1
|
Zhu Z, Ju J, Zhang M, Yang H, Wei W, Zhang Y. Bisphenol A disturbs hepatic apolipoprotein A1 expression and cholesterol metabolism in rare minnow Gobiocypris rarus. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109239. [PMID: 34748970 DOI: 10.1016/j.cbpc.2021.109239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/07/2021] [Accepted: 10/31/2021] [Indexed: 11/03/2022]
Abstract
Bisphenol A (BPA) is a well-known plasticizer, which is widely distributed in the aquatic environment. Lots of studies showed that BPA could lead to lipid metabolism disorder in fish, but few studies studied the mechanism from the perspective of lipid transport. Apolipoprotein A1 (ApoA1) is the main component of high-density lipoprotein (HDL), and plays important roles in reverse cholesterol transport (RCT). In this study, we investigated the effect and molecular mechanism of BPA on ApoA1 and its effect on cholesterol in adult male rare minnow. Results showed that BPA could disturb hepatic ApoA1 expression through regulating Esrrg recruitment and DNA methylation in its promoter region, and ultimately up-regulated ApoA1 protein levels. The increased hepatic ApoA1 improved HDL-C levels, enhanced RCT, and disrupted cholesterol levels. The present study reveals the effect and mechanism of BPA on fish cholesterol metabolism from the perspective of cholesterol transport.
Collapse
Affiliation(s)
- Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jian Ju
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Meng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Zhang Y, Zhang M, Zhu Z, Yang H, Wei W, Li B. Bisphenol A regulates apolipoprotein A1 expression through estrogen receptors and DNA methlylation and leads to cholesterol disorder in rare minnow testis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 241:105999. [PMID: 34678657 DOI: 10.1016/j.aquatox.2021.105999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) is a well-known plasticizer that widely distributed in the aquatic environment. BPA has many adverse effects on reproduction. However, few studies have investigated the mechanism of BPA affecting reproduction from the perspective of lipid metabolism. Apolipoprotein A1 (ApoA1) is the major component of high-density lipoprotein (HDL), and plays critical roles in reverse cholesterol transport (RCT). In this study, in order to investigate the effect and molecular mechanism of BPA on testicular ApoA1 and the role of ApoA1 in BPA induced abnormal spermatogenesis, adult male rare minnow Gobiocypris rarus were exposed to 15 μg/L of BPA for 1, 3 and 5 weeks. Results showed that BPA could significantly affect testicular ApoA1 mRNA and protein levels, testicular cholesterol levels, plasmatic sex hormone levels and the integrity of sperm head membrane. The main mechanism of BPA regulating ApoA1 expression is to alter Esr recruitment and CpG sites DNA methylation in ApoA1 promoter. The induced ApoA1 up-regulated high density lipoprotein cholesterol levels and enhanced RCT, and finally decreased the testicular free cholesterol levels. This is likely a key mechanism by which BPA induces sex hormone disorder and sperm head membrane damage. The present study reveals the mechanism by which BPA interferes with spermatogenesis from the perspective of cholesterol transport.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Meng Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Zhu Zhu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Hui Yang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Wenzhi Wei
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Bichun Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Morris G, Puri BK, Bortolasci CC, Carvalho A, Berk M, Walder K, Moreira EG, Maes M. The role of high-density lipoprotein cholesterol, apolipoprotein A and paraoxonase-1 in the pathophysiology of neuroprogressive disorders. Neurosci Biobehav Rev 2021; 125:244-263. [PMID: 33657433 DOI: 10.1016/j.neubiorev.2021.02.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 12/11/2022]
Abstract
Lowered high-density lipoprotein (HDL) cholesterol has been reported in major depressive disorder, bipolar disorder, first episode of psychosis, and schizophrenia. HDL, its major apolipoprotein component, ApoA1, and the antioxidant enzyme paraoxonase (PON)1 (which is normally bound to ApoA1) all have anti-atherogenic, antioxidant, anti-inflammatory, and immunomodulatory roles, which are discussed in this paper. The paper details the pathways mediating the anti-inflammatory effects of HDL, ApoA1 and PON1 and describes the mechanisms leading to compromised HDL and PON1 levels and function in an environment of chronic inflammation. The molecular mechanisms by which changes in HDL, ApoA1 and PON1 might contribute to the pathophysiology of the neuroprogressive disorders are explained. Moreover, the anti-inflammatory actions of ApoM-mediated sphingosine 1-phosphate (S1P) signalling are reviewed as well as the deleterious effects of chronic inflammation and oxidative stress on ApoM/S1P signalling. Finally, therapeutic interventions specifically aimed at improving the levels and function of HDL and PON1 while reducing levels of inflammation and oxidative stress are considered. These include the so-called Mediterranean diet, extra virgin olive oil, polyphenols, flavonoids, isoflavones, pomegranate juice, melatonin and the Mediterranean diet combined with the ketogenic diet.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Chiara C Bortolasci
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia.
| | - Andre Carvalho
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Michael Berk
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, The Department of Psychiatry and The Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Ken Walder
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, CMMR Strategic Research Centre, School of Medicine, Geelong, Victoria, Australia
| | - Estefania G Moreira
- Post-Graduation Program in Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Michael Maes
- Deakin University, IMPACT - The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, King Chulalongkorn University Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|