and subsequent tumor formation likely was driven by MMTV-Cre expression in the Harderian gland.
Collapse
Affiliation(s)
- Angela Garner
- Division of Laboratory Animal Resources, Duke University School of Medicine, Duke University, Durham, North Carolina
| | - Joshua D Ginzel
- Department of Cell Biology, Duke University School of Medicine, Duke University, Durham, North Carolina
| | - Joshua C Snyder
- Department of Cell Biology, Duke University School of Medicine, Duke University, Durham, North Carolina; Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Duke University, Durham, North Carolina
| | - Jeffrey I Everitt
- Department of Pathology, Duke University School of Medicine, Duke University, Durham, North Carolina
| | - Chelsea D Landon
- Division of Laboratory Animal Resources, Duke University School of Medicine, Duke University, Durham, North Carolina; Department of Pathology, Duke University School of Medicine, Duke University, Durham, North Carolina;,
| |
Collapse
|
5
|
Medler J, Kucka K, Wajant H. Tumor Necrosis Factor Receptor 2 (TNFR2): An Emerging Target in Cancer Therapy. Cancers (Basel) 2022; 14:cancers14112603. [PMID: 35681583 PMCID: PMC9179537 DOI: 10.3390/cancers14112603] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/19/2022] [Accepted: 05/22/2022] [Indexed: 12/12/2022] Open
Abstract
Despite the great success of TNF blockers in the treatment of autoimmune diseases and the identification of TNF as a factor that influences the development of tumors in many ways, the role of TNFR2 in tumor biology and its potential suitability as a therapeutic target in cancer therapy have long been underestimated. This has been fundamentally changed with the identification of TNFR2 as a regulatory T-cell (Treg)-stimulating factor and the general clinical breakthrough of immunotherapeutic approaches. However, considering TNFR2 as a sole immunosuppressive factor in the tumor microenvironment does not go far enough. TNFR2 can also co-stimulate CD8+ T-cells, sensitize some immune and tumor cells to the cytotoxic effects of TNFR1 and/or acts as an oncogene. In view of the wide range of cancer-associated TNFR2 activities, it is not surprising that both antagonists and agonists of TNFR2 are considered for tumor therapy and have indeed shown overwhelming anti-tumor activity in preclinical studies. Based on a brief summary of TNFR2 signaling and the immunoregulatory functions of TNFR2, we discuss here the main preclinical findings and insights gained with TNFR2 agonists and antagonists. In particular, we address the question of which TNFR2-associated molecular and cellular mechanisms underlie the observed anti-tumoral activities of TNFR2 agonists and antagonists.
Collapse
|
6
|
Salivary gland cancer in the setting of tumor microenvironment: Translational routes for therapy. Crit Rev Oncol Hematol 2022; 171:103605. [DOI: 10.1016/j.critrevonc.2022.103605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/07/2022] [Accepted: 01/21/2022] [Indexed: 12/11/2022] Open
|
7
|
Mai J, Li Z, Xia X, Zhang J, Li J, Liu H, Shen J, Ramirez M, Li F, Li Z, Yokoi K, Liu X, Mittendorf EA, Ferrari M, Shen H. Synergistic Activation of Antitumor Immunity by a Particulate Therapeutic Vaccine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100166. [PMID: 34194942 PMCID: PMC8224417 DOI: 10.1002/advs.202100166] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/10/2021] [Indexed: 05/10/2023]
Abstract
Success in anticancer immune therapy relies on stimulation of tumor antigen-specific T lymphocytes and effective infiltration of the T cells into tumor tissue. Here, a therapeutic vaccine that promotes proliferation and tumor infiltration of antigen-specific T cells in both inflamed and noninflamed tumor types is described. The vaccine consists of STING agonist 2'3'-cGAMP, TLR9 ligand CpG, and tumor antigen peptides that are loaded into nanoporous microparticles (μGCVax). μGCVax is effective in inhibiting lung metastatic melanoma, primary breast cancer, and subcutaneous colorectal cancer in their respective murine models, including functional cure of HER2-positive breast cancer. Mechanistically, μGCVax potently stimulates type I interferon expression in dendritic cells, and promotes CD8+ and CD103+ dendritic cell maturation and migration to lymph nodes and other lymphatic tissues. Antitumor responses are dependent on TLR9 and interferon α/β receptor signaling, and to a less extent on STING signaling. These results demonstrate a high potential for μGCVax in mediating antitumor immunity in personalized cancer therapy.
Collapse
Affiliation(s)
- Junhua Mai
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Zhaoqi Li
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Xiaojun Xia
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Department of Experimental Medicine Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China Guangzhou 510060 China
| | - Jingxin Zhang
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Jun Li
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Xiangya Hospital of Central South University Changsha Hunan 410000 China
| | - Haoran Liu
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Jianliang Shen
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- School of Ophthalmology & Optometry School of Biomedical Engineering Wenzhou Medical University Wenzhou 325035 China
| | - Maricela Ramirez
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Feng Li
- Center for Bioenergetics Houston Methodist Academic Institute Houston TX 77030 USA
| | - Zheng Li
- Center for Bioenergetics Houston Methodist Academic Institute Houston TX 77030 USA
| | - Kenji Yokoi
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Xuewu Liu
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
| | - Elizabeth A Mittendorf
- Department of Surgery Brigham and Women's Hospital Boston MA 02115 USA
- Breast Oncology Program Dana-Farber/Brigham and Women's Cancer Center Boston MA 02115 USA
| | - Mauro Ferrari
- Department of Pharmaceutics School of Pharmacy University of Washington Seattle WA 98195 USA
| | - Haifa Shen
- Department of Nanomedicine Houston Methodist Academic Institute Houston TX 77030 USA
- Houston Methodist Cancer Center Houston TX 77030 USA
- Department of Cell and Developmental Biology Weill Cornell Medical College New York NY 10065 USA
| |
Collapse
|
8
|
Okada F, Izutsu R, Goto K, Osaki M. Inflammation-Related Carcinogenesis: Lessons from Animal Models to Clinical Aspects. Cancers (Basel) 2021; 13:cancers13040921. [PMID: 33671768 PMCID: PMC7926701 DOI: 10.3390/cancers13040921] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary In multicellular organisms, inflammation is the body’s most primitive and essential protective response against any external agent. Inflammation, however, not only causes various modern diseases such as cardiovascular disorders, neurological disorders, autoimmune diseases, metabolic syndrome, infectious diseases, and cancer but also shortens the healthy life expectancy. This review focuses on the onset of carcinogenesis due to chronic inflammation caused by pathogen infections and inhalation/ingestion of foreign substances. This study summarizes animal models associated with inflammation-related carcinogenesis by organ. By determining factors common to inflammatory carcinogenesis models, we examined strategies for the prevention and treatment of inflammatory carcinogenesis in humans. Abstract Inflammation-related carcinogenesis has long been known as one of the carcinogenesis patterns in humans. Common carcinogenic factors are inflammation caused by infection with pathogens or the uptake of foreign substances from the environment into the body. Inflammation-related carcinogenesis as a cause for cancer-related death worldwide accounts for approximately 20%, and the incidence varies widely by continent, country, and even region of the country and can be affected by economic status or development. Many novel approaches are currently available concerning the development of animal models to elucidate inflammation-related carcinogenesis. By learning from the oldest to the latest animal models for each organ, we sought to uncover the essential common causes of inflammation-related carcinogenesis. This review confirmed that a common etiology of organ-specific animal models that mimic human inflammation-related carcinogenesis is prolonged exudation of inflammatory cells. Genotoxicity or epigenetic modifications by inflammatory cells resulted in gene mutations or altered gene expression, respectively. Inflammatory cytokines/growth factors released from inflammatory cells promote cell proliferation and repair tissue injury, and inflammation serves as a “carcinogenic niche”, because these fundamental biological events are common to all types of carcinogenesis, not just inflammation-related carcinogenesis. Since clinical strategies are needed to prevent carcinogenesis, we propose the therapeutic apheresis of inflammatory cells as a means of eliminating fundamental cause of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Futoshi Okada
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
- Correspondence: ; Tel.: +81-859-38-6241
| | - Runa Izutsu
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
| | - Keisuke Goto
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Division of Gastrointestinal and Pediatric Surgery, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan
| | - Mitsuhiko Osaki
- Division of Experimental Pathology, Faculty of Medicine, Tottori University, Yonago 683-8503, Japan; (R.I.); (K.G.); (M.O.)
- Chromosome Engineering Research Center, Tottori University, Yonago 683-8503, Japan
| |
Collapse
|
9
|
To B, Isaac D, Andrechek ER. Studying Lymphatic Metastasis in Breast Cancer: Current Models, Strategies, and Clinical Perspectives. J Mammary Gland Biol Neoplasia 2020; 25:191-203. [PMID: 33034778 DOI: 10.1007/s10911-020-09460-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/24/2020] [Indexed: 03/23/2023] Open
Abstract
Breast cancer is the most commonly diagnosed cancer in women and the second most common cause of cancer-related deaths in the United States. Although early detection has significantly decreased breast cancer mortality, patients diagnosed with distant metastasis still have a very poor prognosis. The most common site that breast cancer spreads to are local lymph nodes. Therefore, the presence of lymph node metastasis remains one of most important prognostic factors in breast cancer patients. Given its significant clinical implications, increased efforts have been dedicated to better understand the molecular mechanism governing lymph node metastasis in breast cancer. The identification of lymphatic-specific biomarkers, including podoplanin and LYVE-1, has propelled the field of lymphatic metastasis forward. In addition, several animal models such as cell line-derived xenografts, patient-derived xenografts, and spontaneous tumor models have been developed to recreate the process of lymphatic metastasis. Moreover, the incorporation of various -omic platforms have provided further insight into the genetic drivers facilitating lymphatic metastasis, as well as potential biomarkers and therapeutic targets. Here, we highlight various models of lymphatic metastasis, their potential pitfalls, and other tools available to study lymphatic metastasis including imaging modalities and -omic studies.
Collapse
Affiliation(s)
- Briana To
- Department of Physiology, Michigan State University, East Lansing, MI, USA
| | - Daniel Isaac
- Division of Hematology and Oncology, MSU Breslin Cancer Center, Lansing, MI, USA
| | - Eran R Andrechek
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
10
|
Boyle ST, Poltavets V, Kular J, Pyne NT, Sandow JJ, Lewis AC, Murphy KJ, Kolesnikoff N, Moretti PAB, Tea MN, Tergaonkar V, Timpson P, Pitson SM, Webb AI, Whitfield RJ, Lopez AF, Kochetkova M, Samuel MS. ROCK-mediated selective activation of PERK signalling causes fibroblast reprogramming and tumour progression through a CRELD2-dependent mechanism. Nat Cell Biol 2020; 22:882-895. [PMID: 32451439 DOI: 10.1038/s41556-020-0523-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 04/17/2020] [Indexed: 01/05/2023]
Abstract
It is well accepted that cancers co-opt the microenvironment for their growth. However, the molecular mechanisms that underlie cancer-microenvironment interactions are still poorly defined. Here, we show that Rho-associated kinase (ROCK) in the mammary tumour epithelium selectively actuates protein-kinase-R-like endoplasmic reticulum kinase (PERK), causing the recruitment and persistent education of tumour-promoting cancer-associated fibroblasts (CAFs), which are part of the cancer microenvironment. An analysis of tumours from patients and mice reveals that cysteine-rich with EGF-like domains 2 (CRELD2) is the paracrine factor that underlies PERK-mediated CAF education downstream of ROCK. We find that CRELD2 is regulated by PERK-regulated ATF4, and depleting CRELD2 suppressed tumour progression, demonstrating that the paracrine ROCK-PERK-ATF4-CRELD2 axis promotes the progression of breast cancer, with implications for cancer therapy.
Collapse
Affiliation(s)
- Sarah Theresa Boyle
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Valentina Poltavets
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Jasreen Kular
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Natasha Theresa Pyne
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Jarrod John Sandow
- Division of Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Alexander Charles Lewis
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.,Translational Haematology Program, Peter McCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Kendelle Joan Murphy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
| | - Natasha Kolesnikoff
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | | | - Melinda Nay Tea
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.,Institute of Molecular and Cell Biology, A*STAR and Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Cancer Division, St Vincent's Clinical School, University of NSW, Sydney, New South Wales, Australia
| | - Stuart Maxwell Pitson
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Andrew Ian Webb
- Division of Systems Biology and Personalised Medicine, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Robert John Whitfield
- Breast, Endocrine and Surgical Oncology Unit, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Angel Francisco Lopez
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Marina Kochetkova
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.
| | - Michael Susithiran Samuel
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia. .,Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia.
| |
Collapse
|
11
|
Chiodoni C, Cancila V, Renzi TA, Perrone M, Tomirotti AM, Sangaletti S, Botti L, Dugo M, Milani M, Bongiovanni L, Marrale M, Tripodo C, Colombo MP. Transcriptional Profiles and Stromal Changes Reveal Bone Marrow Adaptation to Early Breast Cancer in Association with Deregulated Circulating microRNAs. Cancer Res 2019; 80:484-498. [PMID: 31776132 DOI: 10.1158/0008-5472.can-19-1425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 10/17/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022]
Abstract
The presence of a growing tumor establishes a chronic state of inflammation that acts locally and systemically. Bone marrow responds to stress signals by expanding myeloid cells endowed with immunosuppressive functions, further fostering tumor growth and dissemination. How early in transformation the cross-talk with the bone marrow begins and becomes detectable in blood is unknown. Here, gene expression profiling of the bone marrow along disease progression in a spontaneous model of mammary carcinogenesis demonstrates that transcriptional modifications in the hematopoietic compartment occurred as early as preinvasive disease stages. The transcriptional profile showed downregulation of adaptive immunity and induction of programs related to innate immunity and response to danger signals triggered by activating transcription factor 3. Transcriptional reprogramming was paralleled by the expansion of myeloid populations at the expense of erythroid and B lymphoid fractions. Hematopoietic changes were associated with modifications of the bone marrow stromal architecture through relocalization and increased density in the interstitial area of Nestin+ mesenchymal cells expressing CXCL12 and myeloid cells expressing CXCL12 receptor CXCR4. These early events were concomitant with deregulation of circulating miRNAs, which were predicted regulators of transcripts downregulated in the bone marrow and involved in lymphoid differentiation and activation. These data provide a link between sensing of peripheral cancer initiation by the bone marrow and hematopoietic adaptation to distant noxia through transcriptional rewiring toward innate/inflammatory response programs. SIGNIFICANCE: The bone marrow senses distant tissue transformation at premalignant/preinvasive stages, suggesting that circulating messengers, intercepted in the blood, could serve as early diagnostic markers.
Collapse
Affiliation(s)
- Claudia Chiodoni
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Valeria Cancila
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Tiziana A Renzi
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Milena Perrone
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Andrea M Tomirotti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Sabina Sangaletti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Botti
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Matteo Dugo
- Platform of Integrated Biology - Bioinformatics, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori Milan, Italy
| | - Matteo Milani
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lucia Bongiovanni
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Maurizio Marrale
- Department of Physics and Chemistry, University of Palermo, Palermo, Italy
| | - Claudio Tripodo
- Tumor Immunology Unit, Department of Health Sciences, Human Pathology Section, University of Palermo School of Medicine, Palermo, Italy
| | - Mario P Colombo
- Molecular Immunology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
12
|
Uribesalgo I, Hoffmann D, Zhang Y, Kavirayani A, Lazovic J, Berta J, Novatchkova M, Pai TP, Wimmer RA, László V, Schramek D, Karim R, Tortola L, Deswal S, Haas L, Zuber J, Szűcs M, Kuba K, Dome B, Cao Y, Haubner BJ, Penninger JM. Apelin inhibition prevents resistance and metastasis associated with anti-angiogenic therapy. EMBO Mol Med 2019; 11:e9266. [PMID: 31267692 PMCID: PMC6685079 DOI: 10.15252/emmm.201809266] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/22/2019] [Accepted: 05/28/2019] [Indexed: 01/03/2023] Open
Abstract
Angiogenesis is a hallmark of cancer, promoting growth and metastasis. Anti-angiogenic treatment has limited efficacy due to therapy-induced blood vessel alterations, often followed by local hypoxia, tumor adaptation, progression, and metastasis. It is therefore paramount to overcome therapy-induced resistance. We show that Apelin inhibition potently remodels the tumor microenvironment, reducing angiogenesis, and effectively blunting tumor growth. Functionally, targeting Apelin improves vessel function and reduces polymorphonuclear myeloid-derived suppressor cell infiltration. Importantly, in mammary and lung cancer, Apelin prevents resistance to anti-angiogenic receptor tyrosine kinase (RTK) inhibitor therapy, reducing growth and angiogenesis in lung and breast cancer models without increased hypoxia in the tumor microenvironment. Apelin blockage also prevents RTK inhibitor-induced metastases, and high Apelin levels correlate with poor prognosis of anti-angiogenic therapy patients. These data identify a druggable anti-angiogenic drug target that reduces tumor blood vessel densities and normalizes the tumor vasculature to decrease metastases.
Collapse
Affiliation(s)
- Iris Uribesalgo
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - David Hoffmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Yin Zhang
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.,Medicine and Pharmacy Research Center, Binzhou Medical University, Yantai, Shandong Province, China
| | | | - Jelena Lazovic
- VBCF Preclinical Imaging, Vienna BioCenter, Vienna, Austria
| | - Judit Berta
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Maria Novatchkova
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Tsung-Pin Pai
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Reiner A Wimmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Viktória László
- Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Division of Molecular and Gender Imaging, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Daniel Schramek
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria.,Department of Molecular Genetics, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Rezaul Karim
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Luigi Tortola
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria
| | - Sumit Deswal
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Lisa Haas
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Johannes Zuber
- Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Miklós Szűcs
- Department of Urology, Semmelweis University, Budapest, Hungary
| | - Keiji Kuba
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria.,Department Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Balazs Dome
- Department of Tumor Biology, National Koranyi Institute of Pulmonology, Budapest, Hungary.,Division of Thoracic Surgery, Department of Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.,Department of Thoracic Surgery, National Institute of Oncology-Semmelweis University, Budapest, Hungary
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Bernhard J Haubner
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria.,Department of Internal Medicine III (Cardiology and Angiology), Medical University of Innsbruck, Innsbruck, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter, Vienna, Austria.,Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Abstract
Effective migration of dendritic cells into the lymphatic system organs is the prerequisite for a functional dendritic cell vaccine. We have previously developed a porous silicon microparticle (PSM)-based therapeutic dendritic cell vaccine (Nano-DC vaccine) where PSM serves both as the vehicle for antigen peptides and an adjuvant. Here, we analyzed parameters that determined dendritic cell uptake of PSM particles and Nano-DC vaccine accumulation in lymphatic tissues in a murine model of HER2-positive breast cancer. Our study revealed a positive correlation between sphericity of the PSM particles and their cellular uptake by circulating dendritic cells. In addition, the intravenously administered vaccines accumulated more in the spleens and inguinal lymph nodes, while the intradermally inoculated vaccines got enriched in the popliteal lymph nodes. Furthermore, mice with large tumors received more vaccines in the lymph nodes than those with small to medium size tumors. Information from this study will provide guidance on design and optimization of future therapeutic cancer vaccines.
Collapse
|
14
|
Lizier M, Anselmo A, Mantero S, Ficara F, Paulis M, Vezzoni P, Lucchini F, Pacchiana G. Fusion between cancer cells and macrophages occurs in a murine model of spontaneous neu+ breast cancer without increasing its metastatic potential. Oncotarget 2018; 7:60793-60806. [PMID: 27563823 PMCID: PMC5308617 DOI: 10.18632/oncotarget.11508] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/11/2016] [Indexed: 12/31/2022] Open
Abstract
Cell fusion between neoplastic and normal cells has been suggested to play a role in the acquisition of a malignant phenotype. Several studies have pointed to the macrophage as the normal partner in this fusion, suggesting that the fused cells could acquire new invasive properties and become able to disseminate to distant organs. However, this conclusion is mainly based on studies with transplantable cell lines. We tested the occurrence of cell fusion in the MMTV-neu model of mouse mammary carcinoma. In the first approach, we generated aggregation chimeras between GFP/neu and RFP/neu embryos. Tumor cells would display both fluorescent proteins only if cell fusion with normal cells occurred. In addition, if cell fusion conferred a growth/dissemination advantage, cells with both markers should be detectable in lung metastases at increased frequency. We confirmed that fused cells are present at low but consistent levels in primary neoplasms and that the macrophage is the normal partner in the fusion events. Similar results were obtained using a second approach in which bone marrow from mice carrying the Cre transgene was transplanted into MMTV-neu/LoxP-tdTomato transgenic animals, in which the Tomato gene is activated only in the presence of CRE recombinase. However, no fused cells were detected in lung metastases in either model. We conclude that fusion between macrophages and tumor cells does not confer a selective advantage in our spontaneous model of breast cancer, although these data do not rule out a possible role in models in which an inflammation environment is prominent.
Collapse
Affiliation(s)
- Michela Lizier
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, CNR, Milan,Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy.,Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Milan, Italy
| | - Achille Anselmo
- Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Stefano Mantero
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, CNR, Milan,Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Francesca Ficara
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, CNR, Milan,Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marianna Paulis
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, CNR, Milan,Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paolo Vezzoni
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, CNR, Milan,Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Franco Lucchini
- Centro Ricerche Biotecnologiche, Università Cattolica del Sacro Cuore, Cremona, Milan, Italy
| | - Giovanni Pacchiana
- Milan Unit, Istituto di Ricerca Genetica e Biomedica, CNR, Milan,Italy.,Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|
15
|
Gall VA, Philips AV, Qiao N, Clise-Dwyer K, Perakis AA, Zhang M, Clifton GT, Sukhumalchandra P, Ma Q, Reddy SM, Yu D, Molldrem JJ, Peoples GE, Alatrash G, Mittendorf EA. Trastuzumab Increases HER2 Uptake and Cross-Presentation by Dendritic Cells. Cancer Res 2017; 77:5374-5383. [PMID: 28819024 DOI: 10.1158/0008-5472.can-16-2774] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/25/2017] [Accepted: 08/04/2017] [Indexed: 12/22/2022]
Abstract
Early-phase clinical trials evaluating CD8+ T cell-eliciting, HER2-derived peptide vaccines administered to HER2+ breast cancer patients in the adjuvant setting suggest synergy between the vaccines and trastuzumab, the mAb targeting the HER2 protein. Among 60 patients enrolled in clinical trials evaluating the E75 + GM-CSF and GP2 + GM-CSF vaccines, there have been no recurrences in patients vaccinated after receiving trastuzumab as part of standard therapy in the per treatment analyses conducted after a median follow-up of greater than 34 months. Here, we describe a mechanism by which this synergy may occur. Flow cytometry showed that trastuzumab facilitated uptake of HER2 by dendritic cells (DC), which was mediated by the Fc receptor and was specific to trastuzumab. In vitro, increased HER2 uptake by DC increased cross-presentation of E75, the immunodominant epitope derived from the HER2 protein, an observation confirmed in two in vivo mouse models. This increased E75 cross-presentation, mediated by trastuzumab treatment, enabled more efficient expansion of E75-specific cytotoxic T cells (E75-CTL). These results demonstrate a mechanism by which trastuzumab links innate and adaptive immunity by facilitating activation of antigen-specific T cells. On the basis of these data, we conclude that HER2-positive breast cancer patients that have been treated with trastuzumab may experience a more robust antitumor immune response by restimulation of T cells with the E75 peptide vaccine, thereby accounting for the improved disease-free survival observed with combination therapy. Cancer Res; 77(19); 5374-83. ©2017 AACR.
Collapse
Affiliation(s)
- Victor A Gall
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anne V Philips
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Na Qiao
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Karen Clise-Dwyer
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexander A Perakis
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mao Zhang
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guy T Clifton
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pariya Sukhumalchandra
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Qing Ma
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sangeetha M Reddy
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Dihua Yu
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Gheath Alatrash
- Department of Stem Cell Transplantation & Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Elizabeth A Mittendorf
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
16
|
Grasso S, Chapelle J, Salemme V, Aramu S, Russo I, Vitale N, Verdun di Cantogno L, Dallaglio K, Castellano I, Amici A, Centonze G, Sharma N, Lunardi S, Cabodi S, Cavallo F, Lamolinara A, Stramucci L, Moiso E, Provero P, Albini A, Sapino A, Staaf J, Di Fiore PP, Bertalot G, Pece S, Tosoni D, Confalonieri S, Iezzi M, Di Stefano P, Turco E, Defilippi P. The scaffold protein p140Cap limits ERBB2-mediated breast cancer progression interfering with Rac GTPase-controlled circuitries. Nat Commun 2017; 8:14797. [PMID: 28300085 PMCID: PMC5357316 DOI: 10.1038/ncomms14797] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 01/27/2017] [Indexed: 12/29/2022] Open
Abstract
The docking protein p140Cap negatively regulates tumour cell features. Its relevance on breast cancer patient survival, as well as its ability to counteract relevant cancer signalling pathways, are not fully understood. Here we report that in patients with ERBB2-amplified breast cancer, a p140Cap-positive status associates with a significantly lower probability of developing a distant event, and a clear difference in survival. p140Cap dampens ERBB2-positive tumour cell progression, impairing tumour onset and growth in the NeuT mouse model, and counteracting epithelial mesenchymal transition, resulting in decreased metastasis formation. One major mechanism is the ability of p140Cap to interfere with ERBB2-dependent activation of Rac GTPase-controlled circuitries. Our findings point to a specific role of p140Cap in curbing the aggressiveness of ERBB2-amplified breast cancers and suggest that, due to its ability to impinge on specific molecular pathways, p140Cap may represent a predictive biomarker of response to targeted anti-ERBB2 therapies. p140Cap adaptor proteins interfere with adhesion and growth factor-dependent signalling in cancer cells but the mechanisms are unclear. Here the authors show that p140Cap interferes with ERBB2-dependent activation of Rac GTPase-controlled circuitries reducing metastasis and cancer progression.
Collapse
Affiliation(s)
- Silvia Grasso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Jennifer Chapelle
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Vincenzo Salemme
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Simona Aramu
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Isabella Russo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Nicoletta Vitale
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | | | - Katiuscia Dallaglio
- Research Infrastructure, IRCCS Arcispedale Santa Maria Nuova, 42100 Reggio Emilia, Italy
| | | | - Augusto Amici
- Department of Bioscience and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Giorgia Centonze
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Nanaocha Sharma
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Serena Lunardi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Sara Cabodi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Alessia Lamolinara
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, 66100 Chieti, Italy
| | - Lorenzo Stramucci
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, 66100 Chieti, Italy
| | - Enrico Moiso
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Paolo Provero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Adriana Albini
- Scientific and Technology Pole, IRCCS MultiMedica, 20100 Milan, Italy
| | - Anna Sapino
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy
| | - Johan Staaf
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund 22100, Sweden
| | - Pier Paolo Di Fiore
- Molecular Medicine Program, European Institute of Oncology, 20100 Milan, Italy.,IFOM, The FIRC Institute for Molecular Oncology Foundation, 20100 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20100 Milan, Italy
| | - Giovanni Bertalot
- Molecular Medicine Program, European Institute of Oncology, 20100 Milan, Italy
| | - Salvatore Pece
- Molecular Medicine Program, European Institute of Oncology, 20100 Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, 20100 Milan, Italy
| | - Daniela Tosoni
- Molecular Medicine Program, European Institute of Oncology, 20100 Milan, Italy
| | - Stefano Confalonieri
- Molecular Medicine Program, European Institute of Oncology, 20100 Milan, Italy.,IFOM, The FIRC Institute for Molecular Oncology Foundation, 20100 Milan, Italy
| | - Manuela Iezzi
- Department of Medicine and Aging Science, Center of Excellence on Aging and Translational Medicine (CeSi-Met), G. D'Annunzio University, Chieti-Pescara, 66100 Chieti, Italy
| | - Paola Di Stefano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| | - Paola Defilippi
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy
| |
Collapse
|
17
|
Ehrmann C, Schneider MR. Genetically modified laboratory mice with sebaceous glands abnormalities. Cell Mol Life Sci 2016; 73:4623-4642. [PMID: 27457558 PMCID: PMC11108334 DOI: 10.1007/s00018-016-2312-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 07/12/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022]
Abstract
Sebaceous glands (SG) are exocrine glands that release their product by holocrine secretion, meaning that the whole cell becomes a secretion following disruption of the membrane. SG may be found in association with a hair follicle, forming the pilosebaceous unit, or as modified SG at different body sites such as the eyelids (Meibomian glands) or the preputial glands. Depending on their location, SG fulfill a number of functions, including protection of the skin and fur, thermoregulation, formation of the tear lipid film, and pheromone-based communication. Accordingly, SG abnormalities are associated with several diseases such as acne, cicatricial alopecia, and dry eye disease. An increasing number of genetically modified laboratory mouse lines develop SG abnormalities, and their study may provide important clues regarding the molecular pathways regulating SG development, physiology, and pathology. Here, we summarize in tabulated form the available mouse lines with SG abnormalities and, focusing on selected examples, discuss the insights they provide into SG biology and pathology. We hope this survey will become a helpful information source for researchers with a primary interest in SG but also as for researchers from unrelated fields that are unexpectedly confronted with a SG phenotype in newly generated mouse lines.
Collapse
Affiliation(s)
- Carmen Ehrmann
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany
| | - Marlon R Schneider
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377, Munich, Germany.
| |
Collapse
|
18
|
Fry EA, Taneja P, Inoue K. Clinical applications of mouse models for breast cancer engaging HER2/neu. INTEGRATIVE CANCER SCIENCE AND THERAPEUTICS 2016; 3:593-603. [PMID: 28133539 PMCID: PMC5267336 DOI: 10.15761/icst.1000210] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human c-ErbB2 (HER2) has long been used as a marker of breast cancer (BC) for sub-categorization for the prediction of prognosis, and determination of therapeutic strategies. HER2 overexpressing BCs are more invasive/metastatic; but patients respond to monoclonal antibody therapy with trastuzumab or tyrosine kinase inhibitors, at least at early stages. To date, numerous mouse models that faithfully reproduce HER2(+) BCs have been created in mice. We recently reviewed different mouse models of BC overexpressing wild type or mutant neu driven by MMTV, neu, or doxycycline-inducible promoters. These mice have been used to demonstrate the histopathology, oncogenic signaling pathways initiated by aberrant overexpression of HER2 in the mammary epithelium, and interaction between oncogenes and tumor suppressor genes at molecular levels. In this review, we focus on their clinical applications. They can be used to test the efficacy of HER(2) inhibitors before starting clinical trials, characterize the tumor-initiating cells that could be the cause of relapse after therapy as well as to analyze the molecular mechanisms of therapeutic resistance targeting HER2. MMTV-human ErbB2 (HER2) mouse models have recently been established since the monoclonal antibody to HER2 (trastuzumab; Herceptin®) does not recognize the rat neu protein. It has been reported that early intervention with HER2 monoclonal antibody would be beneficial for preventing mammary carcinogenesis. MDA-7/IL-24 as well as naturally-occurring chemicals have also been tested using MMTV-neu models. Recent studies have shown that MMTV-neu models are useful to develop vaccines to HER2 for immunotherapy. The mouse models employing HER2/neu will be essential for future antibody or drug screenings to overcome resistance to trastuzumab or HER(2)-specific tyrosine kinase inhibitors.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| | - Pankaj Taneja
- Department of Biotechnology, Sharda University, Knowledge Park III, Greater Noida 201306, India
| | - Kazushi Inoue
- The Department of Pathology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157 USA
| |
Collapse
|
19
|
Vallerand D, Massonnet G, Kébir F, Gentien D, Maciorowski Z, De la Grange P, Sigal-Zafrani B, Richardson M, Humbert S, Thuleau A, Assayag F, de Plater L, Nicolas A, Scholl S, Marangoni E, Weigand S, Roman-Roman S, Savina A, Decaudin D. Characterization of Breast Cancer Preclinical Models Reveals a Specific Pattern of Macrophage Polarization. PLoS One 2016; 11:e0157670. [PMID: 27388901 PMCID: PMC4936680 DOI: 10.1371/journal.pone.0157670] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 06/02/2016] [Indexed: 12/23/2022] Open
Abstract
Drug discovery efforts have focused on the tumor microenvironment in recent years. However, few studies have characterized the stroma component in patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs). In this study, we characterized the stroma in various models of breast cancer tumors in mice. We performed transcriptomic and flow cytometry analyses on murine populations for a series of 25 PDXs and the two most commonly used GEMs (MMTV-PyMT and MMTV-erBb2). We sorted macrophages from five models. We then profiled gene expression in these cells, which were also subjected to flow cytometry for phenotypic characterization. Hematopoietic cell composition, mostly macrophages and granulocytes, differed between tumors. Macrophages had a specific polarization phenotype related to their M1/M2 classification and associated with the expression of genes involved in the recruitment, invasion and metastasis processes. The heterogeneity of the stroma component of the models studied suggests that tumor cells modify their microenvironment to satisfy their needs. Our observations suggest that such models are of relevance for preclinical studies.
Collapse
Affiliation(s)
- David Vallerand
- Translational Research Department, Laboratory of Preclinical Investigation, Institut Curie, PSL University, Paris, France
- Institut Roche, Boulogne-Billancourt, France
| | - Gérald Massonnet
- Translational Research Department, Laboratory of Preclinical Investigation, Institut Curie, PSL University, Paris, France
| | - Fatima Kébir
- Department of Pathology, Institut Curie, Paris, France
| | - David Gentien
- Platform of Molecular Biology Facilities, Institut Curie, PSL University, Paris, France
| | - Zofia Maciorowski
- Flow Cytometry Core Facility, Institut Curie, PSL University, Paris, France
| | | | - Brigitte Sigal-Zafrani
- Department of Pathology, Institut Curie, Paris, France
- Inserm, U830, Institut Curie, PSL University, Paris, France
| | | | - Sandrine Humbert
- CNRS UMR3306, INSERM U1005, Institut Curie, PSL University, Orsay, France
| | - Aurélie Thuleau
- Translational Research Department, Laboratory of Preclinical Investigation, Institut Curie, PSL University, Paris, France
| | - Franck Assayag
- Translational Research Department, Laboratory of Preclinical Investigation, Institut Curie, PSL University, Paris, France
| | - Ludmilla de Plater
- Translational Research Department, Laboratory of Preclinical Investigation, Institut Curie, PSL University, Paris, France
| | - André Nicolas
- Department of Pathology, Institut Curie, Paris, France
| | - Suzy Scholl
- Department of Medical Oncology, Institut Curie, Institut Curie, Paris, France
| | - Elisabetta Marangoni
- Translational Research Department, Laboratory of Preclinical Investigation, Institut Curie, PSL University, Paris, France
| | | | - Sergio Roman-Roman
- Translational Research Department, Institut Curie, PSL University, Paris, France
| | | | - Didier Decaudin
- Translational Research Department, Laboratory of Preclinical Investigation, Institut Curie, PSL University, Paris, France
- Department of Medical Oncology, Institut Curie, Institut Curie, Paris, France
- Translational Research Department, Institut Curie, PSL University, Paris, France
- * E-mail:
| |
Collapse
|
20
|
Wei WZ, Jones RF, Juhasz C, Gibson H, Veenstra J. Evolution of animal models in cancer vaccine development. Vaccine 2015; 33:7401-7407. [PMID: 26241945 DOI: 10.1016/j.vaccine.2015.07.075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 07/02/2015] [Indexed: 12/29/2022]
Abstract
Advances in cancer vaccine development are facilitated by animal models reflecting key features of human cancer and its interface with host immunity. Several series of transplantable preneoplastic and neoplastic mouse mammary lesions have been used to delineate mechanisms of anti-tumor immunity. Mimicking immune tolerance to tumor-associated antigens (TAA) such as HER2/neu, transgenic mice developing spontaneous mammary tumors are strong model systems for pre-clinical vaccine testing. In these models, HER2 DNA vaccines are easily administered, well-tolerated, and induce both humoral and cellular immunity. Although engineered mouse strains have advanced cancer immunotherapy, basic shortcomings remain. For example, multiple mouse strains have to be tested to recapitulate genetic regulation of immune tolerance in humans. Outbred domestic felines more closely parallel humans in the natural development of HER2 positive breast cancer and their varying genetic background. Electrovaccination with heterologous HER2 DNA induces robust adaptive immune responses in cats. Importantly, homologous feline HER2 DNA with a single amino acid substitution elicits unique antibodies to feline mammary tumor cells, unlocking a new vaccine principle. As an alternative approach to targeted vaccination, non-surgical tumor ablation such as cryoablation induces anti-tumor immunity via in situ immunization, particularly when combined with toll-like receptor (TLR) agonist. As strategies for vaccination advance, non-invasive monitoring of host response becomes imperative. As an example, magnetic resonance imaging (MRI) and positron emission tomography (PET) scanning following administration of tryptophan metabolism tracer [11C]-alpha-methyl-tryptophan (AMT) provides non-invasive imaging of both tumor growth and metabolic activities. Because AMT is a substrate of indoleamine-pyrrole 2,3-dioxygenase (IDO), an enzyme that produces the immune regulatory molecule kynurenine, AMT imaging can provide novel insight of host response. In conclusion, new feline models improve the predictive power of cancer immunotherapy and real-time PET imaging enables mechanistic monitoring of host immunity. Strategic utilization of these new tools will expedite cancer vaccine development.
Collapse
Affiliation(s)
- Wei-Zen Wei
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States.
| | - Richard F Jones
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Csaba Juhasz
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Heather Gibson
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| | - Jesse Veenstra
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, United States
| |
Collapse
|
21
|
Xia X, Mai J, Xu R, Perez JET, Guevara ML, Shen Q, Mu C, Tung HY, Corry DB, Evans SE, Liu X, Ferrari M, Zhang Z, Li XC, Wang RF, Shen H. Porous silicon microparticle potentiates anti-tumor immunity by enhancing cross-presentation and inducing type I interferon response. Cell Rep 2015; 11:957-966. [PMID: 25937283 PMCID: PMC4431902 DOI: 10.1016/j.celrep.2015.04.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 01/29/2015] [Accepted: 04/03/2015] [Indexed: 12/21/2022] Open
Abstract
Micro- and nanometer-size particles have become popular candidates for cancer vaccine adjuvants. However, the mechanism by which such particles enhance immune responses remains unclear. Here, we report a porous silicon microparticle (PSM)-based cancer vaccine that greatly enhances cross-presentation and activates type I interferon (IFN-I) response in dendritic cells (DCs). PSM-loaded antigen exhibited prolonged early endosome localization and enhanced cross-presentation through both proteasome- and lysosome-dependent pathways. Phagocytosis of PSM by DCs induced IFN-I responses through a TRIF- and MAVS-dependent pathway. DCs primed with PSM-loaded HER2 antigen produced robust CD8 T cell-dependent anti-tumor immunity in mice bearing HER2+ mammary gland tumors. Importantly, this vaccination activated the tumor immune microenvironment with elevated levels of intra-tumor IFN-I and MHCII expression, abundant CD11c+ DC infiltration, and tumor-specific cytotoxic T cell responses. These findings highlight the potential of PSM as an immune adjuvant to potentiate DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- Xiaojun Xia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Rong Xu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Maria L Guevara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Qi Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chaofeng Mu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Hui-Ying Tung
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - David B Corry
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Zhiqiang Zhang
- Immunobiology and Transplantation Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Xian Chang Li
- Immunobiology and Transplantation Research, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Rong-Fu Wang
- Center for Inflammation and Epigenetics, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
22
|
Croce AC, Bottiroli G. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur J Histochem 2014; 58:2461. [PMID: 25578980 PMCID: PMC4289852 DOI: 10.4081/ejh.2014.2461] [Citation(s) in RCA: 331] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 12/18/2022] Open
Abstract
Native fluorescence, or autofluorescence (AF), consists in the emission of light in the UV-visible, near-IR spectral range when biological substrates are excited with light at suitable wavelength. This is a well-known phenomenon, and the strict relationship of many endogenous fluorophores with morphofunctional properties of the living systems, influencing their AF emission features, offers an extremely powerful resource for directly monitoring the biological substrate condition. Starting from the last century, the technological progresses in microscopy and spectrofluorometry were convoying attention of the scientific community to this phenomenon. In the future, the interest in the autofluorescence will certainly continue. Current instrumentation and analytical procedures will likely be overcome by the unceasing progress in new devices for AF detection and data interpretation, while a progress is expected in the search and characterization of endogenous fluorophores and their roles as intrinsic biomarkers.
Collapse
Affiliation(s)
- A C Croce
- Institute of Molecular Genetics of the National Research Council, University of Pavia.
| | | |
Collapse
|
23
|
Veenstra JJ, Gibson HM, Littrup PJ, Reyes JD, Cher ML, Takashima A, Wei WZ. Cryotherapy with concurrent CpG oligonucleotide treatment controls local tumor recurrence and modulates HER2/neu immunity. Cancer Res 2014; 74:5409-20. [PMID: 25092895 DOI: 10.1158/0008-5472.can-14-0501] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Percutaneous cryoablation is a minimally invasive procedure for tumor destruction, which can potentially initiate or amplify antitumor immunity through the release of tumor-associated antigens. However, clinically efficacious immunity is lacking and regional recurrences are a limiting factor relative to surgical excision. To understand the mechanism of immune activation by cryoablation, comprehensive analyses of innate immunity and HER2/neu humoral and cellular immunity following cryoablation with or without peritumoral CpG injection were conducted using two HER2/neu(+) tumor systems in wild-type (WT), neu-tolerant, and SCID mice. Cryoablation of neu(+) TUBO tumor in BALB/c mice resulted in systemic immune priming, but not in neu-tolerant BALB NeuT mice. Cryoablation of human HER2(+) D2F2/E2 tumor enabled the functionality of tumor-induced immunity, but secondary tumors were refractory to antitumor immunity if rechallenge occurred during the resolution phase of the cryoablated tumor. A step-wise increase in local recurrence was observed in WT, neu-tolerant, and SCID mice, indicating a role of adaptive immunity in controlling residual tumor foci. Importantly, local recurrences were eliminated or greatly reduced in WT, neu tolerant, and SCID mice when CpG was incorporated in the cryoablation regimen, showing significant local control by innate immunity. For long-term protection, however, adaptive immunity was required because most SCID mice eventually succumbed to local tumor recurrence even with combined cryoablation and CpG treatment. This improved understanding of the mechanisms by which cryoablation affects innate and adaptive immunity will help guide appropriate combination of therapeutic interventions to improve treatment outcomes.
Collapse
Affiliation(s)
- Jesse J Veenstra
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | | | - Michael L Cher
- Karmanos Cancer Institute, Detroit, Michigan. Department of Urologic Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Akira Takashima
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio
| | - Wei-Zen Wei
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan. Karmanos Cancer Institute, Detroit, Michigan.
| |
Collapse
|
24
|
Aurisicchio L, Peruzzi D, Koo G, Wei WZ, La Monica N, Ciliberto G. Immunogenicity and therapeutic efficacy of a dual-component genetic cancer vaccine cotargeting carcinoembryonic antigen and HER2/neu in preclinical models. Hum Gene Ther 2014; 25:121-31. [PMID: 24195644 PMCID: PMC3922413 DOI: 10.1089/hum.2013.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 11/05/2013] [Indexed: 12/18/2022] Open
Abstract
Several cancer vaccine efforts have been directed to simultaneously cotarget multiple tumor antigens, with the intent to achieve broader immune responses and more effective control of cancer growth. Genetic cancer vaccines based on in vivo muscle electro-gene-transfer of plasmid DNA (DNA-EGT) and adenoviral vectors represent promising modalities to elicit powerful immune responses against tumor-associated antigens (TAAs) such as carcinoembryonic antigen (CEA) and human epidermal growth factor receptor-2 (HER2)/neu. Combinations of these modalities of immunization (heterologous prime-boost) can induce superior immune reactions as compared with single-modality vaccines. We have generated a dual component-dual target genetic cancer vaccine consisting of a DNA moiety containing equal amounts of two plasmids, one encoding the extracellular and transmembrane domains of HER2 (ECD.TM) and the other encoding CEA fused to the B subunit of Escherichia coli heat-labile toxin (LTB), and of an adenoviral subtype 6 dicistronic vector carrying the same two tumor antigens gene constructs. The CEA/HER2 vaccine was tested in two different CEA/HER2 double-transgenic mouse models and in NOD/scid-DR1 mice engrafted with the human immune system. The immune response was measured by enzyme-linked immunospot assay, flow cytometry, and ELISA. The CEA/HER2 vaccine was able to break immune tolerance against both antigens. Induction of a T cell and antibody immune response was detected in immune-tolerant mice. Most importantly, the vaccine was able to slow the growth of HER2/neu⁺ and CEA⁺ tumors. A significant T cell response was measured in NOD/scid-DR1 mice engrafted with human cord blood cells. In conclusion, the CEA/HER2 genetic vaccine was immunogenic and able to confer significant therapeutic effects. These data warrant the evaluation of this vaccination strategy in human clinical trials.
Collapse
Affiliation(s)
- Luigi Aurisicchio
- Istituto di Ricerche di Biologia Molecolare (IRBM), 00040 Pomezia, Rome, Italy
| | - Daniela Peruzzi
- Istituto di Ricerche di Biologia Molecolare (IRBM), 00040 Pomezia, Rome, Italy
| | - Gloria Koo
- Memorial Sloan-Kettering Cancer Center, New York, NY 10021
| | - Wei-Zen Wei
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | - Nicola La Monica
- Istituto di Ricerche di Biologia Molecolare (IRBM), 00040 Pomezia, Rome, Italy
| | - Gennaro Ciliberto
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute G. Pascale, 80131 Naples, Italy
| |
Collapse
|
25
|
The Justy mutant mouse strain produces a spontaneous murine model of salivary gland cancer with myoepithelial and basal cell differentiation. J Transl Med 2013; 93:711-9. [PMID: 23608756 PMCID: PMC3669254 DOI: 10.1038/labinvest.2013.62] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We previously identified a novel mutant mouse strain on the C3HeB/FeJ background named Justy. This strain bears a recessive mutation in the Gon4l gene that greatly reduces expression of the encoded protein, a nuclear factor implicated in transcriptional regulation. Here, we report that Justy mutant mice aged 6 months or older spontaneously developed carcinomas with myoepithelial and basaloid differentiation in salivary glands with an incidence of ∼25%. Tumors developed proximate to submandibular glands and to a lesser extent in the sublingual and parotid glands. Histologically, tumors often had central cavitary lesions filled with necrotic debris that were lined by tumor cells, and had spindle and epithelioid cell differentiation with lesser basaloid to clear cell features. Tumor tissue often had variable evidence of a high mitotic rate, pleomorphism, and invasion into adjacent salivary glands. Neoplastic cells had diffuse immunoreactivity for pancytokeratin (AE1/AE3) and p63. Although CK5/6 immunostaining was seen in the much of the tumor cells, it was often lacking in pleomorphic areas. Tumor cells lacked immunoreactivity for alpha-smooth muscle actin, S100, c-Kit, and glial fibrillary acid protein. In addition, tumors had immunoreactivity for phosphorylated and total epidermal growth factor receptor, suggesting that EGFR signaling may participate in growth regulation of these tumors. These findings indicate that the salivary gland carcinomas occur spontaneously in Justy mice, and that these tumors may offer a valuable model for study of EGFR regulation. In combination, our data suggest that Justy mice warrant further investigation for use as a mouse model for human salivary gland neoplasia.
Collapse
|
26
|
Utermark T, Rao T, Cheng H, Wang Q, Lee SH, Wang ZC, Iglehart JD, Roberts TM, Muller WJ, Zhao JJ. The p110α and p110β isoforms of PI3K play divergent roles in mammary gland development and tumorigenesis. Genes Dev 2012; 26:1573-86. [PMID: 22802530 DOI: 10.1101/gad.191973.112] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Class Ia phosphatidylinositol 3 kinase (PI3K) is required for oncogenic receptor-mediated transformation; however, the individual roles of the two commonly expressed class Ia PI3K isoforms in oncogenic receptor signaling have not been elucidated in vivo. Here, we show that genetic ablation of p110α blocks tumor formation in both polyoma middle T antigen (MT) and HER2/Neu transgenic models of breast cancer. Surprisingly, p110β ablation results in both increased ductal branching and tumorigenesis. Biochemical analyses suggest a competition model in which the less active p110β competes with the more active p110α for receptor binding sites, thereby modulating the level of PI3K activity associated with activated receptors. Our findings demonstrate a novel p110β-based regulatory role in receptor-mediated PI3K activity and identify p110α as an important target for treatment of HER2-positive disease.
Collapse
Affiliation(s)
- Tamara Utermark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chang H, Balenci L, Okolowsky N, Muller WJ, Hamel PA. Mammary epithelial-restricted expression of activated c-src rescues the block to mammary gland morphogenesis due to the deletion of the C-terminus of Patched-1. Dev Biol 2012; 370:187-97. [PMID: 22968113 DOI: 10.1016/j.ydbio.2012.07.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 12/26/2022]
Abstract
Mesenchymal dysplasia (mes) mice expressing a C-terminally truncated version of the Hedgehog (Hh)-ligand receptor, Patched-1 (Ptch1), exhibit a limited spectrum of developmental defects including blocked ductal morphogenesis of the mammary gland during puberty. Given that the Hh-ligands can stimulate signalling cascades distinct from the canonical pathway involving Smo and the Gli-family proteins and that Ptch1 binds to factors harbouring SH3-domains, we determined whether the mes mammary gland defect could be rescued by activating non-canonical signalling pathways downstream of Ptch1. We demonstrate here that expression of constitutively active c-src (c-src(Act)) in mammary epithelial cells overcomes the block to mammary epithelial morphogenesis in mes mice. Specifically, MMTV-directed expression of c-src(Act) rescued blocked ductal morphogenesis in mes mice, albeit only after animals were more than 15 weeks of age. The overall morphology resembled wild type mice expressing c-src(Act) although 40% of mes/MMTV-c-src(Act) mice exhibited terminal end buds at 24 weeks of age. C-src(Act) restored the proliferative capacity of mes epithelial cells, self-renewal capacity of mammary progenitor cells and increased the expression of Esr1, Ptch1 and Gli1. These data reveal the cooperative interactions between signalling cascades involving c-src and Ptch1 and suggest that Hh-signalling may be permissive for c-src/Esr1-dependent mammary gland morphogenesis.
Collapse
Affiliation(s)
- Hong Chang
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
28
|
Koman IE, Commane M, Paszkiewicz G, Hoonjan B, Pal S, Safina A, Toshkov I, Purmal AA, Wang D, Liu S, Morrison C, Gudkov AV, Gurova KV. Targeting FACT complex suppresses mammary tumorigenesis in Her2/neu transgenic mice. Cancer Prev Res (Phila) 2012; 5:1025-35. [PMID: 22689915 DOI: 10.1158/1940-6207.capr-11-0529] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Development of safe and effective tumor-preventive treatments for high-risk patient populations and therapies for early-stage cancer remains a critical need in oncology. We have recently discovered compound with anticancer activity, Curaxin-137, which modulates several important signaling pathways involved in even the very early stages of cancer. In tumor cells, Curaxin-137 inhibits NF-κB- and HSF1-dependent transcription (prosurvival pathways) and activates p53 (a proapoptotic pathway) without inducing DNA damage. These effects result from chromatin trapping and inhibition of activity of the FACT (facilitates chromatin transcription) complex by Curaxin-137. FACT has not been previously implicated in cancer, but we found that its subunits are overexpressed in breast cancer. On the basis of this background, we tested whether Curaxin-137 could suppress tumorigenesis in MMTV-neu transgenic mice, which spontaneously develop mammary carcinoma due to steroid receptor-regulated expression of the Her2 proto-oncogene. We found that chronic administration of Curaxin-137 in a preventive regimen to MMTV-neu mice did not cause any detectable changes in normal organs and tissues, yet inhibited tumor onset, delayed tumor progression, and prolonged survival of mice in a dose-dependent manner. Curaxin-137 induced changes in FACT, altered NF-κB localization, and activated p53 in tumor cells as expected from its defined mechanism of action. These results support further investigation of Curaxin-137 as a potential preventive and/or early-stage therapeutic agent for breast cancer.
Collapse
Affiliation(s)
- Igor E Koman
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ling C, Su VMT, Zuo D, Muller WJ. Loss of the 14-3-3σ tumor suppressor is a critical event in ErbB2-mediated tumor progression. Cancer Discov 2011; 2:68-81. [PMID: 22585169 DOI: 10.1158/2159-8290.cd-11-0189] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED 14-3-3σ is a putative tumor suppressor involved in cell-cycle progression and epithelial polarity. We demonstrate that loss of one or both copies of the conditional 14-3-3σ allele results in accelerated mammary and salivary tumorigenesis in mice expressing an activated erbB2 oncogene under the endogenous erbB2 promoter. Significantly, the majority of tumors bearing a single conditional 14-3-3σ allele lose expression of the remaining 14-3-3σ allele, which is associated with epigenetic methylation of the 14-3-3σ locus. In addition to accelerated tumor onset, in a mouse mammary tumor virus-driven ErbB2 tumor model, loss of 14-3-3σ results in enhanced metastatic phenotype that is correlated with loss of cellular junctions. Taken together, these results provide compelling evidence that 14-3-3σ is a potent tumor suppressor involved in ErbB2-driven breast cancer initiation and metastasis. SIGNIFICANCE 14-3-3σ has been identified as a normal mammary epithelial cell marker frequently downregulated during neoplastic development. Consistent with its potential role as a tumor suppressor, we demonstrate that targeted disruption of 14-3-3σ in a number of epithelial tissues can profoundly impact both the initiation and metastatic phases of ErbB2-mediated tumor progression through modulation of a number of distinct signaling networks.
Collapse
Affiliation(s)
- Chen Ling
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
30
|
Croce AC, Santamaria G, De Simone U, Lucchini F, Freitas I, Bottiroli G. Naturally-occurring porphyrins in a spontaneous-tumour bearing mouse model. Photochem Photobiol Sci 2011; 10:1189-95. [DOI: 10.1039/c0pp00375a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Diegel CR, Cho KR, El-Naggar AK, Williams BO, Lindvall C. Mammalian target of rapamycin-dependent acinar cell neoplasia after inactivation of Apc and Pten in the mouse salivary gland: implications for human acinic cell carcinoma. Cancer Res 2010; 70:9143-52. [PMID: 21062985 DOI: 10.1158/0008-5472.can-10-1758] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cross-talk between the canonical Wnt and mammalian target of rapamycin (mTOR) signaling pathways occurs at multiple levels in the cell and likely contributes to the oncogenic effects of these pathways in human cancer. To gain more insight into the interplay between Wnt and mTOR signaling in salivary gland tumorigenesis, we developed a mouse model in which both pathways are constitutively activated by the conditional inactivation of the Apc and Pten tumor suppressor genes. Loss of either Apc or Pten alone did not cause tumor development. However, deletion of both genes resulted in the formation of salivary gland tumors with 100% penetrance and short latency that showed a remarkable morphologic similarity to human acinic cell carcinoma. Treatment of tumor-bearing mice using the mTOR inhibitor rapamycin led to complete regression of tumors, indicating that tumor growth was dependent on continued mTOR signaling. Importantly, we found that human salivary gland acinic cell carcinomas also express markers of activated mTOR signaling. Together, these results suggest that aberrant activation of mTOR signaling plays a pivotal role in acinar cell neoplasia of the salivary gland. Because rapamycin analogues are approved for treating other types of human malignancies, our findings suggest that rapamycin therapy should be evaluated for treating patients with salivary gland acinic cell carcinoma.
Collapse
Affiliation(s)
- Cassandra R Diegel
- Laboratory of Cell Signaling and Carcinogenesis, Van Andel Research Institute, Grand Rapids, Michigan 49504, USA
| | | | | | | | | |
Collapse
|
32
|
Sangaletti S, Tripodo C, Ratti C, Piconese S, Porcasi R, Salcedo R, Trinchieri G, Colombo MP, Chiodoni C. Oncogene-driven intrinsic inflammation induces leukocyte production of tumor necrosis factor that critically contributes to mammary carcinogenesis. Cancer Res 2010; 70:7764-75. [PMID: 20924115 PMCID: PMC7371347 DOI: 10.1158/0008-5472.can-10-0471] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oncogene activation promotes an intrinsic inflammatory pathway that is crucial for cancer development. Here, we have investigated the actual effect of the inflammatory cytokine tumor necrosis factor (TNF) on the natural history of spontaneous mammary cancer in the HER2/neuT (NeuT) transgenic mouse model. Bone marrow transplantation from TNF knockout mice into NeuT recipients significantly impaired tumor growth, indicating that the source of TNF fostering tumor development was of bone marrow origin. We show that the absence of leukocyte-derived TNF disarranged the tumor vasculature, which lacked pericyte coverage and structural integrity, leading to diffuse vascular hemorrhage and stromal necrosis. In addition, tumor-associated Tie2-expressing monocytes were reduced and cytokine expression skewed from Th2 to Th1 type. Treatment of NeuT mice with anti-TNF antibody partially phenocopied the antitumor effect of TNF-deficient bone marrow cell transplantation, providing a strong preclinical background and rationale for the introduction of TNF antagonists in the treatment of human breast cancer, including basal-like samples for which consolidated targeted therapies do not exist.
Collapse
MESH Headings
- Animals
- Antibodies/therapeutic use
- Bone Marrow Transplantation
- Crosses, Genetic
- Female
- Humans
- Immunohistochemistry
- Inflammation/pathology
- Inflammation/physiopathology
- Leukocytes/physiology
- Male
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/physiopathology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oncogenes
- Platelet Endothelial Cell Adhesion Molecule-1/analysis
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type II/deficiency
- Receptors, Tumor Necrosis Factor, Type II/genetics
- Tumor Necrosis Factor-alpha/deficiency
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- Sabina Sangaletti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Claudio Tripodo
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Chiara Ratti
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Silvia Piconese
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Rossana Porcasi
- Department of Human Pathology, University of Palermo, Palermo, Italy
| | - Rosalba Salcedo
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Giorgio Trinchieri
- Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| | - Mario P. Colombo
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Claudia Chiodoni
- Molecular Immunology Unit, Department of Experimental Oncology and Molecular Medicine, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| |
Collapse
|
33
|
Abstract
Breast cancer progression involves multiple genetic events, which can activate dominant-acting oncogenes and disrupt the function of specific tumor suppressor genes. This article describes several key oncogene and tumor suppressor signaling networks that have been implicated in breast cancer progression. Among the tumor suppressors, the article emphasizes BRCA1/2 and p53 tumor suppressors. In addition to these well characterized tumor suppressors, the article highlights the importance of PTEN tumor suppressor in counteracting PI3K signaling from activated oncogenes such as ErbB2. This article discusses the use of mouse models of human breast that recapitulate the key genetic events involved in the initiation and progression of breast cancer. Finally, the therapeutic potential of targeting these key tumor suppressor and oncogene signaling networks is discussed.
Collapse
Affiliation(s)
- Eva Y H P Lee
- Department of Biological Chemistry and Department of Developmental and Cell Biology, University of California, Irvine, California 92697-4037, USA
| | | |
Collapse
|
34
|
Suenobu SI, Handa YS, Kuga S, Kakiuchi T, Akiyoshi K, Imai K, Izumi T. Ph+ALL in a pediatric patient with neuroblastoma in infancy. Pediatr Int 2010; 52:e147-9. [PMID: 20723114 DOI: 10.1111/j.1442-200x.2010.03079.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- So-ichi Suenobu
- Department of Pediatrics and Child Neurology, Oita University Faculty of Medicine, Oita, Japan.
| | | | | | | | | | | | | |
Collapse
|
35
|
Efferson CL, Winkelmann CT, Ware C, Sullivan T, Giampaoli S, Tammam J, Patel S, Mesiti G, Reilly JF, Gibson RE, Buser C, Yeatman T, Coppola D, Winter C, Clark EA, Draetta GF, Strack PR, Majumder PK. Downregulation of Notch pathway by a gamma-secretase inhibitor attenuates AKT/mammalian target of rapamycin signaling and glucose uptake in an ERBB2 transgenic breast cancer model. Cancer Res 2010; 70:2476-84. [PMID: 20197467 DOI: 10.1158/0008-5472.can-09-3114] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ERBB2/neu and Notch signaling are known to be deregulated in many human cancers. However, pathway cross-talk and dependencies are not well understood. In this study, we use an ERBB2-transgenic mouse model of breast cancer (neuT) to show that Notch signaling plays a critical role in tumor maintenance. Inhibition of the Notch pathway with a gamma-secretase inhibitor (GSI) decreased both the Notch and the mammalian target of rapamycin/AKT pathways. Antitumor activity resulting from GSI treatment was associated with decreased cell proliferation as measured by Ki67 and decreased expression of glucose transporter Glut1. Positron emission tomography (PET) imaging showed that the functional consequences of decreased Glut1 translated to reduced glucose uptake and correlated with antitumor effects as measured by micro-computed tomography imaging. The decrease of Glut1 in neuT tumors was also observed in several human breast cancer cell lines following GSI treatment. We provide evidence that approximately 27% of ERBB2-positive human breast cancer specimens display high expression of HES1, phospho-S6RP, and GLUT1. Together, these results suggest that pathways downstream of Notch signaling are, at least in part, responsible for promoting tumor growth in neuT and also active in both neuT and a subset of human breast cancers. These findings suggest that GSI may provide therapeutic benefit to a subset of ERBB2-positive breast cancers and that [(18)F]FDG-PET imaging may be useful in monitoring clinical response.
Collapse
Affiliation(s)
- Clay L Efferson
- Department of Oncology, Pharmacology, Laboratory of Animal Research, Merck Research Laboratories, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Saha A, Chatterjee SK. Dendritic cells pulsed with an anti-idiotype antibody mimicking Her-2/neu induced protective antitumor immunity in two lines of Her-2/neu transgenic mice. Cell Immunol 2010; 263:9-21. [DOI: 10.1016/j.cellimm.2010.02.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 02/10/2010] [Accepted: 02/19/2010] [Indexed: 01/23/2023]
|
37
|
Lévy F, Colombetti S. Promises and Limitations of Murine Models in the Development of Anticancer T-Cell Vaccines. Int Rev Immunol 2009; 25:269-95. [PMID: 17169777 DOI: 10.1080/08830180600992407] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Murine models have been instrumental in defining the basic mechanisms of antitumor immunity. Most of these mechanisms have since been shown to operate in humans as well. Based on these similarities, active vaccination strategies aimed at eliciting antitumor T-cell responses have been elaborated and successfully implemented in various mouse models. However, the results of human antitumor vaccination trials have been rather disappointing thus far. This review summarizes the different experimental approaches used in mice to induce antitumor T-cell responses and identifies some critical parameters that should be considered when evaluating results from murine models.
Collapse
Affiliation(s)
- Frédéric Lévy
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Epalinges, Switzerland.
| | | |
Collapse
|
38
|
Dharmapuri S, Aurisicchio L, Biondo A, Welsh N, Ciliberto G, La Monica N. Antiapoptotic Small Interfering RNA as Potent Adjuvant of DNA Vaccination in a Mouse Mammary Tumor Model. Hum Gene Ther 2009; 20:589-97. [DOI: 10.1089/hum.2008.210] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Affiliation(s)
- Sridhar Dharmapuri
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Italy
| | - Luigi Aurisicchio
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Italy
| | - Antonella Biondo
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Italy
| | - Natalie Welsh
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Italy
| | - Gennaro Ciliberto
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Italy
| | - Nicola La Monica
- Istituto di Ricerche di Biologia Molecolare P. Angeletti, 00040 Pomezia, Italy
| |
Collapse
|
39
|
Jacob JB, Kong YCM, Nalbantoglu I, Snower DP, Wei WZ. Tumor regression following DNA vaccination and regulatory T cell depletion in neu transgenic mice leads to an increased risk for autoimmunity. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5873-81. [PMID: 19380836 PMCID: PMC3833444 DOI: 10.4049/jimmunol.0804074] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Modulation of the immune system to amplify anti-tumor immunity carries the risk of developing autoimmune diseases, including hypothyroidism, as seen with cancer patients undergoing clinical trials for immunotherapeutic regimens. Although there is a tendency to view autoimmunity as a positive indicator for cancer immunotherapy, some autoimmune manifestations can be life-threatening and necessitate prolonged medical intervention or removal from trial. We have established murine test models to assess such risks by monitoring, simultaneously, the immune reactivity to tumor-associated rat erbB-2 (neu) and another self Ag, mouse thyroglobulin (mTg). We previously reported that in wild-type, thyroiditis-resistant BALB/c mice that underwent regression of neu(+) TUBO tumors following regulatory T cell (Treg) depletion, immune responses to rat neu and mTg with resultant autoimmune thyroiditis (EAT) were both enhanced. In this study, we tested the balance between tumor immunity and autoimmunity in neu-transgenic BALB NeuT female mice. First, growth and progression of neu(+) tumor were compared in neu tolerant mice treated with either CD25 mAb to deplete Tregs and/or DNA vaccination. Only Treg depletion followed by neu DNA vaccination abrogated tolerance to neu, resulting in complete regression of neu(+) tumors, as well as long-term protection from spontaneous tumorigenesis in 58% of mice. The risk of developing EAT was then assessed by incorporated mTg immunization with or without LPS as adjuvant. In mice with induced tumor regression, mTg response was enhanced with modest increases in EAT development. Therefore, tumor regression induced by Treg depletion and DNA vaccination can exacerbate autoimmunity, which warrants close monitoring during immunotherapy.
Collapse
MESH Headings
- Animals
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/genetics
- Cancer Vaccines/immunology
- Cell Line, Tumor
- Female
- Genetic Predisposition to Disease
- Lymphocyte Depletion/methods
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/prevention & control
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- NIH 3T3 Cells
- Rats
- Receptor, ErbB-2/administration & dosage
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Remission Induction
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Thyroglobulin/administration & dosage
- Thyroglobulin/genetics
- Thyroglobulin/immunology
- Thyroiditis, Autoimmune/genetics
- Thyroiditis, Autoimmune/immunology
- Thyroiditis, Autoimmune/prevention & control
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Jennifer B. Jacob
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| | - Yi-chi M. Kong
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI 48201
| | | | | | - Wei-Zen Wei
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201
| |
Collapse
|
40
|
Fattori E, Aurisicchio L, Zampaglione I, Arcuri M, Cappelletti M, Cipriani B, Mennuni C, Calvaruso F, Nuzzo M, Ciliberto G, Monaci P, La Monica N. ErbB2 Genetic Cancer Vaccine in Nonhuman Primates: Relevance of Single Nucleotide Polymorphisms. Hum Gene Ther 2009; 20:253-65. [DOI: 10.1089/hum.2008.153] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Affiliation(s)
- Elena Fattori
- Istituto di Ricerca di Biologia Molecolare (IRBM), Pomezia 00040, Italy
| | - Luigi Aurisicchio
- Istituto di Ricerca di Biologia Molecolare (IRBM), Pomezia 00040, Italy
| | | | - Mirko Arcuri
- Istituto di Ricerca di Biologia Molecolare (IRBM), Pomezia 00040, Italy
| | | | - Barbara Cipriani
- Istituto di Ricerca di Biologia Molecolare (IRBM), Pomezia 00040, Italy
| | - Carmela Mennuni
- Istituto di Ricerca di Biologia Molecolare (IRBM), Pomezia 00040, Italy
| | | | - Maurizio Nuzzo
- Istituto di Ricerca di Biologia Molecolare (IRBM), Pomezia 00040, Italy
| | - Gennaro Ciliberto
- Istituto di Ricerca di Biologia Molecolare (IRBM), Pomezia 00040, Italy
| | - Paolo Monaci
- Istituto di Ricerca di Biologia Molecolare (IRBM), Pomezia 00040, Italy
| | - Nicola La Monica
- Istituto di Ricerca di Biologia Molecolare (IRBM), Pomezia 00040, Italy
| |
Collapse
|
41
|
Aurisicchio L, Peruzzi D, Conforti A, Dharmapuri S, Biondo A, Giampaoli S, Fridman A, Bagchi A, Winkelmann CT, Gibson R, Kandimalla ER, Agrawal S, Ciliberto G, La Monica N. Treatment of mammary carcinomas in HER-2 transgenic mice through combination of genetic vaccine and an agonist of Toll-like receptor 9. Clin Cancer Res 2009; 15:1575-84. [PMID: 19240169 DOI: 10.1158/1078-0432.ccr-08-2628] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Oligodeoxynucleotides containing unmethylated CpG dinucleotides induce innate and adaptive immunity through Toll-like receptor 9 (TLR9). In the present study, we have examined the ability of a novel agonist of TLR9, called immunomodulatory oligonucleotide (IMO), to enhance effects of a HER-2/neu plasmid DNA electroporation/adenovirus (DNA-EP/Ad) vaccine. EXPERIMENTAL DESIGN BALB/NeuT mice were treated with DNA-EP vaccine alone, IMO alone, or the combination of two agents starting at week 13, when all mice showed mammary neoplasia. Tumor growth and survival were documented. Antibody and CD8+ T-cell responses were determined. Peptide microarray analysis of sera was carried out to identify immunoreactive epitopes. Additionally, microCT and microPET imaging was carried out in an advanced-stage tumor model starting treatment at week 17 in BALB/NeuT mice. RESULTS The combination of DNA-EP and IMO resulted in significant tumor regression or delay to tumor progression. 2-Deoxy-2-[18F]fluoro-D-glucose microPET and microCT imaging of mice showed reduced tumor size in the DNA-EP/IMO combination treatment group. Mice treated with the combination produced greater antibody titers with IgG2a isotype switch and antibody-dependent cellular cytotoxicity activity than did mice treated with DNA-EP vaccine. An immunogenic B-cell linear epitope, r70, within the HER-2 dimerization domain was identified through microarray analysis. Heterologous DNA-EP/Ad vaccination combined with IMO increased mice survival. CONCLUSION The combination of HER-2/neu genetic vaccine and novel agonist of TLR9 had potent antitumor activity associated with antibody isotype switch and antibody-dependent cellular cytotoxicity activities. These results support possible clinical trials of the combination of DNA-EP/Ad-based cancer vaccines and IMO.
Collapse
Affiliation(s)
- Luigi Aurisicchio
- Istituto di Ricerche di Biologia Molecolare, Oncology/Functional Department, Merck Research Labs, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Our understanding of the importance of CD4+ T cells in orchestrating immune responses has grown dramatically over the past decade. This lymphocyte family consists of diverse subsets ranging from interferon-gamma (IFN-gamma)-producing T-helper 1 (Th1) cells to transforming growth factor-beta (TGF-beta)-secreting T-regulatory cells, which have opposite roles in modulating immune responses to pathogens, tumor cells, and self-antigens. This review briefly addresses the various T-cell subsets within the CD4+ T-cell family and discusses recent research efforts aimed at elucidating the nature of the 'T-cell help' that has been shown to be essential for optimal immune function. Particular attention is paid to the role of Th cells in tumor immunotherapy. We review some of our own work in the field describing how CD4+ Th cells can enhance anti-tumor cytotoxic T-lymphocyte (CTL) responses by enhancing clonal expansion at the tumor site, preventing activation-induced cell death and functioning as antigen-presenting cells for CTLs to preferentially generate immune memory cells. These unconventional roles for Th lymphocytes, which require direct cell-to-cell communication with CTLs, are clear examples of how versatile these immunoregulatory cells are.
Collapse
Affiliation(s)
- Richard Kennedy
- Mayo Vaccine Research Group, Mayo Clinic College of Medicine, Rochester, MN, USA
| | | |
Collapse
|
43
|
Peruzzi D, Dharmapuri S, Cirillo A, Bruni BE, Nicosia A, Cortese R, Colloca S, Ciliberto G, La Monica N, Aurisicchio L. A novel chimpanzee serotype-based adenoviral vector as delivery tool for cancer vaccines. Vaccine 2009; 27:1293-300. [PMID: 19162112 PMCID: PMC7115565 DOI: 10.1016/j.vaccine.2008.12.051] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 12/22/2008] [Accepted: 12/28/2008] [Indexed: 01/03/2023]
Abstract
The use of adenovirus (Ad) as vaccine vectors is hindered by pre-existing immunity to human Ads in most of the human population. In order to overcome this limitation, uncommon alternative Ad serotypes need to be utilized. In this study, an E1-E3 deleted recombinant Ad based on the chimpanzee serotype 3 (ChAd3) was engineered to express human carcinoembryonic antigen (CEA) protein or rat neu extracellular/transmembrane domains (ECD.TM). ChAd3 vectors were tested in CEA transgenic (CEA.Tg) and BALB/NeuT mice, which show immunologic tolerance to these antigens. ChAd3 is capable of inducing an immune response comparable to that of hAd5 serotype-based vectors, thus breaking tolerance to tumor associated antigens (TAAs) and achieving anti-tumor effects. Of importance is that ChAd3 can overcome hAd5 pre-existing immunity and work in conjunction with DNA electroporation (DNA-EP) and other Ad vaccines based on common human serotypes.
Collapse
Affiliation(s)
- Daniela Peruzzi
- Oncology/Functional Department, IRBM-Merck Research Labs-via Pontina Km30.6, 00040 Pomezia, Rome, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chiesa G, Rigamonti E, Lovati MR, Disconzi E, Soldati S, Sacco MG, Catò EM, Patton V, Scanziani E, Vezzoni P, Arnoldi A, Locati D, Sirtori CR. Reduced mammary tumor progression in a transgenic mouse model fed an isoflavone-poor soy protein concentrate. Mol Nutr Food Res 2009; 52:1121-9. [PMID: 18655005 DOI: 10.1002/mnfr.200700296] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Dietary exposure to soy has been associated with reduced breast cancer incidence. Soy isoflavones and protein components, such as protease inhibitors and the lunasin peptide, have been indicated as potential agents reducing carcinogenesis. In this study, the effect of soy-based diets was evaluated in a transgenic mouse model of breast carcinoma, overexpressing the neu oncogene. Neu female mice were fed for 20 wk a soy- and isoflavone-free diet (IFD), 4RF21 laboratory mouse diet, soy-based, thus isoflavone-rich (STD), or AIN-76-based semisynthetic diets with a soy protein isolate (SPI) or an isoflavone-poor soy protein concentrate (IPSP) as protein source. Mice were then sacrificed and tumors removed. Mammary tumor weights were not different in SPI versus IFD and STD fed mice. In contrast, mice fed IPSP showed reduced tumor progression versus IFD and STD groups (p < 0.05). Moreover, IPSP fed mice showed lower bromo-2'-deoxyuridine (BrdU) incorporation into breast tumor cells compared to STD and SPI fed animals (p < 0.02). Lung metastases were detected in 80% of IFD fed mice, in 70% of mice fed STD and SPI, and only in 50% of the IPSP fed animals. These results indicate that a diet containing an isoflavone-poor soy protein concentrate may inhibit breast tumor progression and metastasis development.
Collapse
Affiliation(s)
- Giulia Chiesa
- Department of Pharmacological Sciences, University of Milano, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Assudani D, Cho HI, DeVito N, Bradley N, Celis E. In vivo expansion, persistence, and function of peptide vaccine-induced CD8 T cells occur independently of CD4 T cells. Cancer Res 2008; 68:9892-9. [PMID: 19047170 PMCID: PMC2679655 DOI: 10.1158/0008-5472.can-08-3134] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Significant efforts are being devoted toward the development of effective therapeutic vaccines against cancer. Specifically, well-characterized subunit vaccines, which are designed to generate antitumor cytotoxic CD8 T-cell responses. Because CD4 T cells participate at various stages of CD8 T-cell responses, it is important to study the role of CD4 T cells in the induction and persistence of antitumor CD8 T-cell responses by these vaccines. Recent evidence points to the requirement of CD4 T cells for the long-term persistence of memory CD8 T cells, which in the case of cancer immunotherapy would be critical for the prevention of tumor recurrences. The purpose of the present study was to assess whether CD4 T cells are necessary for the generation and maintenance of antigen-specific CD8 T cells induced by subunit (peptide or DNA) vaccines. We have used a vaccination strategy that combines synthetic peptides representing CD8 T-cell epitopes, a costimulatory anti-CD40 antibody and a Toll-like receptor agonist (TriVax) to generate large numbers of antigen-specific CD8 T-cell responses. Our results show that the rate of decline (clonal contraction) of the antigen-specific CD8 T cells and their functional state is not affected by the presence or absence of CD4 T cells throughout the immune response generated by TriVax. We believe that these results bear importance for the design of effective vaccination strategies against cancer.
Collapse
MESH Headings
- Animals
- CD4-Positive T-Lymphocytes/immunology
- CD40 Antigens/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Epitopes, T-Lymphocyte/immunology
- Female
- Histocompatibility Antigens Class II/immunology
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/therapy
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/therapy
- Toll-Like Receptors/agonists
- Toll-Like Receptors/immunology
- Vaccines, DNA/immunology
- Vaccines, DNA/pharmacology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/pharmacology
Collapse
Affiliation(s)
- Deepak Assudani
- Department of Immunology, Moffitt Cancer Center, Tampa, Florida 33612, USA
| | | | | | | | | |
Collapse
|
46
|
Anti-VEGF agents confer survival advantages to tumor-bearing mice by improving cancer-associated systemic syndrome. Proc Natl Acad Sci U S A 2008; 105:18513-8. [PMID: 19017793 DOI: 10.1073/pnas.0807967105] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The underlying mechanism by which anti-VEGF agents prolong cancer patient survival is poorly understood. We show that in a mouse tumor model, VEGF systemically impairs functions of multiple organs including those in the hematopoietic and endocrine systems, leading to early death. Anti-VEGF antibody, bevacizumab, and anti-VEGF receptor 2 (VEGFR-2), but not anti-VEGFR-1, reversed VEGF-induced cancer-associated systemic syndrome (CASS) and prevented death in tumor-bearing mice. Surprisingly, VEGFR2 blockage improved survival by rescuing mice from CASS without significantly compromising tumor growth, suggesting that "off-tumor" VEGF targets are more sensitive than the tumor vasculature to anti-VEGF drugs. Similarly, VEGF-induced CASS occurred in a spontaneous breast cancer mouse model overexpressing neu. Clinically, VEGF expression and CASS severity positively correlated in various human cancers. These findings define novel therapeutic targets of anti-VEGF agents and provide mechanistic insights into the action of this new class of clinically available anti-VEGF cancer drugs.
Collapse
|
47
|
An oral TLR7 agonist is a potent adjuvant of DNA vaccination in transgenic mouse tumor models. Cancer Gene Ther 2008; 16:462-72. [PMID: 18989354 DOI: 10.1038/cgt.2008.91] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In vivo electroporation of plasmid DNA (DNA-EP) is an efficient and safe method for vaccines resulting in increased DNA uptake, enhanced protein expression and increased immune responses to the target antigen in a variety of species. To further enhance the efficacy of DNA-EP, we have evaluated the toll-like receptor7 (TLR7) agonist-2, 9, substituted 8-hydroxyadenosine derivative or SM360320--as an adjuvant to vaccines against HER2/neu and CEA in BALB-neuT and CEA transgenic mice (CEA.Tg), respectively. SM360320 induced in vivo secretion of interferon alpha (IFNalpha) and exerted a significant antitumor effect in CEA.Tg mice challenged with a syngenic tumor cell line expressing CEA and an additive effect with a CEA vaccine. Additionally, combination of SM360320 with plasmid encoding the extracellular and transmembrane domain of ratHER2/neu affected the spontaneous tumor progression in BALB-neuT mice treated in an advanced disease setting. The antitumor effect in mice treated with DNA-EP and SM360320 was associated with an anti-CEA and anti-p185(neu) antibody isotype switch from IgG1 to IgG2a. These data demonstrate that SM360320 exerts significant antitumor effects and can act in association with DNA-EP for CEA-positive colon cancer and HER2-positive mammary carcinoma. These observations therefore emphasize the potential of SM360320 as immunological adjuvant for therapeutic DNA vaccines.
Collapse
|
48
|
Cho HI, Niu G, Bradley N, Celis E. Optimized DNA vaccines to specifically induce therapeutic CD8 T cell responses against autochthonous breast tumors. Cancer Immunol Immunother 2008; 57:1695-703. [PMID: 18253731 PMCID: PMC2562921 DOI: 10.1007/s00262-008-0465-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 01/24/2008] [Indexed: 10/22/2022]
Abstract
BACKGROUND Vaccines capable of inducing CD8 T cell responses to antigens expressed by tumor cells are considered as attractive choices for the treatment and prevention of malignant diseases. Our group has previously reported that immunization with synthetic peptide corresponding to a CD8 T cell epitope derived from the rat neu (rNEU) oncogene administered together with a Toll-like receptor agonist as adjuvant, induced immune responses that translated into prophylactic and therapeutic benefit against autochthonous tumors in an animal model of breast cancer (BALB-neuT mice). DNA-based vaccines offer some advantages over peptide vaccines, such as the possibility of including multiple CD8 T cell epitopes in a single construct. MATERIALS AND METHODS Plasmids encoding a fragment of rNEU were designed to elicit CD8 T cell responses but no antibody responses. We evaluated the use of the modified plasmids as DNA vaccines for their ability to generate effective CD8 T cell responses against breast tumors expressing rNEU. RESULTS DNA-based vaccines using modified plasmids were very effective in specifically stimulating tumor-reactive CD8 T cell responses. Moreover, vaccination with the modified DNA plasmids resulted in significant anti-tumor effects that were mediated by CD8 T cells without the requirement of generating antibodies to the product of rNEU. CONCLUSIONS DNA vaccination is a viable alternative to peptide vaccination to induce potent anti-tumor CD8 T cell responses that provide effective therapeutic benefit. These results bear importance for the design of DNA vaccines for the treatment and prevention of cancer.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Carcinoma, Lobular/immunology
- Carcinoma, Lobular/therapy
- Epitopes, T-Lymphocyte/immunology
- Female
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- T-Lymphocytes, Cytotoxic/immunology
- Vaccination
- Vaccines, DNA/immunology
- Vaccines, DNA/therapeutic use
Collapse
Affiliation(s)
- Hyun-Il Cho
- Immunology/Immunotherapy Program, H. Lee Moffitt Cancer Center, SRB-2, 12902 Magnolia Drive, Tampa, FL 33612-9416 USA
| | - Guilian Niu
- Immunology/Immunotherapy Program, H. Lee Moffitt Cancer Center, SRB-2, 12902 Magnolia Drive, Tampa, FL 33612-9416 USA
| | - Norma Bradley
- Immunology/Immunotherapy Program, H. Lee Moffitt Cancer Center, SRB-2, 12902 Magnolia Drive, Tampa, FL 33612-9416 USA
| | - Esteban Celis
- Immunology/Immunotherapy Program, H. Lee Moffitt Cancer Center, SRB-2, 12902 Magnolia Drive, Tampa, FL 33612-9416 USA
| |
Collapse
|
49
|
Whittington PJ, Piechocki MP, Heng HH, Jacob JB, Jones RF, Back JB, Wei WZ. DNA vaccination controls Her-2+ tumors that are refractory to targeted therapies. Cancer Res 2008; 68:7502-11. [PMID: 18794138 PMCID: PMC2562347 DOI: 10.1158/0008-5472.can-08-1489] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Her-2/neu(+) tumor cells refractory to antibody or receptor tyrosine kinase inhibitors are emerging in treated patients. To investigate if drug resistant tumors can be controlled by active vaccination, gefitinib and antibody sensitivity of four neu(+) BALB/c mouse mammary tumor lines were compared. Significant differences in cell proliferation and Akt phosphorylation were observed. Treatment-induced drug resistance was associated with increased chromosomal aberrations as shown by spectral karyotyping analysis, suggesting changes beyond neu signaling pathways. When mice were immunized with pneuTM encoding the extracellular and transmembrane domains of neu, antibody and T-cell responses were induced, and both drug-sensitive and drug-resistant tumor cells were rejected. In T-cell-depleted mice, drug-sensitive tumors were still rejected by vaccination, but drug-refractory tumors survived in some mice, indicating their resistance to anti-neu antibodies. To further test if T cells alone can mediate tumor rejection, mice were immunized with pcytneu encoding full-length cytoplasmic neu that is rapidly degraded by the proteasome to activate CD8 T cells without inducing antibody response. All test tumors were rejected in pcytneu-immunized mice, regardless of their sensitivity to gefitinib or antibody. Therefore, cytotoxic T lymphocytes activated by the complete repertoire of neu epitopes were effective against all test tumors. These results warrant Her-2 vaccination whether tumor cells are sensitive or resistant to Her-2-targeted drugs or antibody therapy.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Cell Growth Processes/drug effects
- Female
- Gefitinib
- Karyotyping
- Mammary Neoplasms, Experimental/enzymology
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/immunology
- Mammary Neoplasms, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Quinazolines/pharmacology
- Receptor, ErbB-2/biosynthesis
- Receptor, ErbB-2/immunology
- Receptor, ErbB-2/metabolism
- Signal Transduction/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Tyrphostins
- Vaccines, DNA/immunology
- Vaccines, DNA/pharmacology
Collapse
Affiliation(s)
- Paula J Whittington
- Department of Immunology and Microbiology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Radhakrishnan S, Cabrera RA, Schenk EL, Nava-Parada P, Bell MP, Van Keulen VP, Marler RJ, Felts SJ, Pease LR. Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:3137-47. [PMID: 18713984 PMCID: PMC2582200 DOI: 10.4049/jimmunol.181.5.3137] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lymphocyte differentiation from naive CD4(+) T cells into mature Th1, Th2, Th17, or T regulatory cell (Treg) phenotypes has been considered end stage in character. In this study, we demonstrate that dendritic cells (DCs) activated with a novel immune modulator B7-DC XAb (DC(XAb)) can reprogram Tregs into T effector cells. Down-regulation of FoxP3 expression after either in vitro or in vivo Treg-DC(XAb) interaction is Ag-specific, IL-6-dependent, and results in the functional reprogramming of the mature T cell phenotype. The reprogrammed Tregs cease to express IL-10 and TGFbeta, fail to suppress T cell responses, and gain the ability to produce IFN-gamma, IL-17, and TNF-alpha. The ability of IL-6(+) DC(XAb) and the inability of IL-6(-/-) DC(XAb) vaccines to protect animals from lethal melanoma suggest that exogenously modulated DC can reprogram host Tregs. In support of this hypothesis and as a test for Ag specificity, transfer of DC(XAb) into RIP-OVA mice causes a break in immune tolerance, inducing diabetes. Conversely, adoptive transfer of reprogrammed Tregs but not similarly treated CD25(-) T cells into naive RIP-OVA mice is also sufficient to cause autoimmune diabetes. Yet, treatment of normal mice with B7-DC XAb fails to elicit generalized autoimmunity. The finding that mature Tregs can be reprogrammed into competent effector cells provides new insights into the plasticity of T cell lineage, underscores the importance of DC-T cell interaction in balancing immunity with tolerance, points to Tregs as a reservoir of autoimmune effectors, and defines a new approach for breaking tolerance to self Ags as a strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Suresh Radhakrishnan
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Rosalyn A. Cabrera
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Erin L. Schenk
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Pilar Nava-Parada
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Michael P. Bell
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Virginia P. Van Keulen
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Ronald J. Marler
- Department of Molecular Pharmacology and Experimental Therapeutics, College of Medicine, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259
| | - Sara J. Felts
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| | - Larry R. Pease
- Department of Immunology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905
| |
Collapse
|