1
|
Ong JH, Huang S, Hu X, Xu R. Struvite precipitation for low-level ammonium removal in mariculture wastewater: Feasibility study. BIORESOURCE TECHNOLOGY 2025; 424:132270. [PMID: 39988011 DOI: 10.1016/j.biortech.2025.132270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/26/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Mariculture is vital for global food security. However, waste seawater requires treatment to remove low-level ammonia nitrogen to prevent aquatic toxicity and eutrophication. Current technologies struggle with selective removal of low-concentration ammonia nitrogen from seawater. Herein, for the first time, we introduce struvite (magnesium ammonium phosphate hexahydrate, MgNH4PO4·6H2O) precipitation to effectively reduce ammonium concentration from 10 mg/L to below 1 mg/L in synthetic and real seawater. Utilizing abundant Mg2+ ions (1.28 g/L) in seawater, only external phosphate (Na2HPO4, 3.94 g/L) and a small NaOH dosage (0.96 g/L) are needed. Excess phosphate is removed using charcoal ash (97 %). A preliminary economic feasibility study suggests potential cost reduction by using waste phosphate. The resulting solid products can be potentially upcycled into fire retardant, anti-corrosion coating, and fertilizer. This study demonstrates a comprehensive solution for ammonia nitrogen removal from mariculture wastewater, along with an initial cost assessment and strategies for achieving economic viability.
Collapse
Affiliation(s)
- Jia Hui Ong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore; Nanyang Environment and Water Research Institute, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore; Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One 637141, Singapore
| | - Shuntian Huang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore; College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Xiao Hu
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One 637141, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore.
| | - Rong Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive 637459, Singapore.
| |
Collapse
|
2
|
Tellbüscher AA, van Hullebusch E, Gebauer R, Mráz J. Assessing the fate and behaviour of plant nutrients in aquaponic systems by chemical equilibrium modelling: A meta-analytical approach. WATER RESEARCH 2024; 264:122226. [PMID: 39146855 DOI: 10.1016/j.watres.2024.122226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Aquaponic systems differ from hydroponics by a higher pH and higher concentrations of dissolved organic matter (DOM). This study assessed whether plant nutrient deficiencies in aquaponics are caused by lacking input of the deficient nutrients or their chemical saturation. Nine scenarios with nutrient concentrations based on Hoagland's solution and different pH (5.5, 6.5, 7.5) and DOM concentrations (0 mg L-1, 20 mg L-1) were constructed, representing theoretical hydroponic and aquaponic systems. Eventually, nutrient concentrations at equilibrium were calculated. In addition, a meta-analysis was conducted to assess whether nutrient concentrations reported in aquaponic studies could be predicted by equilibrium calculations. Theoretical results indicate that solubility thresholds cause deficiencies of P, Ca, Fe, and Cu at equilibrium due to the higher pH in aquaponics compared with hydroponics. Deficiencies in K and other plant nutrients are, meanwhile, likely caused by lacking supply through nutrient inputs at equilibrium. The presence of DOM can increase Fe and Cu solubility. However, equilibrium calculations could not predict nutrient concentrations found in literature. P was present at higher concentrations (max. 0.3 mmol L-1) than predicted (10-3-10-6 mmol L-1), indicating chemical equilibrium was not reached in the assessed systems (average hydraulic retention time = 17 d). Future studies should consider reaction rates. Furthermore, considering the low concentrations of dissolved P in all studies, a system scaling based on P instead of N might be considered.
Collapse
Affiliation(s)
- Anıl Axel Tellbüscher
- University of South Bohemia in Ceské Budejovice, FFPW USB, CENAKVA, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 37005 Ceské Budejovice, Czech Republic
| | - Eric van Hullebusch
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, Paris, France
| | - Radek Gebauer
- University of South Bohemia in Ceské Budejovice, FFPW USB, CENAKVA, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 37005 Ceské Budejovice, Czech Republic
| | - Jan Mráz
- University of South Bohemia in Ceské Budejovice, FFPW USB, CENAKVA, Institute of Aquaculture and Protection of Waters, Na Sádkách 1780, 37005 Ceské Budejovice, Czech Republic.
| |
Collapse
|
3
|
Vanacore L, El-Nakhel C, Modarelli GC, Rouphael Y, Pannico A, Langellotti AL, Masi P, Cirillo C, De Pascale S. Growth, Ecophysiological Responses, and Leaf Mineral Composition of Lettuce and Curly Endive in Hydroponic and Aquaponic Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:2852. [PMID: 39458799 PMCID: PMC11511560 DOI: 10.3390/plants13202852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024]
Abstract
Against the backdrop of climate change, soil loss, and water scarcity, sustainable food production is a pivotal challenge for humanity. As the global population grows and urbanization intensifies, innovative agricultural methods are crucial to meet rising food demand, while mitigating environmental degradation. Hydroponic and aquaponic systems, has emerged as one of these solutions by minimizing land use, reducing water consumption, and enabling year-round crop production in urban areas. This study aimed at assessing the yield, ecophysiological performance, and nutritional content of Lactuca sativa L. and Cichorium endivia L. var. crispum grown in hydroponic and aquaponic floating raft systems, with Oreochromis niloticus L. integrated into the aquaponic system. Both species exhibited higher fresh biomass and canopy/root ratios in hydroponics compared to aquaponics. Additionally, hydroponics increased the leaf number in curly endive by 18%. Ecophysiological parameters, such as the leaf net photosynthesis rate, actual yield of PSII, and linear electron transport rate, were also higher in hydroponics for both species. However, the nutritional profiles varied between the two cultivation systems and between the two species. Given that standard fish feed often lacks sufficient potassium levels for optimal plant growth, potassium supplementation could be a viable strategy to enhance plant development in aquaponic systems. In conclusion, although aquaponic systems may demonstrate lower productivity compared to hydroponics, they offer a more sustainable and potentially healthier product with fewer harmful compounds due to the reduced use of synthetic fertilizers, pesticides, and the absence of chemical residue accumulation. However, careful system management and monitoring are crucial to minimize potential contaminants.
Collapse
Affiliation(s)
- Lucia Vanacore
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| | - Christophe El-Nakhel
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| | | | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| | - Antonio Pannico
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| | - Antonio Luca Langellotti
- Centre for Innovation and Development in the Food Industry (CAISIAL), University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (A.L.L.); (P.M.)
| | - Paolo Masi
- Centre for Innovation and Development in the Food Industry (CAISIAL), University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (A.L.L.); (P.M.)
| | - Chiara Cirillo
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy; (L.V.); (C.E.-N.); (Y.R.); (A.P.); (C.C.); (S.D.P.)
| |
Collapse
|
4
|
Giménez A, Gallegos-Cedillo VM, Benaissa RR, Egea-Gilabert C, Signore A, Ochoa J, Gruda NS, Arnao MB, Fernández JA. Enhancing the cultivation of Salicornia fruticosa with agroindustrial compost leachates in a cascade cropping system: evaluating the impact of melatonin application. FRONTIERS IN PLANT SCIENCE 2024; 15:1441884. [PMID: 39319005 PMCID: PMC11420923 DOI: 10.3389/fpls.2024.1441884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 09/26/2024]
Abstract
Cascade cropping systems (CCS) utilize leachate from a primary crop to grow secondary crops and enhance the efficient use of water and fertilizers in areas with scarce water resources. A preliminary study investigated the effect of melatonin in a cascade cropping system to potentially improve plant tolerance to abiotic stresses. This study aimed to cultivate Salicornia fruticosa in this cropping system to reduce nutrient discharge and assess the impact of exogenous melatonin on Salicornia growth and quality. The CCS included a primary crop of Salicornia grown in an agro-industrial compost or peat. Leachates from these media were used to cultivate the same plant once again in a floating system under four treatments: compost leachate (T1), peat leachate (T2), 100% nutrient solution (NS) (T3), 50% NS (T4) strength. Four concentrations of exogenous melatonin were applied in foliar spray: 0, 100, 200, and 400 µM. Melatonin application increased yield, with the highest values observed when plants were grown in T1. Water use efficiency was also maximized in T1 and with both 200 and 400 µM melatonin applications. The highest nitrogen use efficiency was achieved in plants grown in peat leachate. The lipid membrane damage was assessed revealing that plants grown in compost leachate exhibited the lowest MDA values regardless of melatonin concentrations. The accumulation of some antinutritional compounds (nitrate, oxalate, and sodium) were the highest in those plants grown in compost leachate. Overall, shoots grown in peat leachate exhibited the best phytochemical profile (total phenol content, total flavonoids, and antioxidant capacity), with peak values in plants treated with 200 µM melatonin. These findings suggest that S. fruticosa can be effectively cultivated using leachate from a previous crop in a floating system and that exogenous melatonin application enhances the yield and nutritional quality of Salicornia shoots.
Collapse
Affiliation(s)
- Almudena Giménez
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | | | - Rachida Rania Benaissa
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Catalina Egea-Gilabert
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Angelo Signore
- Department of Soil, Plants and Food Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Jesús Ochoa
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| | - Nazim S Gruda
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
- Department of Horticultural Sciences, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, Germany
| | - Marino B Arnao
- Phytohormones and Plant Development Lab, Department of Plant Biology (Plant Physiology), Faculty of Biology, University of Murcia, Murcia, Spain
| | - Juan A Fernández
- Department of Agronomical Engineering, Technical University of Cartagena, Cartagena, Spain
| |
Collapse
|
5
|
Yang X, Chen J, Wu X, Zhu G. Toward a better understanding of polymeric aluminum-modified attapulgite for the efficient removal of low phosphorus concentration. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11122. [PMID: 39238287 DOI: 10.1002/wer.11122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/28/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Attapulgite (ATP) is a biocompatible clay mineral that efficiently absorbs water. It is widely used in water treatment due to its environmental friendliness and cost-effectiveness. This study aimed to develop a volume-expansion structure-based attapulgite flocculant (VES-ATP) using aluminum salt and attapulgite (ATP) under alkaline conditions, specifically for the treatment of water containing low levels of phosphorus. The VES-ATP was characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The removal of phosphorus by the VES-ATP was conducted by varying the mass ratio of Al to attapulgite (denoted as RmAl/mATP), ATP dosage, and pH. The results showed that the VES-ATP had a good expansion and dispersibility in the presence of alkalized aluminum species. The basicity as the molar ratio of OH to Al (0.8 or 1.6) determined the expansion feasibility, and the coverage degree of Al onto ATP, as indicated by the mass ratio of Al to attapulgite (denoted as RmAl/mATP), determined Al flocculation efficiency. Higher values such as RmAl/mATP = 4:1 and 2:1 may result in a better flocculation. Low phosphorus treatment was successfully achieved through Al flocculation and ATP adsorption, including complexation, hydrogen bonding, and electrostatic attraction. As expected, the VES-ATP generated larger size flocs with a bigger fractal dimension than that with the sole Al flocculation. As a result, the total phosphorus could be reduced to the level below 5 μg/L. It is more efficient in the pH range of 5-9. Overall, the coupling of aluminum and attapulgite has significantly enhanced both purification capabilities of phosphorus. PRACTITIONER POINTS: Polymeric aluminum-modified attapulgite was efficient for removal of low phosphorus concentration. Phosphorus concentrations can be reduced to below 5 μg/L. Polymeric aluminum and attapulgite are both safe, and this technology is suitable for water treatment.
Collapse
Affiliation(s)
- Xiaoben Yang
- China Railways Urban Construction Group No. 1 Engineering Co., Ltd., Taiyuan, China
| | - Junming Chen
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| | - Xuewen Wu
- China Railways Urban Construction Group No. 1 Engineering Co., Ltd., Taiyuan, China
| | - Guocheng Zhu
- College of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
| |
Collapse
|
6
|
Sebastião F, Vaz DC, Pires CL, Cruz PF, Moreno MJ, Brito RMM, Cotrim L, Oliveira N, Costa A, Fonseca A, Rodrigues M, Ispolnov K, Bernardino R, Vieira J. Nutrient-efficient catfish-based aquaponics for producing lamb's lettuce at two light intensities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6541-6552. [PMID: 38520251 DOI: 10.1002/jsfa.13478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/13/2024] [Accepted: 03/23/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Aquaponic systems are sustainable processes of managing water and nutrients for food production. An innovate nutrient-efficient catfish-based (Clarias gariepinus) aquaponics system was implemented for producing two cultivars of two leafy vegetables largely consumed worldwide: lamb's lettuce (Valerianella locusta var. Favor and Valerianella locusta var. de Hollande) and arugula (Eruca vesicaria var. sativa and Eruca sativa). Different growing treatments (4 × 2 factorial design) were applied to plants of each cultivar, grown at two light intensities (120 and 400 μmol m-2 s-1). During growth, several morphological characteristics (root length, plant height, leaf number, foliage diameter and biggest leaf length) were measured. At harvest, plants were weighed and examined qualitatively in terms of greenness and health status. Additionally, leaf extracts were obtained and used to determine total phenolic contents, antioxidant capacities, and levels of cytotoxicity to Caco-2 intestinal model cells. RESULTS After a 5-week growth period, both lamb's lettuce cultivars presented high levels of greenness and health status, at both light intensities, particularly the var. de Hollande that also showed higher average performance in terms of plant morphology. In turn, arugula cultivars showed lower levels of greenness and health status, especially the cultivar E. vesicaria var. sativa submitted to direct sunlight during growth. In addition, plant specimens submitted to higher levels of light intensity showed higher contents in antioxidants/polyphenols. Cultivars with a higher content in antioxidants/polyphenols led to higher Caco-2 cell viability. CONCLUSION For successful industrial implementation of the aquaponics technology, different and optimized acclimatizing conditions must be applied to different plant species and cultivars. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Fernando Sebastião
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Daniela C Vaz
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
- School of Health Sciences, Polytechnic of Leiria, Leiria, Portugal
| | - Cristiana L Pires
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Pedro F Cruz
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Maria João Moreno
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Rui M M Brito
- Coimbra Chemistry Center, Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Luis Cotrim
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Nelson Oliveira
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Ana Costa
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
| | - André Fonseca
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Maria Rodrigues
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Kirill Ispolnov
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| | - Raul Bernardino
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Tourism and Marine Technology, Polytechnic of Leiria, Peniche, Portugal
| | - Judite Vieira
- LSRE-LCM-Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials, Polytechnic of Leiria, Leiria, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- School of Technology and Management, Polytechnic of Leiria, Leiria, Portugal
| |
Collapse
|
7
|
Solovchenko A, Plouviez M, Khozin-Goldberg I. Getting Grip on Phosphorus: Potential of Microalgae as a Vehicle for Sustainable Usage of This Macronutrient. PLANTS (BASEL, SWITZERLAND) 2024; 13:1834. [PMID: 38999674 PMCID: PMC11243885 DOI: 10.3390/plants13131834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/14/2024]
Abstract
Phosphorus (P) is an important and irreplaceable macronutrient. It is central to energy and information storage and exchange in living cells. P is an element with a "broken geochemical cycle" since it lacks abundant volatile compounds capable of closing the P cycle. P fertilizers are critical for global food security, but the reserves of minable P are scarce and non-evenly distributed between countries of the world. Accordingly, the risks of global crisis due to limited access to P reserves are expected to be graver than those entailed by competition for fossil hydrocarbons. Paradoxically, despite the scarcity and value of P reserves, its usage is extremely inefficient: the current waste rate reaches 80% giving rise to a plethora of unwanted consequences such as eutrophication leading to harmful algal blooms. Microalgal biotechnology is a promising solution to tackle this challenge. The proposed review briefly presents the relevant aspects of microalgal P metabolism such as cell P reserve composition and turnover, and the regulation of P uptake kinetics for maximization of P uptake efficiency with a focus on novel knowledge. The multifaceted role of polyPhosphates, the largest cell depot for P, is discussed with emphasis on the P toxicity mediated by short-chain polyPhosphates. Opportunities and hurdles of P bioremoval via P uptake from waste streams with microalgal cultures, either suspended or immobilized, are discussed. Possible avenues of P-rich microalgal biomass such as biofertilizer production or extraction of valuable polyPhosphates and other bioproducts are considered. The review concludes with a comprehensive assessment of the current potential of microalgal biotechnology for ensuring the sustainable usage of phosphorus.
Collapse
Affiliation(s)
- Alexei Solovchenko
- Department of Bioengineering, Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, 119234 Moscow, Russia
| | | | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, Ben-Gurion University of the Negev, Sde-Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
8
|
Viviers SA, Richter L, du Plessis EM, Korsten L. Microbiological quality of irrigation water on highly diverse fresh produce smallholder farms: elucidating environmental routes of contamination. J Appl Microbiol 2024; 135:lxae091. [PMID: 38632044 DOI: 10.1093/jambio/lxae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/12/2024] [Accepted: 04/16/2024] [Indexed: 04/19/2024]
Abstract
AIM To evaluate the microbiological safety, potential multidrug-resistant bacterial presence and genetic relatedness (DNA fingerprints) of Escherichia coli isolated from the water-soil-plant nexus on highly diverse fresh produce smallholder farms. METHODS AND RESULTS Irrigation water (n = 44), soil (n = 85), and fresh produce (n = 95) samples from six smallholder farms with different production systems were analysed for hygiene indicator bacterial counts and the presence of shigatoxigenic E. coli and Salmonella spp. using standard microbiological methods. Identities of isolates were confirmed using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS), and the genetic relatedness of the E. coli isolates determined using enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) analysis. Irrigation water E. coli levels ranged between 0 and 3.45 log MPN/100 ml-1 with five farms having acceptable levels according to the World Health Organization limit (3 log MPN/100 ml-1). Fresh produce samples on four farms (n = 65) harboured E. coli at low levels (<1 log CFU/g-1) except for one sample from kale, spring onion, green pepper, onion, and two tomato samples, which exceeded international acceptable limits (100 CFU/g-1). Only one baby carrot fresh produce sample tested positive for Salmonella spp. Of the 224 samples, E. coli isolates were identified in 40% (n = 90) of all water, soil, and fresh produce types after enrichment. Additionally, the DNA fingerprints of E. coli isolates from the water-soil-plant nexus of each respective farm clustered together at high similarity values (>90%), with all phenotypically characterized as multidrug-resistant. CONCLUSIONS The clustering of E. coli isolated throughout the water-soil-plant nexus, implicated irrigation water in fresh produce contamination. Highlighting the importance of complying with irrigation water microbiological quality guidelines to limit the spread of potential foodborne pathogens throughout the fresh produce supply chain.
Collapse
Affiliation(s)
- Sheldon A Viviers
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Loandi Richter
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Erika M du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria 0001, South Africa
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| |
Collapse
|
9
|
Zhang X, Yu M, Su J, Xu J, Zhang X, Shang J, Gao J. Leaf nutrient traits of planted forests demonstrate a heightened sensitivity to environmental changes compared to natural forests. FRONTIERS IN PLANT SCIENCE 2024; 15:1372530. [PMID: 38562565 PMCID: PMC10982418 DOI: 10.3389/fpls.2024.1372530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Leaf nutrient content (nitrogen, phosphorus) and their stoichiometric ratio (N/P) as key functional traits can reflect plant survival strategies and predict ecosystem productivity responses to environmental changes. Previous research on leaf nutrient traits has primarily focused on the species level with limited spatial scale, making it challenging to quantify the variability and influencing factors of forest leaf nutrient traits on a macro scale. This study, based on field surveys and literature collected from 2005 to 2020 on 384 planted forests and 541 natural forests in China, investigates the differences in leaf nutrient traits between forest types (planted forests, natural forests) and their driving factors. Results show that leaf nutrient traits (leaf nitrogen content (LN), leaf phosphorus content (LP), and leaf N/P ratio) of planted forests are significantly higher than those of natural forests (P< 0.05). The impact of climatic and soil factors on the variability of leaf nutrient traits in planted forests is greater than that in natural forests. With increasing forest age, natural forests significantly increase in leaf nitrogen and phosphorus content, with a significant decrease in N/P ratio (P< 0.05). Climatic factors are key environmental factors dominating the spatial variability of leaf nutrient traits. They not only directly affect leaf nutrient traits of planted and natural forest communities but also indirectly through regulation of soil nutrients and stand factors, with their direct effects being more significant than their indirect effects.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Mengyao Yu
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jianxiao Su
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jiali Xu
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Xueting Zhang
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jinlong Shang
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jie Gao
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
- Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
10
|
Zhang X, Chen X, Ji Y, Wang R, Gao J. Forest Age Drives the Resource Utilization Indicators of Trees in Planted and Natural Forests in China. PLANTS (BASEL, SWITZERLAND) 2024; 13:806. [PMID: 38592834 PMCID: PMC10976008 DOI: 10.3390/plants13060806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/24/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024]
Abstract
Specific leaf area (SLA) and leaf dry matter content (LDMC) are key leaf functional traits commonly used to reflect tree resource utilization strategies and predict forest ecosystem responses to environmental changes. Previous research on tree resource utilization strategies (SLA and LDMC) primarily focused on the species level within limited spatial scales, making it crucial to quantify the spatial variability and driving factors of these strategies. Whether there are discrepancies in resource utilization strategies between trees in planted and natural forests, and the dominant factors and mechanisms influencing them, remain unclear. This study, based on field surveys and the literature from 2008 to 2020 covering 263 planted and 434 natural forests in China, using generalized additive models (GAMs) and structural equation models (SEMs), analyzes the spatial differences and dominant factors in tree resource utilization strategies between planted and natural forests. The results show that the SLA of planted forests is significantly higher than that of natural forests (p < 0.01), and LDMC is significantly lower (p < 0.0001), indicating a "faster investment-return" resource utilization strategy. As the mean annual high temperature (MAHT) and mean annual precipitation (MAP) steadily rise, trees have adapted their resource utilization strategies, transitioning from a "conservative" survival tactic to a "rapid investment-return" model. Compared to natural forests, planted forest trees exhibit stronger environmental plasticity and greater variability with forest age in their resource utilization strategies. Overall, forest age is the dominant factor influencing resource utilization strategies in both planted and natural forests, having a far greater direct impact than climatic factors (temperature, precipitation, and sunlight) and soil nutrient factors. Additionally, as forest age increases, both planted and natural forests show an increase in SLA and a decrease in LDMC, indicating a gradual shift towards more efficient resource utilization strategies.
Collapse
Affiliation(s)
- Xing Zhang
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (X.C.); (Y.J.)
| | - Xiaohong Chen
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (X.C.); (Y.J.)
| | - Yuhui Ji
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (X.C.); (Y.J.)
| | - Ru Wang
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (X.C.); (Y.J.)
| | - Jie Gao
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (X.Z.); (X.C.); (Y.J.)
- Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100863, China
| |
Collapse
|
11
|
Huang H, Wang X, Zhou G, Qian C, Zhou Z, Wang Z, Yang Y. A novel ratiometric fluorescent sensor from modified coumarin-grafted cellulose for precise pH detection in strongly alkaline conditions. Int J Biol Macromol 2024; 262:130066. [PMID: 38340911 DOI: 10.1016/j.ijbiomac.2024.130066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Accurate and convenient monitoring of pH under extreme alkaline conditions is still a challenge. In this work, 4-(3-(7-hydroxy-2-oxo-2H-chromen-3-yl)-3-oxoprop-1-en-1-yl)benzamide (HCB), a coumarin derivative, was grafted onto dialdehyde cellulose (DAC) to obtain a sensor DAC-HCB, which exhibited a ratiometric fluorescent response to the pH of alkaline solutions, resulting in a significant fluorescent color change from yellow to blue (FI459 nm/FI577 nm) at pH 7.5-14. The structure of DAC-HCB was characterized through FT-IR, XRD, XPS, SEM. The pKa of sensor DAC-HCB was 13.16, and the fluorescent intensity ratio FI459 nm/FI577 nm possessed an excellent linear characteristic with pH in the scope of 9.0-13.0. Meanwhile, sensor DAC-HCB showed good selectivity, anti-interference, and fast response time to basic pH, which is an effective fluorescent sensor for examination of pH in alkali circumstance. The recognition mechanism of DAC-HCB to OH- was elucidated with HRMS and density-functional theory (DFT) computational analyses. Sensor DAC-HCB was successfully used for precise detection of environmental water samples pH. This work furnished a new protocol for test strips as a convenient and highly efficient pH detection tool for the high pH environment, and it has great potential for application in environmental monitoring.
Collapse
Affiliation(s)
- Huan Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoyuan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guocheng Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Cheng Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zihang Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yiqin Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
12
|
López-Patiño AM, Cárdenas-Orrego A, Torres AF, Navarrete D, Champagne P, Ochoa-Herrera V. Native microalgal-bacterial consortia from the Ecuadorian Amazon region: an alternative to domestic wastewater treatment. Front Bioeng Biotechnol 2024; 12:1338547. [PMID: 38468686 PMCID: PMC10925762 DOI: 10.3389/fbioe.2024.1338547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/29/2024] [Indexed: 03/13/2024] Open
Abstract
In low-middle income countries (LMIC), wastewater treatment using native microalgal-bacterial consortia has emerged as a cost-effective and technologically-accessible remediation strategy. This study evaluated the effectiveness of six microalgal-bacterial consortia (MBC) from the Ecuadorian Amazon in removing organic matter and nutrients from non-sterilized domestic wastewater (NSWW) and sterilized domestic wastewater (SWW) samples. Microalgal-bacterial consortia growth, in NSWW was, on average, six times higher than in SWW. Removal rates (RR) for NH4 +- N and PO4 3--P were also higher in NSWW, averaging 8.04 ± 1.07 and 6.27 ± 0.66 mg L-1 d-1, respectively. However, the RR for NO3 - -N did not significantly differ between SWW and NSWW, and the RR for soluble COD slightly decreased under non-sterilized conditions (NSWW). Our results also show that NSWW and SWW samples were statistically different with respect to their nutrient concentration (NH4 +-N and PO4 3--P), organic matter content (total and soluble COD and BOD5), and physical-chemical parameters (pH, T, and EC). The enhanced growth performance of MBC in NSWW can be plausibly attributed to differences in nutrient and organic matter composition between NSWW and SWW. Additionally, a potential synergy between the autochthonous consortia present in NSWW and the native microalgal-bacterial consortia may contribute to this efficiency, contrasting with SWW where no active autochthonous consortia were observed. Finally, we also show that MBC from different localities exhibit clear differences in their ability to remove organic matter and nutrients from NSWW and SWW. Future research should focus on elucidating the taxonomic and functional profiles of microbial communities within the consortia, paving the way for a more comprehensive understanding of their potential applications in sustainable wastewater management.
Collapse
Affiliation(s)
- Amanda M. López-Patiño
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Ana Cárdenas-Orrego
- Instituto de Microbiología, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Andrés F. Torres
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Danny Navarrete
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Pascale Champagne
- Department of Civil Engineering, Queen’s University, Kingston, ON, Canada
| | - Valeria Ochoa-Herrera
- Colegio de Ciencias e Ingeniería, Universidad San Francisco de Quito USFQ, Quito, Ecuador
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Escuela de Ingeniería, Ciencia y Tecnología, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
13
|
Gopalakrishnan A, Janardhanan DV, Sasi S, Aravindakumar CT, Aravind UK. Organic micropollutant removal and phosphate recovery by polyelectrolyte multilayer membranes: Impact of buildup interactions. CHEMOSPHERE 2024; 350:141078. [PMID: 38160944 DOI: 10.1016/j.chemosphere.2023.141078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/02/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
Polyelectrolyte multilayer (PEM) deposition conditions can favorably or adversely affect the membrane filtration performance of various pollutants. Although pH and ionic strength have been proven to alter the characteristics of PEM, their role in determining the buildup interactions that control filtration efficacy has not yet been conclusively proved. A PEM constructed using electrostatic or non-electrostatic interactions from controlled deposition of a weak polyelectrolyte could retain both charged and uncharged pollutants from water. The fundamental relationship between polyelectrolyte charge density, PEM buildup interaction, and filtration performance was explored using a weak-strong electrolyte pair consisting of branching poly (ethyleneimine) and poly (styrene sulfonate) (PSS) across pH ranges of 4-10 and NaCl concentrations of 0 M-0.5 M. PEI/PSS multilayers at acidic pH were dominated by electrostatic interactions, which favored the selective removal of a charged solute, phosphate over chloride, while at alkaline pH, non-electrostatic interactions dominated, which favored the removal of oxybenzone (OXY), a neutral hydrophobic solute. The key factor determining these interactions was the charge density of PEI, which is controlled by pH and ionic strength of the deposition solutions. These findings indicate that the control of buildup interactions can largely influence the physico-chemical and transport characteristics of PEM membranes.
Collapse
Affiliation(s)
- Akhil Gopalakrishnan
- Advanced Centre of Environment Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, India
| | - Disha V Janardhanan
- Advanced Centre of Environment Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, India
| | - Subha Sasi
- Advanced Centre of Environment Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, India
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, India; Inter University Instrumentation Centre, Mahatma Gandhi University, Kottayam, India
| | - Usha K Aravind
- Advanced Centre of Environment Studies and Sustainable Development, Mahatma Gandhi University, Kottayam, India; School of Environmental Studies, Cochin University of Science and Technology, Kochi-682022, Kerala, India.
| |
Collapse
|
14
|
Liu Z, Zhuang J, Zheng K, Luo C. Differential response of the soil nutrients, soil bacterial community structure and metabolic functions to different risk areas in Lead-Zine tailings. Front Microbiol 2023; 14:1131770. [PMID: 37779699 PMCID: PMC10536257 DOI: 10.3389/fmicb.2023.1131770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/17/2023] [Indexed: 10/03/2023] Open
Abstract
Rapid growth in the mining industry has brought about a large formation of tailings, which result in serious destruction of the ecological environment and severe soil pollution problems. This study assesses soil nutrients, soil bacterial community and soil microbes' metabolic function in heavily polluted areas (W1), moderately polluted areas (W2), lightly polluted areas (W3) and clean areas (CK) using 16S Illumina sequencing. The results of this study showed that compared with CK, a severe loss of soil nutrients and richness of OTUs (Chao1 and ACE indices) were observed with the aggravated pollution of tailings. The Chao1 and ACE indices in the W1 group decreased significantly by 15.53 and 16.03%, respectively, (p < 0.01). Besides, the relative abundance of Actinobacteria and Proteobacteria was high whereas and relative abundance of Chloroflexi in the polluted areas. Among them, W1 groups increased significantly the relative abundance of Actinobacteria and decreased significantly the relative abundance of Chloroflexi, these can be used as indicator phyla for changes in soil community structures under polluted stress. Tax4 Fun analysis showed that W1 groups affected the soil bacterial community and altered the primary types of biological metabolism in polluted areas. Tailings have adverse impacts on soil bacterial community and metabolic functions, and the deterioration in soil quality is dependent on the levels of tailings pollution. Cumulatively, this study provides valuable information on the bacterial community structure and metabolic functions in the tailing polluted soil.
Collapse
Affiliation(s)
| | - Jiayao Zhuang
- Collaborative Innovation Center of Sustainable Forestry in Southern China of Jiangsu Province, Nanjing Forestry University, Nanjing, China
| | | | | |
Collapse
|
15
|
Wongkiew S, Polprasert C, Noophan PL, Koottatep T, Kanokkantapong V, Surendra KC, Khanal SK. Effects of vermicompost leachate on nitrogen, phosphorus, and microbiome in a food waste bioponic system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117860. [PMID: 37086642 DOI: 10.1016/j.jenvman.2023.117860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 05/03/2023]
Abstract
Food waste is rich in nutrients, such as nitrogen and phosphorus, and can be integrated with bioponics, a closed-loop agricultural system that combines hydroponics with biological nutrient recovery. Vermicompost leachate (VCL) supplementation has been shown to improve the co-composting of organic waste (i.e., compost quality) and the biodegradation of organic compounds. Thus, VCL has high potential for enhancing nutrient availability in bioponics from food waste. However, the understanding of nitrogen and phosphorus availability in food waste-based bioponics is limited, both with and without VCL. In this study, food waste derived from cafeteria vegetable waste was used as the substrate (500 g dry wt./system) in bioponics to grow lettuce (Lactuca sativa L.) for two consecutive cycles (35 days/cycle) without substrate replacement. VCL was applied weekly (1-5% v/v) and compared to the control without VCL. The results showed that the food waste in bioponics provided nitrogen and phosphorus for plant growth (15.5-65.8 g/lettuce head). Organic-degrading and nutrient-transforming bacteria (Hydrogenispora, Clostridium_sensu_stricto_1, Ruminiclostridium_1, Cellvibrio, Thauera, Hydrogenophaga, and Bacillus) were predominantly found in plant roots and residual food waste. VCL addition significantly increased nitrate, phosphate, and chemical oxygen demand levels in bioponics, owing to the nutrients in VCL and the enhancement of keystone microorganisms responsible for organic degradation and nutrient cycling (e.g., Ellin6067, Actinomyces, and Pirellula). These findings suggest that nitrogen, phosphorus, and organic carbon concentrations in an ecosystem of nutrient-transforming and organic-degrading microbes are key in managing nutrient recovery from food waste in bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Water Science and Technology for Sustainable Environment Research Unit, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pongsak Lek Noophan
- Department of Environmental Engineering, Faculty of Engineering, Kasetsart University, Bangkok, 10900, Thailand
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - Vorapot Kanokkantapong
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Waste Utilization and Ecological Risk Assessment Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - K C Surendra
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Global Institute for Interdisciplinary Studies, 44600, Kathmandu, Nepal
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA; Department of Civil and Environmental Engineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
16
|
Li Q, Gao J, Zhang J, Huang Z, Wang S, Song B, Wang Q, Zhou W. Treatment of high-phosphorus load wastewater by column packed with non-burning compound filler/gravel/ceramsite: evaluation of performance and microorganism community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:67730-67741. [PMID: 37118390 DOI: 10.1007/s11356-023-26487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/13/2023] [Indexed: 05/25/2023]
Abstract
Cost-effective and environmental-friendly substrates are essential for the constructed wetlands (CWs). In this study, the column test was used to explore the differences in pollutant purification performance, microbial community structure and abundance between non-burning compound filler and conventional CWs substrates (i.e. gravel and ceramsite) at low temperature (0-15℃). It was found that the maximum phosphorus removal efficiency of compound filler (99%) was better than gravel (18%) and ceramsite (21%). Besides, the proportion of aerobic heterotrophic bacteria capable of ammonium oxidation, nitrification and denitrification (i.e. Pseudomonas, Acinetobacter, and Acetoanaerobium) was enhanced by compound filler, which has an excellent potential for nitrogen removal in the subsequent purification process. These results demonstrated that the self-made non-burning compound filler was a potential substrate for CWs, which was of great significance for the resource utilization of solid wastes such as polyaluminum chloride residue.
Collapse
Affiliation(s)
- Qiang Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingqing Gao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China.
- Key Laboratory of Water Management and Water Security for Yellow River, Basin, Ministry of Water Resources (Under Construction), Zhengzhou, 450001, China.
| | - Jingshen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenzhen Huang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
- Faculty of Environmental and Municipal Engineering, Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Shilong Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Bozhen Song
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiaojian Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Wanglin Zhou
- CSCEC Xinjiang Construction&Engineering (Group) Co.,Ltd, Xian, 710000, China
| |
Collapse
|
17
|
Plouviez M, Bolot P, Shilton A, Guieysse B. Phosphorus uptake and accumulation in Chlamydomonas reinhardtii: Influence of biomass concentration, phosphate concentration, phosphorus depletion time, and light supply. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
18
|
Huang Y, Li B, Chen H, Li J, Xu J, Li X. Gamma-Aminobutyric Acid Enhances Cadmium Phytoextraction by Coreopsis grandiflora by Remodeling the Rhizospheric Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:1484. [PMID: 37050110 PMCID: PMC10096890 DOI: 10.3390/plants12071484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Gamma-aminobutyric acid (GABA) significantly affects plant responses to heavy metals in hydroponics or culture media, but its corresponding effects in plant-soil systems remain unknown. In this study, different GABA dosages (0-8 g kg-1) were added to the rhizosphere of Coreopsis grandiflora grown in Cd-contaminated soils. Cd accumulation in the shoots of C. grandiflora was enhanced by 38.9-159.5% by GABA in a dose-dependent approach because of accelerated Cd absorption and transport. The increase in exchangeable Cd transformed from Fe-Mn oxide and carbonate-bound Cd, which may be mainly driven by decreased soil pH rather than GABA itself, could be a determining factor responsible for this phenomenon. The N, P, and K availability was affected by multiple factors under GABA treatment, which may regulate Cd accommodation and accumulation in C. grandiflora. The rhizospheric environment dynamics remodeled the bacterial community composition, resulting in a decline in overall bacterial diversity and richness. However, several important plant growth-promoting rhizobacteria, especially Pseudomonas and Sphingomonas, were recruited under GABA treatment to assist Cd phytoextraction in C. grandiflora. This study reveals that GABA as a soil amendment remodels the rhizospheric environment (e.g., soil pH and rhizobacteria) to enhance Cd phytoextraction in plant-soil systems.
Collapse
Affiliation(s)
- Yingqi Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Boqun Li
- Science and Technology Information Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Huafang Chen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Jingxian Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Jianchu Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| | - Xiong Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Honghe Center for Mountain Futures, Kunming Institute of Botany, Chinese Academy of Sciences, Honghe 654400, China
| |
Collapse
|
19
|
Thakur K, Kuthiala T, Singh G, Arya SK, Iwai CB, Ravindran B, Khoo KS, Chang SW, Awasthi MK. An alternative approach towards nitrification and bioremediation of wastewater from aquaponics using biofilm-based bioreactors: A review. CHEMOSPHERE 2023; 316:137849. [PMID: 36642133 DOI: 10.1016/j.chemosphere.2023.137849] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Aquaponics combines the advantages of aquaculture and hydroponics as it suits the urban environment where a lack of agricultural land and water resources is observed. It is an ecologically sound system that completely reuses its system waste as plant fertilizer. It offers sustainable water savings, making it a supreme technology for food production. The two major processes that hold the system together are nitrification and denitrification. The remains of fish in form of ammonia reach the bio filters where it is converted into nitrite and further into nitrate in presence of nitrifying and denitrifying bacteria. Nitrate eventually is taken up by the plants. However, even after the uptake from the flow stream, the effluent contains remaining ammonium and nitrates, which cannot be directly released into the environment. In this review it is suggested how integrating the biofilm-based bioreactors in addition to aquaculture and hydroponics eliminates the possibility of remains of total ammonia nitrogen [TAN] contents, leading to bioremediation of effluent water from the system. Effluent water after releasing from a bioreactor can be reused in an aquaculture system, conditions provided in these bioreactors promote the growth of required bacteria and encourages the mutual development of plants and fishes and eventually leading to bioremediation of wastewater from aquaponics.
Collapse
Affiliation(s)
- Kritika Thakur
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Tanya Kuthiala
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Gursharan Singh
- Department of Medical Laboratory Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Shailendra Kumar Arya
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India.
| | - Chuleemas Boonthai Iwai
- Integrated Land and Water Resource Management Research and Development Center in Northeast Thailand, Khon Kaen University, Thailand; Department of Soil Science and Environment, Faculty of Agriculture, Khon Kaen University, Khon Kaen, Thailand
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea; Department of Medical Biotechnology and Integrative Physiology, Institute of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Chennai 602105, Tamil Nadu, India.
| | - Kuan Shiong Khoo
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Material Science, Yuan Ze University, Taoyuan, Taiwan
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do, 16227, South Korea
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3# Shaanxi, Yangling, 712100, China.
| |
Collapse
|
20
|
Leite CMC, Coutinho JV, Morita AKM, Pelinson NS, Saito M, Enzweiler J, Wendland E. Isotopes of nitrate and gadolinium fingerprints to assay human inputs in Guarani Aquifer System. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:329. [PMID: 36697880 DOI: 10.1007/s10661-022-10869-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
The use of environmental tracers brings comprehensive benefits to the management of water resources since it helps to prevent their pollution, minimize public health risks, and thus reduce the impact of urbanization. In Brazil, the Guarani Aquifer System (GAS) has strategic and environmental importance, making its preservation and sustainable exploitation mandatory. The present study aimed at evaluating sources of contamination in the GAS using the combination of geochemical data and two environmental tracers: nitrate isotopes (15NNO3 and 18ONO3) and one rare earth element (Gadolinium-Gd). For that, five wells-four exploiting the GAS and one the Bauru Aquifer System (BAS)-were selected to discuss the human inputs in groundwater used for public supply in an urban area. Traditional physicochemical analyses were conducted for six campaign samplings and nitrate monitoring for this period was evaluated on a time scale, also considering the accumulated rainfall. Besides that, the double isotopic method (DIM), e.g., δ18ONO3 e δ15NNO3, was applied to identify the fractionation and enable the distinction of the nitrate contamination source. In addition, the determination of anomalies of Gd, a wastewater-derived contaminant, was also performed to verify recent human inputs in groundwater. The results show that the local existence of nitrate in the GAS and BAS-even at low concentrations (values from 0.26 to 6.68 mg L-1)-originated from anthropogenic inputs (septic waste), as indicates the typical isotopic signals ratio in the isotopic approach. Associated with that, the evaluation of Gd permitted the separation of groundwater samples into older or more recent leakages. The use of environmental tracers to assess anthropogenic inputs in groundwater reiterates the importance of adopting more effective protection strategies for water resources management systems, in order to prevent contamination.
Collapse
Affiliation(s)
- Camila M C Leite
- São Carlos School of Engineering (EESC-USP), University of Sao Paulo (Universidade de São Paulo), São Carlos, Brazil.
| | - Jaqueline V Coutinho
- São Carlos School of Engineering (EESC-USP), University of Sao Paulo (Universidade de São Paulo), São Carlos, Brazil
- Federal University of Cariri, Juazeiro do Norte, Brazil
| | - Alice K M Morita
- São Carlos School of Engineering (EESC-USP), University of Sao Paulo (Universidade de São Paulo), São Carlos, Brazil
- Technological University of Uruguay (UTEC), ITR CS, Durazno, Uruguay
| | - Natália S Pelinson
- São Carlos School of Engineering (EESC-USP), University of Sao Paulo (Universidade de São Paulo), São Carlos, Brazil
- Faculty of Engineering, Architecture and Urbanism and Geography (FAENG), Federal University of Mato Grosso do Sul (UFMS), Campo Grande, Brazil
| | - Mitsuyo Saito
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Jacinta Enzweiler
- Institute of Geosciences, University of Campinas (Unicamp), Campinas, Brazil
| | - Edson Wendland
- São Carlos School of Engineering (EESC-USP), University of Sao Paulo (Universidade de São Paulo), São Carlos, Brazil
| |
Collapse
|
21
|
Samiotis G, Ziagova MG, Amanatidou E. Wastewater substrate disinfection for cyanobacteria cultivation as tertiary treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:8746-8758. [PMID: 35478395 DOI: 10.1007/s11356-022-20369-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Cultivation of microalgae or/and cyanobacteria in nutrient-rich wastewaters offers an opportunity for enhancing sustainability of tertiary wastewater treatment processes via resources/energy recovery/production, mitigation of emitted GHGs and provision of added value products. However, maintaining a monoculture in wastewater-media constitutes a significant challenge to be addressed. In this regard, the present work assesses the efficiency of the low-cost wastewater substrate disinfection techniques of filtration, use of NaClO, H2O2 or Fe(VI), as a preliminary treatment stage upstream a cyanobacteria cultivation photobioreactor. The growth rate of cyanobacterium Synechococcus elongatus PCC 7942, and nitrate and phosphate removal rates, were experimentally assessed in cultivation setups with biologically treated dairy wastewater that had been subjected to a single or a synergetic couple of disinfection techniques. The results showed that filter thickness has a greater effect on disinfection efficiency than filter pore size. Furthermore, the disinfection efficiency of Fe(VI), which was produced on-site by electrosynthesis via a Fe0/Fe0 cell, was greater than that of NaClO and H2O2. Filtration at ≤ 1.2-μm pore size coupled with chemical disinfection led to unhindered Synechococcus elongatus PCC 7942 growth and efficient nitrate and phosphate removal rates, at dosages, in terms of Concentreation-Time (CT) product, of CT ≥ 270 mg min L-1 for NaClO and CT ≥ 157 mg min L-1 for Fe(VI). The coagulation action of Fe(III) species that result from Fe(VI) reduction and the oxidation action of Fe(VI) can assist in turbidity, organic compounds and phosphorous removal from wastewater media. Moreover, the residual iron species can assist in Synechococcus elongatus PCC 7942 harvesting and may enhance photosynthesis rate by increasing light transfer efficiency. Thus, a filtration configuration coupled with chemical disinfection, preferably using ferrates, downstream of sedimentation tank of a secondary biological wastewater treatment stage is proposed as a necessary, efficient and low-cost disinfection technique for full-scale scale implementation of cyanobacteria cultivation as tertiary wastewater processes.
Collapse
Affiliation(s)
- Georgios Samiotis
- Department of Chemical Engineering, University of Western Macedonia, 50100, Kila, Kozani, Greece
| | - Maria G Ziagova
- Department of Chemical Engineering, University of Western Macedonia, 50100, Kila, Kozani, Greece
| | - Elisavet Amanatidou
- Department of Chemical Engineering, University of Western Macedonia, 50100, Kila, Kozani, Greece.
| |
Collapse
|
22
|
Kader SA, Spalevic V, Dudic B. Feasibility study for estimating optimal substrate parameters for sustainable green roof in Sri Lanka. ENVIRONMENT, DEVELOPMENT AND SUSTAINABILITY 2022; 26:1-27. [PMID: 36570522 PMCID: PMC9768404 DOI: 10.1007/s10668-022-02837-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/11/2022] [Indexed: 06/01/2023]
Abstract
In twenty-first century buildings, green roof systems are envisioned as great solution for improving Environmental sustainability in urban ecosystems and it helps to mitigate various health hazards for humans due to climatic pollution. This study determines the feasibility of using five domestic organic wastes, including sawdust, wood bark, biochar, coir, and compost, as sustainable substrates for green roofs as compared to classical Sri Lankan base medium (fertiliser + potting mix) in terms of physicochemical and biological parameters associated with growing mediums. Comprehensive methodologies were devised to determine the thermal conductivity and electric conductivity of growing mediums. According to preliminary experimental results, the most suitable composition for green roof substrates comprised 60% organic waste and 40% base medium. Sawdust growing medium exhibited the highest moisture content and minimum density magnitudes. Biochar substrate was the best performing medium with the highest drought resistance and vegetation growth. The wood bark substrate had the highest thermal resistance. Growing mediums based on compost, sawdust, and coir produced the best results in terms of nitrate, phosphate, pH, and electric conductivity (EC) existence. This study provided a standard set of comprehensive comparison methodologies utilising physicochemical and biological properties required for substrate characterization. The findings of this research work have strong potential in the future to be used in selecting the most suitable lightweight growing medium for a green roof based on stakeholder requirements.
Collapse
Affiliation(s)
- Shuraik A. Kader
- Department of Civil Engineering, Faculty of Engineering, Sri Lanka Institute of Information Technology, Malabe, 10115 Sri Lanka
| | - Velibor Spalevic
- Biotechnical Faculty, University of Montenegro, Podgorica, 81000 Montenegro
| | - Branislav Dudic
- Faculty of Management, Comenius University Bratislava, 82005 Bratislava, Slovakia
- Department of Engineering Management in Agribusiness, University Business Academy in Novi Sad, 21000 Novi Sad, Serbia
| |
Collapse
|
23
|
Abdul Hamid SH, Lananan F, Kasan NA, Yasmin Sayid Abdullah SH, Endut A. Physical profile and chemical composition of a novel fabricated Kaolina as alternative growing media in aquaponics. CHEMOSPHERE 2022; 307:136005. [PMID: 35973500 DOI: 10.1016/j.chemosphere.2022.136005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 07/30/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
The physical profile and chemical composition of growing media are vital in evaluating fish waste filtration efficiency and plant growth performance in aquaponics. The present study reported and compared the physical and chemical evaluation of the novel fabricated Kaolina, gravel, and commercially used lightweight expanded clay aggregate (LECA) as growing medias in aquaponics. Field emission scanning electron microscopy with energy-dispersive X-ray spectroscopy (FESEM-EDX) was utilized to analyze the growing media's chemical composition and structural characterization. The resultant effect of these growing medias on water quality and the growth performance of Clarias gariepinus and Lactuca sativa were also reported. Kaolina exhibited an excellent physical profile (42.95 ± 1.39%) in water absorption capacity as compared to LECA (35.90 ± 1.28%) and gravel (1.97 ± 0.25%), showing a significant difference at p < 0.05. The addition of 25% w/w Musa paradisiaca peel in the fabrication of Kaolina gives an added value of 88.0% of K and 100% of P elements, which show a significant difference (p < 0.05) compared to LECA. The results obtained reveal a better daily growth rate (DGR) and relative growth rate (RGR) of L. sativa at 0.57 ± 0.02 cm day-1 and 0.21 ± 0.00 g day-1, respectively. Results indicated that the porous structure of growing media could contribute to the high-water retention capability and slow the water desorption process. Hence, it could increase the ability of the growing media to hold nutrients for plant intake, resulting in higher removal percentage of nutrients in aquaponics system. Kaolina gives the highest nutrient removal percentage of TAN (96.86 ± 1.50%), NO2- (83.56 ± 1.27%), NO3-(77.55 ± 0.48%), and PO43- (79.46 ± 0.42%). The results also shown growing media has considerable impacts on nutrient removal, which contribute to the aquaponic productions.
Collapse
Affiliation(s)
- Siti Hajar Abdul Hamid
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia.
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia; Faculty of Bioresource and Food Industry, Universiti Sultan Zainal Abidin, Besut Campus, 22200 Besut, Terengganu, Malaysia.
| | - Nor Azman Kasan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | | | - Azizah Endut
- Faculty of Innovative Design and Technology, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300 Kuala Nerus, Terengganu, Malaysia.
| |
Collapse
|
24
|
Long Z, Ma C, Zhu J, Wang P, Zhu Y, Liu Z. Effects of Carbonaceous Materials with Different Structures on Cadmium Fractions and Microecology in Cadmium-Contaminated Soils. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12381. [PMID: 36231683 PMCID: PMC9564624 DOI: 10.3390/ijerph191912381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Carbonaceous materials have proved to be effective in cadmium remediation, but their influences on soil microecology have not been studied well. Taking the structural differences and the maintenance of soil health as the entry point, we chose graphene (G), multi-walled carbon nanotubes (MWCNTs), and wetland plant-based biochar (ZBC) as natural and engineered carbonaceous materials to explore their effects on Cd fractions, nutrients, enzyme activities, and microbial communities in soils. The results showed that ZBC had stronger electronegativity and more oxygen-containing functional groups, which were related to its better performance in reducing soil acid-extractable cadmium (EX-Cd) among the three materials, with a reduction rate of 2.83-9.44%. Additionally, ZBC had greater positive effects in terms of improving soil properties, nutrients, and enzyme activities. Redundancy analysis and correlation analysis showed that ZBC could increase the content of organic matter and available potassium, enhance the activity of urease and sucrase, and regulate individual bacterial abundance, thereby reducing soil EX-Cd. Three carbonaceous materials could maintain the diversity of soil microorganisms and the stability of the microbial community structures to a certain extent, except for the high-dose application of ZBC. In conclusion, ZBC could better immobilize Cd and maintain soil health in a short period of time.
Collapse
Affiliation(s)
- Zihan Long
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chunya Ma
- Longyou Ecological Environmental Protection Agency, Quzhou 324400, China
- Longyou Ecological Environment Monitoring Station, Quzhou 324400, China
| | - Jian Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yelin Zhu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
25
|
Zheng C, Kong K, Zhang Y, Yang W, Wu L, Munir MZ, Ji B, Muneer MA. Differential response of bacterial diversity and community composition to different tree ages of pomelo under red and paddy soils. Front Microbiol 2022; 13:958788. [PMID: 35935198 PMCID: PMC9355581 DOI: 10.3389/fmicb.2022.958788] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Rhizosphere soil microbial communities substantially impact plant growth by regulating the nutrient cycle. However, dynamic changes in soil microbiota under different tree ages have received little attention. In this study, changes in soil physicochemical properties, as well as bacterial diversity and community structures (by high-throughput Illumina MiSeq sequencing), were explored in pomelo trees of different ages (i.e., 10, 20, and 30 years) under red and paddy soils cultivated by farmers with high fertilizer input. Moreover, soil factors that shape the bacterial community, such as soil pH, AP (available phosphorous), AK (available potassium), and AN (available nitrogen), were also investigated. Results showed that pH significantly decreased, while AP, AK, and AN increased with increasing tree age under red soil. For paddy soil, pH was not changed, while AP was significantly lower under 10-year-old pomelo trees, and AK and AN contents were minimum under 30-year-old pomelo trees. Both soil types were dominated by Proteobacteria, Acidobacteria, and Actinobacteria and showed contrasting patterns of relative abundance under different tree age groups. Bacterial richness and diversity decreased with increasing tree age in both soil types. Overall, bacterial community composition was different under different tree ages. RDA analysis showed that soil pH, AP, and AN in red soil, and pH and AP in paddy soil showed the most significant effects in changing the bacterial community structure. A random forest model showed Sinomonas and Streptacidiphilus in red soil, while Actinoallomurus and Microbacterium in paddy soil were the most important genera explaining the differences among different age groups. The ternary plot further revealed that genera enrichment for Age_30 was higher than that for Age_10 and Age_20 in red soil, whereas specific genera enrichment decreased with increasing tree age under paddy soil. Co-occurrence network revealed that bacterial species formed a complex network structure with increasing tree age, indicating a more stable microbial association under 20 and 30 years than 10-year-old pomelo trees. Hence, contrasting patterns of changes in soil physicochemical properties and soil microbial communities were recorded under different tree ages, and tree ages significantly affected the bacterial community structure and richness. These findings provide valuable information regarding the importance of microbes for the sustainable management of pomelo orchards by optimizing fertilizer input for different ages of trees.
Collapse
Affiliation(s)
- Chaoyuan Zheng
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kunpeng Kong
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yi Zhang
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhao Yang
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Liangquan Wu
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Zeeshan Munir
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Baoming Ji
- College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Muhammad Atif Muneer
- College of Resources and Environment/International Magnesium Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
26
|
Plouviez M, Oliveira da Rocha C, Guieysse B. Intracellular polyphosphate is a P reserve in Chlamydomonas reinhardtii. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
27
|
Gautam M, Pandey B, Agrawal SB, Agrawal M. Stabilization of metals in sludge-amended soil using red mud and its effects on yield and oil quality of Brassica juncea cultivar Kranti. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:1431-1450. [PMID: 34820730 DOI: 10.1007/s10653-021-01150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Prolonged application of sewage-sludge may cause excessive accumulation of metal(oid)s in soil, leading to phytotoxic effects. Spread of contaminants in soil can probably be hindered by using an effective metal(oid) stabilizer. Pot experiment in open field conditions was conducted for five months to evaluate the metal(oid) (Al, Cu, Zn, Cd and Cr) stabilization potential of red mud (RM) in sludge-amended soil and its effects on growth, yield, oil quality parameters and metal(oid) accumulations in Brassica juncea cultivar Kranti. The test plant was grown at different RM concentrations (0, 5, 10 and 15% w/w) in sludge-amended soil (soil/sludge: 2:1 w/w). As the total and phytoavailable metal(oid) concentrations in sludge were high, its application increased their concentrations in soil compared to the control (no RM and sludge). Increasing RM concentrations in sludge-amended soil effectively stabilized Cd followed by Cr, Cu, Zn and Al, leading to their reduced contents in plants coupled with enhanced growth performance and yield. Maximum plant (root and shoot) biomass (14.9%) and seed yield (40.4%) were found in 10% RM treatment, whereas oil content showed substantial increase with increasing RM treatments in sludge-amended soil. Mustard oil showed low rancidification, high long-chain fatty acids, saturated and polyunsaturated (ω-3 and ω-6) fatty acids within FAO ranges for edible oils under varying RM treatments compared to sludge-amended soil. Furthermore, high oleic and low erucic acid contents in mustard oil indicated a better oil quality under different RM treatments. Metal(oid) contents in seeds under different red mud treatments were within FAO/WHO limits for consumption. Thus, RM applications preferably 5 and 10% (w/w) in sludge-amended soil might be effective in stabilization of metal(oid)s using B. juncea cultivar Kranti coupled with better yield, improved oil quality and metal(oid)s within limits for human consumption.
Collapse
Affiliation(s)
- Meenu Gautam
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Bhanu Pandey
- Natural Resources and Environmental Management, CSIR-Central Institute of Mining and Fuel Research, Barware Road, Dhanbad, Jharkhand, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Madhoolika Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
28
|
Enhancing ammonium rejection in forward osmosis for wastewater treatment by minimizing cation exchange. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Jeong I, Kim K. Utilizing a granulated coal bottom ash and oyster shells for nutrient removal in eutrophic sediments. MARINE POLLUTION BULLETIN 2022; 177:113549. [PMID: 35303632 DOI: 10.1016/j.marpolbul.2022.113549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/07/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Various in-situ capping materials have been studied to remediate contaminated sediments for sustaining a healthy ecosystem in a coastal area. We developed Granulated coal bottom ash and oyster shells (GBO) with different mixing ratios of OS. Pyrolyzed and grounded coal bottom ash and oyster shells were used to produce GBO, which the main chemical elements were analogous to cement. The nutrient-removal abilities of GBO were evaluated through long-term mesocosm experiments. It was found that GBO was an effective in-situ capping material for remediation of eutrophic coastal sediments, decreasing PO4-P and SiO2-Si concentrations in pore water by 88.4% and 56.5%, respectively. The most efficient mixing ratio of coal bottom ash and oyster shells was at a weight ratio of 1:1 for PO4-P and SiO2-Si removal.
Collapse
Affiliation(s)
- Ilwon Jeong
- Department of Ocean Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyunghoi Kim
- Department of Ocean Engineering, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
30
|
Effects of the Powder from Hoggery Desulfurization Tanks on the Salinity Resistance of Lettuce. PLANTS 2022; 11:plants11070868. [PMID: 35406849 PMCID: PMC9003075 DOI: 10.3390/plants11070868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Lettuce is an important vegetable cultivated worldwide, even in regions with highly saline soils. A large amount of research discusses the application of sulfur on the increase of antioxidation in plants. The powder from hoggery desulfurization tanks contained high amounts of sulfur and small amounts of other nutrients for plants. This powder can be added to liquid fertilizer to create high-sulfur liquid fertilizer (HSLF). This study observed the cell morphologies of lettuce root apices under salt stress after the application of HSLF. Lettuce plants were cultivated in hydroponic solutions containing one of two NaCl (0 and 40 mM) and three HSLF (0.0, 1.5, and 3.0 g L−1) concentrations. Salinity reduced the K+/Na+ ratio in the plant leaves; however, this reduction was smaller in the HSLF-treated plants. Except for phosphate and potassium, nutrient absorption is inhibited under conditions of high salinity. Using scanning electron microscopy, we observed apices more integrated on cell roots after increasing HSLF supplement under non-salt-stressed conditions. In addition, the cells were repaired after increasing the supplement of HSLF under the condition of 40 mM NaCl. Although salt stress reduced plant growth, the reductions were minimized in the HSLF-treated plants. The application of HSLF potentially alleviated salt injury in lettuce root apices and was probably associated with the improvement of phosphorus and potassium absorption and increasing K+/Na+ ratios in lettuce plants.
Collapse
|
31
|
Zafar AM, Javed MA, Aly Hassan A. Unprecedented biodesalination rates-Shortcomings of electrical conductivity measurements in determining salt removal by algae and cyanobacteria. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 302:113947. [PMID: 34678537 DOI: 10.1016/j.jenvman.2021.113947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/27/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Phormidium keutzingianum performed biodesalination of brackish water (10 g/L). The electrical conductivity (EC) was measured to evaluate the salt concentration over 80 days of cyanobacterial inoculation. Anion concentrations were measured using ion chromatography to estimate salt removal. EC-based measurements showed ∼8-10% removal efficiency in the first 20 days. However, the removal efficiency based on chloride ion concentration showed ∼40% removal in the same time frame. The pH increase was observed with growth of algal biomass. The increasing pH proposes the formation of hydroxyl and carbonate ions. Sulfuric acid was added at day 110 to neutralize them. At pH 4, the EC reduced significantly to about ∼37% confirming the chloride removal. EC should not be used to measure salt reduction as it is an obscure parameter, and therefore, EC is not the best choice to measure salinity removal using algae. Some recently published studies used only EC to estimate biodesalination, and it is anticipated that salt removal is misrepresented in those studies.
Collapse
Affiliation(s)
- Abdul Mannan Zafar
- Civil and Environmental Engineering Department, United Arab Emirates University, Al-Ain, 15551, Abu Dhabi, United Arab Emirates.
| | - Muhammad Asad Javed
- Civil and Environmental Engineering Department, United Arab Emirates University, Al-Ain, 15551, Abu Dhabi, United Arab Emirates.
| | - Ashraf Aly Hassan
- Civil and Environmental Engineering Department, United Arab Emirates University, Al-Ain, 15551, Abu Dhabi, United Arab Emirates; Civil Engineering Department, University of Nebraska Lincoln, Lincoln, NE, USA.
| |
Collapse
|
32
|
Maharajan T, Ceasar SA, Krishna TPA, Ignacimuthu S. Management of phosphorus nutrient amid climate change for sustainable agriculture. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:1303-1324. [PMID: 34559407 DOI: 10.1002/jeq2.20292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/15/2021] [Indexed: 05/17/2023]
Abstract
Nutrients are essential for plant growth and development and influence overall agricultural production. Phosphorus (P) is a major nutrient required for many physiological and biochemical functions of a plant. Phosphate rock is the major source of phosphate fertilizer but is becoming increasingly limited in both developing and developed countries. The resources of phosphate rock need to be conserved, and import dependency on phosphate fertilizer needs to be minimized; this will help increase the availability of phosphate fertilizer over the next 300 yr. Climate change creates new challenges in the management of nutrients including P, affecting the overall production of crops. The availability, acquisition, and translocation of P are influenced by the fluctuation of temperatures, pH, drought, and elevated CO2 . Both lower and higher soil temperatures reduce uptake and translocation of P. High soil pH affects P concentration and decreases the rate of plant P uptake. Low soil pH decreases the activity of soil microorganisms, the rate of transpiration, and P uptake and utilization. Elevated CO2 decreases P uptake from soil by the plants. Future research is needed on chemical, molecular, microbiological, and physiological aspects to improve the understanding on how temperature, pH, drought, and elevated CO2 affect the availability, acquisition, and transport of P by plants. Better P management strategies are required to secure the P supply to ensure long-term protection of soil fertility and to avoid environmental impacts such as eutrophication and water pollution, ensuring sustainable food production.
Collapse
Affiliation(s)
- Theivanayagam Maharajan
- Dep. of Biosciences, Rajagiri College of Social Sciences, Cochin - 683104, Kalamassery, Kerala, India
| | - Stanislaus Antony Ceasar
- Dep. of Biosciences, Rajagiri College of Social Sciences, Cochin - 683104, Kalamassery, Kerala, India
| | | | - Savarimuthu Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Tirunelveli- 620002, Palayamkottai, Tamil Nadu, India
| |
Collapse
|
33
|
Moure Abelenda A, Semple KT, Lag-Brotons AJ, Herbert BM, Aggidis G, Aiouache F. Kinetic study of the stabilization of an agro-industrial digestate by adding wood fly ash. CHEMICAL ENGINEERING JOURNAL ADVANCES 2021. [DOI: 10.1016/j.ceja.2021.100127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
34
|
Kalami R, Pourbabaee AA. Investigating the potential of bioremediation in aged oil-polluted hypersaline soils in the south oilfields of Iran. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:517. [PMID: 34309727 DOI: 10.1007/s10661-021-09304-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
To date, studies for bioremediation of oil-polluted hypersaline soils have been neglected or limited to specific spots. Hence, in this study, ten samples of oil field soils in the Khuzestan province of Iran were collected to evaluate bioremediation's feasibility. These samples were analyzed for their physicochemical properties as well as the most probable number of total and hydrocarbon-degrading bacteria. Thirty-nine hydrocarbon-degrading bacteria were isolated from these soils over a 1-month incubation in an MSM medium enriched with diesel oil as the sole source of carbon. As revealed by 16S-rRNA analysis, the identified strains belonged to the genera Ochrobactrum, Microbacterium, and Bacillus with a high frequency of Ochrobactrum species. Additionally, by using degenerate primers, the third group of alkB gene was detected in Ochrobactrum and Microbacterium isolates through the touchdown nested PCR method for the first time. Ochrobactrum species possessing the alkB gene showed the highest population, and therefore, the highest adaptation to harsh environmental conditions. Most isolates showed outstanding results in the ability to grow with crude and diesel oil and tolerate high salt percentages, biosurfactant production, and emulsification activity, which are considered the most effective factors in bioremediation of such environments. Considering the soil analysis, limiting factors in bioremediation like available phosphorous, and the abundance of bacteria with remediation traits in these soils, these extremely polluted environments can be refined.
Collapse
Affiliation(s)
- Reyhaneh Kalami
- Department of Soil Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran
| | - Ahmad-Ali Pourbabaee
- Department of Soil Science, College of Agriculture & Natural Resources, University of Tehran, Karaj, Iran.
| |
Collapse
|
35
|
Navazas A, Thijs S, Feito I, Vangronsveld J, Peláez AI, Cuypers A, González A. Arsenate-reducing bacteria affect As accumulation and tolerance in Salix atrocinerea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144648. [PMID: 33736260 DOI: 10.1016/j.scitotenv.2020.144648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
Arsenic (As)-reducing bacteria are able to influence As-speciation and, in this way, change As bio-availability. In consequence, this has an impact on As uptake by plants growing on polluted soil and on the effectiveness of the phytoremediation process. To be able to efficiently utilize these bacteria for As-phytoremediation in the field, a better understanding of the plant-bacterial interactions involved in As-tolerance or toxicity is needed. In this work, seedlings of a clone of Salix atrocinerea derived from a specimen naturally growing on an As-polluted brownfield were grown under gnotobiotic conditions exposed to As, and in the presence or absence of two of its field-associated and in vitro characterized plant growth-promoting (PGP) bacteria. The inoculation with Pantoea sp., induced a moderate reduction of AsV to AsIII in the exposure medium that, together with a coordinated plant response of As uptake, chelation and sequestration, increased As accumulation in roots; which is reflected into a higher phytostabilization. However, inoculation with Rhodococcus erythropolis due to a higher disproportionate reduction of AsV to AsIII in the medium caused less As accumulation in roots that non-bioaugmented plants and despite the lower As content, the concentrations of AsIII present in the medium and the damage suffered in roots and leaves, indicated that As tolerance mechanisms (such as prevention of AsIII uptake and efflux) did not occur in time to avoid physical disturbance and plants growth reduction. Interestingly, by two different metabolic pathways -coordinated by different key transporters mediating As uptake, tolerance, distribution and vacuolar accumulation at the roots- both bacteria limited As accumulation in Salix shoots. Our results provide for the first time a detailed insight in the plant-bacterial responses and physiological changes contributing to As tolerance in S. atrocinerea, that will facilitate the design of effective strategies for exploitation of plant-associated microorganisms for phytoremediation.
Collapse
Affiliation(s)
- Alejandro Navazas
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain; Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Isabel Feito
- Agri-Food Research and Development Service, Forestry Program, La Mata s/n, 33825 Grado, Spain
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium; Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Ana I Peláez
- Department of Functional Biology - Area of Microbiology-IUBA, University of Oviedo, Oviedo, Spain
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium
| | - Aida González
- Department of Organisms and Systems Biology, Area of Plant Physiology-IUBA, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain.
| |
Collapse
|
36
|
Toundou O, Pallier V, Feuillade-Cathalifaud G, Tozo K. Impact of agronomic and organic characteristics of waste composts from Togo on Zea mays L. nutrients contents under water stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112158. [PMID: 33601260 DOI: 10.1016/j.jenvman.2021.112158] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/13/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Drought and soils poverty considerably decreased agriculture yields in Togo. In this context, the use of wastes' composts as organic amendments presents the advantages to increase crops' yields and improve the fertility of soils while valorizing wastes. However, the effects of wastes' composts on the growth of plants highly depend on their quality, specifically on their chemical properties and the organic matter maturity. In this study, three different wastes' composts were prepared by mixing household wastes and food wastes with admixtures as natural phosphate and manure. The composts produced were analyzed according to agronomic parameters before applying a leaching test to specially assess the organic matter maturity by considering its hydrophobic and aromatic characters. Whatever the compost, the contents in organic matter and nutrients were comparable to composts usually commercialized in Togo. Their characteristics depended on their initial chemical composition. The higher the food wastes percentage, the higher the organic matter content and the addition of admixtures considerably increased the percentages in nutrients in the final product. Besides, a slightly acidic pH, a high redox potential and a low aromatic and hydrophobic organic matter were recorded for compost of food wastes unlike household wastes and mixed composts and the highest concentrations in trace metals were quantified in compost of household wastes. Agronomic tests were performed on maize (Zea mays L.) under two water regimes to evaluate the impact of the characteristics of composts on both maize's nutrition and adaptation to water stress. The chemical characteristics of composts and the maturity of organic matter highly impacted the absorption of macronutrients by plants. A slightly acidic pH and a high redox potential improved the transfer of nutrients from soils to plants under normal irrigation conditions. On the contrary, a higher aromaticity of organic matter promoted the absorption of nutrients under water stress. Wastes' composts can thus be relevantly used to improve the nutrition of plants in function of the irrigation conditions.
Collapse
Affiliation(s)
- Outéndé Toundou
- Laboratory of Plant Physiology and Biotechnology, Faculty of Sciences, University of Lomé, 01, Lomé, BP 1515, Togo
| | - Virginie Pallier
- University of Limoges, Laboratory PEIRENE, EA 7500, ENSIL-ENSCI, 16 rue Atlantis, Limoges, 87068, France.
| | | | - Koffi Tozo
- Laboratory of Plant Physiology and Biotechnology, Faculty of Sciences, University of Lomé, 01, Lomé, BP 1515, Togo
| |
Collapse
|
37
|
Wongkiew S, Koottatep T, Polprasert C, Prombutara P, Jinsart W, Khanal SK. Bioponic system for nitrogen and phosphorus recovery from chicken manure: Evaluation of manure loading and microbial communities. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 125:67-76. [PMID: 33684666 DOI: 10.1016/j.wasman.2021.02.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Bioponics integrates the biological treatment of nutrient-rich waste streams with hydroponics. However, there are several challenges of bioponics, especially nutrient availability and qualities, which affect plant yield. In this study, chicken manure based-nutrient film technique bioponics was examined at manure loadings of 200, 300, and 400 g dry wt. per bioponic system (total of 18 plants). Bioponics effectively released nitrogen and phosphorus (total ammonia nitrogen of 5.8-8.0 mgN/L, nitrate of 7.0-11.2 mgN/L, and phosphate of 48.7-74.2 mgP/L) for efficient growth of lettuce (Lactuca sativa; total yield of 1208-2030 g wet wt. per 18 plants). Nitrogen and phosphorus use efficiencies were 35.1-41.8% and 6.8-8.0%, respectively, and were comparable to aquaponics. Next-generation sequencing was used to examine the microbial communities in digested chicken manure and plant roots in bioponics. Results showed that several microbial genera were associated with organic degradation (e.g., Nocardiopsis spp., Cellvibrio spp.), nitrification (Nitrospira spp.), phosphorus solubilization, and plant growth promotion (e.g., WD2101_soil_group, and Bacillus spp.). Nocardiopsis spp., Romboutsia spp. and Saccharomonospora spp. were found at high abundances and a high degree of co-occurrences among the microbiota, suggesting that the microbial organic decomposition to nitrogen and phosphorus release could be the key factors to achieve better nutrient recovery in bioponics.
Collapse
Affiliation(s)
- Sumeth Wongkiew
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
| | - Thammarat Koottatep
- Environmental Engineering and Management, School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, Thailand
| | - Chongrak Polprasert
- Thammasat School of Engineering, Thammasat University, Pathumthani, Thailand
| | - Pinidphon Prombutara
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, Thailand; Microbiome Research Unit for Probiotics in Food and Cosmetics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Wanida Jinsart
- Department of Environmental Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Samir Kumar Khanal
- Department of Molecular Biosciences and Bioengineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| |
Collapse
|
38
|
Qayyum MF, Haider G, Iqbal M, Hameed S, Ahmad N, Rehman MZU, Majeed A, Rizwan M, Ali S. Effect of alkaline and chemically engineered biochar on soil properties and phosphorus bioavailability in maize. CHEMOSPHERE 2021; 266:128980. [PMID: 33243575 DOI: 10.1016/j.chemosphere.2020.128980] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/24/2020] [Accepted: 11/12/2020] [Indexed: 06/11/2023]
Abstract
Phosphorous (P) fixation in alkaline calcareous soils is a serious concern worldwide and acidified-biochar application has been proposed to improve the agronomic benefits of applied P. The present study aims to improve understanding of P transformation process in an alkaline soil following different biochar amendments (rice-husk biochar (RHB), sugarcane-bagasse biochar (SWB) and wheat-straw biochar (WSB)), chemically engineered (acidification with 1 N HCl or washing with distilled water (pristine biochar)) along with or without P at 60 mg kg-1. A pot experiment was conducted with three biochars (RHB, SWB, WSB) and control, two chemical modifications (acidic and pristine), and two P-levels (without or with P). A pot study by growing spring maize and a parallel incubation study were done to test the treatment effects on P transformation. Results demonstrated that acidified SBC and WSB increased the plant P uptake and dry-matter yield by 40% and 29.7%, respectively, with P-supply. Both pristine or acidified RHB produced 80.5% and 110.7%, more root dry-matter, respectively, compared to respective controls without P. Non-acidified WSB along with P showed significantly higher Olson's P in incubation study. While in case of acidification along with P addition, RHB exhibited greater P availability, but it was inconsistent at different times during incubation. It can be concluded that acidified biochar amendments have potential to improve P management with inconsistent results. It is difficult to rule out that acidification of biochars is a pre-requisite for alkaline soils for P improvement. Further research is needed to explore site-specific P management for sustainable crop production.
Collapse
Affiliation(s)
- Muhammad Farooq Qayyum
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Ghulam Haider
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Maria Iqbal
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Sajida Hameed
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Niaz Ahmad
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Zia Ur Rehman
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, 38040, Pakistan
| | - Abdul Majeed
- Sugarcane Research Institute, Ayub Agricultural Research Institute Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan.
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
39
|
Muraro GB, de Almeida Carvalho-Estrada P, de Oliveira Pasetti MH, Santos MC, Nussio LG. Bacterial dynamics of sugarcane silage in the tropics. Environ Microbiol 2021; 23:5979-5991. [PMID: 33587777 DOI: 10.1111/1462-2920.15428] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/08/2021] [Indexed: 12/15/2022]
Abstract
The objective of this study was to evaluate changes in the bacterial community in sugarcane silage, in distinct soil types along the storage period. We depicted the bacterial community associated with sugarcane, before and after ensiling, through a massive sequencing of the gene 16S rRNA using MiSeq platform. The ensilage process shifted the composition of the bacterial community from the heterofermentative lactic acid bacteria Leuconostoc to bacteria belonging to the genera Acinetobacter, Ralstonia and Novosphingobium. However, this shift did not convey statically significant differences in alfa diversity metrics. In addition, similarity percentage analysis showed that the bacterial Operational Taxonomic Units that were primarily responsible for the observed differences were Leuconostoc, Pseudomonas, Acinetobacter, Ralstonia, Fructobacillus, Novosphingobium, Lactobacillus, Burkholderia and Clostridium sensu stricto 1. The storage period was the most important factor responsible for changes in the bacterial community of silages. Results confirmed that the type of soil did not influence the dissimilarity found among samples.
Collapse
Affiliation(s)
- Gisele Bonato Muraro
- Animal Science Department, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, 13418-900, Brazil
| | | | | | - Mateus Castilho Santos
- Animal Science Department, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, 13418-900, Brazil.,Lallemand Animal Nutrition, Aparecida de Goiânia, Goiás, 74923-090, Brazil
| | - Luiz Gustavo Nussio
- Animal Science Department, College of Agriculture "Luiz de Queiroz", University of São Paulo, Piracicaba, 13418-900, Brazil
| |
Collapse
|
40
|
Ajijah N, Apriyana AY, Sriwuryandari L, Priantoro EA, Janetasari SA, Pertiwi TYR, Suciati AM, Ardeniswan, Sembiring T. Beneficiary of nitrifying bacteria for enhancing lettuce (Lactuca sativa) and vetiver grass (Chrysopogon zizanioides L.) growths align with carp (Cyprinus carpio) cultivation in an aquaponic system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:880-889. [PMID: 32827116 DOI: 10.1007/s11356-020-10468-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The aquaponic system is an alternative strategy to treat aquaculture waste and achieve food independence. Bacteria play vital roles in the aquaponic system as they can transform ammonia or ammonium into nitrite and then into nitrate, which is more favorable for bacteria, fish, and plants. The objective of this study was to determine the effect of nitrifying bacteria (Nitrosomonas europaea Winogradsky and Nitrobacter winogradskyi Winslow) on the aquaponic system in terms of water quality, nutrient availability, and productivity of carp (Cyprinus carpio), lettuce (Lactuca sativa var. crispa), and vetiver grass (Chrysopogon zizanioides L.). The experiment consisted of four treatments: aquaculture of carp as a control for fish (A), hydroponic of lettuce and vetiver grass without nutrient addition as a control for plants (B), aquaponic (carp, lettuce, vetiver grass) (C), and aquaponic with nitrifying bacteria addition (D). The results showed nitrifying bacteria addition had a significant effect on daily growth rate (DGR) and relative growth rate (RGR) of lettuce within a treatment; on the other hand, the nitrifying bacteria did not give a significant effect to RGR of vetiver grass. The growth rate, specific growth rate, and survival rate of the carp in aquaculture treatment (A) were lower than in both aquaponic treatments (C and D). Nitrifying bacteria addition in the aquaponics system had a significant effect of increasing the orthophosphate concentration. Water quality was also indicated to be better in the aquaponic system than in the aquaculture system. The integration of aquaculture and hydroponics with the addition of nitrifying bacteria enables the formation of microorganism communities, nitrate, and orthophosphate, which lead to the improvement of water quality, nutrient availability, and plant growth.
Collapse
Affiliation(s)
- Nur Ajijah
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung, Indonesia.
| | - Arina Yuthi Apriyana
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung, Indonesia
| | - Lies Sriwuryandari
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung, Indonesia
| | | | - Selly Ayu Janetasari
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung, Indonesia
| | | | - Ajeng Maryam Suciati
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung, Indonesia
| | - Ardeniswan
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung, Indonesia
| | - Tarzan Sembiring
- Research Unit for Clean Technology, Indonesian Institute of Sciences, Bandung, Indonesia
| |
Collapse
|
41
|
Baldisserotto C, Demaria S, Accoto O, Marchesini R, Zanella M, Benetti L, Avolio F, Maglie M, Ferroni L, Pancaldi S. Removal of Nitrogen and Phosphorus from Thickening Effluent of an Urban Wastewater Treatment Plant by an Isolated Green Microalga. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9121802. [PMID: 33353199 PMCID: PMC7766996 DOI: 10.3390/plants9121802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/05/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Microalgae are photosynthetic microorganisms and are considered excellent candidates for a wide range of biotechnological applications, including the removal of nutrients from urban wastewaters, which they can recover and convert into biomass. Microalgae-based systems can be integrated into conventional urban wastewater treatment plants (WW-TP) to improve the water depuration process. However, microalgal strain selection represents a crucial step for effective phytoremediation. In this work, a microalga isolated from the effluent derived from the thickening stage of waste sludge of an urban WW-TP was selected and tested to highlight its potential for nutrient removal. Ammonium and phosphate abatements by microalgae were evaluated using both the effluent and a synthetic medium in a comparative approach. Parallelly, the isolate was characterized in terms of growth capability, morphology, photosynthetic pigment content and photosystem II maximum quantum yield. The isolated microalga showed surprisingly high biomass yield and removal efficiency of both ammonium and phosphate ions from the effluent but not from the synthetic medium. This suggests its clear preference to grow in the effluent, linked to the overall characteristics of this matrix. Moreover, biomass from microalgae cultivated in wastewater was enriched in photosynthetic pigments, polyphosphates, proteins and starch, but not lipids, suggesting its possible use as a biofertilizer.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Sara Demaria
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Ornella Accoto
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Roberta Marchesini
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Marcello Zanella
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy; (M.Z.); (L.B.); (F.A.)
| | - Linda Benetti
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy; (M.Z.); (L.B.); (F.A.)
| | - Francesco Avolio
- HERA SpA—Direzione Acqua, Via C. Diana, 40, Cassana, 44044 Ferrara, Italy; (M.Z.); (L.B.); (F.A.)
| | - Michele Maglie
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d’Este, 32, 44121 Ferrara, Italy; (C.B.); (S.D.); (O.A.); (R.M.); (M.M.); (L.F.)
| |
Collapse
|
42
|
Sarfraz R, Yang W, Wang S, Zhou B, Xing S. Short term effects of biochar with different particle sizes on phosphorous availability and microbial communities. CHEMOSPHERE 2020; 256:126862. [PMID: 32442795 DOI: 10.1016/j.chemosphere.2020.126862] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Despite the increasing interest for biochar as a soil amendment, a knowledge gap remains on different particle size of biochar on soil phosphorous (P) availability and its impacts on microbial community. We hypothesized that biochar particle size and incubation temperature can significantly influence soil P availability and microbial community in subtropical acidic soil. A laboratory incubation study was established to investigate the effects of soil pH, available P and soil microbial responses to biochar addition having varying particle sizes using paddy soil and red soil under different incubation temperatures (15 °C & 25 °C). Biochar produced via pyrolysis of spent mushroom substrate feedstock was sieved into three particle sizes ((≤0.5 mm (fine), 0.5-1.0 mm (medium) and 1.0-2.0 mm (large)). The results exhibited that the fine particle biochar resulted in significantly higher release of P, soil pH, available P and bacterial species richness while simultaneously reducing the activities of phosphatase enzyme in both soils. Apprehending the impact of biochar particle size and incubation temperature, principal coordinate analysis (PCoA) predicted that soil microbial communities with fine particle biochar and high incubation temperature (25 °C) clustered separately. Redundancy analysis depicted that fine particle biochar had a direct association with available P and soil pH while high incubation temperature depicted a strong affinity for microbial communities. Hence, it is suggested that fine particle biochar and high incubation temperature may provide better habitat for microorganisms compared to the other particle sizes which may be due to improved soil pH and available P. However, a long term study of different biochar particles application in subtropical acidic soil needs to be pursued further for a more comprehensive understanding on this issue.
Collapse
Affiliation(s)
- Rubab Sarfraz
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhao Yang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanshan Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Biqing Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihe Xing
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
43
|
Durbecq A, Jaunatre R, Buisson E, Cluchier A, Bischoff A. Identifying reference communities in ecological restoration: the use of environmental conditions driving vegetation composition. Restor Ecol 2020. [DOI: 10.1111/rec.13232] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aure Durbecq
- Mediterranean Institute of Biodiversity and Ecology (IMBE), Avignon University, CNRS, IRD Aix Marseille University, IUT Campus Jean Henri Favre, 337 Chemin des Meinajaries, 84140 Avignon France
- Engineering consulting ECO‐MED Tour Méditerranée 65 Avenue Jules Cantini, 13006 Marseille France
| | - Renaud Jaunatre
- Université Grenoble Alpes, INRAE LESSEM 2 rue de la Papeterie‐BP 76, 38402 St‐Martin‐d'Hères France
| | - Elise Buisson
- Mediterranean Institute of Biodiversity and Ecology (IMBE), Avignon University, CNRS, IRD Aix Marseille University, IUT Campus Jean Henri Favre, 337 Chemin des Meinajaries, 84140 Avignon France
| | - Alexandre Cluchier
- Engineering consulting ECO‐MED Tour Méditerranée 65 Avenue Jules Cantini, 13006 Marseille France
| | - Armin Bischoff
- Mediterranean Institute of Biodiversity and Ecology (IMBE), Avignon University, CNRS, IRD Aix Marseille University, IUT Campus Jean Henri Favre, 337 Chemin des Meinajaries, 84140 Avignon France
| |
Collapse
|
44
|
Maucieri C, Nicoletto C, Zanin G, Xiccato G, Borin M, Sambo P. Composition and quality traits of vegetables grown in a low-tech aquaponic system at different fish stocking densities. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4310-4318. [PMID: 32378216 DOI: 10.1002/jsfa.10475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/03/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Aquaponics is considered a sustainable system for the production of fish and vegetables. However, little is known about the effects of different system variables on vegetable quality. Hence, the aims of this study were to evaluate the influence of aquaponics on the composition and quality traits of three vegetable species in relation to stocking density of the common carp (Cyprinus carpio L.), in comparison with those of plants grown in hydroponics. RESULTS The highest cumulative vegetable marketable yield was obtained in low-density aquaponics (APL), followed by hydroponics (HP) and high-density aquaponics (APH). Vegetable quality traits showed species-specific responses. In general, phosphorus concentration was higher in plants grown in APH and lower in those grown in HP, while the opposite was observed for nitrate concentration. In lettuce (Lactuca sativa L.), sugar content was the highest in APH, whereas for Swiss chard (Beta vulgaris L. subsp. vulgaris Cicla group), the aquaponics treatments increased only glucose content. No differences in sugar content were observed in Catalogna (Cichorium intybus L. Catalogna group). The lowest and highest phenolic acid concentrations in the aboveground biomass of Catalogna and lettuce were observed in HP and APH treatments, respectively. For Swiss chard, APH treatment resulted in the highest caffeic acid content, whereas ferulic acid was the highest in HP. CONCLUSIONS Aquaponics at low stocking density increased plant yield, compared to HP, without compromising vegetable quality, whereas aquaponics at high stocking density improved vegetable quality, but at the expense of yield. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Carmelo Maucieri
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Carlo Nicoletto
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Giampaolo Zanin
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Gerolamo Xiccato
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Maurizio Borin
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| | - Paolo Sambo
- Department of Agronomy Food Natural Resources Animal and Environment (DAFNAE), University of Padova, Legnaro, Padova, Italy
| |
Collapse
|
45
|
Dairy Manure Wastewater Remediation Using Non-airtight Digestion Pretreatment Followed by Microalgae Cultivation. Appl Biochem Biotechnol 2020; 192:1093-1105. [DOI: 10.1007/s12010-020-03363-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
|
46
|
Elhaissoufi W, Khourchi S, Ibnyasser A, Ghoulam C, Rchiad Z, Zeroual Y, Lyamlouli K, Bargaz A. Phosphate Solubilizing Rhizobacteria Could Have a Stronger Influence on Wheat Root Traits and Aboveground Physiology Than Rhizosphere P Solubilization. FRONTIERS IN PLANT SCIENCE 2020; 11:979. [PMID: 32765544 PMCID: PMC7381288 DOI: 10.3389/fpls.2020.00979] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/16/2020] [Indexed: 05/06/2023]
Abstract
Limited P availability in several agricultural areas is one of the key challenges facing current agriculture. Exploiting P-solubilizing bacteria (PSB) has been an emerging bio-solution for a higher rhizosphere P-availability, meanwhile the above- and below-ground interactions that PSB would trigger remain unclear over plant growing stages. We hypothesized that PSB effects on plant growth may be greater on root traits that positively links with aboveground physiology more than the commonly believed rhizosphere P bio-solubilization. In this study, five contrasting PSB (Pseudomonas spp.) isolates (low "PSB1", moderate "PSB2 and PSB4" and high "PSB3 and PSB5" P-solubilizing capacity "PSC") were used to investigate above- and below-ground responses in wheat fertilized with rock P (RP) under controlled conditions. Our findings show that all PSB isolates increased wheat root traits, particularly PSB5 which increased root biomass and PSB3 that had greater effect on root diameter in 7-, 15- and 42-day old plants. The length, surface and volume of roots significantly increased along with higher rhizosphere available P in 15- and 42-day old plants inoculated with PSB4 and PSB2. Shoot biomass significantly increased with both PSB2 and PSB5. Root and shoot physiology significantly improved with PSB1 (lowest PSC) and PSB4 (moderate PSC), notably shoot total P (78.38%) and root phosphatase activity (390%). Moreover, nutrients acquisition and chlorophyll content increased in inoculated plants and was stimulated (PSB2, PSB4) more than rhizosphere P-solubilization, which was also revealed by the significant above- and below-ground inter-correlations, mainly chlorophyll and both total (R = 0.75, p = 0.001**) and intracellular (R = 0.7, p = 0.000114*) P contents. These findings demonstrate the necessity to timely monitor the plant-rhizosphere continuum responses, which may be a relevant approach to accurately evaluate PSB through considering below- and above-ground relationships; thus enabling unbiased interpretations prior to field applications.
Collapse
Affiliation(s)
- Wissal Elhaissoufi
- Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Laboratory of Biotechnology and Agrophysiology of Symbiosis, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco
| | - Said Khourchi
- Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Ammar Ibnyasser
- Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Cherki Ghoulam
- Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Laboratory of Biotechnology and Agrophysiology of Symbiosis, Faculty of Sciences and Techniques, Cadi Ayyad University, Marrakech, Morocco
| | - Zineb Rchiad
- Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | | | - Karim Lyamlouli
- Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Adnane Bargaz
- Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
47
|
Saad MM, Eida AA, Hirt H. Tailoring plant-associated microbial inoculants in agriculture: a roadmap for successful application. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3878-3901. [PMID: 32157287 PMCID: PMC7450670 DOI: 10.1093/jxb/eraa111] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/09/2020] [Indexed: 05/05/2023]
Abstract
Plants are now recognized as metaorganisms which are composed of a host plant associated with a multitude of microbes that provide the host plant with a variety of essential functions to adapt to the local environment. Recent research showed the remarkable importance and range of microbial partners for enhancing the growth and health of plants. However, plant-microbe holobionts are influenced by many different factors, generating complex interactive systems. In this review, we summarize insights from this emerging field, highlighting the factors that contribute to the recruitment, selection, enrichment, and dynamic interactions of plant-associated microbiota. We then propose a roadmap for synthetic community application with the aim of establishing sustainable agricultural systems that use microbial communities to enhance the productivity and health of plants independently of chemical fertilizers and pesticides. Considering global warming and climate change, we suggest that desert plants can serve as a suitable pool of potentially beneficial microbes to maintain plant growth under abiotic stress conditions. Finally, we propose a framework for advancing the application of microbial inoculants in agriculture.
Collapse
Affiliation(s)
- Maged M Saad
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Abdul Aziz Eida
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Heribert Hirt
- DARWIN21, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay (IPS2), Gif-sur-Yvette Cedex, France
- Max F. Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Wang L, Chen L, Wu SX. Microalgae Cultivation Using Screened Liquid Dairy Manure Applying Different Folds of Dilution: Nutrient Reduction Analysis with Emphasis on Phosphorus Removal. Appl Biochem Biotechnol 2020; 192:381-391. [PMID: 32385813 DOI: 10.1007/s12010-020-03316-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 04/23/2020] [Indexed: 11/29/2022]
Abstract
A number of dairies in southern Idaho employed stationary inclined screens to separate large solid particles out of liquid dairy manure. In this way, the total solid content of the liquid dairy manure can drop about 20%. Solids in dairy wastewater cause high turbidities, which could block the incident light, a key factor in the microalgae cultivation process using wastewaters as culture media. In this study, screened liquid dairy manure was used as the microalgae Chlorella vulgaris culture media. The aim was to optimize the dilution folds for the best growth of Chlorella vulgaris and nutrients' reduction with a special focus on phosphorus removal and recovery. Four folds of dilution, designated as 5*, 10*, 15*, 20*, were applied to the liquid dairy manure to alleviate hindrance of the high turbidity together with the high ammonium. Microalgal cultivation removed a significant amount of turbidity and major nutrients. For differently diluted liquid dairy manures, although the initial turbidities varied a lot, the final removal rates were not significantly different, falling in the range of 88.11-91.73%. Chemical oxygen demand (COD) in the 5-fold diluted liquid dairy manure dropped from 6700 to 1200 mg/L, corresponding to a removal rate of 79.81%. For the 10-fold, 15-fold, and 20-fold diluted manures, Chlorella removed around 67-69% of the initial CODs. Total Kjeldahl nitrogen (TKN) was removed at rates ranging from 70.84 to 73.99% from the four differently diluted liquid dairy manures without significant differences. NH4-N was removed most efficiently by 88.92% from the 20-fold diluted liquid dairy manure, and the least at 68.65% from the 5-fold diluted one. Although the original total phosphorus (TP) concentrations were distinctive for each group, the TP removal rates stayed in the range of 52.16 to 65.22%. Scanning electron microscopy (SEM) and energy-dispersive spectrometry (EDS) analysis of the precipitates harvested from the microalgal cultivation suggested possible phosphate precipitate forms. The chelation of Ca or Mg cations by dissolved organic matter (DOM) under alkaline conditions caused by microalgae cultivation could explain the unsatisfactory phosphorus removals observed in this study.
Collapse
Affiliation(s)
- Liang Wang
- Department of Soil and Water Systems, Twin Falls Research & Extension Center, University of Idaho, 315 Falls Ave, Twin Falls, ID, 83301, USA
| | - Lide Chen
- Department of Soil and Water Systems, Twin Falls Research & Extension Center, University of Idaho, 315 Falls Ave, Twin Falls, ID, 83301, USA.
| | - Sarah Xiao Wu
- Department of Biological Engineering, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844, USA
| |
Collapse
|
49
|
Behera B, Patra S, Balasubramanian P. Biological nutrient recovery from human urine by enriching mixed microalgal consortium for biodiesel production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 260:110111. [PMID: 32090822 DOI: 10.1016/j.jenvman.2020.110111] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/10/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Utilization of waste resources is necessary to harness the long-term sustainability of algal technology. The study focused on the use of human urine as the basic nutrient source for culturing native microalgal consortium and further optimized the process parameters using response surface methodology. A full factorial, central composite rotatable design (CCRD) with three variables: urine concentration (1-10% vol of urine/vol of distil water [%v/v]), pH (6.5-9) and light intensity (50-350 μmolphotonsm-2sec-1) was used to evaluate the microalgal biomass and lipid content. Results indicated that at 95% confidence limits, the selected factors influence the biomass and lipid productivity. The maximum biomass productivity of 211.63 ± 1.40 mg l-1 d-1 was obtained under optimized conditions with 6.50% v/v of urine, pH of 7.69 and at light intensity of 205.40 μmolphotonsm-2sec-1. The lipid content was found to increase from 18.96 ± 1.30% in control media to 26.27 ± 1.94% under optimal conditions. The interactive effect of variables over the microalgal biomass and lipid content has also been elucidated. The data obtained were comparable to the BG11 media (control). Optimized diluted urine media in the presence of ammonium ions and under limited nitrate showed better lipid yields. Significant lipid biomolecules were detected in the algal oil extracts obtained from the diluted urine media characterized by Fourier transform infrared spectroscopy (FTIR) and Nuclear magnetic resonance (NMR). Gas chromatography-mass spectrometry (GCMS) revealed the presence of several monounsaturated and polyunsaturated fatty acids in the transesterified algal oil. Such studies would aid in technically realizing the field scale cultivation of microalgae for biofuels.
Collapse
Affiliation(s)
- Bunushree Behera
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - Sandip Patra
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha, India
| | - P Balasubramanian
- Agricultural & Environmental Biotechnology Group, Department of Biotechnology & Medical Engineering, National Institute of Technology Rourkela, Odisha, India.
| |
Collapse
|
50
|
Bell J, Yokoya K, Kendon JP, Sarasan V. Diversity of root-associated culturable fungi of Cephalanthera rubra (Orchidaceae) in relation to soil characteristics. PeerJ 2020; 8:e8695. [PMID: 32175192 PMCID: PMC7058101 DOI: 10.7717/peerj.8695] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 02/05/2020] [Indexed: 11/30/2022] Open
Abstract
Cephalanthera rubra (L.) Rich., Red Helleborine, is a widespread orchid in Europe but known only from three very small populations in England. These populations are in decline with no natural seed setting for more than a decade. The species may become extinct in the UK soon unless viable strategies are in place for ex situ conservation, especially the use of symbiotic propagation. Because of the fragile nature of the populations in England mycorrhizal fungal diversity study is not feasible. Therefore, to understand the factors needed for healthy Red Helleborine populations, soil characteristics and diversity of culturable root-derived fungi of the populations from a small area in the Loire Valley in France were studied. The main objectives of the study were: (1) Which culturable mycorrhizal fungi associated with C. rubra roots and (2) To what extent is variation in fungal communities related to variation in soil characteristics? Here, we report a significant difference in diversity of culturable mycorrhizal and non-mycorrhizal fungi depending on soil pH and phosphorus content. Mycorrhizal associations were favoured by plants in locations with low soil nutrient availability and comparatively higher pH. Our study shows that mycorrhizal fungi, both ecto and endo, can be cultured from roots of plants at different maturity stages.
Collapse
Affiliation(s)
- Jake Bell
- Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Kazutomo Yokoya
- Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Jonathan P. Kendon
- Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Viswambharan Sarasan
- Natural Capital and Plant Health, Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| |
Collapse
|