1
|
Qin H, Chen Y, Cai Y, Liu H, Zhang J. Simulation of greenhouse gas emission during sewage-sludge composting with high-concentration oxygen aeration. ENVIRONMENTAL RESEARCH 2025; 276:121479. [PMID: 40147513 DOI: 10.1016/j.envres.2025.121479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/02/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Continuous emission of greenhouse gases (CH4, N2O) is still one of key issues inhibiting the sustainability of the composting industry, which is regulated by aeration combined with porosity of the matrix via varying dissolved-oxygen (DO) distribution of in compost particles. Numerical simulation is considered to be an emerging tool for optimizing oxygen supply and porosity of the matrix. Therefore, in this study, a novel numerical simulation approach was developed, which includes a DO distribution model and fitting equations of GHG based on DO distribution. The parameters (porosity distribution, coefficients) were obtained from pilot experiments of sewage-sludge composting at aeration of two oxygen concentrations (20.9 %, OC20.9; 40.0 %, OC40.0) respectively. As a result, when the air-immobile region ranged from 0.2 to 0.5 and the O2 concentration was increased from 20.9 % (OC20.9) to 100.0 % (OC100.0), the CH4 emission rate decreased by a range of 53 %-96 %, while the N2O emission rate varied from a decrease of 7 % to an increase of 59 %. The developed simulation approach can be used to assist in establishing novel technologies to reduce GHGs emission in composting via optimizing oxygen supply combined with matrix's porosity.
Collapse
Affiliation(s)
- Haiguang Qin
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Yixiao Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Areas, Guilin University of Technology, Guilin 541004, China
| | - Yanpeng Cai
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hongtao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China; Collaborative Innovation Center for Water Pollution Control and Water Safety Guarantee in Karst Areas, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
2
|
Ferrati M, Bartolini B, Lupidi G, Freddi L, Bolletta V, Cespi M, Giovannetti R, Zannotti M, Petrelli R, Maggi F, Spinozzi E. Assessment of the N-Alkylamide Content and Volatile Profiles in Two Cultivars of Acmella oleracea (L.) R.K. Jansen Grown in Aquaponics. PLANTS (BASEL, SWITZERLAND) 2025; 14:1401. [PMID: 40364429 PMCID: PMC12073576 DOI: 10.3390/plants14091401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/28/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025]
Abstract
Acmella oleracea (L.) R.K. Jansen, also called jambù, is a medicinal and aromatic plant native to the Brazilian Amazon rainforest and phytochemically characterized by N-alkylamides with spilanthol as the main active compound. Jambù recently attracted the interest of many companies because of its wide range of pharmaceutical, nutraceutical, and cosmetic applications. In this context, it is desirable to identify eco-friendly cultivation methods that not only minimize the environmental footprint but also support the biosynthesis of the plant's valuable bioactive compounds. The zero-discharge approach of aquaponics makes this growing system an eco-friendly and sustainable production strategy for crops. Thus, a greenhouse experiment was conducted on two jambù cultivars, i.e., cv 'purple' and cv 'yellow', grown in aquaponic and hydroponic systems. The objective was to compare their contents of N-alkylamides, their numbers of capitula, which are the main source of these bioactives, and their volatile profiles. The results highlighted differences between the two cultivars and among plants harvested at different periods. Interestingly, aquaponics yielded plants with a high N-alkylamide content, which was comparable to that obtained with hydroponics. Overall, this study highlighted the feasibility of adopting aquaponics to grow A. oleracea, paving the way for circular economy-based and sustainable agricultural practices.
Collapse
Affiliation(s)
- Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (B.B.); (G.L.); (M.C.); (R.P.); (E.S.)
| | - Beatrice Bartolini
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (B.B.); (G.L.); (M.C.); (R.P.); (E.S.)
| | - Giulio Lupidi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (B.B.); (G.L.); (M.C.); (R.P.); (E.S.)
| | - Lorenzo Freddi
- MJ Energy srl Società Agricola, Via Lorenzoni, 100, 62100 Macerata, Italy; (L.F.); (V.B.)
| | - Valentina Bolletta
- MJ Energy srl Società Agricola, Via Lorenzoni, 100, 62100 Macerata, Italy; (L.F.); (V.B.)
| | - Marco Cespi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (B.B.); (G.L.); (M.C.); (R.P.); (E.S.)
| | - Rita Giovannetti
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (M.Z.)
| | - Marco Zannotti
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Science and Technology, Chemistry Division, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (M.Z.)
| | - Riccardo Petrelli
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (B.B.); (G.L.); (M.C.); (R.P.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (B.B.); (G.L.); (M.C.); (R.P.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (B.B.); (G.L.); (M.C.); (R.P.); (E.S.)
| |
Collapse
|
3
|
Pinheiro I, Banderó Höffling F, Boéchat Vieira F, Quadros Seiffert W. The Effect of the Use of a Settling Chamber in the Cultivation of Penaeus vannamei and Salicornia neei in Aquaponics with Bioflocs. Animals (Basel) 2025; 15:1294. [PMID: 40362107 PMCID: PMC12070975 DOI: 10.3390/ani15091294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025] Open
Abstract
This study aimed to evaluate the effect of the continuous use of the settling chamber for solids removal in the cultivation of the marine shrimp Penaeus vannamei and the halophyte Salicornia neei in an aquaponic system with bioflocs. Two treatments were tested: with settling and without settling. Each experimental unit consisted of an 800 L tank for shrimp rearing (stocking density of 375 shrimp m-3) and a hydroponic bench of 0.33 m2 for 28 seedlings (84 plants m-2). In the treatment without settling, water was continuously pumped to the hydroponic bench. In the treatment with settling, the water was first pumped to the chamber, and the overflow was then distributed across each irrigation channel, returning to the tank by gravity. To maintain the concentration of suspended solids in the shrimp culture, solids that accumulated in the settling chamber were pumped back into the tank every 30 min. During the 54-day trial, the reduction in suspended solids in the treatment with settling led to an increase in TAN and NO2 levels, while the concentration of NO3 remained stable. Although water quality parameters were more stable in the treatment without settling, no significant differences were observed between the treatments regarding plant and shrimp production indices. These results demonstrate the feasibility of cultivating P. vannamei and S. neei in a biofloc-based aquaponic system without the continuous use of a settling chamber during the pre-grow phase (until 10 g), offering a potential method for simplifying aquaponic system design.
Collapse
Affiliation(s)
- Isabela Pinheiro
- Centro de Ciências Agrárias, Laboratório de Camarões Marinhos, Departamento de Aquicultura, Universidade Federal de Santa Catarina, Rua dos Coroas 503, Florianópolis 88061-600, SC, Brazil; (F.B.H.); (W.Q.S.)
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Flávia Banderó Höffling
- Centro de Ciências Agrárias, Laboratório de Camarões Marinhos, Departamento de Aquicultura, Universidade Federal de Santa Catarina, Rua dos Coroas 503, Florianópolis 88061-600, SC, Brazil; (F.B.H.); (W.Q.S.)
| | - Felipe Boéchat Vieira
- Centro de Ciências Agrárias, Laboratório de Camarões Marinhos, Departamento de Aquicultura, Universidade Federal de Santa Catarina, Rua dos Coroas 503, Florianópolis 88061-600, SC, Brazil; (F.B.H.); (W.Q.S.)
| | - Walter Quadros Seiffert
- Centro de Ciências Agrárias, Laboratório de Camarões Marinhos, Departamento de Aquicultura, Universidade Federal de Santa Catarina, Rua dos Coroas 503, Florianópolis 88061-600, SC, Brazil; (F.B.H.); (W.Q.S.)
| |
Collapse
|
4
|
Arthur W, Morgan Z, Inskeep AE, Browne C, Wells DE, Bourassa DV, Higgins BT. Assessing nitrogen recovery in poultryponics for hydroponic lettuce production using treated poultry processing wastewater for increased nitrogen neutrality. BIORESOURCE TECHNOLOGY 2025; 422:132227. [PMID: 39956524 DOI: 10.1016/j.biortech.2025.132227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/07/2025] [Accepted: 02/13/2025] [Indexed: 02/18/2025]
Abstract
Poultry processing wastewater (PPW) is a nutrient-rich effluent suitable for hydroponic irrigation. A nitrogen mass balance was developed for a pilot-scale poultryponics system comprising bioreactors (algal-bacteria consortium vs. bacteria only), clarifiers, filters, UV disinfection and hydroponic grow beds to assess N recovery and lettuce production on treated PPW. Lettuce cultivated on treated PPW showed 5 ± 1 % higher root biomass, 58 ± 10 % lower shoot growth, and nutrient deficiency (K, Mg, Ca, Cu) compared to mineral fertilizer treatments (p < 0.05). pH control (pH = 7.0) and nutrient supplementation (N, P, K and micronutrients) mitigated growth inhibition. Nitrogen was not limiting, as nitrogen utilization efficiency ranged from 3.7 %-6.3 %, with 65.4 %-83.0 % of input nitrogen (∼213 g N) remaining in effluents, indicating the potential for a larger plant production system. These findings highlight the importance of targeted nutrient supplementation to enhance lettuce growth on treated PPW, while balancing nitrogen supply with plant demands.
Collapse
Affiliation(s)
- Wellington Arthur
- Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Zach Morgan
- Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Ann E Inskeep
- Biosystems Engineering, Auburn University, Auburn, AL 36849, United States
| | - Catherine Browne
- Department of Horticulture, Funchess Hall, Auburn University, AL 36849, United States
| | - Daniel E Wells
- Department of Horticulture, Funchess Hall, Auburn University, AL 36849, United States
| | - Dianna V Bourassa
- Department of Poultry Science, Auburn University, AL 36849, United States
| | - Brendan T Higgins
- Biosystems Engineering, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
5
|
Tanveer M, Wang S, Ma X, Yu P, Xu P, Zhuang L, Hu Z. Enhancement of nitrogen transformation in media-based aquaponics systems using biochar and zerovalent iron. BIORESOURCE TECHNOLOGY 2025; 418:131933. [PMID: 39638005 DOI: 10.1016/j.biortech.2024.131933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Aquaponics combines aquaculture and hydroponics, offering methods to produce fish and plants. However, optimization of its nitrogen transformation processes, which would lead to higher nitrogen utilization efficiency (NUE) and lower nitrous oxide (N2O) emission, is still a daunting challenge. This study investigated these issues by using biochar and zerovalent iron (ZVI) with low (LD) and high (HD) doses. Results showed that LD improved NUE by 15%, reaching 57%, along with a significant 36% reduction in N2O emissions. Conversely, denitrifying bacteria were disturbed in HD due to incomplete denitrification, resulting in higher N2O emissions. Microbial analysis showed that the abundance of denitrifying bacteria increased from 12% to 24% in LD, compared with the control, leading to lower N2O emissions and optimized nitrogen cycling. These findings suggested that using the appropriate proportion of biochar and ZVI would be a promising approach to enhance the sustainability and productivity of aquaponics systems.
Collapse
Affiliation(s)
- Muhammad Tanveer
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Shuo Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Xiaolong Ma
- Shandong Harmony Project Consulting CO., Ltd, Jinan 250098, PR China
| | - Piehan Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Peipei Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China
| | - Linlan Zhuang
- Field Monitoring Station of the Ministry of Education for the East Route of the South -to- North Water Transfer Project, Shandong University, Jinan 250100, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao 266237, PR China; State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
6
|
Xu Z, Li R, KuoK Ho Tang D, Zhang X, Zhang X, Liu H, Quan F. Enhancing nitrogen transformation and humification in cow manure composting through psychrophilic and thermophilic nitrifying bacterial consortium inoculation. BIORESOURCE TECHNOLOGY 2024; 413:131507. [PMID: 39303947 DOI: 10.1016/j.biortech.2024.131507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/22/2024]
Abstract
Excessive nitrogen release during composting poses significant challenges to both the environment and compost quality. Biological enhancement of humification and nitrogen conservation is an environmentally friendly and cost-effective approach to composting. The aim of this study was to develop a psychrophilic and thermophilic nitrifying bacterial consortium (CNB) and investigate its role in nitrogen transformation and humification during cow manure composting. Analysis revealed that CNB inoculation promoted microbial proliferation and metabolism, significantly increased the number of nitrifying bacteria (p < 0.05), and elevated the activity of nitrite oxidoreductase and nxrA gene abundance. Compared to the control, CNB inoculation promoted the formation of NO3--N (77.87-82.35 %), while reducing NH3 (48.89 %) and N2O (20.05 %) emissions, and increased humus content (16.22 %). Mantel analysis showed that the higher abundance of nitrifying bacteria and nxrA facilitated the nitrification of NH4+-N. The improvement in nitrite oxidoreductase activity promoted NO3--N formation, leading to increased humus content and enhanced compost safety.
Collapse
Affiliation(s)
- Zhiming Xu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China; School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Ronghua Li
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China; School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China
| | - Daniel KuoK Ho Tang
- School of Natural Resources and Environment, NWAFU-UA Micro-campus, Yangling, Shaanxi 712100, China; The University of Arizona (UA), The Department of Environmental Science, Tucson, AZ 85721, USA
| | - Xiu Zhang
- North Minzu University Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, Yinchuan 750021, China
| | - Xin Zhang
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
| | - Hong Liu
- School of Natural Resources and Environment, Northwest A&F University (NWAFU), Yangling 712100, Shaanxi, China
| | - Fusheng Quan
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
7
|
Niu J, Wan Y, Ma Z, Dong W, Su X, Zhai Y, Shen X, Yi X. Comparative impact analysis of nitrate reduction by typical components of natural organic compounds in magnetite-bearing riparian zones. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 287:117298. [PMID: 39536558 DOI: 10.1016/j.ecoenv.2024.117298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
As the key interface, the nitrate removal capacity of riparian zones is receiving close attention. Although naturally occurring organic compounds in this environment play a pivotal role in shaping microbial communities and influencing the nitrate removal capacity, the relevant research is inadequate. Given the complexity of riparian environments, in this study, we added representative natural organic matter (fulvic acid, butyric acid, naphthalene, starch, and sodium bicarbonate) as carbon conditions and incorporated magnetite to simulate riparian zone components. The study investigated the nitrate degradation efficiency and microbial responses under different natural carbon conditions in real iron-containing environments. Butyric acid exhibited the most efficient nitrate reduction, followed in descending order by naphthalene, starch, sodium bicarbonate, and humic acid. However, this did not imply that butyric acid efficiently removed nitrogen; instead, the nitrogen would circulate in the environment in the form of ammonium. Denitrification and DNRA were the primary drivers of nitrate reduction in each system, while naphthalene and humic acid systems also exhibited nitrification and mineralization. Nitrogen-fixing bacteria represent a unique microbial community in the butyrate system. Further, the synergistic degradation of naphthalene and nitrate demonstrated significant potential applications. High-throughput sequencing revealed that carbon conditions exerted selective pressure on microorganisms, driving Fe (Ⅱ)/Fe (Ⅲ) transformation by shaping the microbial community structure and influencing the nitrogen cycling process.
Collapse
Affiliation(s)
- Jia Niu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuyu Wan
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China.
| | - Zhe Ma
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Weihong Dong
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaosi Su
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Yuanzheng Zhai
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Xiaofang Shen
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| | - Xiaokun Yi
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China; College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Institute of Water Resources and Environment, Jilin University, Changchun 130021, People's Republic of China
| |
Collapse
|
8
|
Vanacore L, El-Nakhel C, Modarelli GC, Rouphael Y, Pannico A, Langellotti AL, Masi P, Cirillo C, De Pascale S. Growth, Ecophysiological Responses, and Leaf Mineral Composition of Lettuce and Curly Endive in Hydroponic and Aquaponic Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:2852. [PMID: 39458799 PMCID: PMC11511560 DOI: 10.3390/plants13202852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Against the backdrop of climate change, soil loss, and water scarcity, sustainable food production is a pivotal challenge for humanity. As the global population grows and urbanization intensifies, innovative agricultural methods are crucial to meet rising food demand, while mitigating environmental degradation. Hydroponic and aquaponic systems, has emerged as one of these solutions by minimizing land use, reducing water consumption, and enabling year-round crop production in urban areas. This study aimed at assessing the yield, ecophysiological performance, and nutritional content of Lactuca sativa L. and Cichorium endivia L. var. crispum grown in hydroponic and aquaponic floating raft systems, with Oreochromis niloticus L. integrated into the aquaponic system. Both species exhibited higher fresh biomass and canopy/root ratios in hydroponics compared to aquaponics. Additionally, hydroponics increased the leaf number in curly endive by 18%. Ecophysiological parameters, such as the leaf net photosynthesis rate, actual yield of PSII, and linear electron transport rate, were also higher in hydroponics for both species. However, the nutritional profiles varied between the two cultivation systems and between the two species. Given that standard fish feed often lacks sufficient potassium levels for optimal plant growth, potassium supplementation could be a viable strategy to enhance plant development in aquaponic systems. In conclusion, although aquaponic systems may demonstrate lower productivity compared to hydroponics, they offer a more sustainable and potentially healthier product with fewer harmful compounds due to the reduced use of synthetic fertilizers, pesticides, and the absence of chemical residue accumulation. However, careful system management and monitoring are crucial to minimize potential contaminants.
Collapse
Affiliation(s)
- Lucia Vanacore
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| | | | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| | - Antonio Luca Langellotti
- Centre for Innovation and Development in the Food Industry (CAISIAL), University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (A.L.L.); (P.M.)
| | - Paolo Masi
- Centre for Innovation and Development in the Food Industry (CAISIAL), University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (A.L.L.); (P.M.)
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| |
Collapse
|
9
|
Kotcharoen W, Nagai Z, Watari T, Adlin N, Hatamoto M, Murakami Y, Maharjan N, Takeuchi Y, Yamazaki S, Yamaguchi T. Integration of down-flow hanging sponge reactor to oreochromis niloticus - Brassica oleracea aquaponics system. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:358-368. [PMID: 39257294 DOI: 10.1080/10934529.2024.2399444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Aquaponics is a promising solution for addressing food security concerns. Nonetheless, an effective water-purification system is necessary to achieve high and stable yields of fish and vegetables. This study aimed to evaluate the nitrification and oxygen transfer performance of a laboratory-scale down-flow hanging sponge (DHS) reactor with a Brassica oleracea aquaponics system to treat water in an Oreochromis niloticus closed-aquaculture system. The DHS reactor showed a higher oxygen transfer coefficient (KLa) than the conventional aerator and provided an adequate dissolved oxygen (DO) concentration of approximately 5.5 mg/L essential for O. niloticus growth throughout the experimental period. The evaluated DHS-based aquaponic system maintained high water quality in an aquaculture tank, with a survival rate of 97%. The O. niloticusgrew at a low feed conversion ratio of 1.5-2.1 and a low feeding rate of 0.5% at high stocking densities of 17.5-22.2 kg-fish-weight/m3. 16S rRNA gene sequencing indicated that the DHS sponge carrier effectively retained nitrifying bacteria such as Nitrosomonas and Nitrospira. This study demonstrated that the DHS reactor provided a high DO concentration and that a simultaneous DHS reactor with a hydroponic tank provided a low-cost aquaponic system that could be applied for food production in the aquaculture industry.
Collapse
Affiliation(s)
- Wilasinee Kotcharoen
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
- Department of Biological Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Zen Nagai
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Nur Adlin
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
| | - Masashi Hatamoto
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yuki Murakami
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Nagaoka College, Nagaoka, Japan
| | - Namita Maharjan
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Nagaoka College, Nagaoka, Japan
| | - Yutaka Takeuchi
- Department of Biological Science and Technology, Kanazawa University, Kanazawa, Japan
| | - Shinichi Yamazaki
- Department of Civil Engineering and Architecture, National Institute of Technology (KOSEN), Maizuru, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
10
|
Zamnuri MAHB, Qiu S, Rizalmy MAAB, He W, Yusoff S, Roeroe KA, Du J, Loh KH. Integration of IoT in Small-Scale Aquaponics to Enhance Efficiency and Profitability: A Systematic Review. Animals (Basel) 2024; 14:2555. [PMID: 39272340 PMCID: PMC11393993 DOI: 10.3390/ani14172555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/24/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Aquaponics combines aquaculture and hydroponics to offer a sustainable approach to agriculture, addressing food security issues with minimal environmental harm. However, small-scale practitioners face challenges due to a lack of professional knowledge in water chemistry and system maintenance. Economic hurdles, such as operational costs and energy-intensive components, hinder the viability of small-scale aquaponics. Selecting suitable fish and plant species, along with appropriate stocking densities, is crucial. Media Bed (MB), Deep Water Culture (DWC), and the Nutrient Film Technique (NFT) are commonly used hydroponic techniques. This study outlines optimal conditions, including water quality, temperature, pH, and nutrient concentrations, essential for symbiotic fish and plant cultivation. Integrating IoT technology enhances efficiency and profitability by optimizing resource utilization, monitoring water quality, and ensuring optimal growth conditions. Knowledge sharing among practitioners fosters innovation and sustainability through collaborative learning and best practices exchange. Establishing a community for knowledge sharing is vital for continuous improvement, advancing small-scale aquaponics towards a more efficient and sustainable future.
Collapse
Affiliation(s)
| | - Shuting Qiu
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- APEC Marine Sustainable Development Center, Xiamen 361005, China
| | | | - Weiyi He
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Sumiani Yusoff
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Jianguo Du
- Key Laboratory of Marine Ecological Conservation and Restoration, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
- APEC Marine Sustainable Development Center, Xiamen 361005, China
- Faculty of Marine Biology, Xiamen Ocean Vocational College, Xiamen 361100, China
| | - Kar-Hoe Loh
- Institute of Ocean and Earth Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
11
|
Sebastião F, Vaz DC, Pires CL, Cruz PF, Moreno MJ, Brito RMM, Cotrim L, Oliveira N, Costa A, Fonseca A, Rodrigues M, Ispolnov K, Bernardino R, Vieira J. Nutrient-efficient catfish-based aquaponics for producing lamb's lettuce at two light intensities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6541-6552. [PMID: 38520251 DOI: 10.1002/jsfa.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Aquaponic systems are sustainable processes of managing water and nutrients for food production. An innovate nutrient-efficient catfish-based (Clarias gariepinus) aquaponics system was implemented for producing two cultivars of two leafy vegetables largely consumed worldwide: lamb's lettuce (Valerianella locusta var. Favor and Valerianella locusta var. de Hollande) and arugula (Eruca vesicaria var. sativa and Eruca sativa). Different growing treatments (4 × 2 factorial design) were applied to plants of each cultivar, grown at two light intensities (120 and 400 μmol m-2 s-1). During growth, several morphological characteristics (root length, plant height, leaf number, foliage diameter and biggest leaf length) were measured. At harvest, plants were weighed and examined qualitatively in terms of greenness and health status. Additionally, leaf extracts were obtained and used to determine total phenolic contents, antioxidant capacities, and levels of cytotoxicity to Caco-2 intestinal model cells. RESULTS After a 5-week growth period, both lamb's lettuce cultivars presented high levels of greenness and health status, at both light intensities, particularly the var. de Hollande that also showed higher average performance in terms of plant morphology. In turn, arugula cultivars showed lower levels of greenness and health status, especially the cultivar E. vesicaria var. sativa submitted to direct sunlight during growth. In addition, plant specimens submitted to higher levels of light intensity showed higher contents in antioxidants/polyphenols. Cultivars with a higher content in antioxidants/polyphenols led to higher Caco-2 cell viability. CONCLUSION For successful industrial implementation of the aquaponics technology, different and optimized acclimatizing conditions must be applied to different plant species and cultivars. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernando Sebastião
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Daniela C Vaz
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
- School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal
| | - Cristiana L Pires
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Pedro F Cruz
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Rui M M Brito
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Luis Cotrim
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Nelson Oliveira
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Ana Costa
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
| | - André Fonseca
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Maria Rodrigues
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Kirill Ispolnov
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Raul Bernardino
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Tourism and Marine Technology, Polytechnic of Leiria, Peniche, Portugal
| | - Judite Vieira
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
12
|
Al-Wabel MI, Almutari MM, Ahmad M, Al-Swadi HA, Ahmad J, Al-Farraj ASF. Impacts of aquaculture wastewater irrigation on soil health, nutrient availability, and date palm fruit quality. Sci Rep 2024; 14:18634. [PMID: 39128922 PMCID: PMC11317483 DOI: 10.1038/s41598-024-68774-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Water scarcity and droughts are among the most challenging issues worldwide, particularly in arid and semi-arid regions like Saudi Arabia. Date palm (Phoenix dactylifera L.), a major crop in Saudi Arabia, is being significantly affected by water scarcity, soil salinity, and desertification. Alternative water sources are needed to conserve freshwater resources and increase date palm production in Saudi Arabia. On the other hand, Saudi Arabia has a significant number of aquaculture farms that generate substantial amounts of wastewater, which can be utilized as an alternative source of irrigation. Therefore, this study aimed to assess the potential of aquaculture wastewater as an alternative irrigation source for date palm orchards. Aquaculture wastewater was collected from 12 different farms (Al-Kharj, Al-Muzahmiya, and Al-Qassim regions, Saudi Arabia) and its quality was analyzed. The impacts of aquaculture wastewater irrigation on soil quality, nutrient availability, nutrient status of date palm trees, and dates fruit quality were assessed in comparison to source water (freshwater) irrigation at Al-Kharj, Al-Muzahmiya, and Al-Qassim regions. The water quality analyses showed higher salinity (EC = 3.31 dSm-1) in farm Q3, while all other farms demonstrated no salinity, sodicity, or alkalinity hazards. Moreover, the aquaculture wastewater irrigation increased soil available P, K, NO3--N, and NH4+-N by 49.31%, 21.11%, 33.62%, and 52.31%, respectively, compared to source water irrigation. On average, date palm fruit weight, length, and moisture contents increased by 26%, 23%, and 43% under aquaculture wastewater irrigation compared to source water irrigation. Further, P, K, Fe, Cu, and Zn contents in date palm leaf were increased by 19.35%, 34.17%, 37.36%, 38.24%, and 45.29%, respectively, under aquaculture wastewater irrigation compared to source water irrigation. Overall, aquaculture wastewater irrigation significantly enhanced date palm plant growth, date palm fruit quality, and soil available nutrients compared to freshwater irrigation. It was concluded that aquaculture wastewater can be used as an effective irrigation source for date palm farms as it enhances soil nutrient availability, date palm growth, and date fruit yield and quality. The findings of this study suggest that aquaculture wastewater could be a viable alternative for conserving freshwater resources and increase date palm production in Saudi Arabia.
Collapse
Affiliation(s)
- Mohammad I Al-Wabel
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Kingdom of Saudi Arabia
| | | | - Munir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Kingdom of Saudi Arabia.
| | - Hamed A Al-Swadi
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Kingdom of Saudi Arabia
| | - Jahangir Ahmad
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Kingdom of Saudi Arabia
| | - Abdullah S F Al-Farraj
- Soil Sciences Department, College of Food & Agricultural Sciences, King Saud University, P.O. Box 2460, 11451, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
13
|
Wongkiew S, Aksorn S, Amnuaychaichana S, Polprasert C, Noophan PL, Kanokkantapong V, Koottatep T, Surendra KC, Khanal SK. Bioponic systems with biochar: Insights into nutrient recovery, heavy metal reduction, and microbial interactions in digestate-based bioponics. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 178:267-279. [PMID: 38422680 DOI: 10.1016/j.wasman.2024.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Bioponics is a nutrient-recovery technology that transforms nutrient-rich organic waste into plant biomass/bioproducts. Integrating biochar with digestate from anaerobic wastewater treatment process can improve resource recovery while mitigating heavy metal contamination. The overarching goal of this study was to investigate the application of biochar in digestate-based bioponics, focusing on its efficacy in nutrient recovery and heavy metal removal, while also exploring the microbial community dynamics. In this study, biochar was applied at 50 % w/w with 500 g dry weight of digestate during two 28-day crop cycles (uncontrolled pH and pH 5.5) using white stem pak choi (Brassica rapa var. chinensis) as a model crop. The results showed that the digestate provided sufficient phosphorus and nitrogen, supporting plant growth. Biochar amendment improved plant yield and phosphate solubilization and reduced nitrogen loss, especially at the pH 5.5. Furthermore, biochar reduced the heavy metal accumulation in plants, while concentrating these metals in the residual sludge. However, owing to potential non-carcinogenic and carcinogenic health risks, it is still not recommended to directly consume plants cultivated in digestate-based bioponic systems. Additionally, biochar amendment exhibited pronounced impact on the microbial community, promoting microbes responsible for nutrient solubilization and cycling (e.g., Tetrasphaera, Herpetosiphon, Hyphomicrobium, and Pseudorhodoplanes) and heavy metal stabilization (e.g., Leptolinea, Fonticella, Romboutsia, and Desulfurispora) in both the residual sludge and plants. Overall, the addition of biochar enhanced the microbial community and facilitated the metal stabilization and the cycling of nutrients within both residual sludge and root systems, thereby improving the overall efficiency of the bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Satja Aksorn
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Suchana Amnuaychaichana
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pongsak Lek Noophan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Global Institute for Interdisciplinary Studies, 44600 Kathmandu, Nepal
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Department of Environmental Engineering, Korea University Sejong Campus, Sejong-ro 2511, Sejong, Korea (Affiliate Faculty)
| |
Collapse
|
14
|
Ji M, Zhang X, Heng J, Tanveer M, Zhang J, Guo Z, Hu Z. New insights for simultaneous nutrient removal enhancement and greenhouse gas emissions reduction of constructed wetland by optimizing its redox environment through manganese oxide addition. WATER RESEARCH 2024; 253:121348. [PMID: 38401472 DOI: 10.1016/j.watres.2024.121348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Manganese oxide (MnOx) is receiving increased interest in the nutrient removal of constructed wetlands (CWs); however, its service effectiveness for simultaneous greenhouse gas (GHG) emissions reduction is still vague. In this study, three vertical flow CWs, i.e., volcanics (CCW), manganese sand uniformly mixing with volcanics (Mn-CW) and MnOx doped volcanics (MnV-CW), were constructed to investigate the underlying mechanisms of MnOx on nutrient removal enhancement and greenhouse gas (GHG) emissions reduction. The results showed that the MnOx doped volcanics optimized the oxidation-reduction potential surrounding the substrate (-164.0 ∼ +141.1 mv), and resulted in the lowest GHG emissions (CO2-equivalent) from MnV-CW, 16.8-36.5 % lower than that of Mn-CW and CCW. This was mainly ascribed to mitigation of N2O produced during the NO3--N reduction process, according to results of 15N stable isotope labeling. Analysis of the microbial community structure revealed that due to the optimized redox conditions through chemical doping of MnOx on volcanics, the abundance of microbe involved in denitrification and Mn-oxidizing process in the MnV-CW was significantly increased at genus level, which led to a higher Mn cycling efficiency between biogenic MnOx and Mn2+, and enhanced denitrification efficiency and N2O emission reduction. This study would help to understand and provide a preferable reference for future applications for manganese-based CW.
Collapse
Affiliation(s)
- Mingde Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Xue Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jiayang Heng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Muhammad Tanveer
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Jian Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China; College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China
| | - Zizhang Guo
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
15
|
Ji M, Gao H, Zhang J, Hu Z, Liang S. Environmental impacts on algal-bacterial-based aquaponics system by different types of carbon source addition: water quality and greenhouse gas emission. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26665-26674. [PMID: 38451459 DOI: 10.1007/s11356-024-32717-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024]
Abstract
Carbon source addition is an important way improving the carbon and nitrogen transformation in aquaculture system; however, its effectiveness of algal-bacterial-based aquaponics (AA) through carbon source addition is still vague. In this study, the influences of organic carbon (OC-AA system) and inorganic carbon (IC-AA system) addition and without carbon source addition (C-AA system) on the operational performance of AA system were investigated. Results showed that 10.1-19.5% increase of algal-bacterial biomass enhanced the purifying effect of ammonia nitrogen in OC-AA system and IC-AA system relative to C-AA system. Moreover, extra electron donor supply in the OC-AA system obtained the lowest NO3--N concentration. However, that was at the cost of aggravated N2O conversion ratio, which increased by more than 2.0-folds than other systems, attributing to 2.9-folds increase of nirS gene abundance. In addition, carbon source addition increased the pH and then decreased the fish biomass production of AA system. The results of this study would provide theoretical supports of carbon source addition on the performance of nutrient transformation and greenhouse gas effect in AA system.
Collapse
Affiliation(s)
- Mingde Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, People's Republic of China
| | - Hang Gao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jian Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
- College of Geography and Environment, Shandong Normal University, 88 Wenhua Donglu, Jinan, Shandong, 250014, People's Republic of China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Shuang Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
16
|
Derikvand P, Sauter B, Keddie A, Stein LY. Inoculum and pH effects on ammonium removal and microbial community dynamics in aquaponics systems. iScience 2024; 27:109073. [PMID: 38361614 PMCID: PMC10867649 DOI: 10.1016/j.isci.2024.109073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/11/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
Understanding the ecology of microorganisms is essential for optimizing aquaponics systems. Effects of pH and inoculum on ammonium removal and dynamics of microbial community composition from all compartments of lab-scale aquaponics systems were examined. Initial ammonium accumulation in systems with comammox-enriched inocula were 47% and 69% that of systems enriched with ammonia-oxidizing bacteria (AOB), with higher rates of ammonium removal and transient nitrite accumulation measured in the latter systems. By the end of operation, Nitrosomonas and Nitrosospira AOB were dominant nitrifiers in systems at pH 7.6-7.8, whereas comammox (Nitrospira) nitrifiers and plant growth-promoting microbes were abundant in systems operating at pH 5.8-6.0. Lower pH systems supported more robust plant growth with no significant effects on fish health. This study demonstrated functional redundancy of aquaponics microbiota, with selectivity of nitrifying taxa as a function of pH. The results suggest that inoculum and pH are important considerations for aquaponics system initiation and optimization.
Collapse
Affiliation(s)
- Peyman Derikvand
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Brittany Sauter
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Andrew Keddie
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Lisa Y. Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
17
|
Wang N, He Y, Zhao K, Lin X, He X, Chen A, Wu G, Zhang J, Yan B, Luo L, Xu D. Greenhouse gas emission characteristics and influencing factors of agricultural waste composting process: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120337. [PMID: 38417357 DOI: 10.1016/j.jenvman.2024.120337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/04/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
China, being a major agricultural nation, employs aerobic composting as an efficient approach to handle agricultural solid waste. Nevertheless, the composting process is often accompanied by greenhouse gas emissions, which are known contributors to global warming. Therefore, it is urgent to control the formation and emission of greenhouse gases from composting. This study provides a comprehensive analysis of the mechanisms underlying the production of nitrous oxide, methane, and carbon dioxide during the composting process of agricultural wastes. Additionally, it proposes an overview of the variables that affect greenhouse gas emissions, including the types of agricultural wastes (straw, livestock manure), the specifications for compost (pile size, aeration). The key factors of greenhouse gas emissions during composting process like physicochemical parameters, additives, and specific composting techniques (reuse of mature compost products, ultra-high-temperature composting, and electric-field-assisted composting) are summarized. Finally, it suggests directions and perspectives for future research. This study establishes a theoretical foundation for achieving carbon neutrality and promoting environmentally-friendly composting practices.
Collapse
Affiliation(s)
- Nanyi Wang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Yong He
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Keqi Zhao
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xu Lin
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Xi He
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Animal Science and Technology, Hunan Agricultural University, 410128, China
| | - Anwei Chen
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Genyi Wu
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Jiachao Zhang
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China.
| | - Binghua Yan
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Lin Luo
- College of Environment and Ecology, Hunan Agricultural University, 410128, China; Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China
| | - Daojun Xu
- Yuelu Mountain Laboratory, Hunan Agricultural University area, Changsha 410000, Hunan, China; College of Veterinary Medicine, Hunan Agricultural University, 410128, China.
| |
Collapse
|
18
|
Frossard E, Crain G, Giménez de Azcárate Bordóns I, Hirschvogel C, Oberson A, Paille C, Pellegri G, Udert KM. Recycling nutrients from organic waste for growing higher plants in the Micro Ecological Life Support System Alternative (MELiSSA) loop during long-term space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:176-185. [PMID: 38245343 DOI: 10.1016/j.lssr.2023.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 01/22/2024]
Abstract
Space agencies are developing Bioregenerative Life Support Systems (BLSS) in view of upcoming long-term crewed space missions. Most of these BLSS plan to include various crops to produce different types of foods, clean water, and O2 while capturing CO2 from the atmosphere. However, growing these plants will require the appropriate addition of nutrients in forms that are available. As shipping fertilizers from Earth would be too costly, it will be necessary to use waste-derived nutrients. Using the example of the MELiSSA (Micro-Ecological Life Support System Alternative) loop of the European Space Agency, this paper reviews what should be considered so that nutrients recycled from waste streams could be used by plants grown in a hydroponic system. Whereas substantial research has been conducted on nitrogen and phosphorus recovery from human urine, much work remains to be done on recovering nutrients from other liquid and solid organic waste. It is essential to continue to study ways to efficiently remove sodium and chloride from urine and other organic waste to prevent the spread of these elements to the rest of the MELiSSA loop. A full nitrogen balance at habitat level will have to be achieved; on one hand, sufficient N2 will be needed to maintain atmospheric pressure at a proper level and on the other, enough mineral nitrogen will have to be provided to the plants to ensure biomass production. From a plant nutrition point of view, we will need to evaluate whether the flux of nutrients reaching the hydroponic system will enable the production of nutrient solutions able to sustain a wide variety of crops. We will also have to assess the nutrient use efficiency of these crops and how that efficiency might be increased. Techniques and sensors will have to be developed to grow the plants, considering low levels or the total absence of gravity, the limited volume available to plant growth systems, variations in plant needs, the recycling of nutrient solutions, and eventually the ultimate disposal of waste that can no longer be used.
Collapse
Affiliation(s)
- Emmanuel Frossard
- ETH Zurich, Institute of Agricultural Sciences, 8315, Lindau, Switzerland.
| | - Grace Crain
- ETH Zurich, Institute of Agricultural Sciences, 8315, Lindau, Switzerland
| | | | | | - Astrid Oberson
- ETH Zurich, Institute of Agricultural Sciences, 8315, Lindau, Switzerland
| | | | - Geremia Pellegri
- ETH Zurich, Institute of Agricultural Sciences, 8315, Lindau, Switzerland
| | - Kai M Udert
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dubendorf, Switzerland; ETH Zurich, Institute of Environmental Engineering, 8093, Zurich, Switzerland
| |
Collapse
|
19
|
Wongkiew S, Polprasert C, Noophan PL, Koottatep T, Kanokkantapong V, Surendra KC, Khanal SK. Effects of vermicompost leachate on nitrogen, phosphorus, and microbiome in a food waste bioponic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117860. [PMID: 37086642 DOI: 10.1016/j.jenvman.2023.117860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Food waste is rich in nutrients, such as nitrogen and phosphorus, and can be integrated with bioponics, a closed-loop agricultural system that combines hydroponics with biological nutrient recovery. Vermicompost leachate (VCL) supplementation has been shown to improve the co-composting of organic waste (i.e., compost quality) and the biodegradation of organic compounds. Thus, VCL has high potential for enhancing nutrient availability in bioponics from food waste. However, the understanding of nitrogen and phosphorus availability in food waste-based bioponics is limited, both with and without VCL. In this study, food waste derived from cafeteria vegetable waste was used as the substrate (500 g dry wt./system) in bioponics to grow lettuce (Lactuca sativa L.) for two consecutive cycles (35 days/cycle) without substrate replacement. VCL was applied weekly (1-5% v/v) and compared to the control without VCL. The results showed that the food waste in bioponics provided nitrogen and phosphorus for plant growth (15.5-65.8 g/lettuce head). Organic-degrading and nutrient-transforming bacteria (Hydrogenispora, Clostridium_sensu_stricto_1, Ruminiclostridium_1, Cellvibrio, Thauera, Hydrogenophaga, and Bacillus) were predominantly found in plant roots and residual food waste. VCL addition significantly increased nitrate, phosphate, and chemical oxygen demand levels in bioponics, owing to the nutrients in VCL and the enhancement of keystone microorganisms responsible for organic degradation and nutrient cycling (e.g., Ellin6067, Actinomyces, and Pirellula). These findings suggest that nitrogen, phosphorus, and organic carbon concentrations in an ecosystem of nutrient-transforming and organic-degrading microbes are key in managing nutrient recovery from food waste in bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pongsak Lek Noophan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Global Institute for Interdisciplinary Studies, 44600, Kathmandu, Nepal
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
20
|
Mourantian A, Aslanidou M, Mente E, Katsoulas N, Levizou E. Basil functional and growth responses when cultivated via different aquaponic and hydroponics systems. PeerJ 2023; 11:e15664. [PMID: 37483975 PMCID: PMC10361078 DOI: 10.7717/peerj.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/08/2023] [Indexed: 07/25/2023] Open
Abstract
Background Aquaponics is an innovative farming system that combines hydroponics and aquaculture, resulting in the production of both crops and fish. Decoupled aquaponics is a new approach introduced in aquaponics research for the elimination of certain system bottlenecks, specifically targeting the optimization of crops and fish production conditions. The aquaponics-related literature predominantly examines the system's effects on crop productivity, largely overlooking the plant functional responses which underlie growth and yield performance. The aim of the study was the integrated evaluation of basil performance cultivated under coupled and decoupled aquaponic systems compared with a hydroponic one, in terms of growth and functional parameters in a pilot-scale aquaponics greenhouse. Methods We focused on the efficiency of the photosynthetic process and the state of the photosynthetic machinery, assessed by instantaneous gas exchange measurements as well as photosynthetic light response curves, and in vivo chlorophyll a fluorescence. Light use efficiency was estimated through leaf reflectance determination. Photosynthetic pigments content and leaf nutritional state assessments completed the picture of basil functional responses to the three different treatments/systems. The plant's functional parameters were assessed at 15-day intervals. The experiment lasted for two months and included an intermediate and a final harvest during which several basil growth parameters were determined. Results Coupled aquaponics resulted in reduced growth, which was mainly ascribed to sub-sufficient leaf nutrient levels, a fact that triggered a series of negative feedbacks on all aspects of their photosynthetic performance. These plants experienced a down-regulation of PSII activity as reflected in the significant decreases of quantum yield and efficiency of electron transport, along with decreased photosynthetic pigments content. On the contrary, decoupled aquaponics favored both growth and photochemistry leading to higher light use efficiency compared with coupled system and hydroponics, yet without significant differences from the latter. Photosynthetic light curves indicated constantly higher photosynthetic capacity of the decoupled aquaponics-treated basil, while also enhanced pigment concentrations were evident. Basil functional responses to the three tested production systems provided insights on the underlying mechanisms of plant performance highlighting key-points for systems optimization. We propose decoupled aquaponics as an effective system that may replace hydroponics supporting high crops productivity. We suggest that future works should focus on the mechanisms involved in crop and fish species function, the elucidation of which would greatly contribute to the optimization of the aquaponics productivity.
Collapse
Affiliation(s)
- Anastasia Mourantian
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, N. Ionia, Volos, Greece
| | - Maria Aslanidou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, N. Ionia, Volos, Greece
| | - Eleni Mente
- Department of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Nikolaos Katsoulas
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, N. Ionia, Volos, Greece
| | - Efi Levizou
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, N. Ionia, Volos, Greece
| |
Collapse
|
21
|
Sobieraj K, Stegenta-Dąbrowska S, Zafiu C, Binner E, Białowiec A. Carbon Monoxide Production during Bio-Waste Composting under Different Temperature and Aeration Regimes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4551. [PMID: 37444865 DOI: 10.3390/ma16134551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Despite the development of biorefinery processes, the possibility of coupling the "conventional" composting process with the production of biochemicals is not taken into account. However, net carbon monoxide (CO) production has been observed during bio-waste composting. So far, O2 concentration and temperature have been identified as the main variables influencing CO formation. This study aimed to investigate CO net production during bio-waste composting under controlled laboratory conditions by varying aeration rates and temperatures. A series of composting processes was carried out in conditions ranging from mesophilic to thermophilic (T = 35, 45, 55, and 65 °C) and an aeration rate of 2.7, 3.4, 4.8, and 7.8 L·h-1. Based on the findings of this study, suggestions for the improvement of CO production throughout the composting process have been developed for the first time. The highest concentrations of CO in each thermal variant was achieved with an O2 deficit (aeration rate 2.7 L·h-1); additionally, CO levels increased with temperature, reaching ~300 ppm at 65 °C. The production of CO in mesophilic and thermophilic conditions draws attention to biological CO formation by microorganisms capable of producing the CODH enzyme. Further research on CO production efficiency in these thermal ranges is necessary with the characterization of the microbial community and analysis of the ability of the identified bacteria to produce the CODH enzyme and convert CO from CO2.
Collapse
Affiliation(s)
- Karolina Sobieraj
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland
| | - Sylwia Stegenta-Dąbrowska
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland
| | - Christian Zafiu
- Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| | - Erwin Binner
- Department of Water-Atmosphere-Environment, Institute of Waste Management and Circularity, University of Natural Resources and Life Sciences, Muthgasse 107, 1190 Vienna, Austria
| | - Andrzej Białowiec
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 37a Chełmońskiego Str., 51-630 Wrocław, Poland
- Department of Agricultural and Biosystems Engineering, Iowa State University, 605 Bissell Road, Ames, IA 50011, USA
| |
Collapse
|
22
|
Thakur K, Kuthiala T, Singh G, Arya SK, Iwai CB, Ravindran B, Khoo KS, Chang SW, Awasthi MK. An alternative approach towards nitrification and bioremediation of wastewater from aquaponics using biofilm-based bioreactors: A review. CHEMOSPHERE 2023; 316:137849. [PMID: 36642133 DOI: 10.1016/j.chemosphere.2023.137849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Aquaponics combines the advantages of aquaculture and hydroponics as it suits the urban environment where a lack of agricultural land and water resources is observed. It is an ecologically sound system that completely reuses its system waste as plant fertilizer. It offers sustainable water savings, making it a supreme technology for food production. The two major processes that hold the system together are nitrification and denitrification. The remains of fish in form of ammonia reach the bio filters where it is converted into nitrite and further into nitrate in presence of nitrifying and denitrifying bacteria. Nitrate eventually is taken up by the plants. However, even after the uptake from the flow stream, the effluent contains remaining ammonium and nitrates, which cannot be directly released into the environment. In this review it is suggested how integrating the biofilm-based bioreactors in addition to aquaculture and hydroponics eliminates the possibility of remains of total ammonia nitrogen [TAN] contents, leading to bioremediation of effluent water from the system. Effluent water after releasing from a bioreactor can be reused in an aquaculture system, conditions provided in these bioreactors promote the growth of required bacteria and encourages the mutual development of plants and fishes and eventually leading to bioremediation of wastewater from aquaponics.
Collapse
Affiliation(s)
- Kritika Thakur
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Tanya Kuthiala
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Chuleemas Boonthai Iwai
- Integrated Land and Water Resource Management Research and Development Center in Northeast Thailand, Khon Kaen University, Thailand; Department of Soil Science and Environment, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Kuan Shiong Khoo
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling, 712100, China.
| |
Collapse
|
23
|
Li M, Li S, Chen S, Meng Q, Wang Y, Yang W, Shi L, Ding F, Zhu J, Ma R, Guo X. Measures for Controlling Gaseous Emissions during Composting: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3587. [PMID: 36834281 PMCID: PMC9964147 DOI: 10.3390/ijerph20043587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Composting is a promising technology for treating organic solid waste. However, greenhouse gases (methane and nitrous oxide) and odor emissions (ammonia, hydrogen sulfide, etc.) during composting are practically unavoidable, leading to severe environmental problems and poor final compost products. The optimization of composting conditions and the application of additives have been considered to mitigate these problems, but a comprehensive analysis of the influence of these methods on gaseous emissions during composting is lacking. Thus, this review summarizes the influence of composting conditions and different additives on gaseous emissions, and the cost of each measure is approximately evaluated. Aerobic conditions can be achieved by appropriate process conditions, so the contents of CH4 and N2O can subsequently be effectively reduced. Physical additives are effective regulators to control anaerobic gaseous emissions, having a large specific surface area and great adsorption performance. Chemical additives significantly reduce gaseous emissions, but their side effects on compost application must be eliminated. The auxiliary effect of microbial agents is not absolute, but is closely related to the dosage and environmental conditions of compost. Compound additives can reduce gaseous emissions more efficiently than single additives. However, further study is required to assess the economic viability of additives to promote their large-scale utilization during composting.
Collapse
Affiliation(s)
- Minghan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Shuyan Li
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Shigeng Chen
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Qingyu Meng
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Yu Wang
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Wujie Yang
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Lianhui Shi
- College of Resource and Environment, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai’an 271018, China
| | - Fangjun Ding
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Jun Zhu
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| | - Ronghui Ma
- Shandong Agricultural Technology Extension Center, Jinan 250014, China
| | - Xinsong Guo
- SDAU Fertilizer Science & Technology Co., Ltd., Tai’an 271608, China
| |
Collapse
|
24
|
Petrea ȘM, Simionov IA, Antache A, Nica A, Oprica L, Miron A, Zamfir CG, Neculiță M, Dima MF, Cristea DS. An Analytical Framework on Utilizing Various Integrated Multi-Trophic Scenarios for Basil Production. PLANTS (BASEL, SWITZERLAND) 2023; 12:540. [PMID: 36771624 PMCID: PMC9920146 DOI: 10.3390/plants12030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Here, we aim to improve the overall sustainability of aquaponic basil (Ocimum basilicum L.)-sturgeon (Acipenser baerii) integrated recirculating systems. We implement new AI methods for operational management together with innovative solutions for plant growth bed, consisting of Rapana venosa shells (R), considered wastes in the food processing industry. To this end, the ARIMA-supervised learning method was used to develop solutions for forecasting the growth of both fish and plant biomass, while multi-linear regression (MLR), generalized additive models (GAM), and XGBoost were used for developing black-box virtual sensors for water quality. The efficiency of the new R substrate was evaluated and compared to the consecrated light expended clay aggregate-LECA aquaponics substrate (H). Considering two different technological scenarios (A-high feed input, B-low feed input, respectively), nutrient reduction rates, plant biomass growth performance and additionally plant quality are analysed. The resulting prediction models reveal a good accuracy, with the best metrics for predicting N-NO3 concentration in technological water. Furthermore, PCA analysis reveals a high correlation between water dissolved oxygen and pH. The use of innovative R growth substrate assured better basil growth performance. Indeed, this was in terms of both average fresh weight per basil plant, with 22.59% more at AR compared to AH, 16.45% more at BR compared to BH, respectively, as well as for average leaf area (LA) with 8.36% more at AR compared to AH, 9.49% more at BR compared to BH. However, the use of R substrate revealed a lower N-NH4 and N-NO3 reduction rate in technological water, compared to H-based variants (19.58% at AR and 18.95% at BR, compared to 20.75% at AH and 26.53% at BH for N-NH4; 2.02% at AR and 4.1% at BR, compared to 3.16% at AH and 5.24% at BH for N-NO3). The concentration of Ca, K, Mg and NO3 in the basil leaf area registered the following relationship between the experimental variants: AR > AH > BR > BH. In the root area however, the NO3 were higher in H variants with low feed input. The total phenolic and flavonoid contents in basil roots and aerial parts and the antioxidant activity of the methanolic extracts of experimental variants revealed that the highest total phenolic and flavonoid contents were found in the BH variant (0.348% and 0.169%, respectively in the roots, 0.512% and 0.019%, respectively in the aerial parts), while the methanolic extract obtained from the roots of the same variant showed the most potent antioxidant activity (89.15%). The results revealed that an analytical framework based on supervised learning can be successfully employed in various technological scenarios to optimize operational management in an aquaponic basil (Ocimum basilicum L.)-sturgeon (Acipenser baerii) integrated recirculating systems. Also, the R substrate represents a suitable alternative for replacing conventional aquaponic grow beds. This is because it offers better plant growth performance and plant quality, together with a comparable nitrogen compound reduction rate. Future studies should investigate the long-term efficiency of innovative R aquaponic growth bed. Thus, focusing on the application of the developed prediction and forecasting models developed here, on a wider range of technological scenarios.
Collapse
Affiliation(s)
- Ștefan-Mihai Petrea
- Food Science, Food Engineering, Biotechnology and Aquaculture Department, Faculty of Food Science and Engineering, “Dunarea de Jos” University of Galati, Domnească Street, No. 111, 800008 Galaţi, Romania
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, Nicolae Bălcescu Street, 59–61, 800001 Galati, Romania
| | - Ira Adeline Simionov
- Food Science, Food Engineering, Biotechnology and Aquaculture Department, Faculty of Food Science and Engineering, “Dunarea de Jos” University of Galati, Domnească Street, No. 111, 800008 Galaţi, Romania
- Department of Automatic Control and Electrical Engineering, “Dunărea de Jos” University of Galaţi, 47 Domnească Street, 800008 Galaţi, Romania
| | - Alina Antache
- Food Science, Food Engineering, Biotechnology and Aquaculture Department, Faculty of Food Science and Engineering, “Dunarea de Jos” University of Galati, Domnească Street, No. 111, 800008 Galaţi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 700506 Iasi, Romania
| | - Aurelia Nica
- Food Science, Food Engineering, Biotechnology and Aquaculture Department, Faculty of Food Science and Engineering, “Dunarea de Jos” University of Galati, Domnească Street, No. 111, 800008 Galaţi, Romania
| | - Lăcrămioara Oprica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, 700506 Iasi, Romania
| | - Anca Miron
- Department of Pharmacognosy, School of Pharmacy, Gr. T. Popa University of Medicine and Pharmacy, Universitatii Street Number 16, 700115 Iasi, Romania
| | - Cristina Gabriela Zamfir
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, Nicolae Bălcescu Street, 59–61, 800001 Galati, Romania
| | - Mihaela Neculiță
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, Nicolae Bălcescu Street, 59–61, 800001 Galati, Romania
| | - Maricel Floricel Dima
- Institute for Research and Development in Aquatic Ecology, Fishing and Aquaculture, 54 Portului Street, 800211 Galati, Romania
- Faculty of Enginnering and Agronomy in Braila, “Dunarea de Jos” University of Galati, Domnească Street, No. 111, 800008 Galaţi, Romania
| | - Dragoș Sebastian Cristea
- Faculty of Economics and Business Administration, “Dunarea de Jos” University of Galati, Nicolae Bălcescu Street, 59–61, 800001 Galati, Romania
| |
Collapse
|
25
|
Chen B, Ren C, Wang C, Duan J, Reis S, Gu B. Driving forces of nitrogen use efficiency in Chinese croplands on county scale. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120610. [PMID: 36356887 DOI: 10.1016/j.envpol.2022.120610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Nitrogen use efficiency (NUE, defined as the fraction of N input harvested as product) is an important indicator to understand nitrogen use and losses in croplands as an element of determining sustainable food production. China, as the country with the largest amount of nitrogen fertilizer use globally, research into NUE consistently finds it to be much lower than that in developed countries. Understanding the driving forces of the underlying causes of this low NUE is thus crucial to improve nitrogen use and reduce losses in China. Here we applied the CHANS model to estimate cropland NUE for over 2800 counties in China for the year 2017. Results showed that in most counties NUE ranged between 20% and 40%, while an NUE >50% was mainly found in Northeastern China, likely as a result of large-scale, modern agriculture operations. The source of N input and crop types significantly affected NUE in our assessment. Nitrogen deposition, straw recycling, and biological nitrogen fixation (BNF) could improve NUE, while chemical nitrogen fertilizer and manure inputs reduce NUE. Grain crops have a much higher NUE compared to vegetables, which are often over-fertilized. Moreover, NUE in Southern China is strongly influenced by natural factors such as temperature and precipitation. Specifically, NUE in the Yangtze River Delta (eastern coastal region of China) is associated with socio-economic factors including GDP and the degree of urbanization, while in North-central China, NUE is mainly determined by nitrogen input sources. These examples illustrate that approaches aiming at improving NUE need to be location-specific with consideration of multiple natural and socioeconomic factors.
Collapse
Affiliation(s)
- Binhui Chen
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Policy Simulation Laboratory, Zhejiang University, Hangzhou, 310058, China
| | - Chenchen Ren
- Policy Simulation Laboratory, Zhejiang University, Hangzhou, 310058, China; Department of Land Management, Zhejiang University, Hangzhou, 310058, China
| | - Chen Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Policy Simulation Laboratory, Zhejiang University, Hangzhou, 310058, China
| | - Jiakun Duan
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Land Management, Zhejiang University, Hangzhou, 310058, China
| | - Stefan Reis
- UK Centre for Ecology & Hydrology, Penicuik, EH26 0QB, United Kingdom; University of Exeter Medical School, Knowledge Spa, Truro, TR1 3HD, United Kingdom; The University of Edinburgh, School of Chemistry, Edinburgh, EH9 3BF, United Kingdom
| | - Baojing Gu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
26
|
Wu B, Ren Q, Xia L, Liu Y, Cui X, Dai A, Wei T, Zhou Y. pH-dependent microbial niches succession and antibiotic resistance genes distribution in an oxygen-based membrane biofilm reactor treating greywater. ENVIRONMENTAL RESEARCH 2023; 216:114725. [PMID: 36343711 DOI: 10.1016/j.envres.2022.114725] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
System pH is found to crucially affect biofilm growth and microorganisms' activity in the biofilm-based wastewater treatment system. This study investigated the pH-dependent pollutants removal, microbial niches succession and antibiotic resistance genes (ARGs) accumulation in an oxygen-based membrane biofilm reactor treating greywater. Results indicated that neutral conditions achieved the highest biofilm concentration and living cells, which enabled the highest pollutants removal rates; multifarious functional groups in biofilm enabled pollutants adsorption, which favored its continuous bio-removal. Microbial communities under acidic condition (pH = 5.0) were significantly different with that under other conditions (p < 0.05). The neutral and alkaline niches (pH = 7.0 and 9.0) were predominant by organics biodegradation and nitrogen reduction bacteria (e.g. Sphingobacteriales, Pseudomonas, Flavobacterium and Phenylobacterium), but which were significantly dropped under acidic conditions, leading to the declined reactor performance. ARGs in biofilm (predominant by korB, intI-1, sul1 and sul2) were much higher than that in the cell-free liquid and the target ARGs accumulation (korB, intI-1, blaCTX-M, qnrS) had nearly linear positive relationships (R2 > 0.95, P < 0.01) with biofilm-attached linear alkylbenzene sulfonate (LAS). LAS stimulate ARGs proliferation in functional microorganisms (korB, sul-1 and intI-1 were significantly associated with related microbial genus) and biofilm played a key role in ARGs dissemination. The relatively low ARGs in both biofilm and effluent under neutral conditions suggested that pH controlling can be an effective strategy to inhibit ARGs dissemination and proliferation in the system.
Collapse
Affiliation(s)
- Beibei Wu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingqing Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Libo Xia
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ying Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaocai Cui
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Anqi Dai
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Wei
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Zhou
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
27
|
Sun C, Li C, Zhang K, Ma X, Zhang Y. Six complex microbial inoculants for removing ammonia nitrogen from waters. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10823. [PMID: 36544243 DOI: 10.1002/wer.10823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
To determine the effect of microbial inoculants on the removal of ammonia nitrogen (NH4 + -N), six different complex microbial inoculants were studied. In this study, their effectiveness on NH4 + -N removal was compared, and their microbial community composition was determined. High-throughput sequencing results showed that Proteobacteria and Firmicutes were the dominant phyla in six samples. Before the reaction, Bacillus, Cyanobacteria, and Mitochondria genera were the dominant genera. The dominant genera were significantly different after the reaction with the addition of bacterial agents. The six water samples were Massilia, Escherichia-Shigella, Brevibacillus, Mitsuaria, Bacillus, and Ralstonia. Among the six complex microbial inoculants, "Gandu nitrifying bacteria (NR4 )" have the best removal effect on NH4 + -N. In addition, the removal effect of six different bacterial agents on chemical oxygen demand (COD) was compared. The results showed that "Bilaiqing ammonia nitrogen removal bacteria agent (NR5 )" has the best removal effect on COD. Single-factor experiments suggested that the optimal conditions for NR4 bacteria were pH 7, 30°C, 1.0 g/L of bacterial agent dosage and a wide range of NH4 + -N from 30 to 300 mg/L. PRACTITIONER POINTS: The nitrogen removal effects of six different microbial agents were compared. High-throughput sequencing provides important insights into the study of ammonia nitrogen removal by microbial communities. Analysis of six different complex bacterial agents by high-throughput sequencing. The relative abundance of microorganisms is not proportional to the ability to remove NH4 + -N Good application effect in urban landscape water body.
Collapse
Affiliation(s)
- Chunmeng Sun
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Cong Li
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Kai Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| | - Xingmao Ma
- Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas, USA
| | - Yunshu Zhang
- School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
28
|
Yang Y, Yin Z, Li L, Li Y, Liu Y, Luo Y, Li G, Yuan J. Effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions during pig manure composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157487. [PMID: 35870587 DOI: 10.1016/j.scitotenv.2022.157487] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
This study investigated the effects of dicyandiamide, phosphogypsum and superphosphate on greenhouse gas emissions and compost maturity during pig manure composting. The results indicated that the addition of dicyandiamide and phosphorus additives had no negative effect on organic matter degradation, and could improve the compost maturity. Adding dicyandiamide alone reduced the emissions of ammonia (NH3), methane (CH4) and nitrous oxide (N2O) by 9.37 %, 9.60 % and 31.79 %, respectively, which was attributed that dicyandiamide effectively inhibited nitrification to reduce the formation of N2O. Dicyandiamide combined with phosphogypsum or superphosphate could enhance mitigation of the total greenhouse gas (29.55 %-37.46 %) and NH3 emission (18.28 %-21.48 %), which was mainly due to lower pH value and phosphoric acid composition. The combination of dicyandiamide and phosphogypsum exhibited the most pronounced emission reduction effect, simultaneously decreasing the NH3, CH4 and N2O emissions by 18.28 %, 38.58 % and 36.14 %, respectively. The temperature and C/N content of the compost were significantly positively correlated with greenhouse gas emissions.
Collapse
Affiliation(s)
- Yan Yang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Ziming Yin
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Liqiong Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yun Li
- College of Resources and Environmental Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Yan Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yiming Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| | - Jing Yuan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
29
|
John VC, Verma AK, Krishnani KK, Chandrakant MH, Varghese T, Pathak MS. Effect of potassium supplementation on osmoregulatory and stress response of Pangasianodon hypophthalmus (Sauvage, 1878) with Spinacia oleracea L. in aquaponics. JOURNAL OF FISH BIOLOGY 2022; 101:249-261. [PMID: 35593382 DOI: 10.1111/jfb.15104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
This study evaluated the effect of different potassium supplementation dosages on the physiological responses of Pangasianodon hypophthalmus reared in an aquaponic system with Spinacia oleracea L. for 60 days. The system comprised of a rectangular fish tank of 168 l capacity (water volume = 100 l) with nutrient film technique (NFT)-based hydroponic component with fish to plant ratio of 2.8 kg m-3 : 28 plants m-2 in all the treatments. The osmoregulatory and stress parameters of P. hypophthalmus at four different potassium dosages of T1 (90 mg l-1 ), T2 (120 mg l-1 ), T3 (150 mg l-1 ) and T4 (180 mg l-1 ) were compared with C (control, 0 mg l-1 ) to examine the potassium level to be applied to aquaponics. The water quality parameters and fish production were found to have no adverse impact due to potassium supplementation. The spinach yield during two harvests, i.e., before and after potassium supplementation, revealed that the yield was significantly higher (P < 0.05) after supplementation with the highest yield in T3 and T4. The osmoregulatory parameters such as plasma osmolality, Na+ , K+ ATPase activity in gill and plasma ionic profile (Cl- , Ca2+ and Na+ ) showed an insignificant variation (P > 0.05) between control and treatments except for higher plasma potassium concentration (1.98 ± 0.19 mmol l-1 ) in T4. The stress and antioxidant enzyme analysis exhibited significantly higher plasma glucose and superoxide dismutase (SOD) activity in gill and liver in T4, whereas cortisol and catalase showed an insignificant difference (P > 0.05). The experimental findings demonstrated that the potassium dosage up to 150 mg l-1 could be suggested as optimum for P. hypophthalmus and spinach aquaponics without impairing the health and oxidative status of P. hypophthalmus.
Collapse
Affiliation(s)
- Venisza Cathy John
- Aquaculture Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | - Ajit Kumar Verma
- Aquaculture Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | | | | - Tincy Varghese
- Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Mumbai, India
| | | |
Collapse
|
30
|
Ji M, Gao H, Diao L, Zhang J, Liang S, Hu Z. Environmental impacts of antibiotics addition to algal-bacterial-based aquaponic system. Appl Microbiol Biotechnol 2022; 106:3777-3786. [PMID: 35513518 DOI: 10.1007/s00253-022-11944-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/12/2022] [Accepted: 04/24/2022] [Indexed: 11/02/2022]
Abstract
Antibiotics usage is a double-edged sword among the production promotion and environmental aggravation of aquaculture system. In this study, the effects of sulfadiazine addition on algal-bacterial-based aquaponic (AA) system were thoroughly investigated. Results showed that sulfadiazine addition increased the nitrogen (N) and carbon (C) recovery of AA system by 1.3 times and 2.9 times, respectively. Meanwhile, the global warming potential was increased by 63% due to aggravated nitrous oxide (N2O) emission. This was mainly because sulfadiazine increased the abundance of nirS genes and decreased the abundance of nosZ genes, which subsequently led to higher N2O accumulation. Furthermore, resistance gene (sul-1, sul-2, and intI-1) abundance in the treatment group was an order higher than that of the control group, which would give rise to the environmental risk for agroecological system. KEY POINTS: • Sulfadiazine addition increased NUE at expense of aggravated GHG emissions. • Sulfadiazine disrupted the balance between the abundance of nirS and nosZ genes. • Sulfadiazine addition increased the resistance gene abundance of AA system.
Collapse
Affiliation(s)
- Mingde Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Hang Gao
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Lingling Diao
- Chengyang Branch of Qingdao Ecological Environment Bureau, Qingdao, 266109, People's Republic of China
| | - Jian Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.,College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, People's Republic of China
| | - Shuang Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China
| | - Zhen Hu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
31
|
Ren Q, Cui X, Zuo X, He J, Zhou Y. Assessment and optimization of the oxygen based membrane biofilm reactor as a novel technology for source-diverted greywater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151763. [PMID: 34822898 DOI: 10.1016/j.scitotenv.2021.151763] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/10/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
The oxygen based membrane biofilm (O2-MBfR) has been proved to be a novel technology in treating greywater (GW) and response surface methodology (RSM) was used to model the removal of chemical oxygen demand (COD) and total nitrogen (TN) with operation parameters COD/TN ratio, system pH and lumen air pressure (LAP). Results indicated that the all target single factors affect GW treatment efficiency, and the regression model with central composite design (CCD) showed good agreement with the experimental results with high R2 and R2 adj values (all >0.97) for all the target responses. Statistical evaluation revealed that system pH was the most significant parameter affecting COD and TN removal, followed by COD/TN ratio and LAP. The interaction between COD/TN ratio and system pH also played an important role on the GW treatment. The optimized maximum removal of COD (96.48%) and TN (133 g N/m2-day) were achieved with the COD/TN ratio 17.76 g COD/g TN, system pH 7.10 and LAP 1.00 psi. Thus, RSM combined with CCD could be used for predicting the organics and nitrogen removal during GW treatment in the O2-MBfR.
Collapse
Affiliation(s)
- Qingqing Ren
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaocai Cui
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingtao Zuo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiajie He
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Zhou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
32
|
Aksorn S, Kanokkantapong V, Polprasert C, Noophan PL, Khanal SK, Wongkiew S. Effects of Cu and Zn contamination on chicken manure-based bioponics: Nitrogen recovery, bioaccumulation, microbial community, and health risk assessment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 311:114837. [PMID: 35276563 DOI: 10.1016/j.jenvman.2022.114837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/14/2022] [Accepted: 03/01/2022] [Indexed: 05/16/2023]
Abstract
In bioponics, although chicken manure is an efficient substrate for vegetable production and nitrogen recovery, it is often contaminated with high Cu and Zn levels, which could potentially cause bioaccumulation in plants and pose health risks. The objectives of this study were to assess nitrogen recovery in lettuce- and pak choi-based bioponics with Cu (50-150 mg/kg) and Zn (200-600 mg/kg) supplementation, as well as their bioaccumulation in plants, root microbial community, and health risk assessment. The supplementation of Cu and Zn did not affect nitrogen concentrations and plant growth (p > 0.05) but reduced nitrogen use efficiency. Pak choi showed higher Cu and Zn bioconcentration factors than lettuce. Bacterial genera Ruminiclostridium and WD2101_soil_group in lettuce roots and Mesorhizobium in pak choi roots from Cu and Zn supplemented conditions were significantly higher (p < 0.05) than controls, suggesting microbial biomarkers in plant roots from Cu and Zn exposure bioponics depended on plant type. Health risk assessment herein revealed that consumption of bioponic vegetables with Cu and Zn contamination does not pose long-term health risks (hazard index <1) to children or adults, according to the US EPA. This study suggested that vegetable produced from chicken manure-based bioponics has low health risk in terms of Cu and Zn bioaccumulation and could be applied in commercial-scale system for nutrient recovery from organic waste to vegetable production; however, health risk from other heavy metals and xenobiotic compounds must be addressed.
Collapse
Affiliation(s)
- Satja Aksorn
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Special Task Force for Activating Research (STAR) of Waste Utilization and Ecological Risk Assessment, Chulalongkorn University, Bangkok, Thailand
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pongsak Lek Noophan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Water Science and Technology for Sustainable Environment Research Group, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
33
|
Ye H, Tang C, Cao Y, Li X, Huang P. Contribution of ammonia-oxidizing archaea and bacteria to nitrification under different biogeochemical factors in acidic soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17209-17222. [PMID: 34661841 DOI: 10.1007/s11356-021-16887-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Nitrification in soils is an essential process that involves archaeal and bacterial ammonia-oxidizers. Despite its importance, the relative contributions of soil factors to the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and their nitrification performances are seldom discussed. The aim of this study was to determine the effects of AOA and AOB abundance and different environmental conditions (pH, TC, TN, moisture, and temperature) on nitrification performance. The soils of the long-term fertilized tea orchards and forests were sampled in the field, and nitrification experiments were conducted in the laboratory. The acid soils were collected from the field and used in laboratory incubation experiments to calculate the nitrification rate, including the net nitrification rate (NN rate), nitrification potential (NP), and nitrification kinetics. The basic parameters, different forms of nitrogen content, and AOA and AOB amoA gene copies were also analyzed. Compared with the forest soil, the tea orchard soil had a lower pH and higher nitrogen content (p < 0.05). The AOA and AOB abundance in the soils of the forests and tea orchards were pH-dependent. The NN rate and NP had good relationships with AOA or AOB in the forest soil; however, poor relationships were observed in the tea orchard soil. When pH < 4, the performances of AOA and AOB were restricted by pH and the environment, especially in long-term fertilized farmlands. Long-term fertilization can cause soil acidification, which regulates the abundance of AOA and AOB and their nitrifying ability. The soil environment rather than AOA or AOB could control nitrification in long-term fertilized farmlands with a pH below 4. These findings could improve fertilization efficiency and control nutrient runoff in hilly agricultural ecosystems.
Collapse
Affiliation(s)
- Huijun Ye
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China
| | - Changyuan Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
- Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China.
| | - Xing Li
- Wuhan Institute of Technology, Wuhan, 430000, China
| | - Pinyi Huang
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
34
|
Takatsu Y, Miyamoto T, Tahvanainen T, Hashidoko Y. Nitrous Oxide Emission in Response to pH from Degrading Palsa Mire Peat Due to Permafrost Thawing. Curr Microbiol 2022; 79:56. [PMID: 34982223 DOI: 10.1007/s00284-021-02690-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 10/25/2021] [Indexed: 11/29/2022]
Abstract
N2O, a greenhouse gas, is increasingly emitted from degrading permafrost mounds of palsa mires because of the global warming effects on microbial activity. In the present study, we hypothesized that N2O emission could be affected by a change in pH conditions because the collapse of acidic palsa mounds (pH 3.4-4.6) may result in contact with minerogenic ground water (pH 4.8-6.3), thereby increasing the pH. We compared the effects of pH change on N2O emission from cultures inoculated with peat suspensions. Peat samples were collected on a transect from a still intact high part to the collapsing edge of a degrading palsa mound in northwestern Finland, assuming the microbial communities could be different. We adjusted the pH of peat suspensions prepared from a collapsing palsa mound and compared the N2O emission in a pH gradient from 4.5 to 8.5. The collapsing edge had the highest N2O emission from the peat suspensions among all points on the transect under natural acidic conditions (pH 4.5). The N2O emission was reduced with a moderate rise in pH (pH 5.0-6.0) by approximately 85% compared with natural acidic level (pH 4.5). The bacterial communities in acidic cultures differed considerably from those in alkaline cultures. When pH was adjusted to alkaline conditions, N2O-emitting bacteria different from those present in acidic conditions appeared to emit N2O. The bacterial communities could be characterized by changing pH conditions after thawing and collapse of permafrost have contrasting impacts on N2O production that calls for further attention in future studies.
Collapse
Affiliation(s)
- Yuta Takatsu
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Toshizumi Miyamoto
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Teemu Tahvanainen
- Department of Biology, University of Eastern Finland, Joensuu, Finland
| | - Yasuyuki Hashidoko
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
35
|
Derikvand P, Sauter B, Stein LY. Development of an aquaponics microbial inoculum for efficient nitrification at acidic pH. Appl Microbiol Biotechnol 2021; 105:7009-7021. [PMID: 34453560 DOI: 10.1007/s00253-021-11529-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022]
Abstract
Maintaining an optimal pH that simultaneously supports plants, fish, and nitrifying microorganisms is a challenge in recirculating aquaponics systems as nitrification is optimal at a slightly alkaline pH and plant growth is optimal at a slightly acidic pH. Freshwater fish tolerate pH > 5.5. Our aim was to adapt a microbial inoculum for a recirculating aquaponics system from an operational pH of 7.6 to 5.6, compare nitrification activity and production of N2O, and describe changes in the adapted versus unadapted microbial communities. Four adaptation strategies were tested; our results indicated that a gradual reduction from pH 7.6 to 5.6, along with a gradual reduction followed by a gradual return of available ammonium, was the best strategy resulting in retention of 81% nitrification activity at pH 5.6 compared to pH 7.6. 16S rRNA gene amplicon sequencing and qPCR enumeration of nitrification-related genes showed that the composition of pH 5.6 adapted microbial communities from all four adaptation strategies was similar to one another and distinct from those operating at pH 7.6, with enrichment of comammox clade B bacteria over ammonia-oxidizing bacteria and thaumarchaeota. N2O production of the pH 5.6 adapted microbial communities was below detection in all adaptation experiments, likely due to the increased proportion of comammox bacteria. Aquaponics biofilters enriched with comammox bacteria and adapted to function at pH 5.6 can be a desirable inoculum for freshwater recirculating aquaponics systems to retain nitrification activity and improve crop yields.Key points• Microbial communities adapted from pH 7.6 to pH 5.6 retained 81% nitrification activity.• Microbial communities adapted from pH 7.6 to pH 5.6 were enriched in comammox bacteria.• Comammox-enriched microbial communities did not produce N2 O.
Collapse
Affiliation(s)
- Peyman Derikvand
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Bldg., Edmonton, AB, Canada
| | - Brittany Sauter
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Bldg., Edmonton, AB, Canada
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, CW 405 Biological Sciences Bldg., Edmonton, AB, Canada.
| |
Collapse
|
36
|
Manu MK, Li D, Liwen L, Jun Z, Varjani S, Wong JWC. A review on nitrogen dynamics and mitigation strategies of food waste digestate composting. BIORESOURCE TECHNOLOGY 2021; 334:125032. [PMID: 33964812 DOI: 10.1016/j.biortech.2021.125032] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
Food waste digestate is a by-product of the anaerobic digestion of food waste. Presence of high ammonium nitrogen content significantly increase the nitrogen loss upon direct application on soil or by conventional composting. In this review, a comprehensive discussion regarding the effective management of food waste digestate is outlined, in which global food waste digestate production, characteristics, and composting are discussed. The nitrogen dynamics cycle considering high ammonium nitrogen content in the digestate is also evaluated, including ammonification, nitrification, denitrification, and other possible mechanisms based on the current literature. Mitigation strategies for reducing nitrogen loss via C/N ratio adjustment and the addition of physical, chemical, and microbial amendments were evaluated and estimated for 15 countries based on the available data on food waste anaerobic digestion plants. Reduced nitrogen loss and high quality compost could be produced from food waste digestate by adapting mitigation strategies.
Collapse
Affiliation(s)
- M K Manu
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Dongyi Li
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Luo Liwen
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Zhao Jun
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010 Gujarat, India
| | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Hong Kong; School of Technology, Huzhou University, Huzhou 311800, China.
| |
Collapse
|
37
|
Cifuentes-Torres L, Correa-Reyes G, Mendoza-Espinosa LG. Can Reclaimed Water Be Used for Sustainable Food Production in Aquaponics? FRONTIERS IN PLANT SCIENCE 2021; 12:669984. [PMID: 34149766 PMCID: PMC8213387 DOI: 10.3389/fpls.2021.669984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Aquaculture is a technology used for the production of animal protein but produces a great amount of waste that decreases productivity and adversely affects the environment. Sedimentation and filtration have been used for the treatment of the suspended fraction of these wastes although dissolved substances like nutrients can be an asset. Therefore, the management of aquaculture waste remains a challenge. Aquaponics is a technology that can eliminate dissolved N and P from aquaculture systems as they serve as nutrients for plants, which are absorbed through the roots and are incorporated into their tissues. Several reports and studies exist on the benefits of aquaponic systems for the combined production of plants and aquatic organisms and its advantages in terms of economics and environmental protection. The great majority of the studies use the wastewater from the aquatic production tanks as a source of nutrients for plants production. However, domestic or municipal wastewater is a resource that has been used extensively in other production systems such as conventional agriculture and aquaculture, yet its potential as a source of water for aquaponics has not been established. The current analysis hypothesizes that reclaimed water can be used for aquaponics. Despite the extensive use of reclaimed water in agriculture and aquaculture and the low risk to human health when properly managed, there are no academic studies that have tackled this issue. In order to overcome the generalized mistrust of the public in consuming crops irrigated with reclaimed water or fish growing in reclaimed water, it is recommended that only ornamental fish and plants would be cultivated by this method. There is an urgent need for studies to verify the safety and advantages of such cultivation technique. Finally, it is necessary to establish guidelines for the responsible use of reclaimed water in aquaponics.
Collapse
|
38
|
Wongkiew S, Koottatep T, Polprasert C, Prombutara P, Jinsart W, Khanal SK. Bioponic system for nitrogen and phosphorus recovery from chicken manure: Evaluation of manure loading and microbial communities. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 125:67-76. [PMID: 33684666 DOI: 10.1016/j.wasman.2021.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Bioponics integrates the biological treatment of nutrient-rich waste streams with hydroponics. However, there are several challenges of bioponics, especially nutrient availability and qualities, which affect plant yield. In this study, chicken manure based-nutrient film technique bioponics was examined at manure loadings of 200, 300, and 400 g dry wt. per bioponic system (total of 18 plants). Bioponics effectively released nitrogen and phosphorus (total ammonia nitrogen of 5.8-8.0 mgN/L, nitrate of 7.0-11.2 mgN/L, and phosphate of 48.7-74.2 mgP/L) for efficient growth of lettuce (Lactuca sativa; total yield of 1208-2030 g wet wt. per 18 plants). Nitrogen and phosphorus use efficiencies were 35.1-41.8% and 6.8-8.0%, respectively, and were comparable to aquaponics. Next-generation sequencing was used to examine the microbial communities in digested chicken manure and plant roots in bioponics. Results showed that several microbial genera were associated with organic degradation (e.g., Nocardiopsis spp., Cellvibrio spp.), nitrification (Nitrospira spp.), phosphorus solubilization, and plant growth promotion (e.g., WD2101_soil_group, and Bacillus spp.). Nocardiopsis spp., Romboutsia spp. and Saccharomonospora spp. were found at high abundances and a high degree of co-occurrences among the microbiota, suggesting that the microbial organic decomposition to nitrogen and phosphorus release could be the key factors to achieve better nutrient recovery in bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wanida Jinsart
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
39
|
Wu J, Shangguan H, Fu T, Chen J, Tang J, Zeng RJ, Ye W, Zhou S. Alternating magnetic field mitigates N 2O emission during the aerobic composting of chicken manure. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124329. [PMID: 33158658 DOI: 10.1016/j.jhazmat.2020.124329] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/23/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
Nitrous oxide (N2O) emission is an environmental problem related to composting. Recently, the electric field-assisted aerobic composting process has been found to be effective for enhancing compost maturity and mitigating N2O emission. However, the insertion of electrodes into the compost pile causes electrode erosion and inconvenience in practical operation. In this study, a novel alternating magnetic field-assisted aerobic composting (AMFAC) process was tested by applying an alternating magnetic field (AMF) to a conventional aerobic composting (CAC) process. The total N2O emission of the AMFAC process was reduced by 39.8% as compared with that of the CAC process. Furthermore, the results demonstrate that the AMF weakened the expressions of the amoA, narG, and nirS functional genes (the maximum reductions were 96%, 83.7%, and 95.5%, respectively), whereas it enhanced the expression of the nosZ functional gene by a maximum factor of 36.5 as compared with that in CAC. A correlation analysis revealed that the nitrification and denitrification processes for N2O emission were suppressed in AMFAC, the main source of N2O emission of which was denitrification. The findings imply that AMFAC is an effective strategy for the reduction of N2O emission during aerobic composting.
Collapse
Affiliation(s)
- Jiaxiong Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Huayuan Shangguan
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Tao Fu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jinjie Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiahuan Tang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenyuan Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
40
|
Deng L, Zhao Y, Zhang J, Bello A, Sun Y, Han Y, Wang B, Uzoamaka Egbeagu U, Li D, Jong C, Xu X. Insight to nitrification during cattle manure-maize straw and biochar composting in terms of multi-variable interaction. BIORESOURCE TECHNOLOGY 2021; 323:124572. [PMID: 33370679 DOI: 10.1016/j.biortech.2020.124572] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
This study investigated nitrification process during cattle manure-maize straw (CM) and biochar (CMB) composting in terms of multi-variable interaction (MVI) among environmental parameters, ammonia-oxidizing archaea (AOA) and bacteria (AOB) community structure, nitrogen-related enzymes as well as substrates using structural equation model (SEM). Results showed that adding biochar significantly reduced potential ammonia oxidation rates. SEM analysis revealed that AOB was affected by temperature and pH, which stimulated the release of urease, increased NH4+-N concentration and finally exerted influence on nitrification in CM. Temperature (0.755) and NO2--N (-0.994) were identified as the main factors mediating nitrification in CM and CMB, respectively. Moreover, MVI analysis indicated that nitrification and denitrification occurred simultaneously. Mutual verification of SEM and quantitative analyses (RNA level) confirmed that AOB predominated nitrification. The above results indicated that nitrification could be better explained by MVI using SEM during composting.
Collapse
Affiliation(s)
- Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jizhou Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Wang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Detian Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Chol Jong
- College of Agriculture, Kimjewon Agricultural University, Haeju City, Hwanghae South Province 999093, Democratic People's Republic of Korea
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
41
|
Kasozi N, Abraham B, Kaiser H, Wilhelmi B. The complex microbiome in aquaponics: significance of the bacterial ecosystem. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-020-01613-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Purpose
Aquaponics is a technology that has minimal impact on the environment and which is often promoted as a solution for sustainable food production. Developing aquaponics sustainably requires a thorough understanding of the biological components of the system. Recent reports on the bacterial populations of aquaponics systems using new DNA sequencing technologies are revealing a complex and diverse microbial ecosystem. The purpose of this review is to present information on microbial composition and various factors affecting bacterial activity in aquaponics systems. Approaches for establishing a bacterial ecosystem during the setup of an aquaponics system, and microbiological safety of aquaponics products are also highlighted.
Methods
This review was developed by evaluating and synthesising current literature of peer-reviewed publications related to aquaponics and microbial communities. Based on the results from credible academic journals, publications were categorised into five groups: methods used to characterise microbiomes, biofiltration microorganisms, bacterial diversity, biofilter establishment, and safety of aquaponics products.
Results
The microbial ecosystem is essential for biological filtration of water through the mineralisation of nutrients required for plant growth in an integrated system. The aquaponics microbiome is complex, and bacterial composition varies between the different compartments of these systems. Establishing these bacterial ecosystems is essential for optimal functioning of aquaponics. At the phylum level, Proteobacteria and Bacteroidetes are dominant in aquaponics systems. Despite bacteria being fundamental to aquaponics, there are currently no reports of human pathogens in aquaponics products.
Conclusion
Knowledge of the composition of bacterial populations in aquaponics systems will enhance understanding of relationships and functions within the microbiome. This in turn will allow for the establishment of sustainable and healthy aquaponics systems for food production.
Collapse
|
42
|
Metabarcoding Analysis of Bacterial Communities Associated with Media Grow Bed Zones in an Aquaponic System. Int J Microbiol 2020; 2020:8884070. [PMID: 33061984 PMCID: PMC7547338 DOI: 10.1155/2020/8884070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
The development of environmentally sustainable plant and fish production in aquaponic systems requires a complete understanding of the systems' biological components. In order to better understand the role of microorganisms in this association, we studied the bacterial communities in the dry, root, and mineralized zones of a flood-and-drain media bed aquaponic system. Bacterial communities were characterized using metabarcoding of the V3-V4 16S rRNA regions obtained from paired-end Illumina MiSeq reads. Proteobacteria, Actinobacteria, and Bacteroidetes accounted for more than 90% of the total community in the dry zone and the effluent water. These phyla also accounted for more than 68% of the total community in the root and mineralized zones. The genera Massilia, Mucilaginibacter, Mizugakiibacter, and Rhodoluna were most dominant in the dry, root, and mineralized zones and in the effluent water, respectively. The number of shared operational taxonomic units (OTUs) for the three zones was 241, representing 7.15% of the total observed OTUs. The number of unique OTUs in samples from dry zone, root zone, mineralized zone, and effluent water was 485, 638, 445, and 383, respectively. The samples from the root zone harbored more diverse communities than either the dry or mineralized zones. This study is the first to report on the bacterial community within the zones of a flood-and-drain media bed. Thus, this information will potentially accelerate studies on other microbial communities involved in the bioconversion of nitrogen compounds and mineralization within these types of aquaponic systems.
Collapse
|
43
|
Abstract
As an environmentally-friendly aquaculture and planting system, aquaponics has attracted attention in various fields, such as fisheries, agriculture, and ecology. The existing review qualitatively described the development and challenges of aquaponics but lacked data support. This study selected 513 related documents (2000–2019) in the Web of Science database (WOS) to mine and quantitatively analyze its text data. The keyword co-occurrence network shows that the current aquaponics research mainly focuses on the system components, wastewater treatment, nutrient management, and system production. Research areas reflect obvious regional characteristics. China, the United States and Europe are dedicated to the application of new technologies, the optimization of system production, and the exploration of multiple roles. At present, the aquaponics development is facing many pressures from management and market. Future research requires more in-depth research in the system construction, nutrient management, and microbial community structure to provide a theoretical basis. Moreover, the identity construction within the conceptual framework of green infrastructure is a research direction worth exploring to solve low social recognition for aquaponics.
Collapse
|
44
|
Su MH, Azwar E, Yang Y, Sonne C, Yek PNY, Liew RK, Cheng CK, Show PL, Lam SS. Simultaneous removal of toxic ammonia and lettuce cultivation in aquaponic system using microwave pyrolysis biochar. JOURNAL OF HAZARDOUS MATERIALS 2020; 396:122610. [PMID: 32298865 DOI: 10.1016/j.jhazmat.2020.122610] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/24/2020] [Accepted: 03/27/2020] [Indexed: 05/22/2023]
Abstract
This study examined an aquaponic approach of circulating water containing ammonia excretions from African catfish grown in an aquaculture tank for bacterial conversion into nitrates, which then acted as a nutrient substance to cultivate lettuce in hydroponic tank. We found that microwave pyrolysis biochar (450 g) having microporous (1.803 nm) and high BET surface area (419 m2/g) was suitable for use as biological carrier to grow nitrifying bacteria (63 g of biofilm mass) that treated the water quality through removing the ammonia (67%) and total suspended solids (68%), resulting in low concentration of remaining ammonia (0.42 mg/L) and total suspended solid (59.40 mg/L). It also increased the pH (6.8), converted the ammonia into nitrate (29.7 mg/L), and increased the nitrogen uptake by the lettuce (110 mg of nitrogen per plant), resulting in higher growth in lettuce (0.0562 %/day) while maintaining BOD5 level (3.94 mg/L) at acceptable level and 100% of catfish survival rate. Our results demonstrated that microwave pyrolysis biochar can be a promising solution for growing nitrifying bacteria in aquaponic system for simultaneous toxic ammonia remediation and generation of nitrate for growing vegetable in aquaculture industry.
Collapse
Affiliation(s)
- Man Huan Su
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Elfina Azwar
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - YaFeng Yang
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Peter Nai Yuh Yek
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; School of Engineering and Technology, University College of Technology Sarawak, Lot 88, Persiaran Brooke, 96000 Sibu, Sarawak, Malaysia
| | - Rock Keey Liew
- NV WESTERN PLT, No. 208B, Jalan Macalister, Georgetown, Pulau Pinang 10400, Malaysia
| | - Chin Kui Cheng
- Faculty of Chemical & Natural Resources Engineering, Lebuhraya Tun Razak, Universiti Malaysia Pahang, Gambang Kuantan, Pahang 26300, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
45
|
Oladimeji SA, Okomoda VT, Olufeagba SO, Solomon SG, Abol‐Munafi AB, Alabi KI, Ikhwanuddin M, Martins CO, Umaru J, Hassan A. Aquaponics production of catfish and pumpkin: Comparison with conventional production systems. Food Sci Nutr 2020; 8:2307-2315. [PMID: 32405388 PMCID: PMC7215217 DOI: 10.1002/fsn3.1512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 11/08/2022] Open
Abstract
Aquaponics is known to be a smart way of producing fish and crops simultaneously; however, there is a paucity of information about the extents of this system's efficiency over other conventional methods of food production. Thus, this study was designed to evaluate the performance of a catfish-pumpkin aquaponics system in comparison with recirculatory and static aquaculture systems (for fish performance), as well as irrigated and nonirrigated systems (for pumpkin performance). Results obtained showed that the production of fish in the aquaponics system was 29% and 75% more efficient than recirculatory and static aquaculture systems, respectively. The survival of the fish was also significantly improved probably due to better water quality in the aquaponics system. With respect to pumpkin production, yield in the aquaponics system was about five times the performance in irrigated land and eleven times those in nonirrigated land. This study gives definitive evidence to support the efficiency of the aquaponics system over other conventional food production methods.
Collapse
Affiliation(s)
| | - Victor Tosin Okomoda
- Department of Fisheries and AquacultureCollege of Forestry and FisheriesUniversity of AgricultureMakurdiNigeria
- Institute of Tropical Aquaculture and Fisheries Research (AQUATROP)Universiti Malaysia TerengganuKuala NerusMalaysia
| | - Samuel Olabode Olufeagba
- Department of Fisheries and AquacultureCollege of Forestry and FisheriesUniversity of AgricultureMakurdiNigeria
| | - Shola Gabriel Solomon
- Department of Fisheries and AquacultureCollege of Forestry and FisheriesUniversity of AgricultureMakurdiNigeria
| | - Ambok Bolong Abol‐Munafi
- Institute of Tropical Aquaculture and Fisheries Research (AQUATROP)Universiti Malaysia TerengganuKuala NerusMalaysia
- Faculty of Food Science and FisheriesUniversiti Malaysia TerengganuKuala NerusMalaysia
| | - Korede Isaiah Alabi
- Department of Agricultural Extension and ManagementFederal College of ForestryJos. PlateauNigeria
| | - Mhd Ikhwanuddin
- Institute of Tropical Aquaculture and Fisheries Research (AQUATROP)Universiti Malaysia TerengganuKuala NerusMalaysia
| | | | - Joshua Umaru
- Fisheries Technology DepartmentCollege of AgricultureLafiaNigeria
| | - Anuar Hassan
- Institute of Tropical Aquaculture and Fisheries Research (AQUATROP)Universiti Malaysia TerengganuKuala NerusMalaysia
| |
Collapse
|
46
|
Effect of pH on Cucumber Growth and Nutrient Availability in a Decoupled Aquaponic System with Minimal Solids Removal. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6010010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Decoupled aquaponic systems are gaining popularity as a way to manage water quality in aquaponic systems to suit plant and fish growth independently. Aquaponic systems are known to be deficient in several plant-essential elements, which can be affected by solution pH to either increase or decrease available nutrients. To determine the effect of pH in a decoupled aquaponic system, a study was conducted using aquaculture effluent from tilapia culture tanks at four pH treatments: 5.0, 5.8, 6.5, and 7.0, used to irrigate a cucumber crop. Growth and yield parameters, nutrient content of the irrigation water, and nutrients incorporated into the plant tissue were collected over two growing seasons. pH did not have a practical effect on growth rate, internode length or yield over the two growing seasons. Availability and uptake of several nutrients were affected by pH, but there was no overarching effect that would necessitate its use in commercial systems. Nutrient concentrations in the aquaculture effluent would be considered low compared to hydroponic solutions; however, elemental analysis of leaf tissues was within the recommended ranges. Research into other nutrient sources provided by the system (i.e., solid particles carried with the irrigation water) would provide further information into the nutrient dynamics of this system.
Collapse
|
47
|
Zhang Y, Xiong Z, Yang L, Ren Z, Shao P, Shi H, Xiao X, Pavlostathis SG, Fang L, Luo X. Successful isolation of a tolerant co-flocculating microalgae towards highly efficient nitrogen removal in harsh rare earth element tailings (REEs) wastewater. WATER RESEARCH 2019; 166:115076. [PMID: 31536889 DOI: 10.1016/j.watres.2019.115076] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/24/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Acidic rare earth element tailings (REEs) wastewater with high nitrogen and low COD is the most serious and yet unsolved environmental issue in the rare earth mining industry. The effective and cheap remediation of NH4+-N and NO3--N from the REEs wastewater is still a huge challenge. This harsh wastewater environment results in the difficulty for common microbes and microalgae to be survived. In this work, a novel highly tolerant co-flocculating microalgae (the combination of Scenedesmus sp. and Parachlorella sp.) was successfully isolated from the rare earth mine effluent through three-year cultivation. The removal efficiency of total inorganic nitrogen (TIN) by the co-flocculating microalgae cultivation was as high as 90.9%, which is 1.9 times than the average removal efficiency (47.9%) of previously-reported microalgae species in the wastewater with COD/N ratio ranging from 0 to 1. Thus, the residual concentrations of NH4+-N and TIN could reach the Emission Standards of Pollutants from Rare Earths Industry (GB 26451-2011). Along with the high N removal performance, other related characteristics of the co-flocculating microalgae were also revealed, such as high tolerance towards high NH4+-N and strong acid, rapid growth and sedimentation, and simultaneous removal of NH4+-N and NO3--N. These algae characteristics were ascribed to the specific co-flocculating community structure covered by extracellular polymeric substances.
Collapse
Affiliation(s)
- Yakun Zhang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Zhensheng Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| | - Zhong Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Penghui Shao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Hui Shi
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xiao Xiao
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0512, USA
| | - Lili Fang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, 330063, PR China.
| |
Collapse
|
48
|
Comparisons between Aquaponic and Conventional Hydroponic Crop Yields: A Meta-Analysis. SUSTAINABILITY 2019. [DOI: 10.3390/su11226511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Aquaponic is a relatively new system of farming, which has received much research attention due to its potential for sustainability. However, there is no consensus on comparability between crop yields obtained from aquaponics (AP) and conventional hydroponics (cHP). Meta-analysis was used to synthesize the literature on studies that compared crop yields of AP and cHP. Factors responsible for differences were also examined through subgroup analysis. A literature search was conducted in five databases with no time restriction in order to capture any publication on AP and cHP crop yield comparisons. The search was, however, limited to journal and conference articles published in English. Study characteristics and outcome measures of food crops were extracted. A natural log response ratio effect size measure was used to transform study outcomes. An unweighted meta-analysis was conducted through bootstrapping to calculate overall effect size and its confidence interval. Between-study heterogeneity (I2) was estimated using a random effects model. Subgroup and meta-regression were used to assess moderators, in an attempt to explain heterogeneity in the effect size. The results showed that although crop yield in AP was lower than conventional cHP, the difference was not statistically significant. However, drawing conclusions on the overall effect size must be done with caution due to the use of unweighted meta-analysis. There were statistically significant effects of aquatic organism, hydroponic system type, and nutrient supplementation used in the studies on crop yield comparisons. Nutrient supplementation, particularly, led to on average higher crop yield in AP relative to cHP. These findings are a vital information source for choosing factors to include in an AP study. These findings also synthesize the current trends in AP crop yields in comparison with cHP.
Collapse
|
49
|
Designing Aquaponic Production Systems towards Integration into Greenhouse Farming. WATER 2019. [DOI: 10.3390/w11102123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aquaponics is a sustainable method of food production, whereby aquaculture and hydroponics are combined in one circular system. A few aquaponics startup companies are emerging in Europe with a limited production area of a few hundred or a few thousand square meters, whereas hydroponics is a common practice in a commercially viable manner most often with production units of several hectares. In Iceland, greenhouse farmers operate on relatively small production units, often between 2000 and 5000 m2. The aim of the present study was, therefore, to develop and design aquaponic production systems towards integration into small greenhouse farming strengthening economic viability and sustainability. Since the local market in Iceland is small and import is relatively expensive due to the distance from other markets, the suitability of commercially available fish feed and the selection of plant species were assessed in relation to production efficiency and available market and resources. The effects of water flow on plant growth and on nutrient utilization in culture water were measured and evaluated. Four aquaponics test systems were designed, built and operated, and results were used to develop a pilot commercial aquaponics system implemented for greenhouse farming in Iceland. One of the test systems was a media filled flood and drain system and the other three were deep water culture systems. Tilapia (Oreochromis niloticus), one of the most popular fish in aquaculture, was reared in all systems, while different leafy greens and fruiting vegetables were grown in the hydroponics. The fish was fed with commercial aquaculture feed made for cod and charr. The feed conversion ratio (FCR) was used to assess the effectiveness of feed on fish growth. The FCR observed in this research was between 0.9 and 1.2, within the typical values for tilapia growth in aquaculture. The production of the leafy green plants (e.g., pak-choi) was approximately four times, by weight, that of the production of fish, a similar yield as shown in other researches in the field. The continuous rise of nitrate and phosphate concentrations in the aquaponic system indicated the potential to support even higher crop yield. Long daylength in the summer in Iceland is clearly beneficial for crop production in aquaponics. Based on the results, it is concluded that aquaponics can be a feasible opportunity for greenhouse farming at least to diversify the current business model. Not only can the fish provide an extra income but also the effluent from the aquaculture is easily used as fertilizer for the plants, thus the circular production system offers new innovative ideas for diversifying and value-adding the business further, for example into crayfish production and/or into educational and experience tourism.
Collapse
|
50
|
de Farias Lima J, Duarte SS, Bastos AM, Carvalho T. Performance of an aquaponics system using constructed semi-dry wetland with lettuce (Lactuca sativa L.) on treating wastewater of culture of Amazon River shrimp (Macrobrachium amazonicum). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:13476-13488. [PMID: 30911965 DOI: 10.1007/s11356-019-04496-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/05/2019] [Indexed: 06/09/2023]
Abstract
Aquaponics is a science that integrates animal aquatic production with vegetable culture in recirculating water systems. The performance of an aquaponics system using constructed semi-dry wetland with lettuce (Lactuca sativa L.) planted on treating wastewater of culture of shrimp Macrobrachium amazonicum was evaluated. Each aquaponics module consisted in four culture tanks (1 m3 tank-1), conical sedimentation tank (0.1 m3), circular holding tank (0.2 m3), and constructed semi-dry wetland (0.2 m × 1.0 m × 4.0 m). Post larvae (PL) shrimps with an initial average mass of 314 ± 4.75 mg were stocked at density treatments in quadruplicate: (A) 40 shrimps m-2, (B) 80 shrimps m-2, and (C) 120 shrimps m-2. Our results showed the average final mass of shrimps had a slight reduction at the density 80 and 120 shrimps. However, it did not differ significantly between the treatments. The ultimate survival and productivity were higher in density 80 and 120 shrimps. The maximum biomass productivity occurred at the treatment with density 120 shrimps. The aquaponics recirculation system using constructed semi-dry wetlands with lettuce adequately treated the water at the densities tested. Various water quality parameters were deemed suitable for shrimp culture, but for lettuce not, especially the temperature. The shrimp density was inappropriate which limited the system to accumulate and increase the concentration of nutrients to vegetables with lessening the yield. Nonetheless, the system with higher density has higher nutrient content that plants demonstrated significantly better growth and yield. The results showed the potential use of organics waste generated in a family lettuce hydroponic production, but for a commercial production is indicated supplementation with nutrients like calcium, magnesium, and potassium in the water.
Collapse
Affiliation(s)
- Jô de Farias Lima
- Agroforestry Research Center of Amapá-Embrapa Amapá, Rodovia Juscelino Kubitschek, Km 5, no. 2600, Mailbox 10, Macapa, Amapá, 68906-970, Brazil.
| | - Sting Silva Duarte
- Fishing Engineering Course, State University of Amapá, Av. Presidente Vargas, no. 650, Mailbox 10, Macapa, Amapá, 68900-000, Brazil
| | - Argemiro Midonês Bastos
- Federal Institute of Education, Science and Technology of Amapá, Rod. BR-210, Km 03, s/n, Brasil Novo, Macapa, Amapá, 68909-398, Brazil
| | - Taina Carvalho
- Fishing Engineering Course, State University of Amapá, Av. Presidente Vargas, no. 650, Mailbox 10, Macapa, Amapá, 68900-000, Brazil
| |
Collapse
|