1
|
Parker N, Ching CRK. Mapping Structural Neuroimaging Trajectories in Bipolar Disorder: Neurobiological and Clinical Implications. Biol Psychiatry 2025:S0006-3223(25)00107-6. [PMID: 39956253 DOI: 10.1016/j.biopsych.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/23/2025] [Accepted: 02/11/2025] [Indexed: 02/18/2025]
Abstract
Neuroimaging is a powerful noninvasive method for studying brain alterations in bipolar disorder (BD). To date, most neuroimaging studies of BD have included smaller cross-sectional samples reporting case versus control comparisons, revealing small to moderate effect sizes. In this narrative review, we discuss the current state of structural neuroimaging studies using magnetic resonance imaging, which inform our understanding of altered brain trajectories in BD across the lifespan. Alternative methodologies such as those that model patient deviations from age-specific norms are discussed, which may help derive new markers of BD pathophysiology. We discuss evidence from neuroimaging genetics and transcriptomics studies, which attempt to bridge the gap between macroscale brain variations and underlying microscale neurodevelopmental mechanisms. We conclude with a look toward the future and how ambitious investments in longitudinal, deeply phenotyped, population-based cohorts can improve modeling of complex clinical factors and provide more clinically actionable brain markers for BD.
Collapse
Affiliation(s)
- Nadine Parker
- Centre for Precision Psychiatry, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of the University of Southern California, Marina del Rey, Los Angeles, California.
| |
Collapse
|
2
|
Jiang X, Zai CC, Kennedy KG, Zou Y, Nikolova YS, Felsky D, Young LT, MacIntosh BJ, Goldstein BI. Association of polygenic risk for bipolar disorder with grey matter structure and white matter integrity in youth. Transl Psychiatry 2023; 13:322. [PMID: 37852985 PMCID: PMC10584947 DOI: 10.1038/s41398-023-02607-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023] Open
Abstract
There is a gap in knowledge regarding the polygenic underpinnings of brain anomalies observed in youth bipolar disorder (BD). This study examined the association of a polygenic risk score for BD (BD-PRS) with grey matter structure and white matter integrity in youth with and without BD. 113 participants were included in the analyses, including 78 participants with both T1-weighted and diffusion-weighted MRI images, 32 participants with T1-weighted images only, and 3 participants with diffusion-weighted images only. BD-PRS was calculated using PRS-CS-auto and was based on independent adult genome-wide summary statistics. Vertex- and voxel-wise analyses examined the associations of BD-PRS with grey matter metrics (cortical volume [CV], cortical surface area [CSA], cortical thickness [CTh]) and fractional anisotropy [FA] in the combined sample, and separately in BD and HC. In the combined sample of participants with T1-weighted images (n = 110, 66 BD, 44 HC), higher BD-PRS was associated with smaller grey matter metrics in frontal and temporal regions. In within-group analyses, higher BD-PRS was associated with lower CTh of frontal, temporal, and fusiform gyrus in BD, and with lower CV and CSA of superior frontal gyrus in HC. In the combined sample of participants with diffusion-weighted images (n = 81, 49 BD, 32 HC), higher BD-PRS was associated with lower FA in widespread white matter regions. In summary, BD-PRS calculated based on adult genetic data was negatively associated with grey matter structure and FA in youth in regions implicated in BD, which may suggest neuroimaging markers of vulnerability to BD. Future longitudinal studies are needed to examine whether BD-PRS predicts neurodevelopmental changes in BD vs. HC and its interaction with course of illness and long-term medication use.
Collapse
Affiliation(s)
- Xinyue Jiang
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clement C Zai
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yi Zou
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Yuliya S Nikolova
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Daniel Felsky
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - L Trevor Young
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
- Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Sandra E Black Centre for Brain Resilience and Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
3
|
Thiel K, Meinert S, Winter A, Lemke H, Waltemate L, Breuer F, Gruber M, Leenings R, Wüste L, Rüb K, Pfarr JK, Stein F, Brosch K, Meller T, Ringwald KG, Nenadić I, Krug A, Repple J, Opel N, Koch K, Leehr EJ, Bauer J, Grotegerd D, Hahn T, Kircher T, Dannlowski U. Reduced fractional anisotropy in bipolar disorder v. major depressive disorder independent of current symptoms. Psychol Med 2023; 53:4592-4602. [PMID: 35833369 PMCID: PMC10388324 DOI: 10.1017/s0033291722001490] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Patients with bipolar disorder (BD) show reduced fractional anisotropy (FA) compared to patients with major depressive disorder (MDD). Little is known about whether these differences are mood state-independent or influenced by acute symptom severity. Therefore, the aim of this study was (1) to replicate abnormalities in white matter microstructure in BD v. MDD and (2) to investigate whether these vary across depressed, euthymic, and manic mood. METHODS In this cross-sectional diffusion tensor imaging study, n = 136 patients with BD were compared to age- and sex-matched MDD patients and healthy controls (HC) (n = 136 each). Differences in FA were investigated using tract-based spatial statistics. Using interaction models, the influence of acute symptom severity and mood state on the differences between patient groups were tested. RESULTS Analyses revealed a main effect of diagnosis on FA across all three groups (ptfce-FWE = 0.003). BD patients showed reduced FA compared to both MDD (ptfce-FWE = 0.005) and HC (ptfce-FWE < 0.001) in large bilateral clusters. These consisted of several white matter tracts previously described in the literature, including commissural, association, and projection tracts. There were no significant interaction effects between diagnosis and symptom severity or mood state (all ptfce-FWE > 0.704). CONCLUSIONS Results indicated that the difference between BD and MDD was independent of depressive and manic symptom severity and mood state. Disruptions in white matter microstructure in BD might be a trait effect of the disorder. The potential of FA values to be used as a biomarker to differentiate BD from MDD should be further addressed in future studies using longitudinal designs.
Collapse
Affiliation(s)
- Katharina Thiel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute of Translational Neuroscience, University of Münster, Münster, Germany
| | - Alexandra Winter
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Hannah Lemke
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lena Waltemate
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabian Breuer
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ramona Leenings
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lucia Wüste
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Kathrin Rüb
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | | | - Frederike Stein
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Tina Meller
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Kai Gustav Ringwald
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Jonathan Repple
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Katharina Koch
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Elisabeth J. Leehr
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Jochen Bauer
- Department of Clinical Radiology, University of Muenster, Muenster, Germany
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tim Hahn
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Marburg, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| |
Collapse
|
4
|
Seitz-Holland J, Nägele FL, Kubicki M, Pasternak O, Cho KIK, Hough M, Mulert C, Shenton ME, Crow TJ, James ACD, Lyall AE. Shared and distinct white matter abnormalities in adolescent-onset schizophrenia and adolescent-onset psychotic bipolar disorder. Psychol Med 2023; 53:4707-4719. [PMID: 35796024 PMCID: PMC11119277 DOI: 10.1017/s003329172200160x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND While adolescent-onset schizophrenia (ADO-SCZ) and adolescent-onset bipolar disorder with psychosis (psychotic ADO-BPD) present a more severe clinical course than their adult forms, their pathophysiology is poorly understood. Here, we study potentially state- and trait-related white matter diffusion-weighted magnetic resonance imaging (dMRI) abnormalities along the adolescent-onset psychosis continuum to address this need. METHODS Forty-eight individuals with ADO-SCZ (20 female/28 male), 15 individuals with psychotic ADO-BPD (7 female/8 male), and 35 healthy controls (HCs, 18 female/17 male) underwent dMRI and clinical assessments. Maps of extracellular free-water (FW) and fractional anisotropy of cellular tissue (FAT) were compared between individuals with psychosis and HCs using tract-based spatial statistics and FSL's Randomise. FAT and FW values were extracted, averaged across all voxels that demonstrated group differences, and then utilized to test for the influence of age, medication, age of onset, duration of illness, symptom severity, and intelligence. RESULTS Individuals with adolescent-onset psychosis exhibited pronounced FW and FAT abnormalities compared to HCs. FAT reductions were spatially more widespread in ADO-SCZ. FW increases, however, were only present in psychotic ADO-BPD. In HCs, but not in individuals with adolescent-onset psychosis, FAT was positively related to age. CONCLUSIONS We observe evidence for cellular (FAT) and extracellular (FW) white matter abnormalities in adolescent-onset psychosis. Although cellular white matter abnormalities were more prominent in ADO-SCZ, such alterations may reflect a shared trait, i.e. neurodevelopmental pathology, present across the psychosis spectrum. Extracellular abnormalities were evident in psychotic ADO-BPD, potentially indicating a more dynamic, state-dependent brain reaction to psychosis.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Felix L. Nägele
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
| | - Marek Kubicki
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Kang Ik K. Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Morgan Hough
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Christoph Mulert
- Psychiatry Neuroimaging Branch, Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, University of Hamburg, Hamburg, Germany
- Centre for Psychiatry and Psychotherapy, Justus-Liebig-University, Giessen, Germany
| | - Martha E. Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy J. Crow
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Anthony C. D. James
- SANE POWIC, University Department of Psychiatry, Warneford Hospital, Oxford, UK
- Highfield Unit, University Department of Psychiatry, Warneford Hospital, Oxford, UK
| | - Amanda E. Lyall
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Robledo-Rengifo P, Palacio-Ortiz JD, García-Valencia J, Vargas-Upegui C. Is structural connectivity different in child and adolescent relatives of patients with bipolar disorder? A narrative review according to studies with DTI. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2023; 52:146-155. [PMID: 37474351 DOI: 10.1016/j.rcpeng.2021.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 07/22/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) has been associated with a decrease in white matter integrity. Diffusion tensor imaging (DTI) studies have enabled these changes to be elucidated with higher quality. Due to BD's high heritability, some studies have been conducted in relatives of BD patients looking at white matter integrity, and have found that structural connectivity may also be affected. This alteration has been proposed as a potential BD biomarker of vulnerability. However, there are few studies in children and adolescents. OBJECTIVE To conduct a review of the literature on changes in white matter integrity determined by DTI in high-risk children and adolescents. RESULTS Brain structural connectivity in the paediatric population is described in studies using DTI. Changes in the myelination process from its evolution within normal neurodevelopment to the findings in fractional anisotropy (FA) in BD patients and their high-risk relatives are also described. CONCLUSIONS Studies show that both BD patients and their at-risk relatives present a decrease in FA in specific brain regions. Studies in children and adolescents with a high risk of BD, indicate a reduced FA in axonal tracts involved in emotional and cognitive functions. Decreased FA can be considered as a vulnerability biomarker for BD.
Collapse
Affiliation(s)
- Paula Robledo-Rengifo
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Palacio-Ortiz
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Grupo de Trastornos del Ánimo, Hospital San Vicente Fundación, Medellín, Colombia.
| | - Jenny García-Valencia
- Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Cristian Vargas-Upegui
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Grupo de Trastornos del Ánimo, Hospital San Vicente Fundación, Medellín, Colombia
| |
Collapse
|
6
|
Zou Y, Grigorian A, Kennedy KG, Zai CC, Shao S, Kennedy JL, Andreazza AC, Ameis SH, Heyn C, Maclntosh BJ, Goldstein BI. Differential association of antioxidative defense genes with white matter integrity in youth bipolar disorder. Transl Psychiatry 2022; 12:504. [PMID: 36476443 PMCID: PMC9729619 DOI: 10.1038/s41398-022-02261-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 11/03/2022] [Accepted: 11/18/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress is associated with white matter diffusion metrics in adults with bipolar disorder (BD). We examined the association of single-nucleotide polymorphisms in the oxidative stress system, superoxide dismutase-2 (SOD2) rs4880 and glutathione peroxidase-3 (GPX3) rs3792797 with fractional anisotropy (FA) and radial diffusivity (RD) in youth with BD. Participants included 104 youth (age 17.5 ± 1.7 years; 58 BD, 46 healthy controls). Saliva samples were obtained for genotyping, and diffusion tensor imaging was acquired. Voxel-wise whole-brain white matter diffusion analyses controlled for age, sex, and race. There were significant diagnosis-by-SOD2 rs4880 interaction effects for FA and RD in major white matter tracts. Within BD, the group with two copies of the G-allele (GG) showed lower FA and higher RD than A-allele carriers. Whereas within the control group, the GG group showed higher FA and lower RD than A-allele carriers. Additionally, FA was higher and RD was lower within the control GG group compared to the BD GG group. No significant findings were observed for GPX3 rs3793797. The current study revealed that, within matter tracts known to differ in BD, associations of SOD2 rs4880 GG genotype with both FA and RD differed between BD vs healthy control youth. The SOD2 enzyme encoded by the G-allele, has higher antioxidant capacity than the enzyme encoded by the A-allele. We speculate that the current findings of lower FA and higher RD of the BD GG group compared to the other groups reflects attenuation of the salutary antioxidant effects of GG genotype on white matter integrity in youth with BD, in part due to predisposition to oxidative stress. Future studies incorporating other genetic markers and oxidative stress biomarkers are warranted.
Collapse
Affiliation(s)
- Yi Zou
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Anahit Grigorian
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Kody G Kennedy
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Clement C Zai
- Psychiatric Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Suyi Shao
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - James L Kennedy
- Psychiatric Neurogenetics Section, Tanenbaum Centre for Pharmacogenetics, Molecular Brain Science Department, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Ana C Andreazza
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada
| | - Stephanie H Ameis
- Cundill Centre for Child and Youth Depression, Margaret and Wallace McCain Centre for Child, Youth & Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Chinthaka Heyn
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Bradley J Maclntosh
- Heart and Stroke Foundation, Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Benjamin I Goldstein
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada.
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, M5T 1R8, Canada.
| |
Collapse
|
7
|
Investigation of endophenotype potential of decreased fractional anisotropy in pediatric bipolar disorder patients and unrelated offspring of bipolar disorder patients. CNS Spectr 2022; 27:709-715. [PMID: 34044907 DOI: 10.1017/s1092852921000584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Bipolar disorder (BD) is a severe psychiatric disorder associated with structural and functional brain abnormalities, some of which have been found in unaffected relatives as well. In this study, we examined the potential role of decreased fractional anisotropy (FA) as a BD endophenotype, in adolescents at high risk for BD. METHODS We included 15 offspring of patients with BD, 16 pediatric BD patients, and 16 matched controls. Diffusion weighted scans were obtained on a 3T scanner using an echo-planar sequence. Scans were segmented using FreeSurfer. RESULTS Our results showed significantly decreased FA in six brain areas of offspring group; left superior temporal gyrus (LSTG; P < .0001), left transverse temporal gyrus (LTTG; P = .002), left banks of the superior temporal sulcus (LBSTS; P = .002), left anterior cingulum (LAC; P = .003), right temporal pole (RTP; P = .004) and left frontal pole (LFP; P = .017). On analysis, LSTG, LAC, and RTP demonstrated a potential to be an endophenotype when comparing all three groups. FA values in three regions, LBSTS, LTTG, and LFP were increased only in controls. CONCLUSION Our findings point at decreased FA as a possible endophenotype for BD, as they were found in children of patients with BD. Most of these areas were previously found to have morphological and functional changes in adult and pediatric BD, and are thought to play important roles in affected domains of functioning. Prospective follow up studies should be performed to detect reliability of decreased FA as an endophenotype and effects of treatment on FA.
Collapse
|
8
|
Roberts G, Wen W, Ridgway K, Ho C, Gooch P, Leung V, Williams T, Breakspear M, Mitchell PB. Hippocampal cingulum white matter increases over time in young people at high genetic risk for bipolar disorder. J Affect Disord 2022; 314:325-332. [PMID: 35878837 DOI: 10.1016/j.jad.2022.07.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a strongly familial psychiatric disorder associated with white matter (WM) brain abnormalities. It is unclear whether such abnormalities are present in relatives without BD, and little is known about WM trajectories in those at increased genetic risk. METHODS Diffusion magnetic resonance imaging (dMRI) data were acquired at baseline and after two years in 91 unaffected individuals with a first-degree relative with bipolar disorder (HR), and 85 individuals with no family history of mental illness (CON). All participants were aged between 12 and 30 years at baseline. We examined longitudinal change in Fractional Anisotropy (FA) using tract-based spatial statistics (TBSS). RESULTS Compared to the CON group, HR participants showed a significant increase in FA in the right cingulum (hippocampus) (CGH) over a two-year period (p < .05, FDR corrected). This effect was more pronounced in HR individuals without a lifetime diagnosis of a mood disorder than those with a mood disorder. LIMITATIONS While our study is well powered to achieve the primary objectives, our sub-group analyses were under powered. CONCLUSIONS In one of the very few longitudinal neuroimaging studies of young people at high risk for BD, this study reports novel evidence of atypical white matter development in HR individuals in a key cortico-limbic tract involved in emotion regulation. Our findings also suggest that this different white matter developmental trajectory may be stronger in HR individuals without affective psychopathology. As such, increases in FA in the right CGH of HR participants may be a biomarker of resilience to mood disorders.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia.
| | - W Wen
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - K Ridgway
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - C Ho
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - P Gooch
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - V Leung
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - T Williams
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| | - M Breakspear
- School of Psychology, Faculty of Science, Discipline of Psychiatry, Faculty of Health and Medicine, University of Newcastle, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia
| |
Collapse
|
9
|
Roberts G, Perry A, Ridgway K, Leung V, Campbell M, Lenroot R, Mitchell PB, Breakspear M. Longitudinal Changes in Structural Connectivity in Young People at High Genetic Risk for Bipolar Disorder. Am J Psychiatry 2022; 179:350-361. [PMID: 35343756 DOI: 10.1176/appi.ajp.21010047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Recent studies of patients with bipolar disorder or at high genetic risk reveal structural dysconnections among key brain networks supporting cognitive and affective processes. Understanding the longitudinal trajectories of these networks across the peak age range of bipolar disorder onset could inform mechanisms of illness onset or resilience. METHODS Longitudinal diffusion-weighted MRI and phenotypic data were acquired at baseline and after 2 years in 183 individuals ages 12-30 years in two cohorts: 97 unaffected individuals with a first-degree relative with bipolar disorder (the high-risk group) and 86 individuals with no family history of mental illness (the control group). Whole-brain structural networks were derived using tractography, and longitudinal changes in these networks were studied using network-based statistics and mixed linear models. RESULTS Both groups showed widespread longitudinal changes, comprising both increases and decreases in structural connectivity, consistent with a shared neurodevelopmental process. On top of these shared changes, high-risk participants showed weakening of connectivity in a network encompassing the left inferior and middle frontal areas, left striatal and thalamic structures, the left fusiform, and right parietal and occipital regions. Connections among these regions strengthened in the control group, whereas they weakened in the high-risk group, shifting toward a cohort with established bipolar disorder. There was marginal evidence for even greater network weakening in those who had their first manic or hypomanic episode before follow-up. CONCLUSIONS Neurodevelopment from adolescence into early adulthood is associated with a substantial reorganization of structural brain networks. Differences in these maturational processes occur in a multisystem network in individuals at high genetic risk of bipolar disorder. This may represent a novel candidate to understand resilience and predict conversion to bipolar disorder.
Collapse
Affiliation(s)
- Gloria Roberts
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Alistair Perry
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Kate Ridgway
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Vivian Leung
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Megan Campbell
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Rhoshel Lenroot
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| | - Michael Breakspear
- School of Psychiatry, University of New South Wales, Randwick, Australia (Roberts, Ridgway, Leung, Mitchell); Department of Clinical Neurosciences, University of Cambridge, and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, U.K. (Perry); Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, U.K. (Perry); QIMR Berghofer Medical Research Institute, Brisbane, Australia (Perry, Breakspear); School of Psychology, College of Science, and Discipline of Psychiatry, College of Health and Medicine, University of Newcastle, Newcastle, Australia (Campbell, Breakspear); Neuroscience Research Australia, Randwick, Australia (Lenroot); University of New Mexico, Albuquerque (Lenroot)
| |
Collapse
|
10
|
Xu M, Zhang W, Hochwalt P, Yang C, Liu N, Qu J, Sun H, DelBello MP, Lui S, Nery FG. Structural connectivity associated with familial risk for mental illness: A meta‐analysis of diffusion tensor imaging studies in relatives of patients with severe mental disorders. Hum Brain Mapp 2022; 43:2936-2950. [PMID: 35285560 PMCID: PMC9120564 DOI: 10.1002/hbm.25827] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/23/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023] Open
Abstract
Schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD) are heritable conditions with overlapping genetic liability. Transdiagnostic and disorder‐specific brain changes associated with familial risk for developing these disorders remain poorly understood. We carried out a meta‐analysis of diffusion tensor imaging (DTI) studies to investigate white matter microstructure abnormalities in relatives that might correspond to shared and discrete biomarkers of familial risk for psychotic or mood disorders. A systematic search of PubMed and Embase was performed to identify DTI studies in relatives of SCZ, BD, and MDD patients. Seed‐based d Mapping software was used to investigate global differences in fractional anisotropy (FA) between overall and disorder‐specific relatives and healthy controls (HC). Our search identified 25 studies that met full inclusion criteria. A total of 1,144 relatives and 1,238 HC were included in the meta‐analysis. The overall relatives exhibited decreased FA in the genu and splenium of corpus callosum (CC) compared with HC. This finding was found highly replicable in jack‐knife analysis and subgroup analyses. In disorder‐specific analysis, compared to HC, relatives of SCZ patients exhibited the same changes while those of BD showed reduced FA in the left inferior longitudinal fasciculus (ILF). The present study showed decreased FA in the genu and splenium of CC in relatives of SCZ, BD, and MDD patients, which might represent a shared familial vulnerability marker of severe mental illness. The white matter abnormalities in the left ILF might represent a specific familial risk for bipolar disorder.
Collapse
Affiliation(s)
- Mengyuan Xu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Wenjing Zhang
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Paul Hochwalt
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| | - Chengmin Yang
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Naici Liu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Jiao Qu
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Hui Sun
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Melissa P. DelBello
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| | - Su Lui
- Department of Radiology West China Hospital of Sichuan University Chengdu China
- Research Unit of Psychoradiology Chinese Academy of Medical Sciences Chengdu China
| | - Fabiano G. Nery
- Department of Psychiatry and Behavioral Neuroscience University of Cincinnati College of Medicine Cincinnati Ohio USA
| |
Collapse
|
11
|
Kochunov P, Hong LE, Dennis EL, Morey RA, Tate DF, Wilde EA, Logue M, Kelly S, Donohoe G, Favre P, Houenou J, Ching CRK, Holleran L, Andreassen OA, van Velzen LS, Schmaal L, Villalón-Reina JE, Bearden CE, Piras F, Spalletta G, van den Heuvel OA, Veltman DJ, Stein DJ, Ryan MC, Tan Y, van Erp TGM, Turner JA, Haddad L, Nir TM, Glahn DC, Thompson PM, Jahanshad N. ENIGMA-DTI: Translating reproducible white matter deficits into personalized vulnerability metrics in cross-diagnostic psychiatric research. Hum Brain Mapp 2022; 43:194-206. [PMID: 32301246 PMCID: PMC8675425 DOI: 10.1002/hbm.24998] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 12/25/2022] Open
Abstract
The ENIGMA-DTI (diffusion tensor imaging) workgroup supports analyses that examine the effects of psychiatric, neurological, and developmental disorders on the white matter pathways of the human brain, as well as the effects of normal variation and its genetic associations. The seven ENIGMA disorder-oriented working groups used the ENIGMA-DTI workflow to derive patterns of deficits using coherent and coordinated analyses that model the disease effects across cohorts worldwide. This yielded the largest studies detailing patterns of white matter deficits in schizophrenia spectrum disorder (SSD), bipolar disorder (BD), major depressive disorder (MDD), obsessive-compulsive disorder (OCD), posttraumatic stress disorder (PTSD), traumatic brain injury (TBI), and 22q11 deletion syndrome. These deficit patterns are informative of the underlying neurobiology and reproducible in independent cohorts. We reviewed these findings, demonstrated their reproducibility in independent cohorts, and compared the deficit patterns across illnesses. We discussed translating ENIGMA-defined deficit patterns on the level of individual subjects using a metric called the regional vulnerability index (RVI), a correlation of an individual's brain metrics with the expected pattern for a disorder. We discussed the similarity in white matter deficit patterns among SSD, BD, MDD, and OCD and provided a rationale for using this index in cross-diagnostic neuropsychiatric research. We also discussed the difference in deficit patterns between idiopathic schizophrenia and 22q11 deletion syndrome, which is used as a developmental and genetic model of schizophrenia. Together, these findings highlight the importance of collaborative large-scale research to provide robust and reproducible effects that offer insights into individual vulnerability and cross-diagnosis features.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Emily L Dennis
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Boston, Massachusetts, USA
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA, Salt Lake City, Utah, USA
| | - Rajendra A Morey
- Brain Imaging and Analysis Center, Duke University, Durham, North Carolina, USA
| | - David F Tate
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA, Salt Lake City, Utah, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- George E. Wahlen VA, Salt Lake City, Utah, USA
| | - Mark Logue
- VA Boston Healthcare System, National Center for PTSD, Boston, Massachusetts, USA
- Boston University School of Medicine, Department of Psychiatry, Boston, Massachusetts, USA
- Boston University School of Medicine, Biomedical Genetics, Boston, Massachusetts, USA
- Boston University School of Public Health, Department of Biostatistics, Boston, Massachusetts, USA
| | - Sinead Kelly
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Gary Donohoe
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Pauline Favre
- Neurospin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- INSERM Unit U955, team "Translational Neuro-Psychiatry", Créteil, France
| | - Josselin Houenou
- Neurospin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- INSERM Unit U955, team "Translational Neuro-Psychiatry", Créteil, France
- Psychiatry Department, Assistance Publique-Hôpitaux de Paris (AP-HP), CHU Mondor, Créteil, France
- Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| | - Christopher R K Ching
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Laurena Holleran
- Centre for Neuroimaging and Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Laura S van Velzen
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Lianne Schmaal
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Australia
| | - Julio E Villalón-Reina
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California, USA
- Department of Psychology, University of California at Los Angeles, Los Angeles, California, USA
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dick J Veltman
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Dan J Stein
- Department of Psychiatry & Neuroscience Institute, University of Cape Town, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Meghann C Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, China
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry, University of California Irvine, Irvine, California, USA
- Center for the Neurobiology of Learning and Memory, University of California Irvine, Irvine, California, USA
| | - Jessica A Turner
- Department of Psychology and Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Liz Haddad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Talia M Nir
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Olin Neuropsychiatric Research Center, Hartford Hospital, Hartford, Connecticut, USA
| | - Paul M Thompson
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| | - Neda Jahanshad
- Imaging Genetics Center, USC Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of USC, Marina del Rey, California, USA
| |
Collapse
|
12
|
Rozovsky R, Versace A, Bonar LK, Bertocci M, Ladouceur CD, Fournier J, Monk K, Abdul-Waalee H, Bebko G, Hafeman D, Sakolsky D, Goldstein T, Birmaher B, Phillips ML. Differentiating white matter measures that protect against vs. predispose to bipolar disorder and other psychopathology in at-risk youth. Neuropsychopharmacology 2021; 46:2207-2216. [PMID: 34285367 PMCID: PMC8505429 DOI: 10.1038/s41386-021-01088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/02/2022]
Abstract
Bipolar disorder (BD) is highly heritable. Identifying objective biomarkers reflecting pathophysiological processes predisposing to, versus protecting against BD, can help identify BD risk in offspring of BD parents. We recruited 21 BD participants with a first-degree relative with BD, 25 offspring of BD parents, 27 offspring of comparison parents with non-BD psychiatric disorders, and 32 healthy offspring of healthy parents. In at-risk groups, 23 had non-BD diagnoses and 29, no Axis-I diagnoses(healthy). Five at-risk offspring who developed BD post scan(Converters) were included. Diffusion imaging(dMRI) analysis with tract segmentation identified between-group differences in the microstructure of prefrontal tracts supporting emotional regulation relevant to BD: forceps minor, anterior thalamic radiation(ATR), cingulum bundle(CB), and uncinate fasciculus(UF). BD participants showed lower fractional anisotropy (FA) in the right CB (anterior portion) than other groups (q < 0.05); and in bilateral ATR (posterior portion) versus at-risk groups (q < 0.001). Healthy, but not non-BD, at-risk participants showed significantly higher FA in bilateral ATR clusters than healthy controls (qs < 0.05). At-risk groups showed higher FA in these clusters than BD participants (qs < 0.05). Non-BD versus healthy at-risk participants, and Converters versus offspring of BD parents, showed lower FA in the right ATR cluster (qs < 0.05). Low anterior right CB FA in BD participants versus other groups might result from having BD. High bilateral ATR FA in at-risk groups, and in healthy at-risk participants, versus healthy controls might protect against BD/other psychiatric disorders. Absence of elevated right ATR FA in non-BD versus healthy at-risk participants, and in Converters versus non-converter offspring of BD parents, might lower protection against BD in at-risk groups.
Collapse
Affiliation(s)
- Renata Rozovsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Magnetic Resonance Research Center, Department of Radiology, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa K Bonar
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michele Bertocci
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cecile D Ladouceur
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jay Fournier
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kelly Monk
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Halimah Abdul-Waalee
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Genna Bebko
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Danella Hafeman
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dara Sakolsky
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tina Goldstein
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Boris Birmaher
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Robledo-Rengifo P, Palacio-Ortiz JD, García-Valencia J, Vargas-Upegui C. Is Structural Connectivity Different in Child and Adolescent Relatives of Patients with Bipolar Disorder? A Narrative Review According to Studies with DTI. REVISTA COLOMBIANA DE PSIQUIATRIA (ENGLISH ED.) 2021; 52:S0034-7450(21)00039-1. [PMID: 34217530 DOI: 10.1016/j.rcp.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/02/2020] [Accepted: 01/18/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Bipolar disorder (BD) has been associated with a decrease in white matter integrity. Diffusion tensor imaging (DTI) studies have enabled these changes to be elucidated with higher quality. Due to BD's high heritability, some studies have been conducted in relatives of BD patients looking at white matter integrity, and have found that structural connectivity may also be affected. This alteration has been proposed as a potential BD biomarker of vulnerability. However, there are few studies in children and adolescents. OBJECTIVE To conduct a review of the literature on changes in white matter integrity determined by DTI in high-risk children and adolescents. RESULTS Brain structural connectivity in the paediatric population is described in studies using DTI. Changes in the myelination process from its evolution within normal neurodevelopment to the findings in fractional anisotropy (FA) in BD patients and their high-risk relatives are also described. CONCLUSIONS Studies show that both BD patients and their at-risk relatives present a decrease in FA in specific brain regions. Studies in children and adolescents with a high risk of BD, indicate a reduced FA in axonal tracts involved in emotional and cognitive functions. Decreased FA can be considered as a vulnerability biomarker for BD.
Collapse
Affiliation(s)
- Paula Robledo-Rengifo
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Palacio-Ortiz
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Grupo de Trastornos del Ánimo, Hospital San Vicente Fundación, Medellín, Colombia.
| | - Jenny García-Valencia
- Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Cristian Vargas-Upegui
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia; Grupo de Trastornos del Ánimo, Hospital San Vicente Fundación, Medellín, Colombia
| |
Collapse
|
14
|
Hu R, Stavish C, Leibenluft E, Linke JO. White Matter Microstructure in Individuals With and At Risk for Bipolar Disorder: Evidence for an Endophenotype From a Voxel-Based Meta-analysis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:1104-1113. [PMID: 32839153 PMCID: PMC11102922 DOI: 10.1016/j.bpsc.2020.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 01/02/2023]
Abstract
BACKGROUND Aberrant white matter (WM) microstructure has been proposed as a mechanism underlying bipolar disorder (BD). Given the strong genetic underpinnings of both WM microstructure and BD, such WM aberrations may be not only a disease marker, but also an endophenotype of BD. If so, they should be observable in individuals at risk for BD (AR) (i.e., first-degree relatives). This meta-analysis integrates evidence on perturbed WM microstructure in individuals with or at risk for BD. METHODS A comprehensive search of literature published through April 2020 identified diffusion tensor imaging studies that used a voxel-based approach to compare fractional anisotropy (FA) and radial diffusivity between individuals with BD and/or AR individuals and healthy volunteers. Effect size comparison and conjunction analysis allowed identification of endophenotypes and disease markers of BD. Effects of age, sex, mood state, and psychotropic medication were explored using meta-regressions. RESULTS We included 57 studies in individuals with BD (N = 4631) and 10 in AR individuals (N = 753). Both individuals with and at risk for BD were associated with lower FA in the body and splenium of the corpus callosum. In the BD group, decreased FA and increased radial diffusivity comprised the entire corpus callosum, anterior thalamic radiation, fronto-orbito-polar tracts, and superior longitudinal fasciculus, and were influenced by age, sex, and mood state. Studies with higher proportions of individuals taking lithium or antipsychotics reported smaller FA reductions in BD. CONCLUSIONS Findings suggest that abnormalities in the body and splenium of the corpus callosum may be an endophenotype for BD, and they associate BD with WM tracts relevant for working memory performance, attention, and reward processing.
Collapse
Affiliation(s)
- Rebecca Hu
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Caitlin Stavish
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Ellen Leibenluft
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland
| | - Julia O Linke
- Section on Mood Dysregulation and Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
15
|
de Nooij L, Harris MA, Hawkins EL, Clarke TK, Shen X, Chan SWY, Ziermans TB, McIntosh AM, Whalley HC. Longitudinal trajectories of brain age in young individuals at familial risk of mood disorder from the Scottish Bipolar Family Study. Wellcome Open Res 2020; 4:206. [PMID: 32954013 PMCID: PMC7479500 DOI: 10.12688/wellcomeopenres.15617.3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2020] [Indexed: 11/20/2022] Open
Abstract
Background: Within young individuals, mood disorder onset may be related to changes in trajectory of brain structure development. To date, however, longitudinal prospective studies remain scarce and show partly contradictory findings, with a lack of emphasis on changes at the level of global brain patterns. Cross-sectional adult studies have applied such methods and show that mood disorders are associated with accelerated brain aging. Currently, it remains unclear whether young individuals show differential brain structure aging trajectories associated with onset of mood disorder and/or presence of familial risk. Methods: Participants included young individuals (15-30 years, 53%F) from the prospective longitudinal Scottish Bipolar Family Study with and without close family history of mood disorder. All were well at time of recruitment. Implementing a structural MRI-based brain age prediction model, we globally assessed individual trajectories of age-related structural change using the difference between predicted brain age and chronological age (brain-predicted age difference (brain-PAD)) at baseline and at 2-year follow-up. Based on follow-up clinical assessment, individuals were categorised into three groups: (i) controls who remained well (C-well, n = 93), (ii) high familial risk who remained well (HR-well, n = 74) and (iii) high familial risk who developed a mood disorder (HR-MD, n = 35). Results: At baseline, brain-PAD was comparable between groups. Results showed statistically significant negative trajectories of brain-PAD between baseline and follow-up for HR-MD versus C-well ( β = -0.60, p corrected < 0.001) and HR-well ( β = -0.36, p corrected = 0.02), with a potential intermediate trajectory for HR-well ( β = -0.24 years, p corrected = 0.06). Conclusions: These preliminary findings suggest that within young individuals, onset of mood disorder and familial risk may be associated with a deceleration in brain structure aging trajectories. Extended longitudinal research will need to corroborate findings of emerging maturational lags in relation to mood disorder risk and onset.
Collapse
Affiliation(s)
- Laura de Nooij
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Emma L. Hawkins
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Stella W. Y. Chan
- Section of Clinical Psychology, University of Edinburgh, Edinburgh, UK
| | - Tim B. Ziermans
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
16
|
de Nooij L, Harris MA, Hawkins EL, Clarke TK, Shen X, Chan SWY, Ziermans TB, McIntosh AM, Whalley HC. Longitudinal trajectories of brain age in young individuals at familial risk of mood disorder from the Scottish Bipolar Family Study. Wellcome Open Res 2020; 4:206. [PMID: 32954013 PMCID: PMC7479500 DOI: 10.12688/wellcomeopenres.15617.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2020] [Indexed: 11/14/2023] Open
Abstract
Background: Within young individuals, mood disorder onset may be related to changes in trajectory of brain structure development. To date, however, longitudinal prospective studies remain scarce and show partly contradictory findings, with a lack of emphasis on changes at the level of global brain patterns. Cross-sectional adult studies have applied such methods and show that mood disorders are associated with accelerated brain ageing. Currently, it remains unclear whether young individuals show differential brain structure aging trajectories associated with onset of mood disorder and/or presence of familial risk. Methods: Participants included young individuals (15-30 years, 53%F) from the prospective longitudinal Scottish Bipolar Family Study with and without close family history of mood disorder. All were well at time of recruitment. Implementing a structural MRI-based brain age prediction model, we globally assessed individual trajectories of age-related structural change using the difference between predicted brain age and chronological age (brain-predicted age difference (brain-PAD)) at baseline and at 2-year follow-up. Based on follow-up clinical assessment, individuals were categorised into three groups: (i) controls who remained well (C-well, n = 93), (ii) high familial risk who remained well (HR-well, n = 74) and (iii) high familial risk who developed a mood disorder (HR-MD, n = 35). Results: At baseline, brain-PAD was comparable between groups. Results showed statistically significant negative trajectories of brain-PAD between baseline and follow-up for HR-MD versus C-well ( β = -0.60, p corrected < 0.001) and HR-well ( β = -0.36, p corrected = 0.02), with a potential intermediate trajectory for HR-well ( β = -0.24 years, p corrected = 0.06). Conclusions: These preliminary findings suggest that within young individuals, onset of mood disorder and familial risk may be associated with a deceleration in brain structure aging trajectories. Extended longitudinal research will need to corroborate findings of emerging maturational lags in relation to mood disorder risk and onset.
Collapse
Affiliation(s)
- Laura de Nooij
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Emma L. Hawkins
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Stella W. Y. Chan
- Section of Clinical Psychology, University of Edinburgh, Edinburgh, UK
| | - Tim B. Ziermans
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
17
|
Heinze K, Shen X, Hawkins E, Harris MA, de Nooij L, McIntosh AM, Wood SJ, Whalley HC. Aberrant structural covariance networks in youth at high familial risk for mood disorder. Bipolar Disord 2020; 22:155-162. [PMID: 31724284 PMCID: PMC7155114 DOI: 10.1111/bdi.12868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Current research suggests significant disruptions in functional brain networks in individuals with mood disorder, and in those at familial risk. Studies of structural brain networks provide important insights into synchronized maturational change but have received less attention. We aimed to investigate developmental relationships of large-scale brain networks in mood disorder using structural covariance (SC) analyses. METHODS We conducted SC analysis of baseline structural imaging data from 121 at the time of scanning unaffected high risk (HR) individuals (29 later developed mood disorder after a median time of 4.95 years), and 89 healthy controls (C-well) with no familial risk from the Scottish Bipolar Family Study (age 15-27, 64% female). Voxel-wise analyses of covariance were conducted to compare the associations between each seed region in visual, auditory, motor, speech, semantic, executive-control, salience and default-mode networks and the whole brain signal. SC maps were compared for (a) HR(all) versus C-well individuals, and (b) between those who remained well (HR-well), versus those who subsequently developed mood disorder (HR-MD), and C-well. RESULTS There were no significant differences between HR(all) and C-well individuals. On splitting the HR group based on subsequent clinical outcome, the HR-MD group however displayed greater baseline SC in the salience and executive-control network, and HR-well individuals showed less SC in the salience network, compared to C-well, respectively (P < .001). CONCLUSIONS These findings indicate differences in network-level inter-regional relationships, especially within the salience network, which precede onset of mood disorder in those at familial risk.
Collapse
Affiliation(s)
- Kareen Heinze
- School of PsychologyUniversity of BirminghamBirminghamUK,Institute for Mental HealthUniversity of BirminghamBirminghamUK,Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
| | - Xueyi Shen
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | - Emma Hawkins
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | | | - Laura de Nooij
- Division of PsychiatryUniversity of EdinburghEdinburghUK
| | | | - Stephen J. Wood
- School of PsychologyUniversity of BirminghamBirminghamUK,Institute for Mental HealthUniversity of BirminghamBirminghamUK,Orygen, The National Centre of Excellence in Youth Mental HealthMelbourneVic.Australia,Centre for Youth Mental HealthUniversity of MelbourneMelbourneVic.Australia
| | | |
Collapse
|
18
|
Linke JO, Stavish C, Adleman NE, Sarlls J, Towbin KE, Leibenluft E, Brotman MA. White matter microstructure in youth with and at risk for bipolar disorder. Bipolar Disord 2020; 22:163-173. [PMID: 31883419 PMCID: PMC7155105 DOI: 10.1111/bdi.12885] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Bipolar disorder (BD) and familial risk for BD have been associated with aberrant white matter (WM) microstructure in the corpus callosum and fronto-limbic pathways. These abnormalities might constitute trait or state marker and have been suggested to result from aberrant maturation and to relate to difficulties in emotion regulation. METHODS To determine whether WM alterations represent a trait, disease or resilience marker, we compared youth at risk for BD (n = 36 first-degree relatives, REL) to youth with BD (n = 36) and healthy volunteers (n = 36, HV) using diffusion tensor imaging. RESULTS Individuals with BD and REL did not differ from each other in WM microstructure and, compared to HV, showed similar aberrations in the superior corona radiata (SCR)/corticospinal tract (CST) and the body of the corpus callosum. WM microstructure of the anterior CC showed reduced age-related in-creases in BD compared to REL and HV. Further, individuals with BD and REL showed in-creased difficulties in emotion regulation, which were associated with the microstructure of the anterior thalamic radiation. DISCUSSION Alterations in the SCR/CST and the body of the corpus callosum appear to represent a trait marker of BD, whereas changes in other WM tracts seem to be a disease state marker. Our findings also support the role of aberrant developmental trajectories of WM microstructure in the risk architecture of BD, although longitudinal studies are needed to confirm this association. Finally, our findings show the relevance of WM microstructure for difficulties in emotion regulation-a core characteristic of BD.
Collapse
Affiliation(s)
- Julia O. Linke
- Emotion and Development BranchNational Institute of Mental HealthNational Institutes of HealthBethesdaMDUSA
| | - Caitlin Stavish
- Emotion and Development BranchNational Institute of Mental HealthNational Institutes of HealthBethesdaMDUSA
| | - Nancy E. Adleman
- Department of PsychologyThe Catholic University of AmericaWashingtonDCUSA
| | - Joelle Sarlls
- NIH MRI Research FacilityNational Institute of Neurological Disorders and StrokeNational Institutes of HealthBethesdaMDUSA
| | - Kenneth E. Towbin
- Emotion and Development BranchNational Institute of Mental HealthNational Institutes of HealthBethesdaMDUSA
| | - Ellen Leibenluft
- Emotion and Development BranchNational Institute of Mental HealthNational Institutes of HealthBethesdaMDUSA
| | - Melissa A. Brotman
- Emotion and Development BranchNational Institute of Mental HealthNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
19
|
Alterations in the fronto-limbic network and corpus callosum in borderline-personality disorder. Brain Cogn 2019; 138:103596. [PMID: 31877433 DOI: 10.1016/j.bandc.2019.103596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
Neuroimaging research provides evidence of grey matter changes in the prefrontal-limbic network in borderline personality disorder (BPD), yet research scarcely examines the white matter (WM) within this circuitry. The present study aimed to explore WM in prefrontal-limbic brain networks within BPD. Quantitative diffusion tensor imaging (DTI-MRI) measures of fractional anisotropy (FA) and mean diffusion (MD) were used to analyze the neural pathways in fifteen individuals with BPD (M = 25, SD = 6.76), in comparison to thirteen healthy individuals (M = 27.92, SD = 8.41). Quantitative DTI-MRI measures of FA and MD were evaluated for the cingulum, the fornix, the corpus callosum (CC), the inferior longitudinal fasciculus (ILF), the superior longitudinal fasciculus (SLF) and the uncinate fasciculus (UF). Lower FA values for both the left and the right cingulum, the genu, body, and splenium of the CC, left ILF and right SLF were found in BPD, compared to healthy individuals. MD values were higher for the genu and splenium of the CC in BPD. The findings indicate that a large-scale emotional brain network is affected in BPD with alterations in MD and FA of WM prefrontal-limbic pathways of the heteromodal association cortex involved in emotion processing and emotion regulation.
Collapse
|
20
|
de Nooij L, Harris MA, Hawkins EL, Clarke TK, Shen X, Chan SWY, Ziermans TB, McIntosh AM, Whalley HC. Longitudinal trajectories of brain age in young individuals at familial risk of mood disorder. Wellcome Open Res 2019; 4:206. [PMID: 32954013 PMCID: PMC7479500 DOI: 10.12688/wellcomeopenres.15617.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2019] [Indexed: 11/14/2023] Open
Abstract
Background: Within young individuals, mood disorder onset may be related to changes in trajectory of brain structure development. To date, however, longitudinal prospective studies remain scarce and show partly contradictory findings, with a lack of emphasis on changes at the level of global brain patterns. Cross-sectional adult studies have applied such methods and show that mood disorders are associated with accelerated brain ageing. Currently, it remains unclear whether young individuals show differential brain structure ageing trajectories associated with onset of mood disorder and/or presence of familial risk. Methods: Participants included young individuals (15-30 years, 53%F) from the prospective longitudinal Scottish Bipolar Family Study with and without close family history of mood disorder. All were well at time of recruitment. Implementing a structural MRI-based brain age prediction model, we globally assessed individual trajectories of age-related structural change using the difference between predicted brain age and chronological age (brain-predicted age difference (brain-PAD)) at baseline and at 2-year follow-up. Based on follow-up clinical assessment, individuals were categorised into three groups: (i) controls who remained well (C-well, n = 93), (ii) high familial risk who remained well (HR-well, n = 74) and (iii) high familial risk who developed a mood disorder (HR-MD, n = 35). Results: At baseline, brain-PAD was comparable between groups. Results showed statistically significant negative trajectories of brain-PAD between baseline and follow-up for HR-MD versus C-well ( β = -0.60, p corrected < 0.001) and HR-well ( β = -0.36, p corrected = 0.02), with a potential intermediate trajectory for HR-well ( β = -0.24 years, p corrected = 0.06). Conclusions: These preliminary findings suggest that within young individuals, onset of mood disorder and familial risk may be associated with a deceleration in brain structure ageing trajectories. Extended longitudinal research will need to corroborate findings of emerging maturational lags in relation to mood disorder risk and onset.
Collapse
Affiliation(s)
- Laura de Nooij
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Emma L. Hawkins
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Toni-Kim Clarke
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Stella W. Y. Chan
- Section of Clinical Psychology, University of Edinburgh, Edinburgh, UK
| | - Tim B. Ziermans
- Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
21
|
Poletti S, Melloni E, Aggio V, Colombo C, Valtorta F, Benedetti F, Comai S. Grey and white matter structure associates with the activation of the tryptophan to kynurenine pathway in bipolar disorder. J Affect Disord 2019; 259:404-412. [PMID: 31610997 DOI: 10.1016/j.jad.2019.08.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/21/2019] [Accepted: 08/17/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a severe mental illness characterised by reduced grey matter (GM) volumes and cortical thickness, and disrupted white matter (WM) microstructure. Activation of indoleamine 2,3-dioxygenase following a pro-inflammatory state could increase the amount of tryptophan (Trp) converted to kynurenine (Kyn) possibly leading to the production of detrimental catabolites of the Kyn pathway with neurotoxic effects. We investigated if peripheral levels of Trp-and Kyn and the breakdown of Trp-into Kyn (Kyn/Trp-ratio) are related to WM and GM integrity in BD. METHODS Peripheral levels of Trp-and Kyn were analysed in 72 patients with BD and 33 controls. Patients also underwent MRI in a Philips 3T scanner. RESULTS Patients showed higher Kyn levels and Kyn/Trp-ratio compared to controls. MRI analyses performed in patients with BD showed a negative association between the Kyn/Trp-ratio and the integrity of corpus callosum microstructure, the volume of the amygdala and cortical thickness in fronto-parietal regions. LIMITATION The lack of information on the levels of downstream metabolites of Kyn prevent us to confirm the possible unbalance between quinolinic and kynurenic acids as well as their possible relationship with changes in GM and WM markers. The activation of the Kyn pathway as suggested by the increased Kyn/Trp-ratio may lead to an imbalance of the neurotoxic vs the neuroprotective arm of the biochemical pathway, resulting in significant changes in GM and WM regions of brain areas strongly implicated in the pathophysiology of BD, such as amygdala and corpus callosum.
Collapse
Affiliation(s)
- Sara Poletti
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy.
| | - Elisa Melloni
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - Veronica Aggio
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - Cristina Colombo
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - Francesco Benedetti
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| | - Stefano Comai
- Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute University, San Raffaele Turro, Via Stamira d'Ancona 20, Milan, Italy
| |
Collapse
|
22
|
Genetic Predisposition and Disease Expression of Bipolar Disorder Reflected in Shape Changes of the Anterior Limbic Network. Brain Sci 2019; 9:brainsci9090240. [PMID: 31546815 PMCID: PMC6770562 DOI: 10.3390/brainsci9090240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 11/17/2022] Open
Abstract
Bipolar disorder (BD) is a genetically and phenotypically complex psychiatric disease. Although previous studies have suggested that the relatives of BD patients have an increased risk of experiencing affective disturbances, most relatives who have similar genotypes may not manifest the disorder. We aim to identify the neuroimaging alterations—specifically, the cortical folding structures of the anterior limbic network (ALN)—in BD patients and their siblings, compared to healthy controls. The shared alterations in patients and their siblings may indicate the hereditary predisposition of BD, and the altered cortical structures unique to BD patients may be a probe of BD expression. High-resolution, T1-weighted magnetic resonance images for 17 euthymic patients with BD, 17 unaffected siblings of BD patients, and 22 healthy controls were acquired. We categorized the cortical regions within the ALN into sulcal and gyral areas, based on the shape index, followed by the measurement of the folding degree, using the curvedness. Our results revealed that the changes in cortical folding in the orbitofrontal and temporal regions were associated with a hereditary predisposition to BD. Cortical folding structures in multiple regions of the ALN, particularly in the striatal–thalamic circuit and anterior cingulate cortex, could be used to differentiate BD patients from healthy controls and unaffected siblings. We concluded that the cortical folding structures of ALN can provide potential biomarkers for clinical diagnosis of BD and differentiation from the unaffected siblings.
Collapse
|
23
|
Hatano K, Terao T, Hayashi T, Hirakawa H, Makino M, Mizokami Y, Fujiki M, Shimomura T. Affective temperaments are associated with the white matter microstructure in healthy participants. Bipolar Disord 2019; 21:539-546. [PMID: 30430712 DOI: 10.1111/bdi.12726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Five affective temperaments are regarded as potential precursors of bipolar disorder. These are depressive, cyclothymic, hyperthymic, irritable, and anxious temperaments. However, the neural substrates underlying these temperaments have not been identified. The aim of this study was to determine whether these temperaments are associated with specific neural substrates related to the brain white matter integrity in healthy participants. METHODS We conducted a cross-sectional neuroimaging study of 71 healthy participants (38 males and 33 females) with affective temperaments. All participants screened for past and present psychiatric disorders. The scores of the five affective temperaments were measured by the temperament scale of Memphis, Pisa, Paris, and San Diego-autoquestionnaire. We analyzed the association between the fractional anisotropy (FA) and mean diffusivity (MD) of the brain white matter and these affective temperaments using tract-based spatial statistics (TBSS). RESULTS The cyclothymic temperament score had a significant positive association with the FA and a significant negative association with the MD in the white matter in the right frontal part of brain. The hyperthymic temperament score was negatively associated with the MD in a wide area of the brain white matter. The anxious temperament score was positively associated with the FA in the bilateral frontal, temporal, and parietal regions of the brain white matter. The depressive and irritable temperament scores were not associated with either the FA or the MD. CONCLUSION The present findings suggest that cyclothymic, hyperthymic, and anxious temperaments are associated with brain white matter integrity in healthy participants.
Collapse
Affiliation(s)
- Koji Hatano
- Department of Neuropsychiatry, Faculty of Medicine, Oita University, Oita, Japan.,Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Takeshi Terao
- Department of Neuropsychiatry, Faculty of Medicine, Oita University, Oita, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Hyogo, Japan
| | - Hirofumi Hirakawa
- Department of Neuropsychiatry, Faculty of Medicine, Oita University, Oita, Japan
| | - Mayu Makino
- Department of Neuropsychiatry, Faculty of Medicine, Oita University, Oita, Japan
| | - Yoshinori Mizokami
- Department of Neuropsychiatry, Faculty of Medicine, Oita University, Oita, Japan
| | - Minoru Fujiki
- Department of Neurosurgery, Faculty of Medicine, Oita University, Oita, Japan
| | - Tsuyoshi Shimomura
- Department of Neurosurgery, Faculty of Medicine, Oita University, Oita, Japan
| |
Collapse
|
24
|
Kochunov P, Patel B, Ganjgahi H, Donohue B, Ryan M, Hong EL, Chen X, Adhikari B, Jahanshad N, Thompson PM, Van't Ent D, den Braber A, de Geus EJC, Brouwer RM, Boomsma DI, Hulshoff Pol HE, de Zubicaray GI, McMahon KL, Martin NG, Wright MJ, Nichols TE. Homogenizing Estimates of Heritability Among SOLAR-Eclipse, OpenMx, APACE, and FPHI Software Packages in Neuroimaging Data. Front Neuroinform 2019; 13:16. [PMID: 30914942 PMCID: PMC6422938 DOI: 10.3389/fninf.2019.00016] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 02/25/2019] [Indexed: 11/30/2022] Open
Abstract
Imaging genetic analyses use heritability calculations to measure the fraction of phenotypic variance attributable to additive genetic factors. We tested the agreement between heritability estimates provided by four methods that are used for heritability estimates in neuroimaging traits. SOLAR-Eclipse and OpenMx use iterative maximum likelihood estimation (MLE) methods. Accelerated Permutation inference for ACE (APACE) and fast permutation heritability inference (FPHI), employ fast, non-iterative approximation-based methods. We performed this evaluation in a simulated twin-sibling pedigree and phenotypes and in diffusion tensor imaging (DTI) data from three twin-sibling cohorts, the human connectome project (HCP), netherlands twin register (NTR) and BrainSCALE projects provided as a part of the enhancing neuro imaging genetics analysis (ENIGMA) consortium. We observed that heritability estimate may differ depending on the underlying method and dataset. The heritability estimates from the two MLE approaches provided excellent agreement in both simulated and imaging data. The heritability estimates for two approximation approaches showed reduced heritability estimates in datasets with deviations from data normality. We propose a data homogenization approach (implemented in solar-eclipse; www.solar-eclipse-genetics.org) to improve the convergence of heritability estimates across different methods. The homogenization steps include consistent regression of any nuisance covariates and enforcing normality on the trait data using inverse Gaussian transformation. Under these conditions, the heritability estimates for simulated and DTI phenotypes produced converging heritability estimates regardless of the method. Thus, using these simple suggestions may help new heritability studies to provide outcomes that are comparable regardless of software package.
Collapse
Affiliation(s)
- Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Binish Patel
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Habib Ganjgahi
- Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Brian Donohue
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Meghann Ryan
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Elliot L Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Xu Chen
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Bhim Adhikari
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Neda Jahanshad
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, CA, United States
| | - Paul M Thompson
- Imaging Genetics Center, Keck School of Medicine of USC, Marina del Rey, CA, United States
| | - Dennis Van't Ent
- Department of Biological Psychology, VU University, Amsterdam, Netherlands
| | - Anouk den Braber
- Department of Biological Psychology, VU University, Amsterdam, Netherlands
| | - Eco J C de Geus
- Department of Biological Psychology, VU University, Amsterdam, Netherlands
| | - Rachel M Brouwer
- Department of Biological Psychology, VU University, Amsterdam, Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, VU University, Amsterdam, Netherlands
| | - Hilleke E Hulshoff Pol
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, Netherlands
| | - Greig I de Zubicaray
- Faculty of Health, and Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Katie L McMahon
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | | | - Margaret J Wright
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
| | - Thomas E Nichols
- Big Data Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
25
|
Polygenic Scores for Neuropsychiatric Traits and White Matter Microstructure in the Pediatric Population. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:243-250. [DOI: 10.1016/j.bpsc.2018.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 07/08/2018] [Accepted: 07/09/2018] [Indexed: 12/31/2022]
|
26
|
Versace A, Ladouceur CD, Graur S, Acuff HE, Bonar LK, Monk K, McCaffrey A, Yendiki A, Leemans A, Travis MJ, Diwadkar VA, Holland SK, Sunshine JL, Kowatch RA, Horwitz SM, Frazier TW, Arnold LE, Fristad MA, Youngstrom EA, Findling RL, Goldstein BI, Goldstein T, Axelson D, Birmaher B, Phillips ML. Diffusion imaging markers of bipolar versus general psychopathology risk in youth at-risk. Neuropsychopharmacology 2018; 43:2212-2220. [PMID: 29795244 PMCID: PMC6135796 DOI: 10.1038/s41386-018-0083-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/31/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
Abstract
Bipolar disorder (BD) is highly heritable. Thus, studies in first-degree relatives of individuals with BD could lead to the discovery of objective risk markers of BD. Abnormalities in white matter structure reported in at-risk individuals could play an important role in the pathophysiology of BD. Due to the lack of studies with other at-risk offspring, however, it remains unclear whether such abnormalities reflect BD-specific or generic risk markers for future psychopathology. Using a tract-profile approach, we examined 18 major white matter tracts in 38 offspring of BD parents, 36 offspring of comparison parents with non-BD psychopathology (depression, attention-deficit/hyperactivity disorder), and 41 offspring of healthy parents. Both at-risk groups showed significantly lower fractional anisotropy (FA) in left-sided tracts (cingulum, inferior longitudinal fasciculus, forceps minor), and significantly greater FA in right-sided tracts (uncinate fasciculus and inferior longitudinal fasciculus), relative to offspring of healthy parents (P < 0.05). These abnormalities were present in both healthy and affected youth in at-risk groups. Only offspring (particularly healthy offspring) of BD parents showed lower FA in the right superior longitudinal fasciculus relative to healthy offspring of healthy parents (P < 0.05). We show, for the first time, important similarities, and some differences, in white matter structure between offspring of BD and offspring of non-BD parents. Findings suggest that lower left-sided and higher right-sided FA in tracts important for emotional regulation may represent markers of risk for general, rather than BD-specific, psychopathology. Lower FA in the right superior longitudinal fasciculus may protect against development of BD in offspring of BD parents.
Collapse
Affiliation(s)
- A Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - C D Ladouceur
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - S Graur
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - H E Acuff
- Departments of Neuroscience, Psychology, and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - L K Bonar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - K Monk
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - A McCaffrey
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - A Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - A Leemans
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - M J Travis
- LAMS Consortium, Epping, NSW, 1710, Australia
| | | | - S K Holland
- LAMS Consortium, Epping, NSW, 1710, Australia
| | | | - R A Kowatch
- LAMS Consortium, Epping, NSW, 1710, Australia
| | - S M Horwitz
- LAMS Consortium, Epping, NSW, 1710, Australia
| | - T W Frazier
- LAMS Consortium, Epping, NSW, 1710, Australia
| | - L E Arnold
- Department of Psychiatry, Nationwide Children's Hospital and The Ohio State College of Medicine, Columbus, OH, USA
| | - M A Fristad
- LAMS Consortium, Epping, NSW, 1710, Australia
| | | | | | - B I Goldstein
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - T Goldstein
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - D Axelson
- Department of Psychiatry, Nationwide Children's Hospital and The Ohio State College of Medicine, Columbus, OH, USA
| | - B Birmaher
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - M L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
27
|
Foley SF, Bracher-Smith M, Tansey KE, Harrison JR, Parker GD, Caseras X. Fractional anisotropy of the uncinate fasciculus and cingulum in bipolar disorder type I, type II, unaffected siblings and healthy controls. Br J Psychiatry 2018; 213:548-554. [PMID: 30113288 PMCID: PMC6130806 DOI: 10.1192/bjp.2018.101] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Fractional anisotropy in the uncinate fasciculus and the cingulum may be biomarkers for bipolar disorder and may even be distinctly affected in different subtypes of bipolar disorder, an area in need of further research.AimsThis study aims to establish if fractional anisotropy in the uncinate fasciculus and cingulum shows differences between healthy controls, patients with bipolar disorder type I (BD-I) and type II (BD-II), and their unaffected siblings. METHOD Fractional anisotropy measures from the uncinate fasciculus, cingulum body and parahippocampal cingulum were compared with tractography methods in 40 healthy controls, 32 patients with BD-I, 34 patients with BD-II, 17 siblings of patients with BD-I and 14 siblings of patients with BD-II. RESULTS The main effects were found in both the right and left uncinate fasciculus, with patients with BD-I showing significantly lower fractional anisotropy than both patients with BD-II and healthy controls. Participants with BD-II did not differ from healthy controls. Siblings showed similar effects in the left uncinate fasciculus. In a subsequent complementary analysis, we investigated the association between fractional anisotropy in the uncinate fasciculus and polygenic risk for bipolar disorder and psychosis in a large cohort (n = 570) of healthy participants. However, we found no significant association. CONCLUSIONS Fractional anisotropy in the uncinate fasciculus differs significantly between patients with BD-I and patients with BD-II and healthy controls. This supports the hypothesis of differences in the physiological sub-tract between bipolar disorder subtypes. Similar results were found in unaffected siblings, suggesting the potential for this biomarker to represent an endophenotype for BD-I. However, fractional anisotropy in the uncinate fasciculus seems unrelated to polygenic risk for bipolar disorder or psychosis.Declaration of interestNone.
Collapse
Affiliation(s)
- Sonya F. Foley
- scientific support staff, Cardiff University Brain Research Imaging Centre, Cardiff University, UK
| | - Matthew Bracher-Smith
- PhD student, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Katherine E. Tansey
- Core Bioinformatics and Statistics Team, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Judith R. Harrison
- clinical research fellow, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK
| | - Greg D. Parker
- senior data analyst, Cardiff University Brain Research Imaging Centre, Cardiff University, UK
| | - Xavier Caseras
- faculty member, MRC Centre for Neuropsychiatric Genetics and Genomics, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, UK,Correspondence: Xavier Caseras, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Hadyn Ellis building, Maindy Road, Cardiff CF24 4HQ, UK.
| |
Collapse
|
28
|
Ganzola R, McIntosh AM, Nickson T, Sprooten E, Bastin ME, Giles S, Macdonald A, Sussmann J, Duchesne S, Whalley HC. Diffusion tensor imaging correlates of early markers of depression in youth at high-familial risk for bipolar disorder. J Child Psychol Psychiatry 2018; 59:917-927. [PMID: 29488219 DOI: 10.1111/jcpp.12879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Mood disorders are familial psychiatric diseases, in which patients show reduced white matter (WM) integrity. We sought to determine whether WM integrity was affected in young offspring at high-familial risk of mood disorder before they go on to develop major depressive disorder (MDD). METHODS The Bipolar Family study is a prospective longitudinal study examining young individuals (age 16-25 years) at familial risk of mood disorder on three occasions 2 years apart. This study used baseline imaging data, categorizing groups according to clinical outcome at follow-up. Diffusion tensor MRI data were acquired for 61 controls and 106 high-risk individuals, the latter divided into 78 high-risk subjects who remained well throughout the study ('high-risk well') and 28 individuals who subsequently developed MDD ('high-risk MDD'). Voxel-wise between-group comparison of fractional anisotropy (FA) based on diagnostic status was performed using tract-based spatial statistics (TBSS). RESULTS Compared to controls, both high-risk groups showed widespread decreases in FA (pcorr < .05) at baseline. Although FA in the high-risk MDD group negatively correlated with subthreshold depressive symptoms at the time of scanning (pcorr < .05), there were no statistically significant differences at p-corrected levels between the two high-risk groups. CONCLUSIONS These results suggest that decreased FA is related to the presence of familial risk for mood disorder along with subdiagnostic symptoms at the time of scanning rather than predictive of subsequent diagnosis. Due to the difficulties performing such longitudinal prospective studies, we note, however, that this latter analysis may be underpowered due to sample size within the high-risk MDD group. Further clinical follow-up may clarify these findings.
Collapse
Affiliation(s)
- Rossana Ganzola
- Centre de Recherche CERVO, Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada
| | | | - Thomas Nickson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Emma Sprooten
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Stephen Giles
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Alix Macdonald
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | | | - Simon Duchesne
- Centre de Recherche CERVO, Institut Universitaire en Santé Mentale de Québec, Québec, QC, Canada.,Départment de Radiologie, Faculté de Médecine, Université Laval, Québec, QC, Canada
| | | |
Collapse
|
29
|
Jeganathan J, Perry A, Bassett DS, Roberts G, Mitchell PB, Breakspear M. Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. NEUROIMAGE-CLINICAL 2018; 19:71-81. [PMID: 30035004 PMCID: PMC6051310 DOI: 10.1016/j.nicl.2018.03.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/20/2018] [Accepted: 03/25/2018] [Indexed: 01/19/2023]
Abstract
Recent investigations have used diffusion-weighted imaging to reveal disturbances in the neurocircuitry that underlie cognitive-emotional control in bipolar disorder (BD) and in unaffected siblings or children at high genetic risk (HR). It has been difficult to quantify the mechanism by which structural changes disrupt the superimposed brain dynamics, leading to the emotional lability that is characteristic of BD. Average controllability is a concept from network control theory that extends structural connectivity data to estimate the manner in which local neuronal fluctuations spread from a node or subnetwork to alter the state of the rest of the brain. We used this theory to ask whether structural connectivity deficits previously observed in HR individuals (n = 84, mean age 22.4), patients with BD (n = 38, mean age 23.9), and age- and gender-matched controls (n = 96, mean age 22.6) translate to differences in the ability of brain systems to be manipulated between states. Localized impairments in network controllability were seen in the left parahippocampal, left middle occipital, left superior frontal, right inferior frontal, and right precentral gyri in BD and HR groups. Subjects with BD had distributed deficits in a subnetwork containing the left superior and inferior frontal gyri, postcentral gyrus, and insula (p = 0.004). HR participants had controllability deficits in a right-lateralized subnetwork involving connections between the dorsomedial and ventrolateral prefrontal cortex, the superior temporal pole, putamen, and caudate nucleus (p = 0.008). Between-group controllability differences were attenuated after removal of topological factors by network randomization. Some previously reported differences in network connectivity were not associated with controllability-differences, likely reflecting the contribution of more complex brain network properties. These analyses highlight the potential functional consequences of altered brain networks in BD, and may guide future clinical interventions. Control theory estimates how neuronal fluctuations spread from local networks. We compare brain controllability in bipolar disorder and their high-risk relatives. These groups have impaired controllability in networks supporting cognitive and emotional control. Weaker connectivity as well as topological alterations contribute to these changes.
Collapse
Affiliation(s)
- Jayson Jeganathan
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Alistair Perry
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Psychiatry, University of New South Wales, Randwick, NSW, Australia; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Max Planck Institute for Human Development, Berlin, Germany
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia; Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia; Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - Michael Breakspear
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; Metro North Mental Health Service, Brisbane, QLD, Australia
| |
Collapse
|
30
|
Kynurenine pathway and white matter microstructure in bipolar disorder. Eur Arch Psychiatry Clin Neurosci 2018; 268:157-168. [PMID: 27619930 DOI: 10.1007/s00406-016-0731-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 09/02/2016] [Indexed: 12/27/2022]
Abstract
Decreased availability of serotonin in the central nervous system has been suggested to be a central factor in the pathogenesis of depression. Activation of indoleamine 2-3 dioxygenase following a pro-inflammatory state could reduce the amount of tryptophan converted to serotonin and increase the production of tryptophan catabolites such as kynurenic acid, an antagonist of ionotropic excitatory aminoacid receptors, whose levels are reduced in bipolar disorder. Abnormalities in white matter (WM) integrity have been widely reported in BD. We then hypothesized that metabolites involved in serotoninergic turnover in BD could influence DTI measures of WM microstructure. Peripheral levels of tryptophan, kynurenine, kynurenic acid, 3-hydroxy-kynurenine, and 5-HIAA were analysed in 22 patients affected by BD and 15 healthy controls. WM microstructure was evaluated using diffusion tensor imaging and tract-based spatial statistics with threshold-free cluster enhancement only in bipolar patients. We observed that kynurenic acid and 5-HIAA were reduced in BD and associated with DTI measures of WM integrity in several association fibres: inferior and superior longitudinal fasciculus, cingulum bundle, corpus callosum, uncus, anterior thalamic radiation and corona radiata. Our results seem to suggest that higher levels of 5-HIAA, a measure of serotonin levels, and higher levels of kynurenic acid, which protects from glutamate excitotoxicity, could exert a protective effect on WM microstructure. Reduced levels of these metabolites in BD thus seem to confirm a crucial role of serotonin turnover in BD pathophysiology.
Collapse
|
31
|
Roberts G, Perry A, Lord A, Frankland A, Leung V, Holmes-Preston E, Levy F, Lenroot RK, Mitchell PB, Breakspear M. Structural dysconnectivity of key cognitive and emotional hubs in young people at high genetic risk for bipolar disorder. Mol Psychiatry 2018; 23:413-421. [PMID: 27994220 PMCID: PMC5794888 DOI: 10.1038/mp.2016.216] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 01/01/2023]
Abstract
Emerging evidence suggests that psychiatric disorders are associated with disturbances in structural brain networks. Little is known, however, about brain networks in those at high risk (HR) of bipolar disorder (BD), with such disturbances carrying substantial predictive and etiological value. Whole-brain tractography was performed on diffusion-weighted images acquired from 84 unaffected HR individuals with at least one first-degree relative with BD, 38 young patients with BD and 96 matched controls (CNs) with no family history of mental illness. We studied structural connectivity differences between these groups, with a focus on highly connected hubs and networks involving emotional centres. HR participants showed lower structural connectivity in two lateralised sub-networks centred on bilateral inferior frontal gyri and left insular cortex, as well as increased connectivity in a right lateralised limbic sub-network compared with CN subjects. BD was associated with weaker connectivity in a small right-sided sub-network involving connections between fronto-temporal and temporal areas. Although these sub-networks preferentially involved structural hubs, the integrity of the highly connected structural backbone was preserved in both groups. Weaker structural brain networks involving key emotional centres occur in young people at genetic risk of BD and those with established BD. In contrast to other psychiatric disorders such as schizophrenia, the structural core of the brain remains intact, despite the local involvement of network hubs. These results add to our understanding of the neurobiological correlates of BD and provide predictions for outcomes in young people at high genetic risk for BD.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - A Perry
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Metro North Mental Health Service, Brisbane, QLD, Australia,Centre for Healthy Brain Ageing, Randwick, NSW, Australia
| | - A Lord
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - A Frankland
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - V Leung
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - E Holmes-Preston
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia
| | - F Levy
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Prince of Wales Hospital, Randwick, NSW, Australia
| | - R K Lenroot
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Neuroscience Research Australia, Randwick, NSW, Australia
| | - P B Mitchell
- School of Psychiatry, University of New South Wales, Randwick, NSW, Australia,Black Dog Institute, Prince of Wales Hospital, Randwick, NSW, Australia,Prince of Wales Hospital, Randwick, NSW, Australia
| | - M Breakspear
- Program of Mental Health Research, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia,Metro North Mental Health Service, Brisbane, QLD, Australia,Systems Neuroscience Group, QIMR Berghofer Institute of Medical Research, 300 Herston Road, Herston, QLD, Australia. E-mail:
| |
Collapse
|
32
|
Lippard ETC, Jensen KP, Wang F, Johnston JAY, Spencer L, Pittman B, Gelernter J, Blumberg HP. Effects of ANK3 variation on gray and white matter in bipolar disorder. Mol Psychiatry 2017; 22:1345-1351. [PMID: 27240527 PMCID: PMC5133179 DOI: 10.1038/mp.2016.76] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/23/2016] [Accepted: 04/05/2016] [Indexed: 01/22/2023]
Abstract
The single-nucleotide polymorphism rs9804190 in the Ankyrin G (ANK3) gene has been reported in genome-wide association studies to be associated with bipolar disorder (BD). However, the neural system effects of rs9804190 in BD are not known. We investigated associations between rs9804190 and gray and white matter (GM and WM, respectively) structure within a frontotemporal neural system implicated in BD. A total of 187 adolescent and adult European Americans were studied: a group homozygous for the C allele (52 individuals with BD and 56 controls) and a T-carrier group, carrying the high-risk T allele (38 BD and 41 controls). Subjects participated in high-resolution structural magnetic resonance imaging and diffusion tensor imaging (DTI) scanning. Frontotemporal region of interest (ROI) and whole-brain exploratory analyses were conducted. DTI ROI-based analysis revealed a significant diagnosis by genotype interaction within the uncinate fasciculus (P⩽0.05), with BD subjects carrying the T (risk) allele showing decreased fractional anisotropy compared with other subgroups, independent of age. Genotype effects were not observed in frontotemporal GM volume. These findings support effects of rs9804190 on frontotemporal WM in adolescents and adults with BD and suggest a mechanism contributing to WM pathology in BD.
Collapse
Affiliation(s)
- E T C Lippard
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - K P Jensen
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - F Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - J A Y Johnston
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - L Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - B Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - J Gelernter
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| | - H P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Psychiatry, VA Connecticut Healthcare System, West Haven, CT, USA
| |
Collapse
|
33
|
Ganzola R, Nickson T, Bastin ME, Giles S, Macdonald A, Sussmann J, McIntosh AM, Whalley HC, Duchesne S. Longitudinal differences in white matter integrity in youth at high familial risk for bipolar disorder. Bipolar Disord 2017; 19:158-167. [PMID: 28470928 DOI: 10.1111/bdi.12489] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/04/2017] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Previous neuroimaging studies have reported abnormalities in white matter (WM) pathways in subjects at high familial risk of mood disorders. In the current study, we examined the trajectory of these abnormalities during the early stages of illness development using longitudinal diffusion tensor imaging (DTI) data. METHODS Subjects (16-28 years old) were recruited in the Scottish Bipolar Family Study, a prospective longitudinal study that has examined individuals at familial risk of mood disorder on three occasions, 2 years apart. The current study concerns imaging data from the first and second assessments. We analysed DTI data for 43 controls and 69 high-risk individuals who were further subdivided into a group of 53 high-risk subjects who remained well (high-risk well) and 16 who met diagnostic criteria for major depressive disorder (high-risk MDD) at follow-up. Longitudinal differences in fractional anisotropy (FA) between groups based on diagnostic status were investigated using the tract-based spatial statistics technique (TBSS). RESULTS We found a significant reduction in FA (Pcorr <.05) across widespread brain regions over 2 years in all three groups. The trajectory of FA reduction did not differ significantly between groups. CONCLUSIONS These results suggest that there are similar trajectories of FA reductions for controls and high-risk young adults, despite high-risk individuals being at a disadvantaged starting point considering their reduced WM integrity detected at baseline in previous studies. Difference in WM integrity between high-risk individuals and controls could therefore occur in earlier childhood and be a necessary but not sufficient condition to develop future mood disorders.
Collapse
Affiliation(s)
- Rossana Ganzola
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada
| | - Thomas Nickson
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Stephen Giles
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Alix Macdonald
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | | | | | | | - Simon Duchesne
- Institut universitaire en santé mentale de Québec, Québec City, Québec, Canada.,Départment de Radiologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
34
|
Pfennig A, Leopold K, Ritter P, Böhme A, Severus E, Bauer M. Longitudinal changes in the antecedent and early manifest course of bipolar disorder-A narrative review of prospective studies. Aust N Z J Psychiatry 2017; 51:509-523. [PMID: 28415870 DOI: 10.1177/0004867417700730] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Prospective study designs ideally allow patients to be followed from the first manifestations of the illness or even from an at-risk stage. It can thus provide data on the predictive value of changes in clinical symptomatology, cognition or further biological markers to broaden our understanding of the etiopathology and symptomatic trajectory of bipolar disorders. The scope of this narrative review is to summarize evidence from prospectively collected data on psychopathological and other clinical and biological changes in the early developmental course of bipolar disorders. METHODS The narrative review was based on a literature search conducted in February 2016 within the PubMed library for prospective study data of persons in antecedent and early manifest stages of manifest bipolar disorder published within the last 15 years. RESULTS A total of 19 prospective studies were included. Regarding psychopathological features; personality, temperament and character traits as well as changes in sleep and circadian rhythm, the evidence suggests that risk factors for the development of bipolar disorder can already be described and should be studied further to understand their interaction, mediation with other factors and timing in the developmental process of bipolar disorder. Apart from the positive family history, childhood anxiety, sleep problems, subthreshold (hypo)manic symptoms and certain character traits/emotionality should be identified and monitored already in clinical practice as their presence likely increases risk of bipolar disorder. Up to date no substantiated evidence was found from prospective studies addressing cognitive features, life events, immunological parameters and morphological central nervous system changes as potential risk factors for bipolar disorder. CONCLUSION For an improved understanding of episodic disorders, longitudinal data collection is essential. Since the etiology of bipolar disorders is complex, a number of potential risk factors have been proposed. Prospective studies addressing this spectrum and resilience factors are critical and will be best conducted within multi-site research networks or initiatives.
Collapse
Affiliation(s)
- Andrea Pfennig
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Karolina Leopold
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Anne Böhme
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Emanuel Severus
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| | - Michael Bauer
- Department of Psychiatry and Psychotherapy, Carl Gustav Carus University Hospital, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
35
|
Reus LM, Shen X, Gibson J, Wigmore E, Ligthart L, Adams MJ, Davies G, Cox SR, Hagenaars SP, Bastin ME, Deary IJ, Whalley HC, McIntosh AM. Association of polygenic risk for major psychiatric illness with subcortical volumes and white matter integrity in UK Biobank. Sci Rep 2017; 7:42140. [PMID: 28186152 PMCID: PMC5301496 DOI: 10.1038/srep42140] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
Major depressive disorder (MDD), schizophrenia (SCZ) and bipolar disorder (BP) are common, disabling and heritable psychiatric diseases with a complex overlapping polygenic architecture. Individuals with these disorders, as well as their unaffected relatives, show widespread structural differences in corticostriatal and limbic networks. Structural variation in many of these brain regions is also heritable and polygenic but whether their genetic architecture overlaps with that of major psychiatric disorders is unknown. We sought to address this issue by examining the impact of polygenic risk of MDD, SCZ, and BP on subcortical brain volumes and white matter (WM) microstructure in a large single sample of neuroimaging data; the UK Biobank Imaging study. The first release of UK Biobank imaging data comprised participants with overlapping genetic data and subcortical volumes (N = 978) and WM measures (N = 816). The calculation of polygenic risk scores was based on genome-wide association study results generated by the Psychiatric Genomics Consortium. Our findings indicated no statistically significant associations between either subcortical volumes or WM microstructure, and polygenic risk for MDD, SCZ or BP. These findings suggest that subcortical brain volumes and WM microstructure may not be closely linked to the genetic mechanisms of major psychiatric disorders.
Collapse
Affiliation(s)
- L. M. Reus
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - X. Shen
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - J. Gibson
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - E. Wigmore
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - L. Ligthart
- Department of Biological Psychology, Vrije Universiteit, Amsterdam, the Netherlands
| | - M. J. Adams
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - G. Davies
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - S. R. Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - S. P. Hagenaars
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - M. E. Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - I. J. Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
- Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| | - H. C. Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
| | - A. M. McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, EH10 5HF, United Kingdom
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, EH8 9JZ, United Kingdom
| |
Collapse
|
36
|
Acheson A, Wijtenburg SA, Rowland LM, Winkler A, Mathias CW, Hong LE, Jahanshad N, Patel B, Thompson PM, McGuire SA, Sherman PM, Kochunov P, Dougherty DM. Reproducibility of tract-based white matter microstructural measures using the ENIGMA-DTI protocol. Brain Behav 2017; 7:e00615. [PMID: 28239525 PMCID: PMC5318368 DOI: 10.1002/brb3.615] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND In preparation for longitudinal analyses of white matter development in youths with family histories of substance use disorders (FH+) or without such histories (FH-), we examined the reproducibility and reliability of global and regional measures of fractional anisotropy (FA) values, measured using the Enhancing Neuro Imaging Genetics Through Meta Analysis (ENIGMA)-diffusion tensor imaging (DTI) protocol. Highly reliable measures are necessary to detect any subtle differences in brain development. METHODS First, we analyzed reproducibility data in a sample of 12 healthy young adults (ages 20-28) imaged three times within a week. Next, we calculated the same metrics in data collected 1-year apart in the sample of 68 FH+ and 21 FH- adolescents. This is a timeframe where within subject changes in white matter microstructure are small compared to between subject variance. Reproducibility was estimated by examining mean coefficients of variation (MCV), mean absolute differences (MAD), and intraclass correlations (ICC) for global and tract-specific FA values. RESULTS We found excellent reproducibility for whole-brain DTI-FA values and most of the white matter tracts, except for the corticospinal tract and the fornix in both adults and youths. There was no significant effect of FH-group on reproducibility (p = .4). Reproducibility metrics were not significantly different between adolescents and adults (all p > .2). In post hoc analyses, the reproducibility metrics for regional FA values showed a strong positive correlation (r = .6) with the regional FA heritability measures previously reported by ENIGMA-DTI. CONCLUSION Overall, this study demonstrated an excellent reproducibility of ENIGMA-DTI FA, positing it as viable analysis tools for longitudinal studies and other protocols that repeatedly assess white matter microstructure.
Collapse
Affiliation(s)
- Ashley Acheson
- Department of Psychiatry University of Texas Health Science Center at San Antonio San Antonio TX USA; Research Imaging Institute University of Texas Health Science Center at San Antonio San Antonio TX USA
| | - S Andrea Wijtenburg
- Department of Psychiatry Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD USA
| | - Laura M Rowland
- Department of Psychiatry Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD USA; Russell H. Morgan Department of Radiology and Radiological Science Johns Hopkins University Baltimore MD USA
| | - Anderson Winkler
- Oxford Centre for Functional MRI of the Brain University of Oxford Oxford UK; Department of Psychiatry Yale University School of Medicine New Haven CT USA
| | - Charles W Mathias
- Department of Psychiatry University of Texas Health Science Center at San Antonio San Antonio TX USA
| | - L Elliot Hong
- Department of Psychiatry Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD USA
| | - Neda Jahanshad
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute Keck School of Medicine of USC Marina del Rey CA USA
| | - Binish Patel
- Department of Psychiatry Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute Keck School of Medicine of USC Marina del Rey CA USA
| | | | - Paul M Sherman
- Department of Neuroradiology 59th Medical Wing Lackland AFB TX USA
| | - Peter Kochunov
- Department of Psychiatry Maryland Psychiatric Research Center University of Maryland School of Medicine Baltimore MD USA
| | - Donald M Dougherty
- Department of Psychiatry University of Texas Health Science Center at San Antonio San Antonio TX USA
| |
Collapse
|
37
|
Nery FG, Norris M, Eliassen JC, Weber WA, Blom TJ, Welge JA, Barzman DA, Strawn JR, Adler CM, Strakowski SM, DelBello MP. White matter volumes in youth offspring of bipolar parents. J Affect Disord 2017; 209:246-253. [PMID: 27936454 PMCID: PMC10530655 DOI: 10.1016/j.jad.2016.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/25/2016] [Accepted: 11/15/2016] [Indexed: 12/24/2022]
Abstract
BACKGROUND Studying youth at high risk of developing bipolar disorder may clarify neurobiological factors associated with vulnerability to this illness. We present here a baseline characterization of brain structure in youth at-risk for bipolar disorder. METHODS Magnetic resonance images were obtained from 115 child and adolescent offspring of bipolar disorder type I subjects and 57 healthy child and adolescent offspring of healthy parents (healthy control offspring). Offspring of parents with bipolar disorder were divided into healthy bipolar offspring (n=47) or symptomatic bipolar offspring (n=68), according to presence or absence of childhood-onset psychopathology. All bipolar offspring were free of major mood and psychotic disorders. Gray (GM) and white matter (WM) volumes were compared between groups using voxel-based morphometry. RESULTS No differences in GM volumes were found across groups. Healthy bipolar offspring presented with decreased WM volumes in areas of the right frontal, temporal and parietal lobes, and in the left temporal and parietal lobes compared to healthy control offspring. Symptomatic bipolar offspring did not present with any differences in WM volumes compared to either healthy bipolar offspring or healthy control offspring. LIMITATIONS Cross-sectional design and heterogeneous sample of symptomatic bipolar offspring. CONCLUSIONS WM volume decreases in areas of the frontal, occipital, and parietal lobes are present in bipolar offspring prior to the development of any psychiatric symptoms, and may be a correlate of familial risk to bipolar disorder. In this large cohort, we have not found evidence for regional GM volume abnormalities as an endophenotype for bipolar disorder.
Collapse
Affiliation(s)
- Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Matthew Norris
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James C Eliassen
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Wade A Weber
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Thomas J Blom
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey A Welge
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Drew A Barzman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA; Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jeffrey R Strawn
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Caleb M Adler
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Stephen M Strakowski
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Melissa P DelBello
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
38
|
Alloza C, Cox SR, Duff B, Semple SI, Bastin ME, Whalley HC, Lawrie SM. Information processing speed mediates the relationship between white matter and general intelligence in schizophrenia. Psychiatry Res Neuroimaging 2016; 254:26-33. [PMID: 27308721 DOI: 10.1016/j.pscychresns.2016.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 11/19/2022]
Abstract
Several authors have proposed that schizophrenia is the result of impaired connectivity between specific brain regions rather than differences in local brain activity. White matter abnormalities have been suggested as the anatomical substrate for this dysconnectivity hypothesis. Information processing speed may act as a key cognitive resource facilitating higher order cognition by allowing multiple cognitive processes to be simultaneously available. However, there is a lack of established associations between these variables in schizophrenia. We hypothesised that the relationship between white matter and general intelligence would be mediated by processing speed. White matter water diffusion parameters were studied using Tract-based Spatial Statistics and computed within 46 regions-of-interest (ROI). Principal component analysis was conducted on these white matter ROI for fractional anisotropy (FA) and mean diffusivity, and on neurocognitive subtests to extract general factors of white mater structure (gFA, gMD), general intelligence (g) and processing speed (gspeed). There was a positive correlation between g and gFA (r= 0.67, p =0.001) that was partially and significantly mediated by gspeed (56.22% CI: 0.10-0.62). These findings suggest a plausible model of structure-function relations in schizophrenia, whereby white matter structure may provide a neuroanatomical substrate for general intelligence, which is partly supported by speed of information processing.
Collapse
Affiliation(s)
- Clara Alloza
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK.
| | - Simon R Cox
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Department of Psychology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK
| | - Barbara Duff
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Scott I Semple
- Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK; Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Mark E Bastin
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK; Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK; Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, UK
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK; Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) Collaboration, Edinburgh, UK; Centre for Clinical Brain Sciences, Western General Hospital, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
39
|
Zheutlin AB, Viehman RW, Fortgang R, Borg J, Smith DJ, Suvisaari J, Therman S, Hultman CM, Cannon TD. Cognitive endophenotypes inform genome-wide expression profiling in schizophrenia. Neuropsychology 2016; 30:40-52. [PMID: 26710095 DOI: 10.1037/neu0000244] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE We performed a whole-genome expression study to clarify the nature of the biological processes mediating between inherited genetic variations and cognitive dysfunction in schizophrenia. METHOD Gene expression was assayed from peripheral blood mononuclear cells using Illumina Human WG6 v3.0 chips in twins discordant for schizophrenia or bipolar disorder and control twins. After quality control, expression levels of 18,559 genes were screened for association with the California Verbal Learning Test (CVLT) performance, and any memory-related probes were then evaluated for variation by diagnostic status in the discovery sample (N = 190), and in an independent replication sample (N = 73). Heritability of gene expression using the twin design was also assessed. RESULTS After Bonferroni correction (p < 2.69 × 10-6), CVLT performance was significantly related to expression levels for 76 genes, 43 of which were differentially expressed in schizophrenia patients, with comparable effect sizes in the same direction in the replication sample. For 41 of these 43 transcripts, expression levels were heritable. Nearly all identified genes contain common or de novo mutations associated with schizophrenia in prior studies. CONCLUSION Genes increasing risk for schizophrenia appear to do so in part via effects on signaling cascades influencing memory. The genes implicated in these processes are enriched for those related to RNA processing and DNA replication and include genes influencing G-protein coupled signal transduction, cytokine signaling, and oligodendrocyte function.
Collapse
Affiliation(s)
| | - Rachael W Viehman
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles
| | | | | | - Desmond J Smith
- Department of Molecular and Medical Pharmacology, University of California Los Angeles
| | | | | | | | | |
Collapse
|
40
|
Abstract
Bipolar disorder is associated with subtle neuroanatomical deficits including lateral
ventricular enlargement, grey matter deficits incorporating limbic system structures, and distributed
white matter pathophysiology. Substantial heterogeneity has been identified by structural neuroimaging
studies to date and differential psychotropic medication use is potentially a substantial contributor to
this. This selective review of structural neuroimaging and diffusion tensor imaging studies considers
evidence that lithium, mood stabilisers, antipsychotic medication and antidepressant medications are
associated with neuroanatomical variation. Most studies are negative and suffer from methodological
weaknesses in terms of directly assessing medication effects on neuroanatomy, since they commonly
comprise posthoc assessments of medication associations with neuroimaging metrics in small heterogenous patient
groups. However the studies which report positive findings tend to form a relatively consistent picture whereby lithium
and antiepileptic mood stabiliser use is associated with increased regional grey matter volume, especially in limbic
structures. These findings are further supported by the more methodologically robust studies which include large numbers of
patients or repeated intra-individual scanning in longitudinal designs. Some similar findings of an apparently ameliorative
effect of lithium on white matter microstructure are also emerging. There is less support for an effect of antipsychotic or
antidepressant medication on brain structure in bipolar disorder, but these studies are further limited by methodological
difficulties. In general the literature to date supports a normalising effect of lithium and mood stabilisers on brain structure
in bipolar disorder, which is consistent with the neuroprotective characteristics of these medications identified by
preclinical studies.
Collapse
Affiliation(s)
- Colm McDonald
- National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
41
|
Roberts G, Wen W, Frankland A, Perich T, Holmes-Preston E, Levy F, Lenroot RK, Hadzi-Pavlovic D, Nurnberger JI, Breakspear M, Mitchell PB. Interhemispheric white matter integrity in young people with bipolar disorder and at high genetic risk. Psychol Med 2016; 46:2385-2396. [PMID: 27291060 DOI: 10.1017/s0033291716001161] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND White matter (WM) impairments have been reported in patients with bipolar disorder (BD) and those at high familial risk of developing BD. However, the distribution of these impairments has not been well characterized. Few studies have examined WM integrity in young people early in the course of illness and in individuals at familial risk who have not yet passed the peak age of onset. METHOD WM integrity was examined in 63 BD subjects, 150 high-risk (HR) individuals and 111 participants with no family history of mental illness (CON). All subjects were aged 12 to 30 years. RESULTS This young BD group had significantly lower fractional anisotropy within the genu of the corpus callosum (CC) compared with the CON and HR groups. Moreover, the abnormality in the genu of the CC was also present in HR participants with recurrent major depressive disorder (MDD) (n = 16) compared with CON participants. CONCLUSIONS Our findings provide important validation of interhemispheric abnormalities in BD patients. The novel finding in HR subjects with recurrent MDD - a group at particular risk of future hypo/manic episodes - suggests that this may potentially represent a trait marker for BD, though this will need to be confirmed in longitudinal follow-up studies.
Collapse
Affiliation(s)
- G Roberts
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - W Wen
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - A Frankland
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - T Perich
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - E Holmes-Preston
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - F Levy
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - R K Lenroot
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - D Hadzi-Pavlovic
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| | - J I Nurnberger
- Department of Psychiatry,Indiana University School of Medicine,Indianapolis, IN,USA
| | - M Breakspear
- Division of Mental Health Research,Queensland Institute of Medical Research,Brisbane,QLD,Australia
| | - P B Mitchell
- School of Psychiatry,University of New South Wales,Sydney,NSW,Australia
| |
Collapse
|
42
|
Walker RM, Sussmann JE, Whalley HC, Ryan NM, Porteous DJ, McIntosh AM, Evans KL. Preliminary assessment of pre-morbid DNA methylation in individuals at high genetic risk of mood disorders. Bipolar Disord 2016; 18:410-22. [PMID: 27440233 PMCID: PMC5006843 DOI: 10.1111/bdi.12415] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 06/09/2016] [Accepted: 06/17/2016] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Accumulating evidence implicates altered DNA methylation in psychiatric disorders, including bipolar disorder (BD) and major depressive disorder (MDD). It is not clear, however, whether these changes are causative or result from illness progression or treatment. To disentangle these possibilities we profiled genome-wide DNA methylation in well, unrelated individuals at high familial risk of mood disorder. DNA methylation was compared between individuals who subsequently developed BD or MDD [ill later (IL)] and those who remained well [well later (WL)]. METHODS DNA methylation profiles were obtained from whole-blood samples from 22 IL and 23 WL individuals using the Infinium HumanMethylation450 BeadChip. Differential methylation was assessed on a single-locus and regional basis. Pathway analysis was performed to assess enrichment for particular biological processes amongst nominally significantly differentially methylated loci. RESULTS Although no locus withstood correction for multiple testing, uncorrected P-values provided suggestive evidence for altered methylation at sites within genes previously implicated in neuropsychiatric conditions, such as Transcription Factor 4 (TCF4) and Interleukin 1 Receptor Accessory Protein-Like 1 ([IL1RAPL1]; P≤3.11×10(-5) ). Pathway analysis revealed significant enrichment for several neurologically relevant pathways and functions, including Nervous System Development and Function and Behavior; these findings withstood multiple testing correction (q≤0.05). Analysis of differentially methylated regions identified several within the major histocompatibility complex (P≤.000 479), a region previously implicated in schizophrenia and BD. CONCLUSIONS Our data provide provisional evidence for the involvement of altered whole-blood DNA methylation in neurologically relevant genes in the aetiology of mood disorders. These findings are convergent with the findings of genome-wide association studies.
Collapse
Affiliation(s)
- Rosie May Walker
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK
| | - Jessika Elizabeth Sussmann
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK
| | - Heather Clare Whalley
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK
| | - Niamh Margaret Ryan
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK
| | - David John Porteous
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| | - Andrew Mark McIntosh
- Division of PsychiatryThe University of EdinburghRoyal Edinburgh HospitalUniversity of EdinburghEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| | - Kathryn Louise Evans
- Medical Genetics SectionCentre for Genomic and Experimental MedicineInstitute of Genetics and Molecular MedicineThe University of EdinburghWestern General HospitalEdinburghUK,Centre for Cognitive Ageing and Cognitive EpidemiologyThe University of EdinburghEdinburghUK
| |
Collapse
|
43
|
Nickson T, Chan SWY, Papmeyer M, Romaniuk L, Macdonald A, Stewart T, Kielty S, Lawrie SM, Hall J, Sussmann JE, McIntosh AM, Whalley HC. Prospective longitudinal voxel-based morphometry study of major depressive disorder in young individuals at high familial risk. Psychol Med 2016; 46:2351-2361. [PMID: 27282778 DOI: 10.1017/s0033291716000519] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Previous neuroimaging studies indicate abnormalities in cortico-limbic circuitry in mood disorder. Here we employ prospective longitudinal voxel-based morphometry to examine the trajectory of these abnormalities during early stages of illness development. METHOD Unaffected individuals (16-25 years) at high and low familial risk of mood disorder underwent structural brain imaging on two occasions 2 years apart. Further clinical assessment was conducted 2 years after the second scan (time 3). Clinical outcome data at time 3 was used to categorize individuals: (i) healthy controls ('low risk', n = 48); (ii) high-risk individuals who remained well (HR well, n = 53); and (iii) high-risk individuals who developed a major depressive disorder (HR MDD, n = 30). Groups were compared using longitudinal voxel-based morphometry. We also examined whether progress to illness was associated with changes in other potential risk markers (personality traits, symptoms scores and baseline measures of childhood trauma), and whether any changes in brain structure could be indexed using these measures. RESULTS Significant decreases in right amygdala grey matter were found in HR MDD v. controls (p = 0.001) and v. HR well (p = 0.005). This structural change was not related to measures of childhood trauma, symptom severity or measures of sub-diagnostic anxiety, neuroticism or extraversion, although cross-sectionally these measures significantly differentiated the groups at baseline. CONCLUSIONS These longitudinal findings implicate structural amygdala changes in the neurobiology of mood disorder. They also provide a potential biomarker for risk stratification capturing additional information beyond clinically ascertained measures.
Collapse
Affiliation(s)
- T Nickson
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - S W Y Chan
- Clinical Psychology,University of Edinburgh,Edinburgh,UK
| | - M Papmeyer
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - L Romaniuk
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - A Macdonald
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - T Stewart
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - S Kielty
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - S M Lawrie
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - J Hall
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - J E Sussmann
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - A M McIntosh
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| | - H C Whalley
- Division of Psychiatry,University of Edinburgh,Edinburgh,UK
| |
Collapse
|
44
|
Sprooten E, Barrett J, McKay DR, Knowles EE, Mathias SR, Winkler AM, Brumbaugh MS, Landau S, Cyr L, Kochunov P, Glahn DC. A comprehensive tractography study of patients with bipolar disorder and their unaffected siblings. Hum Brain Mapp 2016; 37:3474-85. [PMID: 27198848 DOI: 10.1002/hbm.23253] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 04/01/2016] [Accepted: 04/27/2016] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Diffusion tensor imaging studies show reductions in fractional anisotropy (FA) in individuals with bipolar disorder and their unaffected siblings. However, the use of various analysis methods is an important source of between-study heterogeneity. Using tract-based spatial statistics, we previously demonstrated widespread FA reductions in patients and unaffected relatives. To better interpret the neuroanatomical pattern of this previous finding and to assess the influence of methodological heterogeneity, we here applied tractography to the same sample. METHODS Diffusion-weighted images were acquired for 96 patients, 69 unaffected siblings and 56 controls. We applied TRACULA, an extension of a global probabilistic tractography algorithm, to automatically segment 18 major fiber tracts. Average FA within each tract and at each cross-section along each tract was compared between groups. RESULTS Patients had reduced FA compared to healthy controls and their unaffected siblings in general, and in particular in the parietal part of the superior longitudinal fasciculus. In unaffected siblings, FA was nominally reduced compared to controls in the corpus callosum. Point-wise analyses indicated that similar effects were present along extended sections, but with variable effect sizes. Current symptom severity negatively correlated with FA in several fronto-limbic association tracts. CONCLUSIONS The differential sensitivity of analysis techniques likely explains between-study heterogeneity in anatomical localization of FA reductions. The present tractography analysis confirms the presence of overall FA reductions in patients with bipolar disorder, which are most pronounced in the superior longitudinal fasciculus. Unaffected siblings may display similar, albeit more subtle and anatomically restricted FA reductions. Hum Brain Mapp 37:3474-3485, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emma Sprooten
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Jennifer Barrett
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - D Reese McKay
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Emma E Knowles
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Samuel R Mathias
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Anderson M Winkler
- Oxford Centre for Functional MRI Of the Brain, University of Oxford, Oxford, United Kingdom
| | - Margaret S Brumbaugh
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Stefanie Landau
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Lindsay Cyr
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Maryland Psychiatric Research Center, Baltimore, Maryland
| | - David C Glahn
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut
| |
Collapse
|
45
|
Sarıçiçek A, Zorlu N, Yalın N, Hıdıroğlu C, Çavuşoğlu B, Ceylan D, Ada E, Tunca Z, Özerdem A. Abnormal white matter integrity as a structural endophenotype for bipolar disorder. Psychol Med 2016; 46:1547-1558. [PMID: 26947335 DOI: 10.1017/s0033291716000180] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND Several lines of evidence suggest that bipolar disorder (BD) is associated with white matter (WM) pathology. Investigation of unaffected first-degree relatives of BD patients may help to distinguish structural biomarkers of genetic risk without the confounding effects of burden of illness, medication or clinical state. In the present study, we applied tract-based spatial statistics to study WM changes in patients with BD, unaffected siblings and controls. METHOD A total of 27 euthymic patients with BD type I, 20 unaffected siblings of bipolar patients and 29 healthy controls who did not have any current or past diagnosis of Axis I psychiatric disorders were enrolled in the study. RESULTS Fractional anisotropy (FA) was significantly lower in BD patients than in the control group in the corpus callosum, fornix, bilateral superior longitudinal fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, anterior thalamic radiation, posterior thalamic radiation, cingulum, uncinate fasciculus, superior corona radiata, anterior corona radiata and left external capsule. In region-of-interest (ROI) analyses, we found that both unaffected siblings and bipolar patients had significantly reduced FA in the left posterior thalamic radiation, the left sagittal stratum, and the fornix compared with healthy controls. Average FA for unaffected siblings was intermediate between the healthy controls and bipolar patients within these ROIs. CONCLUSIONS Decreased FA in the fornix, left posterior thalamic radiation and left sagittal stratum in both bipolar patients and unaffected siblings may represent a potential structural endophenotype or a trait-based marker for BD.
Collapse
Affiliation(s)
- A Sarıçiçek
- Department of Psychiatry,Faculty of Medicine,Izmir Katip Celebi University,Ataturk Training and Research Hospital,Izmir,Turkey
| | - N Zorlu
- Department of Psychiatry,Faculty of Medicine,Izmir Katip Celebi University,Ataturk Training and Research Hospital,Izmir,Turkey
| | - N Yalın
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| | - C Hıdıroğlu
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| | - B Çavuşoğlu
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| | - D Ceylan
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| | - E Ada
- Department of Radiology,Faculty of Medicine,Dokuz Eylul University,Izmir,Turkey
| | - Z Tunca
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| | - A Özerdem
- Department of Neuroscience,Health Sciences Institute,Dokuz Eylul University,Izmir,Turkey
| |
Collapse
|
46
|
Papmeyer M, Sussmann JE, Stewart T, Giles S, Centola JG, Zannias V, Lawrie SM, Whalley HC, McIntosh AM. Prospective longitudinal study of subcortical brain volumes in individuals at high familial risk of mood disorders with or without subsequent onset of depression. Psychiatry Res 2016; 248:119-25. [PMID: 26778365 PMCID: PMC4834463 DOI: 10.1016/j.pscychresns.2015.12.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/08/2015] [Accepted: 12/28/2015] [Indexed: 12/19/2022]
Abstract
Subcortical volumetric brain abnormalities have been observed in mood disorders. However, it is unknown whether these reflect adverse effects predisposing to mood disorders or emerge at illness onset. Magnetic resonance imaging was conducted at baseline and after two years in 111 initially unaffected young adults at increased risk of mood disorders because of a close family history of bipolar disorder and 93 healthy controls (HC). During the follow-up, 20 high-risk subjects developed major depressive disorder (HR-MDD), with the others remaining well (HR-well). Volumes of the lateral ventricles, caudate, putamen, pallidum, thalamus, hippocampus and amygdala were extracted for each hemisphere. Using linear mixed-effects models, differences and longitudinal changes in subcortical volumes were investigated between groups (HC, HR-MDD, HR-well). There were no significant differences for any subcortical volume between groups controlling for multiple testing. Additionally, no significant differences emerged between groups over time. Our results indicate that volumetric subcortical brain abnormalities of these regions using the current method appear not to form familial trait markers for vulnerability to mood disorders in close relatives of bipolar disorder patients over the two-year time period studied. Moreover, they do not appear to reduce in response to illness onset at least for the time period studied.
Collapse
Affiliation(s)
- Martina Papmeyer
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom; Division of Systems Neuroscience of Psychopathology, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bolligenstrasse 111, 3000 Bern 60, Switzerland.
| | - Jessika E Sussmann
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Tiffany Stewart
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Stephen Giles
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - John G Centola
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Vasileios Zannias
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Morningside Park, Edinburgh EH10 5HF, United Kingdom
| |
Collapse
|
47
|
Sani G, Chiapponi C, Piras F, Ambrosi E, Simonetti A, Danese E, Janiri D, Brugnoli R, De Filippis S, Caltagirone C, Girardi P, Spalletta G. Gray and white matter trajectories in patients with bipolar disorder. Bipolar Disord 2016; 18:52-62. [PMID: 26782273 DOI: 10.1111/bdi.12359] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 10/26/2015] [Indexed: 01/27/2023]
Abstract
OBJECTIVES Findings on brain structural abnormalities in patients with bipolar disorder (BP) are inconsistent and little is known about age-related evolution of these changes. We employed a cross-sectional, case-control study to compare structural age-related brain trajectories in patients with BP and healthy control subjects (HC) over a period of approximately 50 years. The primary aim was to understand whether white (WM) and gray matter (GM) abnormalities are present from the beginning of the illness and how they change over time. METHODS Seventy-eight patients with BP and 78 HC matched for age, gender, and educational level underwent a high-resolution structural magnetic resonance imaging protocol. A voxel-based morphometry (VBM) analysis was used to capture GM and WM differences between subjects with BP and HC. Factorial analysis of covariance was used to compare brain volume alterations at different ages between the groups. RESULTS We found an age-related atrophy in GM and WM volumes both in patients with BP and HC. A main effect of diagnosis emerged in the posterior cingulate cortex bilaterally, in the right thalamus, in the cerebellum bilaterally, and in the left posterior limb of the internal capsule. No interaction between diagnosis and age emerged, indicating that the volumes of these areas were permanently reduced in subjects with BP throughout the entire age range under investigation. CONCLUSIONS Brain alterations in patients with BP are present from the beginning of the illness and remain stable over time. All the affected areas are involved in mood and psychomotor control process. This suggests a possible neurodevelopmental involvement in the mechanism of BP.
Collapse
Affiliation(s)
- Gabriele Sani
- Neurosciences, Mental Health, and Sensory Organs Department (NESMOS), Sapienza University, Rome, School of Medicine and Psychology, Sant' Andrea Hospital, Italy
- Centro Lucio Bini, Rome, Italy
| | - Chiara Chiapponi
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Medicine of Systems, Tor Vergata University, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Enrico Fermi Center for Study and Research, Rome, Italy
| | - Elisa Ambrosi
- Neurosciences, Mental Health, and Sensory Organs Department (NESMOS), Sapienza University, Rome, School of Medicine and Psychology, Sant' Andrea Hospital, Italy
| | - Alessio Simonetti
- Neurosciences, Mental Health, and Sensory Organs Department (NESMOS), Sapienza University, Rome, School of Medicine and Psychology, Sant' Andrea Hospital, Italy
- Centro Lucio Bini, Rome, Italy
| | - Emanuela Danese
- Neurosciences, Mental Health, and Sensory Organs Department (NESMOS), Sapienza University, Rome, School of Medicine and Psychology, Sant' Andrea Hospital, Italy
| | - Delfina Janiri
- Neurosciences, Mental Health, and Sensory Organs Department (NESMOS), Sapienza University, Rome, School of Medicine and Psychology, Sant' Andrea Hospital, Italy
- Centro Lucio Bini, Rome, Italy
| | - Roberto Brugnoli
- Neurosciences, Mental Health, and Sensory Organs Department (NESMOS), Sapienza University, Rome, School of Medicine and Psychology, Sant' Andrea Hospital, Italy
| | | | - Carlo Caltagirone
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Medicine of Systems, Tor Vergata University, Rome, Italy
| | - Paolo Girardi
- Neurosciences, Mental Health, and Sensory Organs Department (NESMOS), Sapienza University, Rome, School of Medicine and Psychology, Sant' Andrea Hospital, Italy
- Centro Lucio Bini, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
- Division of Neuropsychiatry, Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
48
|
Job DE, Dickie DA, Rodriguez D, Robson A, Danso S, Pernet C, Bastin ME, Boardman JP, Murray AD, Ahearn T, Waiter GD, Staff RT, Deary IJ, Shenkin SD, Wardlaw JM. A brain imaging repository of normal structural MRI across the life course: Brain Images of Normal Subjects (BRAINS). Neuroimage 2016; 144:299-304. [PMID: 26794641 DOI: 10.1016/j.neuroimage.2016.01.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 11/16/2022] Open
Abstract
The Brain Images of Normal Subjects (BRAINS) Imagebank (http://www.brainsimagebank.ac.uk) is an integrated repository project hosted by the University of Edinburgh and sponsored by the Scottish Imaging Network: A Platform for Scientific Excellence (SINAPSE) collaborators. BRAINS provide sharing and archiving of detailed normal human brain imaging and relevant phenotypic data already collected in studies of healthy volunteers across the life-course. It particularly focusses on the extremes of age (currently older age, and in future perinatal) where variability is largest, and which are under-represented in existing databanks. BRAINS is a living imagebank where new data will be added when available. Currently BRAINS contains data from 808 healthy volunteers, from 15 to 81years of age, from 7 projects in 3 centres. Additional completed and ongoing studies of normal individuals from 1st to 10th decades are in preparation and will be included as they become available. BRAINS holds several MRI structural sequences, including T1, T2, T2* and fluid attenuated inversion recovery (FLAIR), available in DICOM (http://dicom.nema.org/); in future Diffusion Tensor Imaging (DTI) will be added where available. Images are linked to a wide range of 'textual data', such as age, medical history, physiological measures (e.g. blood pressure), medication use, cognitive ability, and perinatal information for pre/post-natal subjects. The imagebank can be searched to include or exclude ranges of these variables to create better estimates of 'what is normal' at different ages.
Collapse
Affiliation(s)
- Dominic E Job
- Brain Research Imaging Centre (BRIC), & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Scottish Imaging Network, 15 Redburn Avenue, Giffnock, Glasgow G46 6RH, United Kingdom.
| | - David Alexander Dickie
- Brain Research Imaging Centre (BRIC), & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Scottish Imaging Network, 15 Redburn Avenue, Giffnock, Glasgow G46 6RH, United Kingdom
| | - David Rodriguez
- Brain Research Imaging Centre (BRIC), & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Scottish Imaging Network, 15 Redburn Avenue, Giffnock, Glasgow G46 6RH, United Kingdom
| | - Andrew Robson
- Brain Research Imaging Centre (BRIC), & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Scottish Imaging Network, 15 Redburn Avenue, Giffnock, Glasgow G46 6RH, United Kingdom
| | - Sammy Danso
- Brain Research Imaging Centre (BRIC), & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Scottish Imaging Network, 15 Redburn Avenue, Giffnock, Glasgow G46 6RH, United Kingdom
| | - Cyril Pernet
- Brain Research Imaging Centre (BRIC), & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Scottish Imaging Network, 15 Redburn Avenue, Giffnock, Glasgow G46 6RH, United Kingdom
| | - Mark E Bastin
- Brain Research Imaging Centre (BRIC), & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom
| | - James P Boardman
- Brain Research Imaging Centre (BRIC), & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; MRC Centre for Reproductive Health, University of Edinburgh, United Kingdom
| | - Alison D Murray
- Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Trevor Ahearn
- Medical Physics, Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB25 2ZN, United Kingdom
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Lilian Sutton Building, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom
| | - Roger T Staff
- Medical Physics, Aberdeen Royal Infirmary, Foresterhill, Aberdeen AB25 2ZN, United Kingdom
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, United Kingdom
| | - Susan D Shenkin
- Brain Research Imaging Centre (BRIC), & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Scottish Imaging Network, 15 Redburn Avenue, Giffnock, Glasgow G46 6RH, United Kingdom; Geriatric Medicine Unit, University of Edinburgh, Royal Infirmary of Edinburgh, 51 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom; Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, United Kingdom
| | - Joanna M Wardlaw
- Brain Research Imaging Centre (BRIC), & Centre for Clinical Brain Sciences (CCBS), The University of Edinburgh, Division of Clinical Neurosciences, Western General Hospital, Crewe Road, Edinburgh EH4 2XU, United Kingdom; Scottish Imaging Network, 15 Redburn Avenue, Giffnock, Glasgow G46 6RH, United Kingdom; Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, 7 George Square, Edinburgh EH8 9JZ, United Kingdom
| |
Collapse
|
49
|
Ambrosi E, Chiapponi C, Sani G, Manfredi G, Piras F, Caltagirone C, Spalletta G. White matter microstructural characteristics in Bipolar I and Bipolar II Disorder: A diffusion tensor imaging study. J Affect Disord 2016; 189:176-83. [PMID: 26437232 DOI: 10.1016/j.jad.2015.09.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/08/2015] [Accepted: 09/18/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) studies of bipolar disorder (BD) report contrasting results and are mainly focused on bipolar I (BD-I) samples. We aimed at investigating how and where DTI parameters differ between BD-I and bipolar II (BD-II) and between BD and healthy control subjects (HC). METHODS We conducted a tract-based spatial statistics analysis of DTI derived parameters, namely fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD) in a matched sample of 50 BD (25 BD-I and 25 BD-II) during the chronic course of the illness and 50 HC. RESULTS Compared to BD-I and HC, BD-II showed lower FA but no significant AD or RD differences in the right inferior longitudinal fasciculus (ILF). Both patient groups showed lower AD and RD in the left internal capsule and lower AD across the left ILF, the cortico-spinal tract within the right hemisphere and bilaterally in the cerebellum with respect to HC. LIMITATIONS Patients were medicated at the time of scanning; the BD-II group had higher Hamilton Rating Scale for Depression scores than the BD-I group. CONCLUSIONS BD-II patients differ from BD-I in the ILF. Both BD subtypes showed widespread white matter (WM) changes in the internal capsule, cortico-spinal tract and cerebellum. The loss of WM integrity in BD-II might be due to demyelination whereas WM changes common to both subgroups could be attributable to axonal damage.
Collapse
Affiliation(s)
- Elisa Ambrosi
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; NESMOS Department, Sapienza University of Rome, Italy
| | - Chiara Chiapponi
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Systems Medicine, "Tor Vergata" University, Rome, Italy
| | - Gabriele Sani
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; NESMOS Department, Sapienza University of Rome, Italy; Centro Lucio Bini, Rome, Italy
| | - Giovanni Manfredi
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; NESMOS Department, Sapienza University of Rome, Italy; Centro Lucio Bini, Rome, Italy
| | - Fabrizio Piras
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Caltagirone
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Department of Neuroscience, "Tor Vergata" University, Rome, Italy
| | - Gianfranco Spalletta
- Neuropsychiatry Laboratory, Department of Clinical and Behavioral Neurology, IRCCS Santa Lucia Foundation, Rome, Italy; Beth K. and Stuart C. Yudofsky Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
50
|
Papmeyer M, Sussmann JE, Hall J, McKirdy J, Peel A, Macdonald A, Lawrie SM, Whalley HC, McIntosh AM. Neurocognition in individuals at high familial risk of mood disorders with or without subsequent onset of depression. Psychol Med 2015; 45:3317-27. [PMID: 26189425 PMCID: PMC5034888 DOI: 10.1017/s0033291715001324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Neurocognitive performance deficits have been observed in mood disorder patients and their unaffected relatives and may therefore qualify as endophenotypes. However, the precise time course of neurocognitive deficits has not been studied so that it is unknown whether neurocognitive abnormalities reflect the early effects of familial vulnerability to mood disorders or if they emerge at illness onset. METHOD A neuropsychological test battery was administered at baseline and after a 2-year follow-up interval in 111 initially unaffected young adults at high familial risk of mood disorders and 93 healthy controls (HC). During the follow-up period, 20 high-risk subjects developed major depressive disorder (HR-MDD), with the remainder remaining well (HR-well). Linear mixed-effects models were used to investigate differences and longitudinal changes in the domains of attentional processing, working memory, verbal learning and memory, and cognitive flexibility. RESULTS Reduced long delay verbal memory and extradimensional set-shifting performance across both time points were found in the HR-well group relative to controls. The HR-MDD group displayed decreased extradimensional set-shifting abilities across both time points as compared with the HC group only. There were no significant performance differences between the two high-risk groups. CONCLUSIONS Reduced verbal memory and cognitive flexibility are familial trait markers for vulnerability to mood disorders in individuals with a close family history of bipolar disorder. Both neurocognitive performance deficits appear to be relatively stable over a 2-year time period and do not appear to be linked to the onset of MDD. These findings support their use as stable quantitative endophenotypes for mood disorders.
Collapse
Affiliation(s)
- Martina Papmeyer
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Jessika E Sussmann
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Jeremy Hall
- Neuroscience & Mental Health Research Institute, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - James McKirdy
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Anna Peel
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Alix Macdonald
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, United Kingdom
| |
Collapse
|