1
|
Lee JE, Im DS. Oleoylethanolamide ameliorates allergic asthma and atopic dermatitis via activation of GPR119. Int Immunopharmacol 2025; 149:114258. [PMID: 39933361 DOI: 10.1016/j.intimp.2025.114258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Serum levels of oleoylethanolamide (OEA) have been associated with the severity of pulmonary diseases, and augmented levels of epidermal OEA have been observed in response to low-grade inflammation in human skin. OEA acts as an endogenous ligand for GPR119; thus, the functional roles of GPR119 were investigated using two murine models. We tested effects of OEA and AR231453, a selective synthetic GPR119 agonist on ovalbumin (OVA)-induced allergic asthma and 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis-like models in GPR119 wild-type (WT) and deficient mice. In OVA-induced allergic asthma model, administration of OEA or AR231453 reduced allergic feature, including airway hyperresponsiveness, eosinophil accumulation in bronchoalveolar lavage fluid, airway inflammation, and mucin secretion in the lungs, and both ameliorated DNCB-induced atopic dermatitis-like skin lesions, such as hypertrophy and mast cell accumulation, in GPR119 wild-type (WT) mice, but not in GPR119-deficient mice. OEA or AR231453 treatment reduced OVA-induced increase in pro-inflammatory cytokine expression, and type 2 innate lymphoid cells in the lungs, and both significantly suppressed the DNCB-induced lymph node enlargement and inflammatory Th2/1/17 cells in GPR119 WT mice, but not in GPR119-deficient mice. In RBL-2H3 mast cells, OEA or AR231453 suppressed degranulation and Th2 cytokine expression. These findings suggest that OEA functions to protect against allergic asthma and atopic dermatitis via GPR119 activation by suppressing immune responses in the lungs, lymph nodes, and skin, highlighting GPR119 activation as a therapeutic target for allergic and inflammatory diseases.
Collapse
MESH Headings
- Animals
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/immunology
- Dermatitis, Atopic/chemically induced
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Oleic Acids/therapeutic use
- Oleic Acids/pharmacology
- Asthma/drug therapy
- Asthma/immunology
- Asthma/chemically induced
- Endocannabinoids/therapeutic use
- Endocannabinoids/pharmacology
- Mice
- Ovalbumin/immunology
- Mice, Inbred C57BL
- Mice, Knockout
- Humans
- Dinitrochlorobenzene/immunology
- Cytokines/metabolism
- Disease Models, Animal
- Lung/drug effects
- Lung/immunology
- Lung/pathology
- Mice, Inbred BALB C
- Female
- Skin/drug effects
- Skin/pathology
- Skin/immunology
Collapse
Affiliation(s)
- Jung-Eun Lee
- Department of Biomedical & Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446 Republic of Korea
| | - Dong-Soon Im
- Department of Biomedical & Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446 Republic of Korea; Department of Fundamental Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02446 Republic of Korea.
| |
Collapse
|
2
|
Guo Y, Wei X, Pei J, Yang H, Zheng XL. Dissecting the role of cannabinoids in vascular health and disease. J Cell Physiol 2024; 239:e31373. [PMID: 38988064 DOI: 10.1002/jcp.31373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/04/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Cannabis, often recognized as the most widely used illegal psychoactive substance globally, has seen a shift in its legal status in several countries and regions for both recreational and medicinal uses. This change has brought to light new evidence linking cannabis consumption to various vascular conditions. Specifically, there is an association between cannabis use and atherosclerosis, along with conditions such as arteritis, reversible vasospasm, and incidents of aortic aneurysm or dissection. Recent research has started to reveal the mechanisms connecting cannabinoid compounds to atherosclerosis development. It is well known that the primary biological roles of cannabinoids operate through the activation of cannabinoid receptor types 1 and 2. Manipulation of the endocannabinoid system, either genetically or pharmacologically, is emerging as a promising approach to address metabolic dysfunctions related to obesity. Additionally, numerous studies have demonstrated the vasorelaxant properties and potential atheroprotective benefits of cannabinoids. In preclinical trials, cannabidiol is being explored as a treatment option for monocrotaline-induced pulmonary arterial hypertension. Although existing literature suggests a direct role of cannabinoids in the pathogenesis of atherosclerosis, the correlation between cannabinoids and other vascular diseases was only reported in some case series or observational studies, and its role and precise mechanisms remain unclear. Therefore, it is necessary to summarize and update previously published studies. This review article aims to summarize the latest clinical and experimental research findings on the relationship between cannabis use and vascular diseases. It also seeks to shed light on the potential mechanisms underlying these associations, offering a comprehensive view of current knowledge in this evolving field of study.
Collapse
Affiliation(s)
- Yanan Guo
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoyun Wei
- Department of Cardiology, The Fifth School of Clinical Medicine of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Junyu Pei
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Haibo Yang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xi-Long Zheng
- Department of Biochemistry and Molecular Biology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute of Alberta, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Mboumba Bouassa RS, Giorgini G, Silvestri C, Muller C, Nallabelli N, Alexandrova Y, Durand M, Tremblay C, El-Far M, Chartrand-Lefebvre C, Messier-Peet M, Margolese S, Flamand N, Costiniuk CT, Di Marzo V, Jenabian MA. Plasma endocannabinoidome and fecal microbiota interplay in people with HIV and subclinical coronary artery disease: Results from the Canadian HIV and Aging Cohort Study. iScience 2024; 27:110456. [PMID: 39156649 PMCID: PMC11326910 DOI: 10.1016/j.isci.2024.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/07/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Chronic HIV infection is associated with accelerated coronary artery disease (CAD) due to chronic inflammation. The expanded endocannabinoid system (eCBome) and gut microbiota modulate each other and are key regulators of cardiovascular functions and inflammation. We herein investigated the interplay between plasma eCBome mediators and gut microbiota in people with HIV (PWH) and/or subclinical CAD versus HIV-uninfected individuals. CAD was determined by coronary computed tomography (CT) angiography performed on all participants. Plasma eCBome mediator and fecal microbiota composition were assessed by tandem mass spectrometry and 16S rDNA sequencing, respectively. HIV infection was associated with perturbed plasma eCBome mediators characterized by an inverse relationship between anandamide and N-acyl-ethanolamines (NAEs) versus 2-AG and 2-monoacylglycerols (MAGs). Plasma triglyceride levels were positively associated with MAGs. Several fecal bacterial taxa were altered in HIV-CAD+ versus controls and correlated with plasma eCBome mediators. CAD-associated taxonomic alterations in fecal bacterial taxa were not found in PWH.
Collapse
Affiliation(s)
- Ralph-Sydney Mboumba Bouassa
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Quebec à Montréal, Montreal, QC, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Giada Giorgini
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
| | - Cristoforo Silvestri
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF) et Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec City, QC, Canada
| | - Chanté Muller
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
| | - Nayudu Nallabelli
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
| | - Yulia Alexandrova
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Quebec à Montréal, Montreal, QC, Canada
| | - Madeleine Durand
- Centre de recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Cécile Tremblay
- Centre de recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Mohamed El-Far
- Centre de recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | | | - Marc Messier-Peet
- Centre de recherche du CHUM, Université de Montréal, Montreal, QC, Canada
| | - Shari Margolese
- CIHR Canadian HIV Trials Network (CTN), Vancouver, BC, Canada
| | - Nicolas Flamand
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- Division of Infectious Diseases/Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital, Montreal, QC, Canada
| | - Vincenzo Di Marzo
- Research Center of the Institut Universitaire de Cardiologie et Pneumologie de Québec (CRIUCPQ), Université Laval
- Institut sur la Nutrition et les Aliments Fonctionnels (INAF) et Centre Nutrition, Santé et Société (NUTRISS), Université Laval, Québec City, QC, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, Université Laval
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Quebec à Montréal, Montreal, QC, Canada
| |
Collapse
|
4
|
Musetti B, Bahnson EM, Thomson L. Cannabinoids in inflammation and atherosclerosis. MEDICINAL USAGE OF CANNABIS AND CANNABINOIDS 2023:159-169. [DOI: 10.1016/b978-0-323-90036-2.00016-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Rajesh M, Mukhopadhyay P, Bátkai S, Arif M, Varga ZV, Mátyás C, Paloczi J, Lehocki A, Haskó G, Pacher P. Cannabinoid receptor 2 activation alleviates diabetes-induced cardiac dysfunction, inflammation, oxidative stress, and fibrosis. GeroScience 2022; 44:1727-1741. [PMID: 35460032 PMCID: PMC9213632 DOI: 10.1007/s11357-022-00565-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022] Open
Abstract
Diabetes mellitus promotes accelerated cardiovascular aging and inflammation, which in turn facilitate the development of cardiomyopathy/heart failure. High glucose-induced oxidative/nitrative stress, activation of various pro-inflammatory, and cell death pathways are critical in the initiation and progression of the changes culminating in diabetic cardiomyopathy. Cannabinoid 2 receptor (CB2R) activation in inflammatory cells and activated endothelium attenuates the pathological changes associated with atherosclerosis, myocardial infarction, stroke, and hepatic cardiomyopathy. In this study, we explored the role of CB2R signaling in myocardial dysfunction, oxidative/nitrative stress, inflammation, cell death, remodeling, and fibrosis associated with diabetic cardiomyopathy in type 1 diabetic mice. Control human heart left ventricles and atrial appendages, similarly to mouse hearts, had negligible CB2R expression determine by RNA sequencing or real-time RT-PCR. Diabetic cardiomyopathy was characterized by impaired diastolic and systolic cardiac function, enhanced myocardial CB2R expression, oxidative/nitrative stress, and pro-inflammatory response (tumor necrosis factor-α, interleukin-1β, intracellular adhesion molecule 1, macrophage inflammatory protein-1, monocyte chemoattractant protein-1), macrophage infiltration, fibrosis, and cell death. Pharmacological activation of CB2R with a selective agonist attenuated diabetes-induced inflammation, oxidative/nitrative stress, fibrosis and cell demise, and consequent cardiac dysfunction without affecting hyperglycemia. In contrast, genetic deletion of CB2R aggravated myocardial pathology. Thus, selective activation of CB2R ameliorates diabetes-induced myocardial tissue injury and preserves the functional contractile capacity of the myocardium in the diabetic milieu. This is particularly encouraging, since unlike CB1R agonists, CB2R agonists do not elicit psychoactive activity and cardiovascular side effects and are potential clinical candidates in the treatment of diabetic cardiovascular and other complications.
Collapse
Affiliation(s)
- Mohanraj Rajesh
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Partha Mukhopadhyay
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Sándor Bátkai
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Muhammad Arif
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Zoltán V Varga
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Csaba Mátyás
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Janos Paloczi
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Lehocki
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
| | - György Haskó
- Department of Anesthesiology, Columbia University, New York, NY, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institute On Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Brandt KJ, Burger F, Baptista D, Roth A, Fernandes da Silva R, Montecucco F, Mach F, Miteva K. Single-Cell Analysis Uncovers Osteoblast Factor Growth Differentiation Factor 10 as Mediator of Vascular Smooth Muscle Cell Phenotypic Modulation Associated with Plaque Rupture in Human Carotid Artery Disease. Int J Mol Sci 2022; 23:1796. [PMID: 35163719 PMCID: PMC8836240 DOI: 10.3390/ijms23031796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 12/18/2022] Open
Abstract
(1) Background: Vascular smooth muscle cells (VSMCs) undergo a complex phenotypic switch in response to atherosclerosis environmental triggers, contributing to atherosclerosis disease progression. However, the complex heterogeneity of VSMCs and how VSMC dedifferentiation affects human carotid artery disease (CAD) risk has not been clearly established. (2) Method: A single-cell RNA sequencing analysis of CD45- cells derived from the atherosclerotic aorta of Apolipoprotein E-deficient (Apoe-/-) mice on a normal cholesterol diet (NCD) or a high cholesterol diet (HCD), respecting the site-specific predisposition to atherosclerosis was performed. Growth Differentiation Factor 10 (GDF10) role in VSMCs phenotypic switch was investigated via flow cytometry, immunofluorescence in human atherosclerotic plaques. (3) Results: scRNAseq analysis revealed the transcriptomic profile of seven clusters, five of which showed disease-relevant gene signature of VSMC macrophagic calcific phenotype, VSMC mesenchymal chondrogenic phenotype, VSMC inflammatory and fibro-phenotype and VSMC inflammatory phenotype. Osteoblast factor GDF10 involved in ossification and osteoblast differentiation emerged as a hallmark of VSMCs undergoing phenotypic switch. Under hypercholesteremia, GDF10 triggered VSMC osteogenic switch in vitro. The abundance of GDF10 expressing osteogenic-like VSMCs cells was linked to the occurrence of carotid artery disease (CAD) events. (4) Conclusions: Taken together, these results provide evidence about GDF10-mediated VSMC osteogenic switch, with a likely detrimental role in atherosclerotic plaque stability.
Collapse
Affiliation(s)
- Karim J. Brandt
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Rafaela Fernandes da Silva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 6627, Brazil
- Swiss Institute for Translational and Entrepreneurial Medicine, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Fabrizio Montecucco
- Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy;
- First Clinic of Internal Medicine, Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Francois Mach
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland; (K.J.B.); (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.)
| |
Collapse
|
7
|
Burger F, Baptista D, Roth A, Brandt KJ, da Silva RF, Montecucco F, Mach F, Miteva K. Single-Cell RNA-Seq Reveals a Crosstalk between Hyaluronan Receptor LYVE-1-Expressing Macrophages and Vascular Smooth Muscle Cells. Cells 2022; 11:411. [PMID: 35159221 PMCID: PMC8834524 DOI: 10.3390/cells11030411] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Atherosclerosis is a chronic inflammatory disease where macrophages participate in the progression of the disease. However, the role of resident-like macrophages (res-like) in the atherosclerotic aorta is not completely understood. Methods: A single-cell RNA sequencing analysis of CD45+ leukocytes in the atherosclerotic aorta of apolipoprotein E-deficient (Apoe-/-) mice on a normal cholesterol diet (NCD) or a high cholesterol diet (HCD), respecting the side-to-specific predisposition to atherosclerosis, was performed. A population of res-like macrophages expressing hyaluronan receptor LYVE-1 was investigated via flow cytometry, co-culture experiments, and immunofluorescence in human atherosclerotic plaques from carotid artery disease patients (CAD). Results: We identified 12 principal leukocyte clusters with distinct atherosclerosis disease-relevant gene expression signatures. LYVE-1+ res-like macrophages, expressing a high level of CC motif chemokine ligand 24 (CCL24, eotaxin-2), expanded under hypercholesteremia in Apoe-/- mice and promoted VSMC phenotypic modulation to osteoblast/chondrocyte-like cells, ex vivo, in a CCL24-dependent manner. Moreover, the abundance of LYVE-1+CCL24+ macrophages and elevated systemic levels of CCL24 were associated with vascular calcification and CAD events. Conclusions: LYVE-1 res-like macrophages, via the secretion of CCL24, promote the transdifferentiation of VSMC to osteogenic-like cells with a possible role in vascular calcification and likely a detrimental role in atherosclerotic plaque destabilization.
Collapse
Affiliation(s)
- Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1206 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (K.J.B.); (R.F.d.S.); (F.M.)
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1206 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (K.J.B.); (R.F.d.S.); (F.M.)
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1206 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (K.J.B.); (R.F.d.S.); (F.M.)
| | - Karim J. Brandt
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1206 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (K.J.B.); (R.F.d.S.); (F.M.)
| | - Rafaela Fernandes da Silva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1206 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (K.J.B.); (R.F.d.S.); (F.M.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 6627, Brazil
- Swiss Institute for Translational and Entrepreneurial Medicine, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Fabrizio Montecucco
- Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy;
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - François Mach
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1206 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (K.J.B.); (R.F.d.S.); (F.M.)
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1206 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (K.J.B.); (R.F.d.S.); (F.M.)
| |
Collapse
|
8
|
Burger F, Baptista D, Roth A, da Silva RF, Montecucco F, Mach F, Brandt KJ, Miteva K. NLRP3 Inflammasome Activation Controls Vascular Smooth Muscle Cells Phenotypic Switch in Atherosclerosis. Int J Mol Sci 2021; 23:340. [PMID: 35008765 PMCID: PMC8745068 DOI: 10.3390/ijms23010340] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/07/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
(1) Background: Monocytes and nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome orchestrate lipid-driven amplification of vascular inflammation promoting the disruption of the fibrous cap. The components of the NLRP3 inflammasome are expressed in macrophages and foam cells within human carotid atherosclerotic plaques and VSMCs in hypertension. Whether monocytes and NLRP3 inflammasome activation are direct triggers of VSMC phenotypic switch and plaque disruption need to be investigated. (2) Methods: The direct effect of oxLDL-activated monocytes in VSMCs co-cultured system was demonstrated via flow cytometry, qPCR, ELISA, caspase 1, and pyroptosis assay. Aortic roots of VSMCs lineage tracing mice fed normal or high cholesterol diet and human atherosclerotic plaques were used for immunofluorescence quantification of NLRP3 inflammasome activation/VSMCs phenotypic switch. (3) Results: OxLDL-activated monocytes reduced α-SMA, SM22α, Oct-4, and upregulation of KLF-4 and macrophage markers MAC2, F4/80 and CD68 expression as well as caspase 1 activation, IL-1β secretion, and pyroptosis in VSMCs. Increased caspase 1 and IL-1β in phenotypically modified VSMCs was detected in the aortic roots of VSMCs lineage tracing mice fed high cholesterol diet and in human atherosclerotic plaques from carotid artery disease patients who experienced a stroke. (4) Conclusions: Taken together, these results provide evidence that monocyte promote VSMC phenotypic switch through VSMC NLRP3 inflammasome activation with a likely detrimental role in atherosclerotic plaque stability in human atherosclerosis.
Collapse
Affiliation(s)
- Fabienne Burger
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| | - Rafaela Fernandes da Silva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 6627, Brazil
- Swiss Institute for Translational and Entrepreneurial Medicine, Freiburgstrasse 3, 3010 Bern, Switzerland
| | - Fabrizio Montecucco
- Ospedale Policlinico San Martino Genoa—Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy;
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - François Mach
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| | - Karim J. Brandt
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Research, Department of Medicine, Specialized Medicine, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (F.B.); (D.B.); (A.R.); (R.F.d.S.); (F.M.); (K.J.B.)
| |
Collapse
|
9
|
Guerra JVS, Dias MMG, Brilhante AJVC, Terra MF, García-Arévalo M, Figueira ACM. Multifactorial Basis and Therapeutic Strategies in Metabolism-Related Diseases. Nutrients 2021; 13:nu13082830. [PMID: 34444990 PMCID: PMC8398524 DOI: 10.3390/nu13082830] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/11/2022] Open
Abstract
Throughout the 20th and 21st centuries, the incidence of non-communicable diseases (NCDs), also known as chronic diseases, has been increasing worldwide. Changes in dietary and physical activity patterns, along with genetic conditions, are the main factors that modulate the metabolism of individuals, leading to the development of NCDs. Obesity, diabetes, metabolic associated fatty liver disease (MAFLD), and cardiovascular diseases (CVDs) are classified in this group of chronic diseases. Therefore, understanding the underlying molecular mechanisms of these diseases leads us to develop more accurate and effective treatments to reduce or mitigate their prevalence in the population. Given the global relevance of NCDs and ongoing research progress, this article reviews the current understanding about NCDs and their related risk factors, with a focus on obesity, diabetes, MAFLD, and CVDs, summarizing the knowledge about their pathophysiology and highlighting the currently available and emerging therapeutic strategies, especially pharmacological interventions. All of these diseases play an important role in the contamination by the SARS-CoV-2 virus, as well as in the progression and severity of the symptoms of the coronavirus disease 2019 (COVID-19). Therefore, we briefly explore the relationship between NCDs and COVID-19.
Collapse
Affiliation(s)
- João V. S. Guerra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Pharmaceutical Sciences, Faculty Pharmaceutical Sciences, University of Campinas, Campinas 13083-970, Brazil
| | - Marieli M. G. Dias
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Anna J. V. C. Brilhante
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biorenewables National Laboratory (LNBR), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil
| | - Maiara F. Terra
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Graduate Program in Functional and Molecular Biology, Institute of Biology, State University of Campinas (Unicamp), Campinas 13083-970, Brazil;
| | - Marta García-Arévalo
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| | - Ana Carolina M. Figueira
- Brazilian Center for Research in Energy and Materials (CNPEM), Brazilian Biosciences National Laboratory (LNBio), Polo II de Alta Tecnologia—R. Giuseppe Máximo Scolfaro, Campinas 13083-100, Brazil; (J.V.S.G.); (M.M.G.D.); (M.F.T.)
- Correspondence: or (M.G.-A.); (A.C.M.F.)
| |
Collapse
|
10
|
Kwon EK, Choi Y, Yoon IH, Won HK, Sim S, Lee HR, Kim HS, Ye YM, Shin YS, Park HS, Ban GY. Oleoylethanolamide induces eosinophilic airway inflammation in bronchial asthma. Exp Mol Med 2021; 53:1036-1045. [PMID: 34079051 PMCID: PMC8257664 DOI: 10.1038/s12276-021-00622-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022] Open
Abstract
Asthma is a chronic eosinophilic inflammatory disease with an increasing prevalence worldwide. Endocannabinoids are known to have immunomodulatory biological effects. However, the contribution of oleoylethanolamide (OEA) to airway inflammation remains to be elucidated. To investigate the effect of OEA, the expression of proinflammatory cytokines was measured by RT-qPCR and ELISA in airway epithelial (A549) cells. The numbers of airway inflammatory cells and cytokine levels in bronchoalveolar lavage fluid, airway hyperresponsiveness, and type 2 innate lymphoid cells (ILC2s) were examined in BALB/c mice after 4 days of OEA treatment. Furthermore, eosinophil activation after OEA treatment was evaluated by measuring cellular CD69 levels in eosinophils from human peripheral eosinophils using flow cytometry. OEA induced type 2 inflammatory responses in vitro and in vivo. OEA increased the levels of proinflammatory cytokines, such as IL-6, IL-8, and IL-33, in A549 cells. In addition, it also induced eosinophilic inflammation, the production of IL-4, IL-5, IL-13, and IL-33 in bronchoalveolar lavage fluid, and airway hyperresponsiveness. OEA increased the numbers of IL-5- or IL-13-producing ILC2s in a mouse model. Finally, we confirmed that OEA increased CD69 expression (an eosinophil activation marker) on purified eosinophils from patients with asthma compared to those from healthy controls. OEA may play a role in the pathogenesis of asthma by activating ILC2s and eosinophils.
Collapse
Affiliation(s)
- Eun-Kyung Kwon
- Department of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Youngwoo Choi
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Il-Hee Yoon
- VHS Veterans Medical Research Institute, VHS Medical Center, Seoul, Korea
| | - Ha-Kyeong Won
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Korea
| | - Soyoon Sim
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | | | - Hyoung Su Kim
- Department of Internal Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea
| | - Young-Min Ye
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Yoo Seob Shin
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Hae-Sim Park
- Department of Allergy and Clinical Immunology, Ajou University School of Medicine, Suwon, Korea
| | - Ga-Young Ban
- Department of Pulmonary, Allergy and Critical Care Medicine, Kangdong Sacred Heart Hospital, Hallym University College of Medicine, Seoul, Korea. .,Allergy and Clinical Immunology Research Center, Hallym University College of Medicine, Dongtan, Korea.
| |
Collapse
|
11
|
da Silva RF, Baptista D, Roth A, Miteva K, Burger F, Vuilleumier N, Carbone F, Montecucco F, Mach F, J. Brandt K. Anti-Apolipoprotein A-1 IgG Influences Neutrophil Extracellular Trap Content at Distinct Regions of Human Carotid Plaques. Int J Mol Sci 2020; 21:7721. [PMID: 33086507 PMCID: PMC7588926 DOI: 10.3390/ijms21207721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neutrophils accumulate in atherosclerotic plaques. Neutrophil extracellular traps (NET) were recently identified in experimental atherosclerosis and in complex human lesions. However, not much is known about the NET marker citrullinated histone-3 (H3Cit) expression and functionality in human carotid plaques. Moreover, the association between the proatherosclerotic autoantibody anti-apolipoprotein A-1 (anti-ApoA-1 IgG) and NET has never been investigated. METHODS Atherosclerotic plaques have been obtained from 36 patients with severe carotid stenosis that underwent carotid endarterectomy for severe carotid stenosis. Samples were sectioned into upstream and downstream regions from the same artery segment. Plaque composition and expression of NET markers neutrophil elastase (NE) and H3Cit were quantified by immunohistochemistry. H3Cit expression and function was evaluated by immunofluorescence and confocal analysis in a subset of patients. RESULTS Pathological features of vulnerable phenotypes were exacerbated in plaques developed at downstream regions, including higher accumulation of neutrophils and enhanced expression of NE and H3Cit, as compared to plaques from upstream regions. The H3Cit signal was also more intense in downstream regions, with significant extracellular distribution in spaces outside of neutrophils. The percentage of H3Cit colocalization with CD66b (neutrophils) was markedly lower in downstream portions of carotid plaques, confirming the extrusion of NET in this region. In agreement, the maximum distance of the H3Cit signal from neutrophils, extrapolated from vortex distance calculation in all possible directions, was also higher in downstream plaques. The serum anti-ApoA-1index positively correlated with the expression of H3Cit in downstream segments of plaques. Expression of the H3Cit signal outside of neutrophils and H3Cit maximal distance from CD66b-positive cells increased in plaques from serum positive anti-ApoA-1 patients compared with serum negative patients. CONCLUSION NET elements are differentially expressed in upstream versus downstream regions of human carotid plaques and may be influenced by circulating levels of anti-ApoA-1 IgG. These findings could warrant the investigation of NET elements as potential markers of vulnerability.
Collapse
Affiliation(s)
- Rafaela F. da Silva
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Nicolas Vuilleumier
- Department of Diagnostics, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland;
- Department of Medical Specialities, Division of Laboratory Medicine, Faculty of Medicine, 1211 Geneva, Switzerland
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, viale Benedetto XV n6, 16132 Genoa, Italy; (F.C.); (F.M.)
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Largo Rosanna Benzi n10, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, viale Benedetto XV n6, 16132 Genoa, Italy; (F.C.); (F.M.)
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Largo Rosanna Benzi n10, 16132 Genoa, Italy
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Karim J. Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| |
Collapse
|
12
|
The endocannabinoid 2-arachidonoylglycerol inhibits endothelial function and repair. Int J Cardiol 2020; 323:243-250. [PMID: 32810540 DOI: 10.1016/j.ijcard.2020.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/18/2020] [Accepted: 08/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Endothelial dysfunction promotes atherogenesis, vascular inflammation, and thrombus formation. Reendothelialization after angioplasty is required in order to prevent stent failure. Previous studies have highlighted the role of 2-arachidonoylglycerol (2-AG) in murine experimental atherogenesis and in human coronary artery disease. However, the impact of 2-AG on endothelial repair and leukocyte-endothelial cell adhesion is still unknown. METHODS Endothelial repair was studied in two treatment groups of wildtype mice following electrical injury of the common carotid artery. One group received the monoacylglycerol lipase (MAGL)-inhibitor JZL184, which impairs 2-AG degradation and thus causes elevated 2-AG levels, the other group received DMSO (vehicle). The effect of 2-AG on human coronary artery endothelial cell (HCAEC) viability, leukocyte-endothelial cell adhesion, surface expression of adhesion molecules, and expression of endothelial NO synthase (NOS3) was studied in vitro. RESULTS Elevated 2-AG levels significantly impaired reendothelialization in wildtype mice following electrical injury of the common carotid artery. In vitro, 2-AG significantly reduced viability of HCAEC. Additionally, 2-AG promoted adhesion of THP-1 monocytes to HCAEC following pre-treatment of the HCAEC with 2-AG. Adhesion molecules (E-selectin, ICAM-1 and VCAM-1) remained unchanged in arterial endothelial cells, whereas 2-AG suppressed the expression of NOS3 in HCAEC. CONCLUSION AND TRANSLATIONAL ASPECT Elevated 2-AG levels hamper endothelial repair and HCAEC proliferation, while simultaneously facilitating leukocyte-endothelial cell adhesion. Given that 2-AG is elevated in patients with coronary artery disease and non-ST-segment elevation myocardial infarction, 2-AG might decrease reendothelialization after angioplasty and thus impact the clinical outcomes.
Collapse
|
13
|
Karimian Azari E, Kerrigan A, O’Connor A. Naturally Occurring Cannabinoids and their Role in Modulation of Cardiovascular Health. J Diet Suppl 2020; 17:625-650. [DOI: 10.1080/19390211.2020.1790708] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Aileen Kerrigan
- Research and Development department, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
14
|
Leuti A, Fazio D, Fava M, Piccoli A, Oddi S, Maccarrone M. Bioactive lipids, inflammation and chronic diseases. Adv Drug Deliv Rev 2020; 159:133-169. [PMID: 32628989 DOI: 10.1016/j.addr.2020.06.028] [Citation(s) in RCA: 204] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/09/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.
Collapse
|
15
|
Piscitelli F, Silvestri C. Role of the Endocannabinoidome in Human and Mouse Atherosclerosis. Curr Pharm Des 2020; 25:3147-3164. [PMID: 31448709 DOI: 10.2174/1381612825666190826162735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/21/2019] [Indexed: 12/20/2022]
Abstract
The Endocannabinoid (eCB) system and its role in many physiological and pathological conditions is well described and accepted, and includes cardiovascular disorders. However, the eCB system has been expanded to an "-ome"; the endocannabinoidome (eCBome) that includes endocannabinoid-related mediators, their protein targets and metabolic enzymes, many of which significantly impact upon cardiometabolic health. These recent discoveries are here summarized with a special focus on their potential involvement in atherosclerosis. We described the role of classical components of the eCB system (eCBs, CB1 and CB2 receptors) and eCB-related lipids, their regulatory enzymes and molecular targets in atherosclerosis. Furthermore, since increasing evidence points to significant cross-talk between the eCBome and the gut microbiome and the gut microbiome and atherosclerosis, we explore the possibility that a gut microbiome - eCBome axis has potential implications in atherosclerosis.
Collapse
Affiliation(s)
- Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Council of Research, Pozzuoli (NA), Italy
| | - Cristoforo Silvestri
- Institut universitaire de cardiologie et de pneumologie de Québec (IUCPQ), 2725 Chemin Sainte-Foy, Québec, QC, G1V 4G5, Canada.,Department of Medicine, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| |
Collapse
|
16
|
Rinne P, Guillamat-Prats R, Rami M, Bindila L, Ring L, Lyytikäinen LP, Raitoharju E, Oksala N, Lehtimäki T, Weber C, van der Vorst EPC, Steffens S. Palmitoylethanolamide Promotes a Proresolving Macrophage Phenotype and Attenuates Atherosclerotic Plaque Formation. Arterioscler Thromb Vasc Biol 2019; 38:2562-2575. [PMID: 30354245 DOI: 10.1161/atvbaha.118.311185] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective- Palmitoylethanolamide is an endogenous fatty acid mediator that is synthetized from membrane phospholipids by N-acyl phosphatidylethanolamine phospholipase D. Its biological actions are primarily mediated by PPAR-α (peroxisome proliferator-activated receptors α) and the orphan receptor GPR55. Palmitoylethanolamide exerts potent anti-inflammatory actions but its physiological role and promise as a therapeutic agent in chronic arterial inflammation, such as atherosclerosis remain unexplored. Approach and Results- First, the polarization of mouse primary macrophages towards a proinflammatory phenotype was found to reduce N-acyl phosphatidylethanolamine phospholipase D expression and palmitoylethanolamide bioavailability. N-acyl phosphatidylethanolamine phospholipase D expression was progressively downregulated in the aorta of apolipoprotein E deficient (ApoE-/-) mice during atherogenesis. N-acyl phosphatidylethanolamine phospholipase D mRNA levels were also downregulated in unstable human plaques and they positively associated with smooth muscle cell markers and negatively with macrophage markers. Second, ApoE-/- mice were fed a high-fat diet for 4 or 16 weeks and treated with either vehicle or palmitoylethanolamide (3 mg/kg per day, 4 weeks) to study the effects of palmitoylethanolamide on early established and pre-established atherosclerosis. Palmitoylethanolamide treatment reduced plaque size in early atherosclerosis, whereas in pre-established atherosclerosis, palmitoylethanolamide promoted signs of plaque stability as evidenced by reduced macrophage accumulation and necrotic core size, increased collagen deposition and downregulation of M1-type macrophage markers. Mechanistically, we found that palmitoylethanolamide, by activating GPR55, increases the expression of the phagocytosis receptor MerTK (proto-oncogene tyrosine-protein kinase MER) and enhances macrophage efferocytosis, indicative of proresolving properties. Conclusions- The present study demonstrates that palmitoylethanolamide protects against atherosclerosis by promoting an anti-inflammatory and proresolving phenotype of lesional macrophages, representing a new therapeutic approach to resolve arterial inflammation.
Collapse
Affiliation(s)
- Petteri Rinne
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S).,Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Finland (P.R.)
| | - Raquel Guillamat-Prats
- Institute of Biomedicine and Turku Center for Disease Modeling, University of Turku, Finland (P.R.)
| | - Martina Rami
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S)
| | - Laura Bindila
- Institute for Physiological Chemistry, University Medical Center, Johannes Gutenberg University Mainz, Germany (L.B.)
| | - Larisa Ring
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S)
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.)
| | - Emma Raitoharju
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.)
| | - Niku Oksala
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.).,Department of Surgery, Tampere University Hospital, Finland (N.O.)
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Finland (L.-P.L., E.R., N.O., T.L.)
| | - Christian Weber
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S).,Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, The Netherlands (C.W.).,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (C.W., S.S.)
| | - Emiel P C van der Vorst
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S)
| | - Sabine Steffens
- From the Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University (LMU) of Munich, Germany (P.R., R.G.-P., M.R., L.R., C.W., E.P.C.v.d.V., S.S).,German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Germany (C.W., S.S.)
| |
Collapse
|
17
|
Abstract
Healthy aging includes freedom from disease, ability to engage in physical activity, and maintenance of cognitive skills for which diet is a major lifestyle factor. Aging, diet, and health are at the forefront of well-being for the growing population of older adults with the caveat of reducing and controlling pain. Obesity and diabetes risk increase in frequency in adults, and exercise is encouraged to control weight, reduce risk of type II diabetes, and maintain muscle mass and mobility. One area of research that appears to integrate many aspects of healthy aging is focused on understanding the endocannabinoid system (ECS) because of its role in systemic energy metabolism, inflammation, pain, and brain biology. Physical activity is important for maintaining health throughout the life cycle. The benefits of exercise facilitate macronutrient use, promote organ health, and augment the maintenance of metabolic activity and physiological functions. One outcome of routine exercise is a generalized well-being, and perhaps, this is linked to the ECS. The purpose of this review is to briefly present the current knowledge of key components of the ECS that contribute to appetite and influence systemic energy metabolism, and dietary factors that alter the responses of ligand binding and activation of cannabinoid receptors and its role in the brain. Herein, the objectives are to (1) explain the role of the ECS in the body, (2) describe the relationship between dietary polyunsaturated fatty acids and macronutrient intake and systemic metabolism, and (3) present areas of promising research where exercise induces endocannabinoid production in the brain to benefit well-being. There are many gaps in the knowledge of how the ECS participates in controlling pain through exercise; however, emerging research will reveal key relationships to understand this system in the brain and body.
Collapse
Affiliation(s)
- Bruce A Watkins
- Department of Nutrition, University of California, Davis, CA, USA.
| |
Collapse
|
18
|
Abstract
Cannabinoids influence cardiovascular variables in health and disease via multiple mechanisms. The chapter covers the impact of cannabinoids on cardiovascular function in physiology and pathology and presents a critical analysis of the proposed signalling pathways governing regulation of cardiovascular function by endogenously produced and exogenous cannabinoids. We know that endocannabinoid system is overactivated under pathological conditions and plays both a protective compensatory role, such as in some forms of hypertension, atherosclerosis and other inflammatory conditions, and a pathophysiological role, such as in disease states associated with excessive hypotension. This chapter focuses on the mechanisms affecting hemodynamics and vasomotor effects of cannabinoids in health and disease states, highlighting mismatches between some studies. The chapter will first review the effects of marijuana smoking on cardiovascular system and then describe the impact of exogenous cannabinoids on cardiovascular parameters in humans and experimental animals. This will be followed by analysis of the impact of cannabinoids on reactivity of isolated vessels. The article critically reviews current knowledge on cannabinoid induction of vascular relaxation by cannabinoid receptor-dependent and -independent mechanisms and dysregulation of vascular endocannabinoid signaling in disease states.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology National Academy of Sciences of Ukraine, Kiev, Ukraine.
| |
Collapse
|
19
|
Zhao Y, Yan L, Peng L, Huang X, Zhang G, Chen B, Ren J, Zhou Y, Yang L, Peng L, Jin X, Wang Y. Oleoylethanolamide alleviates macrophage formation via AMPK/PPARα/STAT3 pathway. Pharmacol Rep 2018; 70:1185-1194. [DOI: 10.1016/j.pharep.2018.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 06/08/2018] [Accepted: 06/22/2018] [Indexed: 01/22/2023]
|
20
|
Jehle J, Schöne B, Bagheri S, Avraamidou E, Danisch M, Frank I, Pfeifer P, Bindila L, Lutz B, Lütjohann D, Zimmer A, Nickenig G. Elevated levels of 2-arachidonoylglycerol promote atherogenesis in ApoE-/- mice. PLoS One 2018; 13:e0197751. [PMID: 29813086 PMCID: PMC5973571 DOI: 10.1371/journal.pone.0197751] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 05/08/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) is a known modulator of inflammation and ligand to both, pro-inflammatory cannabinoid receptor 1 (CB1) and anti-inflammatory CB2. While the role of both receptors in atherogenesis has been studied extensively, the significance of 2-AG for atherogenesis is less well characterized. METHODS The impact of 2-AG on atherogenesis was studied in two treatment groups of ApoE-/- mice. One group received the monoacylglycerol lipase (MAGL)-inhibitor JZL184 [5 mg/kg i.p.], which impairs 2-AG degradation and thus causes elevated 2-AG levels, the other group received vehicle for four weeks. Simultaneously, both groups were fed a high-cholesterol diet. The atherosclerotic plaque burden was assessed in frozen sections through the aortic sinus following oil red O staining and infiltrating macrophages were detected by immunofluorescence targeting CD68. In vitro, the effect of 2-AG on B6MCL macrophage migration was assessed by Boyden chamber experiments. Transcription of adhesion molecules and chemokine receptors in macrophages was assessed by qPCR. RESULTS As expected, application of the MAGL-inhibitor JZL184 resulted in a significant increase in 2-AG levels in vascular tissue (98.2 ± 16.1 nmol/g vs. 27.3 ± 4.5 nmol/g; n = 14-16; p < 0.001). ApoE-/- mice with elevated 2-AG levels displayed a significantly increased plaque burden compared to vehicle treated controls (0.44 ± 0.03 vs. 0.31 ± 0.04; n = 14; p = 0.0117). This was accompanied by a significant increase in infiltrating macrophages within the atherosclerotic vessel wall (0.33 ± 0.02 vs. 0.27 ± 0.01; n = 13-14; p = 0.0076). While there was no alteration to the white blood counts of JZL184-treated animals, 2-AG enhanced macrophage migration in vitro by 1.8 ± 0.2 -fold (n = 4-6; p = 0.0393) compared to vehicle, which was completely abolished by co-administration of either CB1- or CB2-receptor-antagonists. qPCR analyses of 2-AG-stimulated macrophages showed an enhanced transcription of the chemokine CCL5 (1.59 ± 0.23 -fold; n = 5-6; p = 0.0589) and its corresponding receptors CCR1 (2.04 ± 0.46 -fold; n = 10-11; p = 0.0472) and CCR5 (2.45 ± 0.62 -fold; n = 5-6; p = 0.0554). CONCLUSION Taken together, elevated 2-AG levels appear to promote atherogenesis in vivo. Our data suggest that 2-AG promotes macrophage migration, possibly by the CCL5-CCR5/CCR1 axis, and thereby contributes to vascular inflammation. Thus, decreasing vascular 2-AG levels might represent a promising therapeutic strategy in patients suffering from atherosclerosis and coronary heart disease.
Collapse
Affiliation(s)
- Julian Jehle
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| | - Benedikt Schöne
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Sayeh Bagheri
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Elina Avraamidou
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Melina Danisch
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Imke Frank
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Philipp Pfeifer
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Dieter Lütjohann
- Insitute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Andreas Zimmer
- Department of Molecular Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Georg Nickenig
- Department of Internal Medicine II Cardiology, Pneumology, Angiology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
21
|
Pacher P, Steffens S, Haskó G, Schindler TH, Kunos G. Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly. Nat Rev Cardiol 2018; 15:151-166. [PMID: 28905873 DOI: 10.1038/nrcardio.2017.130] [Citation(s) in RCA: 280] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Dysregulation of the endogenous lipid mediators endocannabinoids and their G-protein-coupled cannabinoid receptors 1 and 2 (CB1R and CB2R) has been implicated in a variety of cardiovascular pathologies. Activation of CB1R facilitates the development of cardiometabolic disease, whereas activation of CB2R (expressed primarily in immune cells) exerts anti-inflammatory effects. The psychoactive constituent of marijuana, Δ9-tetrahydrocannabinol (THC), is an agonist of both CB1R and CB2R, and exerts its psychoactive and adverse cardiovascular effects through the activation of CB1R in the central nervous and cardiovascular systems. The past decade has seen a nearly tenfold increase in the THC content of marijuana as well as the increased availability of highly potent synthetic cannabinoids for recreational use. These changes have been accompanied by the emergence of serious adverse cardiovascular events, including myocardial infarction, cardiomyopathy, arrhythmias, stroke, and cardiac arrest. In this Review, we summarize the role of the endocannabinoid system in cardiovascular disease, and critically discuss the cardiovascular consequences of marijuana and synthetic cannabinoid use. With the legalization of marijuana for medicinal purposes and/or recreational use in many countries, physicians should be alert to the possibility that the use of marijuana or its potent synthetic analogues might be the underlying cause of severe cardiovascular events and pathologies.
Collapse
Affiliation(s)
- Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, National Institutes of Health/NIAAA, 5625 Fishers Lane, Bethesda, Maryland 20892, USA
| | - Sabine Steffens
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University and German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Pettenkoferstrasse 8a und 9b, Munich, D-80336, Germany
| | - György Haskó
- Department of Surgery, Rutgers New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, USA
| | - Thomas H Schindler
- Department of Radiology, Johns Hopkins University, 601 North Caroline Street, Baltimore, Maryland 21287, USA
| | - George Kunos
- Laboratory of Physiological Studies, National Institutes of Health/NIAAA, 5625 Fishers Lane, Bethesda, Maryland 20892, USA
| |
Collapse
|
22
|
Peripheral modulation of the endocannabinoid system in metabolic disease. Drug Discov Today 2018; 23:592-604. [PMID: 29331500 DOI: 10.1016/j.drudis.2018.01.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/17/2017] [Accepted: 01/05/2018] [Indexed: 12/14/2022]
Abstract
Dysfunction of the endocannabinoid system (ECS) has been identified in metabolic disease. Cannabinoid receptor 1 (CB1) is abundantly expressed in the brain but also expressed in the periphery. Cannabinoid receptor 2 (CB2) is more abundant in the periphery, including the immune cells. In obesity, global antagonism of overexpressed CB1 reduces bodyweight but leads to centrally mediated adverse psychological outcomes. Emerging research in isolated cultured cells or tissues has demonstrated that targeting the endocannabinoid system in the periphery alleviates the pathologies associated with metabolic disease. Further, peripheral specific cannabinoid ligands can reverse aspects of the metabolic phenotype. This Keynote review will focus on current research on the functionality of peripheral modulation of the ECS for the treatment of obesity.
Collapse
|
23
|
Thomas A, Lenglet S, Chaurand P, Déglon J, Mangin P, Mach F, Steffens S, Wolfender JL, Staub C. Mass spectrometry for the evaluation of cardiovascular diseases based on proteomics and lipidomics. Thromb Haemost 2017; 106:20-33. [DOI: 10.1160/th10-12-0812] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/18/2011] [Indexed: 01/05/2023]
Abstract
SummaryThe identification and quantification of proteins and lipids is of major importance for the diagnosis, prognosis and understanding of the molecular mechanisms involved in disease development. Owing to its selectivity and sensitivity, mass spectrometry has become a key technique in analytical platforms for proteomic and lipidomic investigations. Using this technique, many strategies have been developed based on unbiased or targeted approaches to highlight or monitor molecules of interest from biomatrices. Although these approaches have largely been employed in cancer research, this type of investigation has been met by a growing interest in the field of cardiovascular disorders, potentially leading to the discovery of novel biomarkers and the development of new therapies. In this paper, we will review the different mass spectrometry- based proteomic and lipidomic strategies applied in cardiovascular diseases, especially atherosclerosis. Particular attention will be given to recent developments and the role of bioinformatics in data treatment. This review will be of broad interest to the medical community by providing a tutorial of how mass spectrometric strategies can support clinical trials.
Collapse
|
24
|
Ho WSV, Kelly MEM. Cannabinoids in the Cardiovascular System. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 80:329-366. [PMID: 28826540 DOI: 10.1016/bs.apha.2017.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cannabinoids are known to modulate cardiovascular functions including heart rate, vascular tone, and blood pressure in humans and animal models. Essential components of the endocannabinoid system, namely, the production, degradation, and signaling pathways of endocannabinoids have been described not only in the central and peripheral nervous system but also in myocardium, vasculature, platelets, and immune cells. The mechanisms of cardiovascular responses to endocannabinoids are often complex and may involve cannabinoid CB1 and CB2 receptors or non-CB1/2 receptor targets. Preclinical and some clinical studies have suggested that targeting the endocannabinoid system can improve cardiovascular functions in a number of pathophysiological conditions, including hypertension, metabolic syndrome, sepsis, and atherosclerosis. In this chapter, we summarize the local and systemic cardiovascular effects of cannabinoids and highlight our current knowledge regarding the therapeutic potential of endocannabinoid signaling and modulation.
Collapse
Affiliation(s)
- Wing S V Ho
- Vascular Biology Research Centre, St George's University of London, London, United Kingdom.
| | | |
Collapse
|
25
|
Bondarenko AI, Panasiuk O, Okhai I, Montecucco F, Brandt KJ, Mach F. Direct activation of Ca 2+ and voltage-gated potassium channels of large conductance by anandamide in endothelial cells does not support the presence of endothelial atypical cannabinoid receptor. Eur J Pharmacol 2017; 805:14-24. [PMID: 28327344 PMCID: PMC6520242 DOI: 10.1016/j.ejphar.2017.03.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 11/23/2022]
Abstract
Endocannabinoid anandamide induces endothelium-dependent relaxation commonly attributed to stimulation of the G-protein coupled endothelial anandamide receptor. The study addressed the receptor-independent effect of anandamide on large conductance Ca2+-dependent K+ channels expressed in endothelial cell line EA.hy926. Under resting conditions, 10µM anandamide did not significantly influence the resting membrane potential. In a Ca2+-free solution the cells were depolarized by ~10mV. Further administration of 10µM anandamide hyperpolarized the cells by ~8mV. In voltage-clamp mode, anandamide elicited the outwardly rectifying whole-cell current sensitive to paxilline but insensitive to GDPβS, a G-protein inhibitor. Administration of 70µM Mn2+, an agent used to promote integrin clustering, reversibly stimulated whole-cell current, but failed to further facilitate the anandamide-stimulated current. In an inside-out configuration, anandamide (0.1-30µM) facilitated single BKCa channel activity in a concentration-dependent manner within a physiological Ca2+ range and a wide range of voltages, mainly by reducing mean closed time. The effect is essentially eliminated following chelation of Ca2+ from the cytosolic face and pre-exposure to cholesterol-reducing agent methyl-β-cyclodextrin. O-1918 (3µM), a cannabidiol analog used as a selective antagonist of endothelial anandamide receptor, reduced BKCa channel activity in inside-out patches. These results do not support the existence of endothelial cannabinoid receptor and indicate that anandamide acts as a direct BKCa opener. The action does not require cell integrity or integrins and is caused by direct modification of BKCa channel activity.
Collapse
Affiliation(s)
- Alexander I Bondarenko
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str, 4, Kiev 01024, Ukraine; Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21, 8010 Graz, Austria
| | - Olga Panasiuk
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str, 4, Kiev 01024, Ukraine
| | - Iryna Okhai
- Circulatory Physiology Department, Bogomoletz Institute of Physiology NAS of Ukraine, Bogomoletz Str, 4, Kiev 01024, Ukraine
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; IRCCS AOU San Martino - IST, Genoa, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| | - Francois Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Internal Medicine, University of Geneva, Av. de la Roseraie 64, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
26
|
Quercioli A, Carbone F, Bonaventura A, Liberale L, Pataky Z, Thomas A, Lenglet S, Lauer E, Golay A, Dallegri F, Di Marzo V, Schindler TH, Montecucco F. Plasma palmitoylethanolamide (PEA) as a potential biomarker for impaired coronary function. Int J Cardiol 2017; 231:1-5. [PMID: 27989579 DOI: 10.1016/j.ijcard.2016.12.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/15/2016] [Accepted: 12/08/2016] [Indexed: 11/17/2022]
Abstract
BACKGROUND Among endocannabinoid (EC)-related mediators, Oleoyl-ethanolamide (OEA) and Palmitoyl-ethanolamide (PEA), two endogenous PPARα agonists with lipolytic and anti-inflammatory action, respectively, are being actively investigated. Here, we assessed the potential association between plasma levels of PEA and OEA and coronary function in a cohort including normal, overweight, obese, and morbidly obese (MOB) individuals. METHODS Myocardial perfusion and endothelium-related myocardial blood flow (MBF) responses to cold pressor test (CPT) and during pharmacological vasodilation with dipyridamole were measured with 13N-ammonia positron emission tomography/computed tomography. OEA and PEA were extracted from human plasma by liquid-liquid extraction, separated by liquid chromatography and quantified by mass spectrometry. Serum levels of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 (VCAM-1) were measured by colorimetric enzyme-linked immunosorbent assay. RESULTS Circulating levels of PEA and VCAM-1 were increased in MOB as compared to normal weight subjects. Circulating levels of OEA and PEA were associated with body mass index, but not with adhesion molecules. Increases of PEA levels were associated with and predictive of worsened coronary function in MOB and the overall cohort studied. CONCLUSION Plasma levels of PEA are increased in MOB patients and associated with coronary dysfunction as a functional precursor of CAD process. Larger trials are needed to confirm PEA as a potential circulating biomarker of coronary dysfunction in both MOB patients and the general population.
Collapse
Affiliation(s)
- Alessandra Quercioli
- Division of Cardiology, "SS. Antonio e Biagio e Cesare Arrigo" Hospital, 6 via Venezia 16, 15121 Alessandria, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | - Zoltan Pataky
- Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospital of Geneva, University of Geneva, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Aurélien Thomas
- Unit of Toxicology, CURML, Geneva-Lausanne, CHUV, HUG, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Sébastien Lenglet
- Unit of Toxicology, CURML, Geneva-Lausanne, CHUV, HUG, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Estelle Lauer
- Unit of Toxicology, CURML, Geneva-Lausanne, CHUV, HUG, rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Alain Golay
- Service of Therapeutic Education for Chronic Diseases, WHO Collaborating Centre, University Hospital of Geneva, University of Geneva, rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; IRCCS AOU San Martino-IST, Genova, largo Benzi 10, 16143 Genoa, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Thomas H Schindler
- Division of Nuclear Medicine, Cardiovascular Section, Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, JHOC 3225, 601 N. Caroline Street, Baltimore, MD 21287, USA; Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; IRCCS AOU San Martino-IST, Genova, largo Benzi 10, 16143 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy..
| |
Collapse
|
27
|
Montecucco F, Bondarenko AI, Lenglet S, Burger F, Piscitelli F, Carbone F, Roth A, Liberale L, Dallegri F, Brandt KJ, Fraga-Silva RA, Stergiopulos N, Di Marzo V, Mach F. Treatment with the GPR55 antagonist CID16020046 increases neutrophil activation in mouse atherogenesis. Thromb Haemost 2016; 116:987-997. [PMID: 27465665 DOI: 10.1160/th16-02-0139] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/04/2016] [Indexed: 12/20/2022]
Abstract
Endocannabinoids modulate atherogenesis by triggering different receptors. Recently, orphan G protein-coupled receptors (GPRs) were suggested to be activated by endocannabinoids, possibly regulating vasorelaxation. Here, we investigated whether GPR55 antagonism with CID16020046 would impact on atherosclerotic size and inflammation in two mouse models of early and more advanced atherogenesis. Eleven-week old ApoE-/- mice were fed either a normal diet ([ND] for 16 weeks) or a high-cholesterol diet ([HD] for 11 weeks), resulting in different degrees of hypercholesterolaemia and size of atherosclerosis. CID16020046 (0.5 mg/kg) or vehicle were intraperitoneally administrated five times per week in the last three weeks before euthanasia. Treatment with CID1602004 was well-tolerated, but failed to affect atherosclerotic plaque and necrotic core size, fibrous cap thickness, macrophage and smooth muscle cell content as well as Th cell polarisation. In ND mice, treatment with CID1602004 was associated with increased chemokine production, neutrophil and MMP-9 intraplaque content as well as reduced collagen as compared to vehicle-treated animals. In HD mice, CID1602004 increased intraplaque MMP-9 and abrogated collagen content without affecting neutrophils. In vitro, serum from CID1602004-treated ND mice increased mouse neutrophil chemotaxis towards CXCL2 as compared to serum from vehicle-treated animals. CID1602004 dose-dependently induced neutrophil degranulation that was reverted by co-incubation with the GPR55 agonist Abn-CBD. In supernatants from degranulation experiments, increased levels of the endocannabinoid and putative GPR55 ligand anandamide (AEA) were found, suggesting its possible autocrine control of neutrophil activity. These results indicate that GPR55 is critical for the negative control of neutrophil activation in different phases of atherogenesis.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Prof. Fabrizio Montecucco, MD, PhD, First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy, Tel.: +39 010 353 86 94, Fax: +39 010 353 86 86, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
29
|
Romero-Parra J, Mella-Raipán J, Palmieri V, Allarà M, Torres MJ, Pessoa-Mahana H, Iturriaga-Vásquez P, Escobar R, Faúndez M, Di Marzo V, Pessoa-Mahana CD. Synthesis, binding assays, cytotoxic activity and docking studies of benzimidazole and benzothiophene derivatives with selective affinity for the CB2 cannabinoid receptor. Eur J Med Chem 2016; 124:17-35. [PMID: 27560280 DOI: 10.1016/j.ejmech.2016.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/17/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
Abstract
Herein we report the design, synthesis, bioinformatic and biological studies of benzimidazole and benzothiophene derivatives as new cannabinoid receptor ligands. To test the hypothesis that the lack of a hydrogen bond interaction between benzimidazole and benzothiophene derivatives with Lys192 reduces their affinity for CB1 receptors (as we previously reported) and leads to CB2 selectivity, most of the tested compounds do not exhibit hydrogen bond acceptors. All compounds displayed mostly CB2 selectivity, although this was more pronounced in the benzimidazoles derivatives. Furthermore, docking assays revealed a ∏-cation interaction with Lys109 which could play a key role for the CB2 selectivity index. The series displayed low toxicity on five different cell lines. Derivative 8f presented the best binding profile (Ki = 0.08 μM), high selectivity index (KiCB1/KiCB2) and a low citoxicity. Interestingly, in cell viability experiments, using HL-60 cells (expressing exclusively CB2 receptors), all synthesised compounds were shown to be cytotoxic, suggesting that a CB2 agonist response may be involved.
Collapse
Affiliation(s)
- Javier Romero-Parra
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Jaime Mella-Raipán
- Institute of Chemistry and Biochemistry, Universidad de Valparaíso, Gran Bretaña, 1111, Valparaíso, Chile
| | - Vittoria Palmieri
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 034, Napoli, Italy
| | - Marco Allarà
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 034, Napoli, Italy
| | - Maria Jose Torres
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Hernán Pessoa-Mahana
- Department of Organic and Physical Chemistry, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Sergio Livingstone, 1007, Santiago, Chile
| | | | - Rossy Escobar
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Mario Faúndez
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 034, Napoli, Italy
| | - C David Pessoa-Mahana
- Department of Pharmacy, Faculty of Chemistry, Pontificia Universidad Católica de Chile, Vicuña Mackenna, 4860, Santiago, Chile.
| |
Collapse
|
30
|
Alferink J, Specht S, Arends H, Schumak B, Schmidt K, Ruland C, Lundt R, Kemter A, Dlugos A, Kuepper JM, Poppensieker K, Findeiss M, Albayram Ö, Otte DM, Marazzi J, Gertsch J, Förster I, Maier W, Scheu S, Hoerauf A, Zimmer A. Cannabinoid Receptor 2 Modulates Susceptibility to Experimental Cerebral Malaria through a CCL17-dependent Mechanism. J Biol Chem 2016; 291:19517-31. [PMID: 27474745 DOI: 10.1074/jbc.m116.746594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Indexed: 11/06/2022] Open
Abstract
Cerebral malaria is a severe and often fatal complication of Plasmodium falciparum infection. It is characterized by parasite sequestration, a breakdown of the blood-brain barrier, and a strong inflammation in the brain. We investigated the role of the cannabinoid receptor 2 (CB2), an important modulator of neuroinflammatory responses, in experimental cerebral malaria (ECM). Strikingly, mice with a deletion of the CB2-encoding gene (Cnr2(-/-)) inoculated with Plasmodium berghei ANKA erythrocytes exhibited enhanced survival and a diminished blood-brain barrier disruption. Therapeutic application of a specific CB2 antagonist also conferred increased ECM resistance in wild type mice. Hematopoietic derived immune cells were responsible for the enhanced protection in bone marrow (BM) chimeric Cnr2(-/-) mice. Mixed BM chimeras further revealed that CB2-expressing cells contributed to ECM development. A heterogeneous CD11b(+) cell population, containing macrophages and neutrophils, expanded in the Cnr2(-/-) spleen after infection and expressed macrophage mannose receptors, arginase-1 activity, and IL-10. Also in the Cnr2(-/-) brain, CD11b(+) cells that expressed selected anti-inflammatory markers accumulated, and expression of inflammatory mediators IFN-γ and TNF-α was reduced. Finally, the M2 macrophage chemokine CCL17 was identified as an essential factor for enhanced survival in the absence of CB2, because CCL17 × Cnr2 double-deficient mice were fully susceptible to ECM. Thus, targeting CB2 may be promising for the development of alternative treatment regimes of ECM.
Collapse
Affiliation(s)
- Judith Alferink
- From the Institute of Molecular Psychiatry, Medical Faculty, and the Department of Psychiatry, University of Münster, 48149 Münster, Germany, the Cluster of Excellence EXC 1003, Cells in Motion, 48149 Münster, Germany,
| | - Sabine Specht
- the Institute of Medical Microbiology, Immunology, and Parasitology and
| | - Hannah Arends
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| | - Beatrix Schumak
- the Institute of Medical Microbiology, Immunology, and Parasitology and
| | - Kim Schmidt
- the Institute of Medical Microbiology, Immunology, and Parasitology and
| | - Christina Ruland
- the Department of Psychiatry, University of Münster, 48149 Münster, Germany
| | - Ramona Lundt
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| | - Andrea Kemter
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| | - Andrea Dlugos
- the Department of Psychiatry, University of Münster, 48149 Münster, Germany
| | - Janina M Kuepper
- the Institute of Medical Microbiology, Immunology, and Parasitology and
| | | | | | - Önder Albayram
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| | - David-M Otte
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| | - Janine Marazzi
- the Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland, and
| | - Jürg Gertsch
- the Institute of Biochemistry and Molecular Medicine, University of Bern, 3012 Bern, Switzerland, and
| | - Irmgard Förster
- the Department of Immunology and Environment, Life and Medical Sciences Institute (LIMES), University of Bonn, 53127 Bonn, Germany
| | - Wolfgang Maier
- the Department of Psychiatry, University Hospital Bonn, 53105 Bonn, Germany
| | - Stefanie Scheu
- the Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, 40225 Düsseldorf, Germany
| | - Achim Hoerauf
- the Institute of Medical Microbiology, Immunology, and Parasitology and
| | - Andreas Zimmer
- From the Institute of Molecular Psychiatry, Medical Faculty, and
| |
Collapse
|
31
|
Jehle J, Hoyer FF, Schöne B, Pfeifer P, Schild K, Jenniches I, Bindila L, Lutz B, Lütjohann D, Zimmer A, Nickenig G. Myeloid-Specific Deletion of Diacylglycerol Lipase α Inhibits Atherogenesis in ApoE-Deficient Mice. PLoS One 2016; 11:e0146267. [PMID: 26731274 PMCID: PMC4712127 DOI: 10.1371/journal.pone.0146267] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022] Open
Abstract
Background The endocannabinoid 2-arachidonoylglycerol (2-AG) is a known modulator of inflammation. Despite its high concentration in vascular tissue, the role of 2-AG in atherogenesis has not yet been examined. Methods ApoE-deficient mice were sublethally irradiated and reconstituted with bone marrow from mice with a myeloid-specific knockout of the 2-AG synthesising enzyme diacylglycerol lipase α (Dagla) or control bone marrow with an intact 2-AG biosynthesis. After a cholesterol-rich diet for 8 weeks, plaque size and plaque morphology were examined in chimeric mice. Circulating inflammatory cells were assessed by flow cytometry. Aortic tissue and plasma levels of endocannabinoids were measured using liquid chromatography-multiple reaction monitoring. Results Mice with Dagla-deficient bone marrow and circulating myeloid cells showed a significantly reduced plaque burden compared to controls. The reduction in plaque size was accompanied by a significantly diminished accumulation of both neutrophil granulocytes and macrophages in atherosclerotic lesions of Dagla-deficient mice. Moreover, CB2 expression and the amount of oxidised LDL within atherosclerotic lesions was significantly reduced. FACS analyses revealed that levels of circulating inflammatory cells were unaltered in Dagla-deficient mice. Conclusions Myeloid synthesis of the endocannabinoid 2-AG appears to promote vascular inflammation and atherogenesis. Thus, myeloid-specific disruption of 2-AG synthesis may represent a potential novel therapeutic strategy against atherosclerosis.
Collapse
Affiliation(s)
- Julian Jehle
- Klinik II für Innere Medizin, Universität Bonn, Bonn, Germany
- * E-mail:
| | - Friedrich Felix Hoyer
- Massachusetts General Hospital, Center for Systems Biology, Boston, United States of America
| | - Benedikt Schöne
- Klinik II für Innere Medizin, Universität Bonn, Bonn, Germany
| | - Philipp Pfeifer
- Klinik II für Innere Medizin, Universität Bonn, Bonn, Germany
| | | | - Imke Jenniches
- Institut für Molekulare Psychiatrie, Universität Bonn, Bonn, Germany
| | - Laura Bindila
- Institut für Physiologische Chemie, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | - Beat Lutz
- Institut für Physiologische Chemie, Johannes Gutenberg Universität Mainz, Mainz, Germany
| | - Dieter Lütjohann
- Institut für Klinische Chemie und Klinische Pharmakologie, Universität Bonn, Bonn, Germany
| | - Andreas Zimmer
- Institut für Molekulare Psychiatrie, Universität Bonn, Bonn, Germany
| | - Georg Nickenig
- Klinik II für Innere Medizin, Universität Bonn, Bonn, Germany
| |
Collapse
|
32
|
Abstract
The endocannabinoid system is widely distributed throughout the cardiovascular system. Endocannabinoids play a minimal role in the regulation of cardiovascular function in normal conditions, but are altered in most cardiovascular disorders. In shock, endocannabinoids released within blood mediate the associated hypotension through CB(1) activation. In hypertension, there is evidence for changes in the expression of CB(1), and CB(1) antagonism reduces blood pressure in obese hypertensive and diabetic patients. The endocannabinoid system is also upregulated in cardiac pathologies. This is likely to be cardioprotective, via CB(2) and CB(1) (lesser extent). In the vasculature, endocannabinoids cause vasorelaxation through activation of multiple target sites, inhibition of calcium channels, activation of potassium channels, NO production and the release of vasoactive substances. Changes in the expression or function of any of these pathways alter the vascular effect of endocannabinoids. Endocannabinoids have positive (CB(2)) and negative effects (CB(1)) on the progression of atherosclerosis. However, any negative effects of CB(1) may not be consequential, as chronic CB(1) antagonism in large scale human trials was not associated with significant reductions in atheroma. In neurovascular disorders such as stroke, endocannabinoids are upregulated and protective, involving activation of CB(1), CB(2), TRPV1 and PPARα. Although most of this evidence is from preclinical studies, it seems likely that cannabinoid-based therapies could be beneficial in a range of cardiovascular disorders.
Collapse
Affiliation(s)
- Saoirse Elizabeth O'Sullivan
- Faculty of Medicine and Health Sciences, Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, Royal Derby Hospital Centre, University of Nottingham, Room 4107, Uttoxeter Road, Derby, DE22 3DT, UK.
| |
Collapse
|
33
|
Vujic N, Schlager S, Eichmann TO, Madreiter-Sokolowski CT, Goeritzer M, Rainer S, Schauer S, Rosenberger A, Woelfler A, Doddapattar P, Zimmermann R, Hoefler G, Lass A, Graier WF, Radovic B, Kratky D. Monoglyceride lipase deficiency modulates endocannabinoid signaling and improves plaque stability in ApoE-knockout mice. Atherosclerosis 2015; 244:9-21. [PMID: 26584135 PMCID: PMC4704137 DOI: 10.1016/j.atherosclerosis.2015.10.109] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/27/2015] [Accepted: 10/28/2015] [Indexed: 12/25/2022]
Abstract
Background and aims Monoglyceride lipase (MGL) catalyzes the final step of lipolysis by degrading monoglyceride (MG) to glycerol and fatty acid. MGL also hydrolyzes and thereby deactivates 2-arachidonoyl glycerol (2-AG), the most abundant endocannabinoid in the mammalian system. 2-AG acts as full agonist on cannabinoid receptor type 1 (CB1R) and CB2R, which are mainly expressed in brain and immune cells, respectively. Thus, we speculated that in the absence of MGL, increased 2-AG concentrations mediate CB2R signaling in immune cells to modulate inflammatory responses, thereby affecting the development of atherosclerosis. Methods and results We generated apolipoprotein E (ApoE)/MGL double-knockout (DKO) mice and challenged them with Western-type diet for 9 weeks. Despite systemically increased 2-AG concentrations in DKO mice, CB2R-mediated signaling remains fully functional, arguing against CB2R desensitization. We found increased plaque formation in both en face aortae (1.3-fold, p = 0.028) and aortic valve sections (1.5-fold, p = 0.0010) in DKO mice. Interestingly, DKO mice also presented reduced lipid (12%, p = 0.031) and macrophage content (18%, p = 0.061), elevated intraplaque smooth muscle staining (1.4-fold, p = 0.016) and thicker fibrous caps (1.8-fold, p = 0.0032), together with a higher ratio of collagen to necrotic core area (2.5-fold, p = 0.0003) and expanded collagen content (1.6-fold, p = 0.0007), which suggest formation of less vulnerable atherosclerotic plaques. Treatment with a CB2R inverse agonist prevents these effects in DKO mice, demonstrating that the observed plaque phenotype in DKO mice originates from CB2R activation. Conclusion Loss of MGL modulates endocannabinoid signaling in CB2R-expressing cells, which concomitantly affects the pathogenesis of atherosclerosis. We conclude that despite larger lesion size loss of MGL improves atherosclerotic plaque stability. Thus, pharmacological MGL inhibition may be a novel intervention to reduce plaque rupture.
Collapse
Affiliation(s)
- Nemanja Vujic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Stefanie Schlager
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Thomas O Eichmann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | | | - Madeleine Goeritzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Rainer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Silvia Schauer
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | | | - Albert Woelfler
- Division of Hematology, Medical University of Graz, Graz, Austria
| | - Prakash Doddapattar
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Robert Zimmermann
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Gerald Hoefler
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Branislav Radovic
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria.
| |
Collapse
|
34
|
Netherland-Van Dyke C, Rodgers W, Fulmer M, Lahr Z, Thewke D. Cannabinoid Receptor Type 2 (CB2) Dependent and Independent Effects of WIN55,212-2 on Atherosclerosis in Ldlr-null Mice. ACTA ACUST UNITED AC 2015; 3:53-63. [PMID: 26413498 DOI: 10.12970/2311-052x.2015.03.02.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE WIN55,212-2, a potent synthetic agonist of cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), reduces atherosclerosis in apolipoprotein E (ApoE) null mice. Although pharmacologic evidence suggests the anti-atherosclerotic effects of WIN55,212-2 are mediated via CB2, this remains to be confirmed by genetic studies. Therefore, in this study, we investigated the effects of WIN55,212-2 on development of atherosclerosis in low-density lipoprotein receptor (Ldlr) null mice with and without homozygous deletion of the CB2 gene. METHODS After 6 weeks on an atherogenic diet, groups of CB2+/+ and CB2-/- Ldlr-null mice received a daily intraperitoneal injection of WIN55,212-2 or vehicle. After two weeks, plasma lipid levels and atherosclerosis in the aortic root were quantified. RESULTS Plasma cholesterol and triglyceride levels did not differ between CB2+/+ and CB2-/- mice and WIN55,212-2 had no effect on total cholesterol levels in either genotype. However, triglyceride levels in both CB2+/+ and CB2-/- mice were significantly lowered by WIN55,212-2. The size of aortic root lesions did not differ significantly between CB2+/+ and CB2-/- mice with or without WIN55,212-2 treatment. However, WIN55,212-2 treatment significantly lowered lesional macrophage accumulation in CB2+/+ mice, and lesional smooth muscle content in both CB2+/+ and CB2-/- mice. Lesional apoptosis was also greater in CB2+/+ mice compared to CB2-/-mice, and only reduced by WIN55,212-2 in CB2+/+ mice. Collagen content and elastin fiber fragmentation were unaffected by genotype or WIN55,212-2. CONCLUSIONS WIN55,212-2 treatment does not alter lesion size in Ldlr null-mice, but does modify lesion cellularity via CB2-dependent and CB2-independent mechanisms.
Collapse
Affiliation(s)
| | - Ward Rodgers
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Makenzie Fulmer
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Zachary Lahr
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| | - Douglas Thewke
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, 37614, USA
| |
Collapse
|
35
|
Montecucco F, Lenglet S, Quercioli A, Burger F, Thomas A, Lauer E, da Silva AR, Mach F, Vuilleumier N, Bobbioni-Harsch E, Golay A, Schindler TH, Pataky Z. Gastric bypass in morbid obese patients is associated with reduction in adipose tissue inflammation via N-oleoylethanolamide (OEA)-mediated pathways. Thromb Haemost 2015; 113:838-850. [PMID: 25413674 DOI: 10.1160/th14-06-0506] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/09/2014] [Indexed: 11/05/2022]
Abstract
Paradoxically, morbid obesity was suggested to protect from cardiovascular co-morbidities as compared to overweight/obese patients. We hypothesise that this paradox could be inferred to modulation of the "endocannabinoid" system on systemic and subcutaneous adipose tissue (SAT) inflammation. We designed a translational project including clinical and in vitro studies at Geneva University Hospital. Morbid obese subjects (n=11) were submitted to gastric bypass surgery (GBS) and followed up for one year (post-GBS). Insulin resistance and circulating and SAT levels of endocannabinoids, adipocytokines and CC chemokines were assessed pre- and post-GBS and compared to a control group of normal and overweight subjects (CTL) (n=20). In vitro cultures with 3T3-L1 adipocytes were used to validate findings from clinical results. Morbid obese subjects had baseline lower insulin sensitivity and higher hs-CRP, leptin, CCL5 and anandamide (AEA) levels as compared to CTL. GBS induced a massive weight and fat mass loss, improved insulin sensitivity and lipid profile, decreased C-reactive protein, leptin, and CCL2 levels. In SAT, increased expression of resistin, CCL2, CCL5 and tumour necrosis factor and reduced MGLL were shown in morbid obese patients pre-GBS when compared to CTL. GBS increased all endocannabinoids and reduced adipocytokines and CC chemokines. In morbid obese SAT, inverse correlations independent of body mass index were shown between palmitoylethanolamide (PEA) and N-oleoylethanolamide (OEA) levels and inflammatory molecules. In vitro, OEA inhibited CCL2 secretion from adipocytes via ERK1/2 activation. In conclusion, GBS was associated with relevant clinical, metabolic and inflammatory improvements, increasing endocannabinoid levels in SAT. OEA directly reduced CCL2 secretion via ERK1/2 activation in adipocytes.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Dr. Fabrizio Montecucco, MD, PhD, Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospital, 64 Avenue Roseraie, 1211 Geneva, Switzerland, Tel: +41 22 382 72 38, Fax: +41 22 382 72 45, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cabral GA, Ferreira GA, Jamerson MJ. Endocannabinoids and the Immune System in Health and Disease. Handb Exp Pharmacol 2015; 231:185-211. [PMID: 26408161 DOI: 10.1007/978-3-319-20825-1_6] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Endocannabinoids are bioactive lipids that have the potential to signal through cannabinoid receptors to modulate the functional activities of a variety of immune cells. Their activation of these seven-transmembranal, G protein-coupled receptors sets in motion a series of signal transductional events that converge at the transcriptional level to regulate cell migration and the production of cytokines and chemokines. There is a large body of data that supports a functional relevance for 2-arachidonoylglycerol (2-AG) as acting through the cannabinoid receptor type 2 (CB2R) to inhibit migratory activities for a diverse array of immune cell types. However, unequivocal data that supports a functional linkage of anandamide (AEA) to a cannabinoid receptor in immune modulation remains to be obtained. Endocannabinoids, as typical bioactive lipids, have a short half-life and appear to act in an autocrine and paracrine fashion. Their immediate effective action on immune function may be at localized sites in the periphery and within the central nervous system. It is speculated that endocannabinoids play an important role in maintaining the overall "fine-tuning" of the immune homeostatic balance within the host.
Collapse
Affiliation(s)
- Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Gabriela A Ferreira
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Melissa J Jamerson
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
37
|
Schindler TH, Quercioli A, Valenta I, Ambrosio G, Wahl RL, Dilsizian V. Quantitative Assessment of Myocardial Blood Flow—Clinical and Research Applications. Semin Nucl Med 2014; 44:274-93. [DOI: 10.1053/j.semnuclmed.2014.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Cyclooxygenase metabolism mediates vasorelaxation to 2-arachidonoylglycerol (2-AG) in human mesenteric arteries. Pharmacol Res 2014; 81:74-82. [PMID: 24548820 PMCID: PMC3992009 DOI: 10.1016/j.phrs.2014.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 01/19/2014] [Accepted: 02/03/2014] [Indexed: 01/04/2023]
Abstract
Objective The vasorelaxant effect of 2-arachidonoylglycerol (2-AG) has been well characterised in animals. 2-AG is present in human vascular cells and is up-regulated in cardiovascular pathophysiology. However, the acute vascular actions of 2-AG have not been explored in humans. Approach Mesenteric arteries were obtained from patients receiving colorectal surgery and mounted on a myograph. Arteries were contracted and 2-AG concentration–response curves were carried out. Mechanisms of action were characterised pharmacologically. Post hoc analysis was carried out to assess the effects of cardiovascular disease/risk factors on 2-AG responses. Results 2-AG caused vasorelaxation of human mesenteric arteries, independent of cannabinoid receptor or transient receptor potential vanilloid-1 activation, the endothelium, nitric oxide or metabolism via monoacyglycerol lipase or fatty acid amide hydrolase. 2-AG-induced vasorelaxation was reduced in the presence of indomethacin and flurbiprofen, suggesting a role for cyclooxygenase metabolism 2-AG. Responses to 2-AG were also reduced in the presence of Cay10441, L-161982 and potentiated in the presence of AH6809, suggesting that metabolism of 2-AG produces both vasorelaxant and vasoconstrictor prostanoids. Finally, 2-AG-induced vasorelaxation was dependent on potassium efflux and the presence of extracellular calcium. Conclusions We have shown for the first time that 2-AG causes vasorelaxation of human mesenteric arteries. Vasorelaxation is dependent on COX metabolism, activation of prostanoid receptors (EP4 & IP) and ion channel modulation. 2-AG responses are blunted in patients with cardiovascular risk factors.
Collapse
|
39
|
Pacher P, Kunos G. Modulating the endocannabinoid system in human health and disease--successes and failures. FEBS J 2013; 280:1918-1943. [PMID: 23551849 PMCID: PMC3684164 DOI: 10.1111/febs.12260] [Citation(s) in RCA: 281] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 03/11/2013] [Accepted: 03/19/2013] [Indexed: 12/20/2022]
Abstract
The discovery of the endocannabinoid system, comprising the G-protein coupled cannabinoid 1 and 2 receptors (CB1/2), their endogenous lipid ligands or endocannabinoids, and synthetic and metabolizing enzymes, has triggered an avalanche of experimental studies implicating the endocannabinoid system in a growing number of physiological/pathological functions. These studies have also suggested that modulating the activity of the endocannabinoid system holds therapeutic promise for a broad range of diseases, including neurodegenerative, cardiovascular and inflammatory disorders; obesity/metabolic syndrome; cachexia; chemotherapy-induced nausea and vomiting; and tissue injury and pain, amongst others. However, clinical trials with globally acting CB1 antagonists in obesity/metabolic syndrome, and other studies with peripherally-restricted CB1/2 agonists and inhibitors of the endocannabinoid metabolizing enzyme in pain, have introduced unexpected complexities, suggesting that a better understanding of the pathophysiological role of the endocannabinoid system is required to devise clinically successful treatment strategies.
Collapse
Affiliation(s)
- Pál Pacher
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892-9413, USA.
| | | |
Collapse
|
40
|
Ouyang Q, Tong Q, Feng R, Myint KZ, Yang P, Xie XQ. Trisubstituted Sulfonamides: a New Chemotype for Development of Potent and Selective CB 2 Receptor Inverse Agonists. ACS Med Chem Lett 2013; 4:387-392. [PMID: 24729834 DOI: 10.1021/ml3004236] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
An extensive exploration of the SAR of a trisubstituted sulfonamides series led to the identification of 39, which is a potent and selective CB2 receptor inverse agonist (CB2Ki = 5.4 nM, and CB1Ki = 500 nM). The functional properties measured by cAMP assays indicated that the selected compounds were CB2 inverse agonists with high potency values (34, EC50 = 8.2 nM, and 39, EC50 = 2.5 nM). Furthermore, an osteoclastogenesis bioassay indicated that trisubstituted sulfonamide compounds showed great inhibition of osteoclast formation.
Collapse
Affiliation(s)
- Qin Ouyang
- College of Pharmacy, Third Military Medical University, Chongqing 400038, China
| | | | | | | | | | | |
Collapse
|
41
|
Kim J, Li Y, Watkins BA. Fat to treat fat: emerging relationship between dietary PUFA, endocannabinoids, and obesity. Prostaglandins Other Lipid Mediat 2013; 104-105:32-41. [PMID: 23466458 DOI: 10.1016/j.prostaglandins.2012.11.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/27/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022]
Abstract
Obesity incidence continues to escalate as a global nutrition and health problem. Scientists and clinicians are engaged in numerous research approaches that include behavior, education, applied nutrition studies and clinical therapies to prevent, control and reverse obesity. The common goal is to identify areas of basic and clinical research to understand aspects of human biology that contribute to obesity. In these approaches recent discoveries in biology and advancing technologies are tools employed to prevent and reverse obesity. The purpose of this review article is to present the current knowledge of key components of the endocannabinoid system that contribute to eating, influence systemic energy metabolism, and dietary factors that alter the responses of ligand binding and activation of cannabinoid receptors. Herein the objectives are to (1) describe the relationship between dietary polyunsaturated fatty acids (PUFA) and obesity, (2) explain the role of this signaling system in obesity, and (3) present areas of consequential future research with dietary long chain PUFA. There are several gaps in the knowledge of the role dietary PUFA play in the tone of the endocannabinoid signaling system involving ligands and receptors. Elucidating the PUFA relationship to signaling tone may explain the presumed overstimulation of signaling believed to contribute to over eating, fat accretion and inflammation. Future research in this endeavor must be hypothesis driven utilizing appropriate models for investigations on dietary PUFA, endocannabinoids and obesity.
Collapse
Affiliation(s)
- Jeffrey Kim
- Lipid Chemistry and Molecular Biology Laboratory, Center on Aging, University of Connecticut, Storrs, CT 06269-4004, USA
| | | | | |
Collapse
|
42
|
Lenglet S, Thomas A, Soehnlein O, Montecucco F, Burger F, Pelli G, Galan K, Cravatt B, Staub C, Steffens S. Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice. Arterioscler Thromb Vasc Biol 2013; 33:215-223. [PMID: 23241405 DOI: 10.1161/atvbaha.112.300275] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 12/03/2012] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Endocannabinoid levels are elevated in human and mouse atherosclerosis, but their causal role is not well understood. Therefore, we studied the involvement of fatty acid amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in atherosclerotic plaque vulnerability. METHODS AND RESULTS We assessed atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)FAAH(-/-) mice. Before and after 5, 10, and 15 weeks on high-cholesterol diet, we analyzed weight, serum cholesterol, and endocannabinoid levels, and atherosclerotic lesions in thoracoabdominal aortas and aortic sinuses. Serum levels of FAAH substrates anandamide, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were 1.4- to 2-fold higher in case of FAAH deficiency. ApoE(-/-)FAAH(-/-) mice had smaller plaques with significantly lower content of smooth muscle cells, increased matrix metalloproteinase-9 expression, and neutrophil content. Circulating and bone marrow neutrophil counts were comparable between both genotypes, whereas CXC ligand1 levels were locally elevated in aortas of FAAH-deficient mice. We observed enhanced recruitment of neutrophils, but not monocytes, to large arteries of ApoE(-/-) mice treated with FAAH inhibitor URB597. Spleens of ApoE(-/-)FAAH(-/-) mice had reduced CD4+FoxP3+regulatory T-cell content, and in vitro stimulation of splenocytes revealed significantly elevated interferon-γ and tumor necrosis factor-α production in case of FAAH deficiency. CONCLUSIONS Increased anandamide and related FAAH substrate levels are associated with the development of smaller atherosclerotic plaques with high neutrophil content, accompanied by an increased proinflammatory immune response.
Collapse
MESH Headings
- Amides
- Amidohydrolases/antagonists & inhibitors
- Amidohydrolases/deficiency
- Amidohydrolases/genetics
- Animals
- Aorta/drug effects
- Aorta/enzymology
- Aorta/immunology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/genetics
- Aortic Diseases/immunology
- Aortic Diseases/pathology
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Arachidonic Acids/blood
- Atherosclerosis/enzymology
- Atherosclerosis/genetics
- Atherosclerosis/immunology
- Atherosclerosis/pathology
- Benzamides/pharmacology
- Carbamates/pharmacology
- Cells, Cultured
- Chemokine CXCL1/metabolism
- Cholesterol/blood
- Disease Models, Animal
- Endocannabinoids/blood
- Enzyme Inhibitors/pharmacology
- Ethanolamines/blood
- Genotype
- Inflammation Mediators/metabolism
- Interferon-gamma/metabolism
- Matrix Metalloproteinase 9/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/immunology
- Muscle, Smooth, Vascular/pathology
- Neutrophil Infiltration/drug effects
- Neutrophils/drug effects
- Neutrophils/immunology
- Oleic Acids/blood
- Palmitic Acids/blood
- Phenotype
- Plaque, Atherosclerotic
- Polyunsaturated Alkamides/blood
- Spleen/immunology
- T-Lymphocytes, Regulatory/immunology
- Time Factors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Sébastien Lenglet
- Division of Cardiology, Foundation for Medical Researches, 64 Ave Roseraie, 1211 Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Michel-Monigadon D, Steffens S, Molica F, Mach F, Montecucco F. Update on the endocannabinoid-mediated regulation of gelatinase release in arterial wall physiology and atherosclerotic pathophysiology. Expert Rev Cardiovasc Ther 2012; 10:1481-1486. [PMID: 23253273 DOI: 10.1586/erc.12.145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Endocannabinoids are endogenous bioactive lipids ubiquitously distributed in several tissues (e.g., brain, adipose tissue, liver, heart and arterial vessels), which play a crucial role in atherosclerosis. Endocannabinoids have been shown to promote cell homeostasis and modulate inflammatory bioactivities mainly via the binding to transmembrane receptors (called cannabinoid type 1 and cannabinoid type 2 receptors, respectively). Although other cannabinoid receptors have been recently identified and shown to play a crucial role in cardiovascular pathophysiology, so far, the pharmacological targeting of both cannabinoid type 1 and cannabinoid type 2 receptors has been described as a promising therapeutic target in atherogenesis and associated inflammatory processes. In particular, endocannabinoids have been shown to modulate the release and activation of matrix degrading enzymes (i.e., matrix metalloproteinases [MMPs]) increasing intraplaque vulnerability. In this article the authors describe the pivotal regulatory activity of the endocannabinoid system on gelatinase (MMP-2 and -9) bioactivity in the arterial wall physiology and pathophysiology.
Collapse
Affiliation(s)
- Delphine Michel-Monigadon
- Division of Cardiology, Faculty of Medicine, Geneva University Hospitals, avenue de la Roseraie 64, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Montecucco F, Di Marzo V. At the heart of the matter: the endocannabinoid system in cardiovascular function and dysfunction. Trends Pharmacol Sci 2012; 33:331-340. [PMID: 22503477 DOI: 10.1016/j.tips.2012.03.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/22/2012] [Accepted: 03/05/2012] [Indexed: 12/22/2022]
Abstract
Starting from the well-documented effects of marijuana smoking on heart rate and blood pressure, the cardiovascular effects of Δ⁹-tetrahydrocannabinol (THC, the main psychotropic ingredient of Cannabis) and endocannabinoids [THC endogenous counterparts that activate cannabinoid receptor type 1 (CB₁) and 2 (CB₂)] have been thoroughly investigated. These studies were mostly aimed at establishing the molecular bases of the hypotensive actions of THC, endocannabinoids and related molecules, but also evaluated their therapeutic potential in cardiac injury protection, metabolic cardiovascular risk factors and atherosclerotic plaque vulnerability. The results of these investigations, reviewed here, also served to highlight some of the most peculiar aspects of endocannabinoid signaling, such as redundancy in endocannabinoid targets and the often dualistic role of CB₁ and CB₂ receptors during pathological conditions.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Division of Cardiology, Faculty of Medicine, Foundation for Medical Researches, Geneva University Hospitals, Avenue de la Roseraie 64, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
45
|
Pasquini S, Mugnaini C, Ligresti A, Tafi A, Brogi S, Falciani C, Pedani V, Pesco N, Guida F, Luongo L, Varani K, Borea PA, Maione S, Di Marzo V, Corelli F. Design, synthesis, and pharmacological characterization of indol-3-ylacetamides, indol-3-yloxoacetamides, and indol-3-ylcarboxamides: potent and selective CB2 cannabinoid receptor inverse agonists. J Med Chem 2012; 55:5391-402. [PMID: 22548457 DOI: 10.1021/jm3003334] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In our search for new cannabinoid receptor modulators, we describe herein the design and synthesis of three sets of indole-based ligands characterized by an acetamide, oxalylamide, or carboxamide chain, respectively. Most of the compounds showed affinity for CB2 receptors in the nanomolar range, with K(i) values spanning 3 orders of magnitude (377-0.37 nM), and moderate to good selectivity over CB1 receptors. Their in vitro functional activity as inverse agonists was confirmed in vivo in the formalin test of acute peripheral and inflammatory pain in mice, in which compounds 10a and 11e proved to be able to reverse the effect of the CB2 selective agonist COR167.
Collapse
Affiliation(s)
- Serena Pasquini
- Dipartimento Farmaco Chimico Tecnologico, Università degli Studi di Siena, Via A. Moro, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The endocannabinoid system: a revolving plate in neuro-immune interaction in health and disease. Amino Acids 2012; 45:95-112. [PMID: 22367605 DOI: 10.1007/s00726-012-1252-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 02/14/2012] [Indexed: 12/21/2022]
Abstract
Studies of the last 40 years have brought to light an important physiological network, the endocannabinoid system. Endogenous and exogenous cannabinoids mediate their effects through activation of specific cannabinoid receptors. This modulatory homoeostatic system operates in the regulation of brain function and also in the periphery. The cannabinoid system has been shown to be involved in regulating the immune system. Studies examining the effect of cannabinoid-based drugs on immunity have shown that many cellular and cytokine mechanisms are modulated by these agents, thus raising the hypothesis that these compounds may be of value in the management of chronic inflammatory diseases. The special properties of endocannabinoids as neurotransmitters, their pleiotropic effects and the impact on immune function show that the endocannabinoid system represents a revolving plate of neural and immune interactions. In this paper, we outline current information on immune effects of cannabinoids in health and disease.
Collapse
|
47
|
Murumalla R, Bencharif K, Gence L, Bhattacharya A, Tallet F, Gonthier MP, Petrosino S, di Marzo V, Cesari M, Hoareau L, Roche R. Effect of the Cannabinoid Receptor-1 antagonist SR141716A on human adipocyte inflammatory profile and differentiation. JOURNAL OF INFLAMMATION-LONDON 2011; 8:33. [PMID: 22087859 PMCID: PMC3253048 DOI: 10.1186/1476-9255-8-33] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 11/16/2011] [Indexed: 11/12/2022]
Abstract
Background Obesity is characterized by inflammation, caused by increase in proinflammatory cytokines, a key factor for the development of insulin resistance. SR141716A, a cannabinoid receptor 1 (CB1) antagonist, shows significant improvement in clinical status of obese/diabetic patients. Therefore, we studied the effect of SR141716A on human adipocyte inflammatory profile and differentiation. Methods Adipocytes were obtained from liposuction. Stromal vascular cells were extracted and differentiated into adipocytes. Media and cells were collected for secretory (ELISA) and expression analysis (qPCR). Triglyceride accumulation was observed using oil red-O staining. Cholesterol was assayed by a fluorometric method. 2-AG and anandamide were quantified using isotope dilution LC-MS. TLR-binding experiments have been conducted in HEK-Blue cells. Results In LPS-treated mature adipocytes, SR141716A was able to decrease the expression and secretion of TNF-a. This molecule has the same effect in LPS-induced IL-6 secretion, while IL-6 expression is not changed. Concerning MCP-1, the basal level is down-regulated by SR141716A, but not the LPS-induced level. This effect is not caused by a binding of the molecule to TLR4 (LPS receptor). Moreover, SR141716A restored adiponectin secretion to normal levels after LPS treatment. Lastly, no effect of SR141716A was detected on human pre-adipocyte differentiation, although the compound enhanced adiponectin gene expression, but not secretion, in differentiated pre-adipocytes. Conclusion We show for the first time that some clinical effects of SR141716A are probably directly related to its anti-inflammatory effect on mature adipocytes. This fact reinforces that adipose tissue is an important target in the development of tools to treat the metabolic syndrome.
Collapse
Affiliation(s)
- Ravi Murumalla
- GEICO, Groupe d'Etude sur l'Inflammation et l'Obésité Chronique, Université de La Réunion, plateforme CYROI, 15 avenue René Cassin, 97715 Saint-Denis Messag Cedex, France
| | - Karima Bencharif
- GEICO, Groupe d'Etude sur l'Inflammation et l'Obésité Chronique, Université de La Réunion, plateforme CYROI, 15 avenue René Cassin, 97715 Saint-Denis Messag Cedex, France
| | - Lydie Gence
- GEICO, Groupe d'Etude sur l'Inflammation et l'Obésité Chronique, Université de La Réunion, plateforme CYROI, 15 avenue René Cassin, 97715 Saint-Denis Messag Cedex, France
| | - Amritendu Bhattacharya
- GEICO, Groupe d'Etude sur l'Inflammation et l'Obésité Chronique, Université de La Réunion, plateforme CYROI, 15 avenue René Cassin, 97715 Saint-Denis Messag Cedex, France
| | - Frank Tallet
- Service de biochimie, Centre Hospitalier Félix Guyon, 97400 Saint-Denis, La Réunion, France
| | - Marie-Paule Gonthier
- GEICO, Groupe d'Etude sur l'Inflammation et l'Obésité Chronique, Université de La Réunion, plateforme CYROI, 15 avenue René Cassin, 97715 Saint-Denis Messag Cedex, France
| | - Stefania Petrosino
- Endocannabinoid Research Group at the Institute of Biomolecular Chemistry of the National Research Council, Pozzuoli (NA), Italy
| | - Vincenzo di Marzo
- Endocannabinoid Research Group at the Institute of Biomolecular Chemistry of the National Research Council, Pozzuoli (NA), Italy
| | - Maya Cesari
- GEICO, Groupe d'Etude sur l'Inflammation et l'Obésité Chronique, Université de La Réunion, plateforme CYROI, 15 avenue René Cassin, 97715 Saint-Denis Messag Cedex, France
| | - Laurence Hoareau
- GEICO, Groupe d'Etude sur l'Inflammation et l'Obésité Chronique, Université de La Réunion, plateforme CYROI, 15 avenue René Cassin, 97715 Saint-Denis Messag Cedex, France
| | - Régis Roche
- GEICO, Groupe d'Etude sur l'Inflammation et l'Obésité Chronique, Université de La Réunion, plateforme CYROI, 15 avenue René Cassin, 97715 Saint-Denis Messag Cedex, France
| |
Collapse
|
48
|
Piscitelli F, Carta G, Bisogno T, Murru E, Cordeddu L, Berge K, Tandy S, Cohn JS, Griinari M, Banni S, Di Marzo V. Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice. Nutr Metab (Lond) 2011; 8:51. [PMID: 21749725 PMCID: PMC3154144 DOI: 10.1186/1743-7075-8-51] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/13/2011] [Indexed: 12/24/2022] Open
Abstract
Background Omega-3 polyunsaturated fatty acids (ω-3-PUFA) are known to ameliorate several metabolic risk factors for cardiovascular disease, and an association between elevated peripheral levels of endogenous ligands of cannabinoid receptors (endocannabinoids) and the metabolic syndrome has been reported. We investigated the dose-dependent effects of dietary ω-3-PUFA supplementation, given as krill oil (KO), on metabolic parameters in high fat diet (HFD)-fed mice and, in parallel, on the levels, in inguinal and epididymal adipose tissue (AT), liver, gastrocnemius muscle, kidneys and heart, of: 1) the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), 2) two anandamide congeners which activate PPARα but not cannabinoid receptors, N-oleoylethanolamine and N-palmitoylethanolamine, and 3) the direct biosynthetic precursors of these compounds. Methods Lipids were identified and quantified using liquid chromatography coupled to atmospheric pressure chemical ionization single quadrupole mass spectrometry (LC-APCI-MS) or high resolution ion trap-time of flight mass spectrometry (LC-IT-ToF-MS). Results Eight-week HFD increased endocannabinoid levels in all tissues except the liver and epididymal AT, and KO reduced anandamide and/or 2-AG levels in all tissues but not in the liver, usually in a dose-dependent manner. Levels of endocannabinoid precursors were also generally down-regulated, indicating that KO affects levels of endocannabinoids in part by reducing the availability of their biosynthetic precursors. Usually smaller effects were found of KO on OEA and PEA levels. Conclusions Our data suggest that KO may promote therapeutic benefit by reducing endocannabinoid precursor availability and hence endocannabinoid biosynthesis.
Collapse
Affiliation(s)
- Fabiana Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (NA), Italy
| | - Gianfranca Carta
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Italy; and Nutrisearch s.r.l. Pula (CA) Italy
| | - Tiziana Bisogno
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (NA), Italy
| | - Elisabetta Murru
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Italy; and Nutrisearch s.r.l. Pula (CA) Italy
| | - Lina Cordeddu
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Italy; and Nutrisearch s.r.l. Pula (CA) Italy
| | | | - Sally Tandy
- Nutrition and Metabolism Group, Heart Research Institute, Sydney, Australia
| | - Jeffrey S Cohn
- Nutrition and Metabolism Group, Heart Research Institute, Sydney, Australia
| | | | - Sebastiano Banni
- Dipartimento di Biologia Sperimentale, Università di Cagliari, Italy; and Nutrisearch s.r.l. Pula (CA) Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, CNR, Pozzuoli (NA), Italy
| |
Collapse
|
49
|
Quercioli A, Pataky Z, Vincenti G, Makoundou V, Di Marzo V, Montecucco F, Carballo S, Thomas A, Staub C, Steffens S, Seimbille Y, Golay A, Ratib O, Harsch E, Mach F, Schindler TH. Elevated endocannabinoid plasma levels are associated with coronary circulatory dysfunction in obesity. Eur Heart J 2011; 32:1369-1378. [PMID: 21303779 DOI: 10.1093/eurheartj/ehr029] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
AIMS Aim of this study was to evaluate a possible association between endocannabinoid (EC) plasma levels, such as anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and coronary circulatory function in obesity. METHODS AND RESULTS Myocardial blood flow (MBF) responses to cold pressor test (CPT) and during pharmacological vasodilation with dipyridamole were measured with (13)N-ammonia PET/CT. Study participants (n = 77) were divided into three groups based on their body mass index (BMI, kg/m(2)): control group 20 ≤ BMI <25 (n = 21); overweight group, 25 ≤ BMI <30 (n = 26); and obese group, BMI ≥ 30 (n = 30). Anandamide plasma levels, but not 2-AG plasma levels, were significantly elevated in obesity as compared with controls, respectively [0.68 (0.53, 0.78) vs. 0.56 (0.47, 0.66) ng/mL, P = 0.020, and 2.2 (1.21, 4.59) vs. 2.0 (0.80, 5.90) ng/mL, P = 0.806)]. The endothelium-related change in MBF during CPT from rest (ΔMBF) progressively declined in overweight and obese when compared with control group [0.21 (0.10, 0.27) and 0.09 (-0.01, 0.15) vs. 0.26 (0.23, 0.39) mL/g/min; P = 0.010 and P = 0.0001, respectively). Compared with controls, hyperaemic MBFs were significantly lower in overweight and obese individuals [2.39 (1.97, 2.62) vs. 1.98 (1.69, 2.26) and 2.10 (1.76, 2.36); P = 0.007 and P = 0.042, respectively)]. In obese individuals, AEA and 2-AG plasma levels were inversely correlated with ΔMBF to CPT (r = -0.37, P = 0.046 and r = -0.48, P = 0.008) and hyperaemic MBFs (r = -0.38, P = 0.052 and r = -0.45, P = 0.017), respectively. CONCLUSIONS Increased EC plasma levels of AEA and 2-AG are associated with coronary circulatory dysfunction in obese individuals. This observation might suggest increases in EC plasma levels as a novel endogenous cardiovascular risk factor in obesity, but needing further investigations.
Collapse
Affiliation(s)
- Alessandra Quercioli
- Department of Internal Medicine, Cardiovascular Center, University Hospitals of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Cannabinoid receptor 2 signaling does not modulate atherogenesis in mice. PLoS One 2011; 6:e19405. [PMID: 21541300 PMCID: PMC3082575 DOI: 10.1371/journal.pone.0019405] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Accepted: 04/04/2011] [Indexed: 01/25/2023] Open
Abstract
Background Strong evidence supports a protective role of the cannabinoid receptor 2 (CB2) in inflammation and atherosclerosis. However, direct proof of its involvement in lesion formation is lacking. Therefore, the present study aimed to characterize the role of the CB2 receptor in Murine atherogenesis. Methods and Findings Low density lipoprotein receptor-deficient (LDLR−/−) mice subjected to intraperitoneal injections of the selective CB2 receptor agonist JWH-133 or vehicle three times per week consumed high cholesterol diet (HCD) for 16 weeks. Surprisingly, intimal lesion size did not differ between both groups in sections of the aortic roots and arches, suggesting that CB2 activation does not modulate atherogenesis in vivo. Plaque content of lipids, macrophages, smooth muscle cells, T cells, and collagen were also similar between both groups. Moreover, CB2−/−/LDLR−/− mice developed lesions of similar size containing more macrophages and lipids but similar amounts of smooth muscle cells and collagen fibers compared with CB2+/+/LDLR−/− controls. While JWH-133 treatment reduced intraperitoneal macrophage accumulation in thioglycollate-illicited peritonitis, neither genetic deficiency nor pharmacologic activation of the CB2 receptor altered inflammatory cytokine expression in vivo or inflammatory cell adhesion in the flow chamber in vitro. Conclusion Our study demonstrates that both activation and deletion of the CB2 receptor do not relevantly modulate atherogenesis in mice. Our data do not challenge the multiple reports involving CB2 in other inflammatory processes. However, in the context of atherosclerosis, CB2 does not appear to be a suitable therapeutic target for reduction of the atherosclerotic plaque.
Collapse
|