1
|
Liu M, Feng Y, Wang M, Sun X, Qi CY, Yang X, Zhang D. Sedum alfredii Hance: A cadmium and zinc hyperaccumulating plant. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117588. [PMID: 39721422 DOI: 10.1016/j.ecoenv.2024.117588] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The hyperaccumulating ecotype Sedum alfredii Hance is one of few Cd hyperaccumulators with Cd contents in leaves and stems up to 9000 mg/kg (dry weight, DW) and 6500 mg/kg (DW) respectively without displaying significant toxicity symptoms as reported in 2004. Numerous studies have been conducted to uncover the mystery of its hypertolerance and hyperaccumulation using high-throughput sequencing, biochemical and molecular techniques, mainly pointing to the root-microorganism interaction, restrained Cd storage in roots, efficient root-shoot translocation, effective cellular detoxification, and phloem-mediated metal remobilization. This also encourages studies on functional genes involved in metal transport, antioxidant, transcription regulation and stress response, providing candidates for genetic modification. Moreover, researchers have focused on the practical application and optimal managements in phytoremediation. Sedum alfredii Hance is of scientific significance as a model plant elucidating hypertolerance and hyperaccumulation traits or decontaminating heavy metals. More efforts are required to deepen the knowledge of Sedum alfredii Hance and provide theoretical guidance for practical phytoremediation.
Collapse
Affiliation(s)
- Mingying Liu
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Ying Feng
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Miao Wang
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xinglin Sun
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Chen Yinfei Qi
- Key Laboratory of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China.
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun 130021, PR China; College of New Energy and Environment, Jilin University, Changchun 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang 110044, PR China.
| |
Collapse
|
2
|
Świątek B, Kraj W, Pietrzykowski M. Adaptation of Betula pendula Roth., Pinus sylvestris L., and Larix decidua Mill. to environmental stress caused by tailings waste highly contaminated by trace elements. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:52. [PMID: 38110766 PMCID: PMC10728222 DOI: 10.1007/s10661-023-12134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/10/2023] [Indexed: 12/20/2023]
Abstract
The seedlings of some tree species can successfully develop in areas polluted by heavy metals. Research on such species is important in order to explore the possibility of introducing tree species for the permanent biological stabilization and reclamation of post-flotation tailings, especially after the final recycling of trace metals, but where concentrations remain much higher than in natural soils. To better understand the adaptation and reaction of Betula pendula Roth., Pinus sylvestris L., and Larix decidua Mill. seedlings to heavy metals pollution caused by tailings waste highly contaminated by trace elements: 1) the relationships between the concentration of heavy metals in the soil substrate, the efficiency of heavy metal ions accumulation in plant organs, and the biometric parameters of the seedlings; and 2) the threshold content of heavy metals in the roots above which the plant physiological response is triggered was determined. We assume that there are certain limit concentrations of heavy metals in the soil and fine roots, which depend on the tree species and beyond which the plant responds strongly to stressThe obtained results showed that Betula is a suitable species for the phytostabilization of post-flotation tailings due to its rapid growth rate and production of root biomass. The accumulation of metals in Betula roots was found to be much greater than in Pinus and Larix. Despite the high concentrations of heavy metals in the prepared substrates, there was only a slight transfer of these elements to the aboveground parts of the plant. At high soil concentrations, the heavy metals adversely affected the cellular and physiological processes of plants. In plants growing in such conditions, the activity of the antioxidant system depended both on the species and organ of the plant, as well as on the type and metal concentration.
Collapse
Affiliation(s)
- Bartłomiej Świątek
- Department of Ecological Engineering and Forest Hydrology, Faculty of Forestry, University of Agriculture in Kraków, Al. 29 Listopada 46, 31-425, Krakow, Poland.
| | - Wojciech Kraj
- Department of Forest Ecosystem Protection, Faculty of Forestry, University of Agriculture in Kraków, Al. 29 Listopada 46, 31-425, Krakow, Poland
| | - Marcin Pietrzykowski
- Department of Ecological Engineering and Forest Hydrology, Faculty of Forestry, University of Agriculture in Kraków, Al. 29 Listopada 46, 31-425, Krakow, Poland
| |
Collapse
|
3
|
Shao L, Li X, Xiao T, Lu T, Li J, Deng J, Xiao E. Variations in microbial assemblage between rhizosphere and root endosphere microbiomes contribute to host plant growth under cadmium stress. Appl Environ Microbiol 2023; 89:e0096023. [PMID: 37855640 PMCID: PMC10686079 DOI: 10.1128/aem.00960-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/05/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE In this study, we revealed that the variation in rhizosphere and root endosphere microbial assemblage between host plant ecotypes contribute to their differential abilities to withstand cadmium (Cd) stressors. Furthermore, our study found that phenolic compounds, such as benzenoids and flavonoids, could function as both essential carbon sources and semiochemicals, thereby contributing to the assemblage of rhizosphere microbiome to resist Cd stress. Our findings provide new insights into the mechanisms that drive the differential assemblage of rhizosphere and root endosphere microbiomes to enhance plant growth under abiotic stress.
Collapse
Affiliation(s)
- Li Shao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Xiupin Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Ting Lu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jiajun Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Jinmei Deng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| | - Enzong Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, China
| |
Collapse
|
4
|
Xu L, Wang R, Jin B, Chen J, Jiang T, Ali W, Tian S, Lu L. Cadmium inhibits powdery mildew colonization and reconstructs microbial community in leaves of the hyperaccumulator plant Sedum alfredii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115076. [PMID: 37257346 DOI: 10.1016/j.ecoenv.2023.115076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/27/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Understanding the influence of the heavy metal cadmium (Cd) on the phyllosphere microbiome of hyperaccumulator plants is crucial for enhancing phytoremediation. The characteristics of the phyllosphere of Sedum alfredii Hance, a hyperaccumulator plant, were investigated using 16S rRNA and internal transcribed spacer amplicon sequencing of powdery mildew-infected leaves treated or untreated with Cd. The results showed that the colonization of powdery mildew caused severe chlorosis and necrosis in S. alfredii leaves, and the relative abundance of Leotiomycetes in infected leaves increased dramatically and significantly decreased phyllosphere microbiome diversity. However, S. alfredii preferentially accumulated higher concentrations of Cd in the leaves of infected plants than in uninfected plants by powdery mildew, which in turn significantly inhibited powdery mildew colonization in leaves; the relative abundance of the fungal class Leotiomycetes in infected leaves decreased, and alpha and beta diversities of the phyllosphere microbiome significantly increased with Cd treatment in the infected plants. In addition, the inter-kingdom networks in the microbiota of the infected leaves treated with Cd presented many nodes and edges, and the highest inter-kingdom modularity compared to the untreated infected leaves, indicating a highly connected microbial community. These results suggest that Cd significantly inhibits powdery mildew colonization by altering the composition of the phyllosphere microbiome in S. alfredii leaves, paving the way for efficient heavy metal phytoremediation and providing a new perspective on defense strategies against heavy metals.
Collapse
Affiliation(s)
- Lingling Xu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Runze Wang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Bingjie Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiuzhou Chen
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianchi Jiang
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Waqar Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Science's, Guiyang 550081, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Wang Z, Ni L, Liu L, Yuan H, Gu C. IlAP2, an AP2/ERF Superfamily Gene, Mediates Cadmium Tolerance by Interacting with IlMT2a in Iris lactea var. chinensis. PLANTS (BASEL, SWITZERLAND) 2023; 12:823. [PMID: 36840170 PMCID: PMC9959467 DOI: 10.3390/plants12040823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) stress has a major impact on ecosystems, so it is important to find suitable Cd-tolerant plants while elucidating the responsible molecular mechanism for phytoremediation to manage Cd soil contamination. Iris lactea var. chinensis is an ornamental perennial groundcover plant with strong tolerance to Cd. Previous studies found that IlAP2, an AP2/ERF superfamily gene, may be an interacting partner of the metallothionein gene IlMT2a, which plays a key role in Cd tolerance. To study the role of IlAP2 in regulating Cd tolerance in I. lactea, we analyzed its regulation function and mechanism based on a yeast two-hybrid assay, a bimolecular fluorescence complementation test, quantitative real-time PCR, transgenics and transcriptome sequencing. The results showed that IlAP2 interacts with IlMT2a and may cooperate with other transcription factors to regulate genes involved in signal transduction and plant hormones, leading to reduced Cd toxicity by hindering Cd transport. These findings provide insights into the mechanism of IlAP2-mediated stress responses to Cd and important gene resources for improving plant stress tolerance in phytoremediation.
Collapse
Affiliation(s)
- Zhiquan Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Longjie Ni
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Liangqin Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Haiyan Yuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
| | - Chunsun Gu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing 210014, China
- College of Forest Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Ng CWW, So PS, Wong JTF, Lau SY. Intercropping of Pinellia ternata (herbal plant) with Sedum alfredii (Cd-hyperaccumulator) to reduce soil cadmium (Cd) absorption and improve yield. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120930. [PMID: 36565916 DOI: 10.1016/j.envpol.2022.120930] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/01/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Soil contamination by cadmium (Cd) is of global concern, threatening not only crop production, but also supply of herbal medicine. Research studies usually grow crops with Sedum alfredii (a Cd-hyperaccumulator). However, intercropping herbal plants with S. alfredii and their interactions with hydro-chemical properties of soil are rarely considered. This study examines the growth of a herbal plant, Pinellia ternata, intercropped with S. alfredii in Cd-contaminated soil. Plant characteristics were assessed, especially biomass and Cd content of bulbil (yield and quality of P. ternata). Soil hydro-chemical properties including water retention, Cd content and organic matter were determined with statistical analyses. At low soil-Cd contamination (0.6 μg/g), bulbil biomass of intercropped P. ternata (PSL) was almost double compared with monoculture of P. ternata (PL), which is barely significant (p ≈ 0.05). The corm biomass of PSL was also significantly greater than that of PL (p < 0.05). Although soil-Cd contamination became more severe by increasing to 3 μg/g, the bulbil biomass in the intercrop was not significantly different from PL (p > 0.05). That said, it is evidenced that the yield of intercropped P. ternata was improved in Cd-contaminated soil. Such improvement was mainly attributed to reduced soil-Cd content and enhanced soil-water retention which was governed by plant roots and soil organic matters. The soil-water retention was first identified as a critical parameter in promoting plant growth under intercropping. More importantly, the bulbil-Cd content of P. ternata in PSL was significantly reduced (p < 0.05). This study demonstrates that the newly proposed intercrop is feasible to improve yield of herbal plants, and at the same time reduce heavy metal absorption and accumulation in medicinal organs, especially for P. ternata. This is anticipated to reduce the human health risk imposed by ingestion of Chinese herbal plants.
Collapse
Affiliation(s)
- Charles Wang Wai Ng
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong.
| | - Pui San So
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong.
| | - James Tsz Fung Wong
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong.
| | - Sze Yu Lau
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong.
| |
Collapse
|
7
|
Ahmad A, Khan TA, Shahzad S, Ullah S, Shahzadi I, Ali A, Akram W, Yasin NA, Yusuf M. BioClay nanosheets infused with GA3 ameliorate the combined stress of hexachlorobenzene and temperature extremes in Brassica alboglabra plants. FRONTIERS IN PLANT SCIENCE 2022; 13:964041. [PMID: 36275566 PMCID: PMC9583914 DOI: 10.3389/fpls.2022.964041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/28/2022] [Indexed: 06/16/2023]
Abstract
Environmental pollutants and climate change are the major cause of abiotic stresses. Hexachlorobenzene (HCB) is an airborne and aero-disseminated persistent organic pollutants (POP) molecule causing severe health issues in humans, and temperature extremes and HCB in combination severely affect the growth and yield of crop plants around the globe. The higher HCB uptake and accumulation by edible plants ultimately damage human health through the contaminated food chain. Hence, confining the passive absorbance of POPs is a big challenge for researchers to keep the plant products safer for human consumption. BioClay functional layered double hydroxide is an effective tool for the stable delivery of acidic molecules on plant surfaces. The current study utilized gibberellic acid (GA3) impregnated BioClay (BioClay GA ) to alleviate abiotic stress in Brassica alboglabra plants. Application of BioClay GA mitigated the deleterious effects of HCB besides extreme temperature stress in B. alboglabra plants. BioClay GA significantly restricted HCB uptake and accumulation in applied plants through increasing the avoidance efficacy (AE) up to 377.61%. Moreover, the exogenously applied GA3 and BioClay GA successfully improved the antioxidative system, physiochemical parameters and growth of stressed B. alboglabra plants. Consequently, the combined application of BioClay and GA3 can efficiently alleviate low-temperature stress, heat stress, and HCB toxicity.
Collapse
Affiliation(s)
- Aqeel Ahmad
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences (CAS), Beijing, China
| | - Tanveer Alam Khan
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sharoon Shahzad
- Incharge Medical Officer, Basic Health Unit Munday Key District Kasur, Kasur, Pakistan
| | - Sami Ullah
- Department of Forestry, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Iqra Shahzadi
- School of Resource and Environmental Science, Wuhan University, Wuhan, China
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | - Waheed Akram
- Department of Plant Pathology, Institute of Agricultural Sciences, University of the Punjab, Lahore, Punjab, Pakistan
| | - Nasim Ahmad Yasin
- Senior Superintendent Gardens, RO-II Wing, University of the Punjab, Lahore, Punjab, Pakistan
| | - Mohammad Yusuf
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
8
|
Influence of DOM and its subfractions on the mobilization of heavy metals in rhizosphere soil solution. Sci Rep 2022; 12:14082. [PMID: 35982100 PMCID: PMC9388525 DOI: 10.1038/s41598-022-18419-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/10/2022] [Indexed: 11/08/2022] Open
Abstract
Long-term industrial pollution, wastewater irrigation, and fertilizer application are known factors that can contribute to the contamination of heavy metals (HMs) in agricultural soil. In addition, dissolved organic matter (DOM) plays key roles in the migration and fate of HMs in soil. This study investigated the effects of amending exogenous DOM extracted from chicken manure (DOMc), humus soil (DOMs), rice husk (DOMr), and its sub-fractions on the mobilization and bio-uptake of Cd, Zn, and Pb. The results suggested that the exogenous DOM facilitate the dissolution of HMs in rhizosphere soil, and the maximum solubility of Zn, Cd, and Pb were 1264.5, 121.3, and 215.7 μg L-1, respectively. Moreover, the proportion of Zn-DOM and Cd-DOM increased as the DOM concentration increased, and the highest proportions were 97.5% and 86.9%. However, the proportion of Pb-DOM was stable at > 99% in all treatments. In addition, the proportion of hydrophilic acid (Hy) and Pb/Cd in the rhizosphere soil solution were 17.5% and 8.3%, respectively. This finding suggested that the Hy-metals complex has a vital influence on the mobilization of metals, besides its complexation with fulvic acid and humic acid. Furthermore, the elevated DOM addition contributed to an increment of HMs uptake by Sedum alfredii, in the following order, DOMc > DOMs > DOMr. This study can provide valuable insights to enhance the development of phytoremediation technologies and farmland manipulation. Since the risk that exogenous DOM would increase the uptake of HMs by crops, it is also needed to evaluate this case from an agricultural management perspective.
Collapse
|
9
|
Zhou X, Shi A, Rensing C, Yang J, Ni W, Xing S, Yang W. Wood vinegar facilitated growth and Cd/Zn phytoextraction of Sedum alfredii Hance by improving rhizosphere chemical properties and regulating bacterial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119266. [PMID: 35413404 DOI: 10.1016/j.envpol.2022.119266] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Soil Cd and Zn contamination has become a serious environmental problem. This work explored the performance of wood vinegar (WV) in enhancing the phytoextraction of Cd/Zn by hyperaccumulator Sedum alfredii Hance. Rhizosphere chemical properties, enzyme activities and bacterial community were analyzed to determine the mechanisms of metal accumulation in this process. Results demonstrated that, after 120 days growth, different times dilution of WV increased the shoot biomass of S. alfredii by 85.2%-148%. In addition, WV application significantly increased soil available Cd and Zn by lowing soil pH, which facilitated plant uptake. The optimal Cd and Zn phytoextraction occurred from the 100 times diluted WV (D100), which increased the Cd and Zn extraction by 188% and 164%, compared to CK. The 100 and 50 times diluted WV significantly increased soil total and available carbon, nitrogen and phosphorus, and enhancing enzyme activities of urease, acid phosphatase, invertase and protease by 10.1-21.4%, 29.1-42.7%,12.2-38.3% and 26.8-85.7%, respectively, compared to CK. High-throughput sequencing revealed that the D 100 significantly increased the bacterial diversity compared to CK. Soil bacterial compositions at phylum, family and genera level were changed by WV addition. Compared to CK, WV application increased the relative abundances of genus with plant growth promotion and metal mobilization function such as, Bacillus, Gemmatimonas, Streptomyces, Sphingomonas and Polycyclovorans, which was positively correlated to biomass, Cd/Zn concentrations and extractions by S. alfredii. Structural equation modeling analysis showed that, soil chemical properties, enzyme activities and bacterial abundance directly or indirectly contributed to the biomass promotion, Cd, and Zn extraction by S. alfredii. To sum up, WV improved phytoextraction efficiency by enhancing plant growth, Cd and Zn extraction and increasing soil nutrients, enzyme activities, and modifying bacterial community.
Collapse
Affiliation(s)
- Xueqi Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jing Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
10
|
Zhao L, Zhu Y, Wang M, Han Y, Xu J, Feng W, Zheng X. Enolase, a cadmium resistance related protein from hyperaccumulator plant Phytolacca americana, increase the tolerance of Escherichia coli to cadmium stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:562-571. [PMID: 35802034 DOI: 10.1080/15226514.2022.2092064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phytolacca americana is a Cd hyperaccumulator plant that accumulates significant amounts of Cd in leaves, making it a valuable phytoremediation plant species. Our previous research found enolase (ENO) may play an important part in P. americana to cope with Cd stress. As a multifunctional enzyme, ENO was involved not only in glycolysis but also in the response of plants to various environmental stresses. However, there are few studies on the function of PaENO (P. americana enolase) in coping with Cd stress. In this study, the PaENO gene was isolated from P. americana, and the expression level of PaENO gene significantly increased after Cd treatment. The enzymatic activity analysis showed PaENO had typical ENO activity, and the 42-position serine was essential to the enzymatic activity of PaENO. The Cd resistance assay indicated the expression of PaENO remarkably enhanced the resistance of E. coli to Cd, which was achieved by reducing the Cd content in E. coli. Moreover, both the expression of inactive PaENO and PaMBP-1 (alternative translation product of PaENO) can improve the tolerance of E. coli to Cd. The results indicated PaENO may be alternatively translated into the transcription factor PaMBP-1 to participate in the response of P. americana to Cd stress.
Collapse
Affiliation(s)
- Le Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Yunhao Zhu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Min Wang
- Beijing Key Laboratory of Plant Research and Development, College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing, China
| | - Yongguang Han
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Jiao Xu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
| | - Weisheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| | - Xiaoke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, China
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Zhengzhou, China
| |
Collapse
|
11
|
Remediation and Micro-Ecological Regulation of Cadmium and Arsenic Co-Contaminated Soils by Rotation of High-Biomass Crops and Sedum alfredii Hance: A Field Study. SUSTAINABILITY 2022. [DOI: 10.3390/su14095717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rotation of high-biomass crops and hyperaccumulators is considered to be an effective, safe and economical method for the remediation of medium-mild heavy metal contaminated soil, but the present studies pay more attention to the removal efficiency rather than changes in soil micro-ecology. In order to explore the remediation effect of hyperaccumulators rotated with high-biomass crops on Cd and As co-contaminated soil, Cd hyperaccumulator ecotype (HE) Sedum alfredii Hance and crops were selected to construct a field experiment, five rotation modes including Sedum alfredii Hance-Oryza sativa L. (SP), Sedum alfredii Hance-Sorghum bicolor (L.) Moench (SS), Sedum alfredii Hance-Zea mays L. (SM), Sedum alfredii Hance-Hibiscus cannabinus L. (SK), Sedum alfredii Hance-Trichosanthes kirilowii Maxim. (ST), and investigated the effects of these modes on the removal efficiency, soil physiochemical properties and micro-ecological effects (soil nutrients, enzyme activities and microbial diversity) through a field experiment. The results showed that total soil Cd from the five rotation modes (SP, SS, SM, SK and ST) decreased by 25.1%, 20.3%, 34.5%, 6.3% and 74.3%, respectively, and total soil As decreased by 42.9%, 19.8%, 39.7%, 39.7% and 45.7%, respectively. The rotation significantly increased soil organic matter by 47.39–82.28%, effectively regulated soil pH value and cation exchange capacity. The rotation modes also significantly increased soil alkali-hydrolysable nitrogen by 9.09–50.91%, but decreased soil available phosphorus and rapidly available potassium. Except for urease, the soil enzyme activities increased overall. The Alpha diversity increased, and soil microbial structure optimized after rotation. ST mode was the most effective remediation mode, which not only reduces the content of Cd and As in the soil, but also effectively regulates the soil micro-ecology. The results from this study have shown that it is feasible to apply Sedum alfredii Hance and the high-biomass rotation method for the remediation of Cd and As co-contaminated soil.
Collapse
|
12
|
Xu D, Yang C, Fan H, Qiu W, Huang B, Zhuo R, He Z, Li H, Han X. Genome-Wide Characterization, Evolutionary Analysis of ARF Gene Family, and the Role of SaARF4 in Cd Accumulation of Sedum alfredii Hance. PLANTS (BASEL, SWITZERLAND) 2022; 11:1273. [PMID: 35567274 PMCID: PMC9103128 DOI: 10.3390/plants11091273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/28/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Auxin response factors (ARFs) play important roles in plant development and environmental adaption. However, the function of ARFs in cadmium (Cd) accumulation are still unknown. Here, 23 SaARFs were detected in the genome of hyperaccumulating ecotype of Sedum alfredii Hance (HE), and they were not evenly distributed on the chromosomes. Their protein domains remained highly conservative. SaARFs in the phylogenetic tree can be divided into three groups. Genes in the group Ⅰ contained three introns at most. However, over ten introns were found in other two groups. Collinearity relationships were exhibited among ten SaARFs. The reasons for generating SaARFs may be segmental duplication and rearrangements. Collinearity analysis among different species revealed that more collinear genes of SaARFs can be found in the species with close relationships of HE. A total of eight elements in SaARFs promoters were related with abiotic stress. The qRT-PCR results indicated that four SaARFs can respond to Cd stress. Moreover, that there may be functional redundancy among six SaARFs. The adaptive selection and functional divergence analysis indicated that SaARF4 may undergo positive selection pressure and an adaptive-evolution process. Overexpressing SaARF4 effectively declined Cd accumulation. Eleven single nucleotide polymorphism (SNP) sites relevant to Cd accumulation can be detected in SaARF4. Among them, only one SNP site can alter the sequence of the SaARF4 protein, but the SaARF4 mutant of this site did not cause a significant difference in cadmium content, compared with wild-type plants. SaARFs may be involved in Cd-stress responses, and SaARF4 may be applied for decreasing Cd accumulation of plants.
Collapse
Affiliation(s)
- Dong Xu
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, China; (D.X.); (C.Y.)
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Chunyu Yang
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, China; (D.X.); (C.Y.)
| | - Huijin Fan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Biyun Huang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Zhengquan He
- Key Laboratory of Three Gorges Regional Plant Genetic & Germplasm Enhancement (CTGU), Biotechnology Research Center, China Three Gorges University, Yichang 443000, China; (D.X.); (C.Y.)
| | - Haiying Li
- Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China; (H.F.); (W.Q.); (B.H.); (R.Z.)
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| |
Collapse
|
13
|
Guan H, Dong L, Zhang Y, Bai S, Yan L. GLDA and EDTA assisted phytoremediation potential of Sedum hybridum 'Immergrunchen' for Cd and Pb contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1395-1404. [PMID: 35166632 DOI: 10.1080/15226514.2022.2031865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Exogenous application of chelants is a common way to enhance the phytoextraction of heavy metals. A pot experiment was conducted to investigate the influences of cadmium (Cd), lead (Pb), Cd and Pb, L-glutamic acid N, N-diacetic acid (GLDA) and ethylene diamine tetraacetate (EDTA) on the growth, Cd and Pb accumulation of Sedum hybridum 'Immergrunchen'. The results showed that Sedum hybridum 'Immergrunchen' had a high tolerance to Pb treatment, followed by Cd-Pb treatment. The plant was sensitive to Cd stress. EDTA treatment was more harmful to plant growth than that of GLDA treatment. The optimal Cd concentration of shoot and root reached 27.6 mg·kg-1 and 32.6 mg·kg-1, 757 mg·kg-1 and 1,025 mg·kg-1for Pb accumulation at 100-1,500 mg·kg-1. The maximum Cd and Pb phytoextraction from 3 mmol·kg-1 GLDA treatment were 1.40 and 1.73 times as much as that of the control, 1.21 and 1.02 times under 6 mmol·kg-1 EDTA treatment. Therefore, the enhanced phytoremediation of GLDA to Cd and Pb co-contaminated soil was better than that of EDTA. GLDA-assisted phytoextraction of Cd and Pb by Sedum hybridum 'Immergrunchen' can be considered as a promising way to phytoremediate Cd and Pb co-contaminated soil.
Collapse
Affiliation(s)
- Haiyan Guan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Li Dong
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Yan Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Shubing Bai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| | - Li Yan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment and College of Landscape Architecture, Beijing Forestry University, Beijing, China
- Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
14
|
Bernardes RC, Fernandes KM, Bastos DSS, Freire AFPA, Lopes MP, de Oliveira LL, Tavares MG, Dos Santos Araújo R, Martins GF. Impact of copper sulfate on survival, behavior, midgut morphology, and antioxidant activity of Partamona helleri (Apidae: Meliponini). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6294-6305. [PMID: 34449024 DOI: 10.1007/s11356-021-16109-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Copper sulfate (CuSO4) is widely used in agriculture as a pesticide and foliar fertilizer. However, the possible environmental risks associated with CuSO4 use, particularly related to pollinating insects, have been poorly studied. In this study, we evaluated both lethal and sublethal effects of CuSO4 on the stingless bee Partamona helleri. Foragers were orally exposed to five concentrations of CuSO4 (5000, 1666.7, 554.2, 183.4, 58.4 μg mL-1), and the concentration killing 50% (LC50) was estimated. This concentration (142.95 μg mL-1) was subsequently used in behavioral, midgut morphology, and antioxidant activity analyses. Bee mortality increased with the ingestion of increasing concentrations of CuSO4. Ingestion at the estimated LC50 resulted in altered walking behavior and damage to the midgut epithelium and peritrophic matrix of bees. Furthermore, the LC50 increased the catalase or superoxide dismutase activities and levels of the lipid peroxidation biomarker malondialdehyde. Furthermore, the in situ detection of caspase-3 and LC3, proteins related to apoptosis and autophagy, respectively, revealed that these processes are intensified in the midgut of treated bees. These data show that the ingestion of CuSO4 can have considerable sublethal effects on the walking behavior and midgut of stingless bees, and therefore could pose potential risks to pollinators including native bees. Graphical abstract.
Collapse
Affiliation(s)
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | - Marcos Pereira Lopes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Mara Garcia Tavares
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | |
Collapse
|
15
|
Nandillon R, Lebrun M, Miard F, Gaillard M, Sabatier S, Morabito D, Bourgerie S. Contrasted tolerance of Agrostis capillaris metallicolous and non-metallicolous ecotypes in the context of a mining technosol amended by biochar, compost and iron sulfate. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1457-1475. [PMID: 31673918 DOI: 10.1007/s10653-019-00447-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Metal(loid) contamination of soil, resulting from the mining activities, is a major issue worldwide, due to its negative effects on the environment and health. Therefore, these contaminated soils need to be remediated. One realistic method is the assisted phytostabilization, which aims at establishing a vegetation cover on the soil that will reduce metal(loid) bioavailability and spreading through the prevention of wind erosion and water leaching. In addition, amendments are applied to improve soil conditions and ameliorate plant growth. In this goal, biochar and compost showed good results in terms of amelioration of soil fertility and reduction in lead bioavailability. However, they usually have a negative effect on arsenic. On the contrary, iron sulfate showed capacity to reduce arsenic mobility through interaction with its iron hydroxides. Finally, the choice of the appropriate plant species is crucial for the success of assisted phytostabilization. One good option is to use endemic species, adapted to the metal(loid) stress, with a fast growth and large shoot and root systems. The aims of this study were to (1) evaluate the effects of applying biochar, compost and iron sulfate, alone or combined, to a former mine soil on the soil properties and Agrostis capillaris growth, and (2) assess the difference between two Agrostis capillaris ecotypes, an endemic metallicolous ecotype and a non-metallicolous ecotype. Results of the mesocosm experiment showed that amendment application improved soil properties, i.e., reduced soil acidity, increased nutrient availability and lower metal(loid) stress, the best being the combination biochar-compost-iron sulfate. These ameliorations allowed a better plant growth. Finally, the metallicolous ecotype performed better in terms of growth than the non-metallicolous one and could thus be used in an assisted phytostabilization process on the former mine site.
Collapse
Affiliation(s)
- Romain Nandillon
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- IDDEA, Environmental Consulting Engineering, 45160, Olivet, France
- ISTO, UMR 7327, BRGM, BP 36009, 45060, Orléans, France
| | - Manhattan Lebrun
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
- Dipartimento di Bioscienze e Territorio, University of Molise, 86090, Pesche, Italy
| | - Florie Miard
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Marie Gaillard
- IDDEA, Environmental Consulting Engineering, 45160, Olivet, France
| | | | - Domenico Morabito
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France
| | - Sylvain Bourgerie
- INRA USC1328, LBLGC EA 1207, University of Orleans, Rue de Chartres, BP 6759, 45067, Orléans Cedex 2, France.
| |
Collapse
|
16
|
Genome-wide characterization of the hyperaccumulator Sedum alfredii F-box family under cadmium stress. Sci Rep 2021; 11:3023. [PMID: 33542339 PMCID: PMC7862640 DOI: 10.1038/s41598-021-82690-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/22/2021] [Indexed: 12/04/2022] Open
Abstract
The F-box genes, which form one of the largest gene families in plants, are vital for plant growth, development and stress response. However, F-box gene family in Sedum alfredii remains unknown. Comprehensive studies addressing their function responding to cadmium stress is still limited. In the present study, 193 members of the F-box gene (SaFbox) family were identified, which were classified into nine subfamilies. Most of the SaFboxs had highly conserved domain and motif. Various functionally related cis-elements involved in plant growth regulation, stress and hormone responses were located in the upstream regions of SaFbox genes. RNA-sequencing and co-expression network analysis revealed that the identified SaFbox genes would be involved in Cd stress. Expression analysis of 16 hub genes confirmed their transcription level in different tissues. Four hub genes (SaFbox40, SaFbox51, SaFbox136 and SaFbox170) were heterologously expressed in a Cd-sensitive yeast cell to assess their effects on Cd tolerance. The transgenic yeast cells carrying SaFbox40, SaFbox51, SaFbox136, or SaFbox170 were more sensitive and accumulated more cadmium under Cd stress than empty vector transformed control cells. Our results performed a comprehensive analysis of Fboxs in S. alfredii and identified their potential roles in Cd stress response.
Collapse
|
17
|
Qiong W, Fengshan P, Xiaomeng X, Rafiq MT, Xiao'e Y, Bao C, Ying F. Cadmium level and soil type played a selective role in the endophytic bacterial community of hyperaccumulator Sedum alfredii Hance. CHEMOSPHERE 2021; 263:127986. [PMID: 33297030 DOI: 10.1016/j.chemosphere.2020.127986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/25/2020] [Accepted: 08/10/2020] [Indexed: 06/12/2023]
Abstract
Phytoremediation technology has been applied for heavy metal elimination for many years, however little research about the difference of remediation efficiency of hyperaccumulator in different soils was reported. Here, a pot experiment was conducted with a cadmium (Cd)/zinc hyperaccumulator Sedum alfredii Hance grown on different types of soils and the differences of its endophytic bacterial community were elucidated. The results showed that the biomass of S. alfredii grown on black soil under both low and high Cd treatment was much heavier than that grown on other soils, and Cd uptake and Cd accumulation of S. alfredii in paddy soil was the highest, suggesting that black soil was more suitable for S. alfredii growth while paddy soil was more efficient for Cd phytoextraction. Moreover, Cd treated level and soil type both affected the structure of plant endophytic bacterial community. The two shared genera in the four representative soils were Caulobacter and Acinetobacter under low Cd level, and Caulobacter and Lactobacillus under high Cd level. Cd treatment shifted the structure and abundance of plant endophytes in different types of soils, while black soil and paddy soil were more similar in the distribution and abundance of S. alfredii endophytic community. This study highlighted the understanding of response to Cd within S. alfredii endophytic community in different types of soils, which could be beneficial for enhanced phytoremediation efficiency and better S. alfredii cultivation.
Collapse
Affiliation(s)
- Wang Qiong
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Pan Fengshan
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Hailiang Group Co., Ltd., Hailiang Building, No.1508, Binsheng Road, Hangzhou City, 310052, Zhejiang, China
| | - Xu Xiaomeng
- Hangzhou Steam Turbine Co. Ltd., No. 357 Shiqiao Road, Hangzhou City, 310052, Zhejiang, China
| | - Muhammad Tariq Rafiq
- Centre for Interdisciplinary Research in Basic Sciences, International Islamic University, Islamabad, 44000, Pakistan
| | - Yang Xiao'e
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chen Bao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China; Hangzhou Jinjiang Group Co., Ltd., Jinjiang Building, No. 111, South Hushu Road, Hangzhou City, 310005, Zhejiang, China.
| | - Feng Ying
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Shah AA, Khan WU, Yasin NA, Akram W, Ahmad A, Abbas M, Ali A, Safdar MN. Butanolide alleviated cadmium stress by improving plant growth, photosynthetic parameters and antioxidant defense system of brassica oleracea. CHEMOSPHERE 2020; 261:127728. [PMID: 32731022 DOI: 10.1016/j.chemosphere.2020.127728] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/12/2020] [Accepted: 07/15/2020] [Indexed: 05/04/2023]
Abstract
Current study was performed to explore the effect of butanolide (KAR1) in mitigation of cadmium (Cd) induced toxicity in Brussels sprout (Brassica oleracea L.). Brussels sprout seeds, treated with 10-5 M, 10-7 M and 10-10 M solution of KAR1 were allowed to grow in Cd-contaminated (5 mg L-1) regimes for 25 d. Cadmium toxicity decreased seed germination and growth in B. oleracea seedlings. Elevated intensity of electrolyte leakage (EL), malondialdehyde (MDA) and hydrogen peroxide (H2O2) were observed in Cd-stressed seedlings. Additionally, reduced level of stomatal conductivity, transpiration rate, photosynthesis rate, intercellular carbon dioxide concentration, and leaf relative water content (LRWC) was also observed in Cd-stressed seedlings. Nevertheless, KAR1 improved seed germination, seedling growth and biomass production in Cd stressed plants. KAR1 application showed elevated LRWC, osmotic potential, and higher membranous stability index (MSI) in seedlings under Cd regime. Furthermore, seedlings developed by KAR1 treatment exhibited higher stomatal conductivity, and intercellular carbon dioxide concentration together with improved rate of transpiration and photosynthetic rate in B. oleracea under Cd stress. These findings elucidate that the reduced level of MDA, EL and H2O2, as well as improvement in antioxidative machinery increased growth and alleviated Cd toxicity in KAR1 treated seedlings under Cd stress.
Collapse
Affiliation(s)
- Anis Ali Shah
- Department of Botany, University of Narowal, Pakistan
| | - Waheed Ullah Khan
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | | | - Waheed Akram
- Guangdong Key Laboratory of New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Aqeel Ahmad
- Guangdong Key Laboratory of New Technology Research of Vegetables, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Muhammad Abbas
- Department of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Aamir Ali
- Department of Botany, University of Sargodha, Sargodha, Pakistan
| | | |
Collapse
|
19
|
Feng T, He X, Zhuo R, Qiao G, Han X, Qiu W, Chi L, Zhang D, Liu M. Identification and functional characterization of ABCC transporters for Cd tolerance and accumulation in Sedum alfredii Hance. Sci Rep 2020; 10:20928. [PMID: 33262396 PMCID: PMC7708633 DOI: 10.1038/s41598-020-78018-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Cd is one of the potential toxic elements (PTEs) exerting great threats on the environment and living organisms and arising extensive attentions worldwide. Sedum alfredii Hance, a Cd hyperaccumulator, is of great importance in studying the mechanisms of Cd hyperaccumulation and has potentials for phytoremediation. ATP-binding cassette sub-family C (ABCC) belongs to the ABC transporter family, which is deemed to closely associate with multiple physiological processes including cellular homeostasis, metal detoxification, and transport of metabolites. In the present work, ten ABCC proteins were identified in S. alfredii Hance, exhibiting uniform domain structure and divergently clustering with those from Arabidopsis. Tissue-specific expression analysis indicated that some SaABCC genes had significantly higher expression in roots (Sa23221 and Sa88F144), stems (Sa13F200 and Sa14F98) and leaves (Sa13F200). Co-expression network analysis using these five SaABCC genes as hub genes produced two clades harboring different edge genes. Transcriptional expression profiles responsive to Cd illustrated a dramatic elevation of Sa14F190 and Sa18F186 genes. Heterologous expression in a Cd-sensitive yeast cell line, we confirmed the functions of Sa14F190 gene encoding ABCC in Cd accumulation. Our study performed a comprehensive analysis of ABCCs in S. alfredii Hance, firstly mapped their tissue-specific expression patterns responsive to Cd stress, and characterized the roles of Sa14F190 genes in Cd accumulation.
Collapse
Affiliation(s)
- Tongyu Feng
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Xuelian He
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Renying Zhuo
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Guirong Qiao
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Xiaojiao Han
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Wenmin Qiu
- Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, 311400, People's Republic of China
| | - Linfeng Chi
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Dayi Zhang
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Mingying Liu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China.
| |
Collapse
|
20
|
Manara A, Fasani E, Furini A, DalCorso G. Evolution of the metal hyperaccumulation and hypertolerance traits. PLANT, CELL & ENVIRONMENT 2020; 43:2969-2986. [PMID: 32520430 DOI: 10.1111/pce.13821] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 05/21/2023]
Abstract
To succeed in life, living organisms have to adapt to the environmental issues to which they are subjected. Some plants, defined as hyperaccumulators, have adapted to metalliferous environments, acquiring the ability to tolerate and accommodate high amounts of toxic metal into their shoot, without showing symptoms of toxicity. The determinants for these traits and their mode of action have long been the subject of research, whose attention lately moved to the evolution of the hypertolerance and hyperaccumulation traits. Genetic evidence indicates that the evolution of both traits includes significant evolutionary events that result in species-wide tolerant and accumulating backgrounds. Different edaphic environments are responsible for subsequent refinement, by local adaptive processes, leading to specific strategies and various degrees of hypertolerance and hyperaccumulation, which characterize metallicolous from non-metallicolous ecotypes belonging to the same genetic unit. In this review, we overview the most updated concepts regarding the evolution of hyperaccumulation and hypertolerance, highlighting also the ecological context concerning the plant populations displaying this fascinating phenomenon.
Collapse
Affiliation(s)
- Anna Manara
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Elisa Fasani
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Antonella Furini
- Department of Biotechnology, University of Verona, Verona, Italy
| | | |
Collapse
|
21
|
Wang R, Hou D, Chen J, Li J, Fu Y, Wang S, Zheng W, Lu L, Tian S. Distinct rhizobacterial functional assemblies assist two Sedum alfredii ecotypes to adopt different survival strategies under lead stress. ENVIRONMENT INTERNATIONAL 2020; 143:105912. [PMID: 32650147 DOI: 10.1016/j.envint.2020.105912] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) contamination presents a widespread environmental plague. Sedum alfredii is widely used for soil phytoremediation owing to its capacity to extract heavy metals, such as Pb. Although efficient Pb extraction is mediated by complex interactions between the roots and rhizospheric bacteria, the mechanism by which S. alfredii recruits microorganisms under Pb stress remains unclear. The Pb-accumulating ecotype (AE) and non-accumulating ecotype (NAE) of S. alfredii recruited different rhizobacterial communities. Under Pb stress, AE rhizosphere-enriched bacteria assembled into stable-connected clusters with higher phylogenetic and functional diversity. These microbes, e.g., Flavobacterium, could release indoleacetic acid to promote plant growth and siderophores, thereby increasing Pb availability. The NAE rhizosphere-enriched functional bacteria "desperately" assembled into highly specialized functional clusters with extremely low phylogenetic diversity. These bacteria, e.g., Pseudomonas, could enhance phosphorus solubilization and Pb precipitation, thereby reducing Pb stress and plant Pb accumulation. High niche overlap level of the rhizo-enriched species raised challenges in soil resource utilization, whereas the NAE community assembly was markedly constrained by environmental "selection effect" than that of AE rhizobacterial community. These results indicate that different ecotypes of S. alfredii recruit distinct bacterial functional assemblies to drive specific plant-soil feedbacks for different survival in Pb-contaminated soils. To cope with heavy metal stress, NAE formed a highly functional and specialized but vulnerable community and efficiently blocked heavy metal absorption by plants. However, the AE community adopted a more stable and elegant strategy to promote plant growth and the accumulation of dry matter via multiple evolutionary strategies that ensured a high yield of heavy metal phytoextraction. This for the first time provides new insights into the roles of rhizosphere microbes in plant adaptations to abiotic stresses.
Collapse
Affiliation(s)
- Runze Wang
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dandi Hou
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiuzhou Chen
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahao Li
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyi Fu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sen Wang
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Zheng
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lingli Lu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
22
|
Zhou C, Xiao X, Guo Z, Peng C, Zeng P, Fosua Bridget A. Physiological responses, tolerance efficiency, and phytoextraction potential of Hylotelephium spectabile (Boreau) H. Ohba under Cd stress in hydroponic condition. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 23:80-88. [PMID: 32723076 DOI: 10.1080/15226514.2020.1797628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A sand hydroponic experiment with different concentrations of 0, 5, 10, 20, 40 mg L-1 Cd was used to study the growth and physiological response of Hylotelephium spectabile (Boreau) H. Ohba. and its phytoextraction potential for Cd. The results showed that total plant biomass under 5 mg L-1 Cd treatment was slightly affected. The content of malondialdehyde (MDA) in leaf exposed to Cd was higher, and the POD and CAT activity exhibited a positive response to the low level of Cd addition (5 mg·L-1). The photosynthesis pigments were slightly inhibited, and the ultrastructure of chloroplast remained intact after treatment with 10 mg L-1 Cd. The maximum leaf Cd content (603 mg·kg-1) was found in 5 mg L-1 Cd treatment, then decreased with the Cd level increased. The maximum Cd content in the shoots far exceeds the threshold level (100 mg kg-1) for a Cd-hyperaccumulator plant with the value of translocation factor (TFshoot/root) for Cd reaching up to 5.62. In conclusion, H. spectabile showed normal growth and physiological response and high shoot Cd accumulation under 5 mg L-1 Cd stress, which made it to be a good candidate for phytoextraction of low-level Cd polluted environment.
Collapse
Affiliation(s)
- Cong Zhou
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Chi Peng
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Peng Zeng
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Ataa Fosua Bridget
- School of Metallurgy and Environment, Central South University, Changsha, China
| |
Collapse
|
23
|
Naila A, Meerdink G, Jayasena V, Sulaiman AZ, Ajit AB, Berta G. A review on global metal accumulators-mechanism, enhancement, commercial application, and research trend. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:26449-26471. [PMID: 31363977 DOI: 10.1007/s11356-019-05992-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/16/2019] [Indexed: 05/07/2023]
Abstract
The biosphere is polluted with metals due to burning of fossil fuels, pesticides, fertilizers, and mining. The metals interfere with soil conservations such as contaminating aqueous waste streams and groundwater, and the evidence of this has been recorded since 1900. Heavy metals also impact human health; therefore, the emancipation of the environment from these environmental pollutants is critical. Traditionally, techniques to remove these metals include soil washing, removal, and excavation. Metal-accumulating plants could be utilized to remove these metal pollutants which would be an alternative option that would simultaneously benefit commercially and at the same time clean the environment from these pollutants. Commercial application of pollutant metals includes biofortification, phytomining, phytoremediation, and intercropping. This review discusses about the metal-accumulating plants, mechanism of metal accumulation, enhancement of metal accumulation, potential commercial applications, research trends, and research progress to enhance the metal accumulation, benefits, and limitations of metal accumulators. The review identified that the metal accumulator plants only survive in low or medium polluted environments with heavy metals. Also, more research is required about metal accumulators in terms of genetics, breeding potential, agronomics, and the disease spectrum. Moreover, metal accumulators' ability to uptake metals need to be optimized by enhancing metal transportation, transformation, tolerance to toxicity, and volatilization in the plant. This review would benefit the industries and environment management authorities as it provides up-to-date research information about the metal accumulators, limitation of the technology, and what could be done to improve the metal enhancement in the future.
Collapse
Affiliation(s)
- Aishath Naila
- Research Centre, Central Administration, The Maldives National University (MNU), Rahdhebai Hingun, Machangoalhi, 20371, Male, Maldives
| | - Gerrit Meerdink
- Food Science and Technology Unit, Department of Chemical Engineering, University of the West Indies, - St. Augustine Campus, St. Augustine, Trinidad & Tobago
| | - Vijay Jayasena
- School of Science and Health, Western Sydney University, Sydney, Australia
| | - Ahmad Z Sulaiman
- Faculty of Bio-Engineering and Technology, Universiti Malaysia Kelantan (UMK), Campus Jeli, Beg Berkunci No. 100, 17600, Kelantan Darul Naim, Jeli, Malaysia
| | - Azilah B Ajit
- Faculty of Chemical & Natural Resources Engineering, Universiti Malaysia Pahang, 26300, Gambang, Pahang, Malaysia.
| | - Graziella Berta
- Dipartimento di Scienze e Innovazione Tecnologica, University of Piemonte Orientale, Viale T. Michel 11, 15121, Alessandria, Italy
| |
Collapse
|
24
|
Li JT, Gurajala HK, Wu LH, van der Ent A, Qiu RL, Baker AJM, Tang YT, Yang XE, Shu WS. Hyperaccumulator Plants from China: A Synthesis of the Current State of Knowledge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11980-11994. [PMID: 30272967 DOI: 10.1021/acs.est.8b01060] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Hyperaccumulator plants are the material basis for phytoextraction research and for practical applications in decontaminating polluted soils and industrial wastes. China's high biodiversity and substantial mineral resources make it a global hotspot for hyperaccumulator plant species. Intensive screening efforts over the past 20 years by researchers working in China have led to the discovery of many different hyperaccumulators for a range of elements. In this review, we present the state of knowledge on all currently reported hyperaccumulator species from China, including Cardamine hupingshanensis (selenium, Se), Dicranopteris dichotoma (rare earth elements, REEs), Elsholtzia splendens (copper, Cu), Phytolacca americana (manganese, Mn), Pteris vittata (arsenic, As), Sedum alfredii, and Sedum plumbizincicola (cadmium/zinc, Cd/Zn). This review covers aspects of the ecophysiology and molecular biology of tolerance and hyperaccumulation for each element. The major scientific advances resulting from the study of hyperaccumulator plants in China are summarized and synthesized.
Collapse
Affiliation(s)
- Jin-Tian Li
- School of Life Sciences , South China Normal University , Guangzhou 510631 , P.R. China
| | - Hanumanth Kumar Gurajala
- College of Environmental & Resources Science , Zhejiang University , Hangzhou 310058 , P.R. China
| | - Long-Hua Wu
- Institute of Soil Science, Chinese Academy of Sciences , Nanjing 210008 , P.R. China
| | - Antony van der Ent
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute , The University of Queensland , Brisbane , Australia
- Laboratoire Sols et Environnement, UMR , Université de Lorraine - INRA , Nancy 1120 , France
| | - Rong-Liang Qiu
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , P.R. China
| | - Alan J M Baker
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute , The University of Queensland , Brisbane , Australia
- Laboratoire Sols et Environnement, UMR , Université de Lorraine - INRA , Nancy 1120 , France
- School of BioSciences , The University of Melbourne , Victoria 3010 , Australia
| | - Ye-Tao Tang
- School of Environmental Science and Engineering , Sun Yat-sen University , Guangzhou 510275 , P.R. China
| | - Xiao-E Yang
- College of Environmental & Resources Science , Zhejiang University , Hangzhou 310058 , P.R. China
| | - Wen-Sheng Shu
- School of Life Sciences , South China Normal University , Guangzhou 510631 , P.R. China
| |
Collapse
|
25
|
Yang J, Guo J, Yang J. Cadmium accumulation and subcellular distribution in populations of Hylotelephium spectabile (Boreau) H. Ohba. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30917-30927. [PMID: 30178414 DOI: 10.1007/s11356-018-3065-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 08/27/2018] [Indexed: 06/08/2023]
Abstract
A pot experiment was conducted among six populations of Hylotelephium spectabile (Boreau) H. Ohba: four from Jiangsu province, one from Shandong province, and one from Shanxi province, China, to investigate the variation of Cd accumulation and subcellular distribution of this species (a newly reported Cd high accumulator). Under five different real Cd-contaminated soils (Cd: 0.93-97.97 mg/kg), results showed considerable differences in Cd concentration in (a) leaf (1.09-50.7 mg/kg), (b) stem (0.61-13.0 mg/kg), and (c) root (1.55-24.5 mg/kg) among the populations. Analysis of subcellular Cd distribution indicated that Cd accumulated in the leaves of H. spectabile was mainly in the cellular debris (44.1 to 53.5%), followed by heat-stable protein (HSP, 20.9 to 29.0%), Cd-rich granules (MRG, 9.9 to 19.5%), heat-denatured protein (6.0 to 8.5%), and organelle fractions (3.1 to 7.4%). The populations of H. spectabile with more Cd partitioned to cellular debris and biological detoxified metal (HSP + MRG) fractions have greater capacity to accumulate Cd, indicating the probable intrinsic mechanism to accumulate Cd. Therefore, H. spectabile has the considerable potential of phytoremediation for Cd-contaminated soils, but screening suitable populations according to soil Cd concentrations is necessary before used for phytoremediation of Cd-contaminated soils.
Collapse
Affiliation(s)
- Jun Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Junmei Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Junxing Yang
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
26
|
Evaluating Metal Effects on the Reflectance Spectra of Plant Leaves during Different Seasons in Post-Mining Areas, China. REMOTE SENSING 2018. [DOI: 10.3390/rs10081211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study examined the relationship between the leaf reflectance of different seasons and the concentration of heavy metal elements in leaves, such as Co, Cu, Mo, and Ni in a post-mining area. The reflectance spectra and leaf samples of three typical plants were measured and collected in a whole growth cycle (June, July, August, and September). The Red Edge Position (REP), Readjustment Normalized Difference Vegetation Index (RE-NDVI), and Photochemical Reflectance Index (PRI) were extracted and used to explore its relation with the heavy metals concentrations in leaves between different seasons. The results show that all three Vegetation Indices (VIs) were insensitive indicators for monitoring the metal effects of vegetation in different seasons, which showed similar trends. Based on this, the Continuum Removal Indices (CRIs) were proposed from the continuum removed approach and extended for detecting the effects of heavy metal pollution over a full growth cycle. The relationship between the metal concentrations and CRIs of different plants was respectively analyzed by Stepwise Multiple Linear Regression (SMLR) and Partial Least Squares Regression (PLSR). It is found that a significant correlation exists between the band depth and the concentration of Cu and Ni based on the White birch data sets using the PLSR, resulting in a small deviation from the established relationships. Compared with VIs, the approach of coupling CRIs and multiple regressions was effective for improving the estimation accuracy. The presented study provides a detection model of leaf heavy metals that can be adapted to different growing cycles, even an arbitrary growing cycle.
Collapse
|
27
|
Cadmium Exposure-Sedum alfredii Planting Interactions Shape the Bacterial Community in the Hyperaccumulator Plant Rhizosphere. Appl Environ Microbiol 2018; 84:AEM.02797-17. [PMID: 29654182 DOI: 10.1128/aem.02797-17] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/09/2018] [Indexed: 11/20/2022] Open
Abstract
Rhizospheric bacteria play important roles in plant tolerance and activation of heavy metals. Understanding the bacterial rhizobiome of hyperaccumulators may contribute to the development of optimized phytoextraction for metal-polluted soils. We used 16S rRNA gene amplicon sequencing to investigate the rhizospheric bacterial communities of the cadmium (Cd) hyperaccumulating ecotype (HE) Sedum alfredii in comparison to its nonhyperaccumulating ecotype (NHE). Both planting of two ecotypes of S. alfredii and elevated Cd levels significantly decreased bacterial alpha-diversity and altered bacterial community structure in soils. The HE rhizosphere harbored a unique bacterial community differing from those in its bulk soil and NHE counterparts. Several key taxa from Actinobacteria, Bacteroidetes, and TM7 were especially abundant in HE rhizospheres under high Cd stress. The actinobacterial genus Streptomyces was responsible for the majority of the divergence of bacterial community composition between the HE rhizosphere and other soil samples. In the HE rhizosphere, the abundance of Streptomyces was 3.31- to 16.45-fold higher than that in other samples under high Cd stress. These results suggested that both the presence of the hyperaccumulator S. alfredii and Cd exposure select for a specialized rhizosphere bacterial community during phytoextraction of Cd-contaminated soils and that key taxa, such as the species affiliated with the genus Streptomyces, may play an important role in metal hyperaccumulation.IMPORTANCESedum alfredii is a well-known Cd hyperaccumulator native to China. Its potential for extracting Cd relies not only on its powerful uptake, translocation, and tolerance for Cd but also on processes underground (especially rhizosphere microbes) that facilitate root uptake and tolerance of the metal. In this study, a high-throughput sequencing approach was applied to gain insight into the soil-plant-microbe interactions that may influence Cd accumulation in the hyperaccumulator S. alfredii Here, we report the investigation of rhizosphere bacterial communities of S. alfredii in phytoremediation of different levels of Cd contamination in soils. Moreover, some key taxa in its rhizosphere identified in the study, such as the species affiliated with genus Streptomyces, may shed new light on the involvement of bacteria in phytoextraction of contaminated soils and provide new materials for phytoremediation optimization.
Collapse
|
28
|
Feng J, Jia W, Lv S, Bao H, Miao F, Zhang X, Wang J, Li J, Li D, Zhu C, Li S, Li Y. Comparative transcriptome combined with morpho-physiological analyses revealed key factors for differential cadmium accumulation in two contrasting sweet sorghum genotypes. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:558-571. [PMID: 28703450 PMCID: PMC5787832 DOI: 10.1111/pbi.12795] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 05/19/2023]
Abstract
Cadmium (Cd) is a widespread soil contaminant threatening human health. As an ideal energy plant, sweet sorghum (Sorghum bicolor (L.) Moench) has great potential in phytoremediation of Cd-polluted soils, although the molecular mechanisms are largely unknown. In this study, key factors responsible for differential Cd accumulation between two contrasting sweet sorghum genotypes (high-Cd accumulation one H18, and low-Cd accumulation one L69) were investigated. H18 exhibited a much higher ability of Cd uptake and translocation than L69. Furthermore, Cd uptake through symplasmic pathway and Cd concentrations in xylem sap were both higher in H18 than those in L69. Root anatomy observation found the endodermal apoplasmic barriers were much stronger in L69, which may restrict the Cd loading into xylem. The molecular mechanisms underlying these morpho-physiological traits were further dissected by comparative transcriptome analysis. Many genes involved in cell wall modification and heavy metal transport were found to be Cd-responsive DEGs and/or DEGs between these two genotypes. KEGG pathway analysis found phenylpropanoid biosynthesis pathway was over-represented, indicating this pathway may play important roles in differential Cd accumulation between two genotypes. Based on these results, a schematic representation of main processes involved in differential Cd uptake and translocation in H18 and L69 is proposed, which suggests that higher Cd accumulation in H18 depends on a multilevel coordination of efficient Cd uptake and transport, including efficient root uptake and xylem loading, less root cell wall binding, and weaker endodermal apoplasmic barriers.
Collapse
Affiliation(s)
- Juanjuan Feng
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Weitao Jia
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Sulian Lv
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Hexigeduleng Bao
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
- College of Life SciencesChina Jiliang UniversityHangzhouChina
| | - Fangfang Miao
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Xuan Zhang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Jinhui Wang
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
| | - Jihong Li
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
- Beijing Engineering Research Center for BiofuelsTsinghua UniversityBeijingChina
| | - Dongsheng Li
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
- Beijing Engineering Research Center for BiofuelsTsinghua UniversityBeijingChina
| | - Cheng Zhu
- College of Life SciencesChina Jiliang UniversityHangzhouChina
| | - Shizhong Li
- Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina
- Beijing Engineering Research Center for BiofuelsTsinghua UniversityBeijingChina
| | - Yinxin Li
- Key Laboratory of Plant Molecular PhysiologyInstitute of BotanyChinese Academy of SciencesBeijingChina
| |
Collapse
|
29
|
Sun R, Sun Q, Wang R, Cao L. Cadmium accumulation and main rhizosphere characteristics of seven French marigold (Tagetes patula L.) cultivars. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:1171-1178. [PMID: 29053351 DOI: 10.1080/15226514.2017.1375894] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The study was conducted to determine Cd accumulation and Cd fraction in the rhizosphere soil of seven Tagetes patula cultivars (Little Hero Orange, Durango Yellow, Janie Yellow Bright, Lucifer Yellow, Hero Flame, Hongyun Red, Konghuang Yellow). T. patula cultivars showed strong tolerance and accumulation to Cd. The highest Cd concentration (273.77 mg kg-1) in shoots was observed in Little Hero Orange when treated with Cd100. For most cultivars, Cd treatments significantly affected rhizosphere pH values, but had a slight effect on dissolved organic carbon (DOC). pH were negatively correlated with Cd accumulation and Cd percentages in the exchangeable fraction in the rhizosphere soil of Little Hero Orange, Durango Yellow, and Konghuang Yellow. No significant correlation was observed between DOC, Cd accumulation and Cd percentage in the exchangeable fraction in the rhizosphere soil, except for Konghuang Yellow. The results suggested that pH might be related to Cd bioavailability and their uptake by T. patula. Among seven cultivars, Little Hero Orange showed the greatest pH decrease, highest shoot Cd accumulation and Cd percentage in the exchangeable fraction, suggesting the difference in pH responses to Cd levels among T. patula might be responsible for their different ability of Cd activation.
Collapse
Affiliation(s)
- Ruilian Sun
- a Environment Research Institute, Shandong University , Jinan , China
| | - Qianqian Sun
- a Environment Research Institute, Shandong University , Jinan , China
- b School of Life Sciences, Shandong University , Jinan , China
| | - Renqing Wang
- a Environment Research Institute, Shandong University , Jinan , China
- b School of Life Sciences, Shandong University , Jinan , China
| | - Lidong Cao
- a Environment Research Institute, Shandong University , Jinan , China
- b School of Life Sciences, Shandong University , Jinan , China
| |
Collapse
|
30
|
Merlot S, Sanchez Garcia de la Torre V, Hanikenne M. Physiology and Molecular Biology of Trace Element Hyperaccumulation. AGROMINING: FARMING FOR METALS 2018. [DOI: 10.1007/978-3-319-61899-9_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
31
|
Yang W, Zhao F, Ding Z, Wang Y, Zhang X, Zhu Z, Yang X. Variation of tolerance and accumulation to excess iron in 24 willow clones: Implications for phytoextraction. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:1284-1291. [PMID: 30666895 DOI: 10.1080/15226514.2014.922927] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Willows (Salix spp.) are characterized by having large biomass, high tolerance to flooding, and strong metal accumulation ability, exhibiting great promise in the phytoremediation of iron (Fe) from contaminated sites. In this study, the variation of Fe tolerance and accumulation in 24 willow clones was investigated with two levels of Fe(II)-EDTA, 0.025 mM (control) and 2.0 mM (treatment) by hydroponic system for 21 days in a greenhouse. Visual symptoms of Fe toxicity were observed in the leaves and roots of Fe sensitive clones. Clonal comparisons showed a great variation in Fe tolerance, and the high levels of Fe reduced biomass productions of most clones. Tolerance indexes (TIs) varied about five-fold based on shoot dry biomass and about six-fold based on root dry biomass among clones. Clones also exhibited a wide variation in Fe concentrations (mg g-1 DW), ranged from 0.80 to 3.41 in leaves, from 5.40 to 10.51 in stems, and from 3.25 to 17.10 in roots under Fe treatments among clones. Large differences varied in the transport of Fe from roots to aerial parts among clones. The results highlighted the selection of Salix clones with high resistance to Fe toxicity and high Fe accumulation to improve phytoremediation efficacy.
Collapse
Affiliation(s)
- Weidong Yang
- a Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou , China
| | - Fengliang Zhao
- a Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou , China
- b Ministry of Agriculture Danzhou Scientific Observing and Experimental Station of Agro-Environment, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS) , Danzhou , China
| | - Zheli Ding
- a Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou , China
- c Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS) , Haikou , China
| | - Yuyan Wang
- a Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou , China
- d College of Agricultural Economy and Technology, Jiujiang Vocational University , Jiujiang , China
| | - Xincheng Zhang
- a Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou , China
| | - Zhiqiang Zhu
- a Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou , China
- e College of Agriculture, Hainan University , Haikou , China
| | - Xiaoe Yang
- a Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University , Hangzhou , China
| |
Collapse
|
32
|
Liu H, Zhao H, Wu L, Xu W. A Genetic Transformation Method for Cadmium Hyperaccumulator Sedum plumbizincicola and Non-hyperaccumulating Ecotype of Sedum alfredii. FRONTIERS IN PLANT SCIENCE 2017; 8:1047. [PMID: 28670322 PMCID: PMC5472854 DOI: 10.3389/fpls.2017.01047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/31/2017] [Indexed: 05/19/2023]
Abstract
The present study demonstrates the development of an Agrobacterium-mediated genetic transformation method for species of the Sedum genus, which includes the Cd/Zn hyperaccumulator Sedum plumbizincicola and the non-hyperaccumulating ecotype of S. alfredii. Multiple shoots were induced from stem nodes of two Sedum plants using Murashige and Skoog (MS) medium containing 0.1 mg/L cytokinin 6-benzyladenine (6-BA) and 1.0 mg/L auxin 1-naphthaleneacetic acid (NAA). The shoot primordia were used as direct targets for Agrobacterium infection. Selection on hygromycin was highly effective in generating Agrobacterium-transformed explants. This callus-free procedure allowed us to obtain transgenic plantlets after rooting hygromycin-resistant shoots on phytohormone-free MS medium containing the antibiotic. The presence and expression of the reporter genes gusA and GFP in transgenic plants were confirmed by a real-time polymerase chain reaction, histochemical GUS assays, and confocal microscopy. This reliable method for genetic transformation of Sedum plants will help us to understand gene functions and the molecular mechanisms underlying Cd hypertolerance and hyperaccumulation in these species.
Collapse
Affiliation(s)
- Huan Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Haixia Zhao
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- University of Chinese Academy of SciencesBeijing, China
| | - Longhua Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of SciencesNanjing, China
- *Correspondence: Wenzhong Xu, Longhua Wu,
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Wenzhong Xu, Longhua Wu,
| |
Collapse
|
33
|
Salam MMA, Kaipiainen E, Mohsin M, Villa A, Kuittinen S, Pulkkinen P, Pelkonen P, Mehtätalo L, Pappinen A. Effects of contaminated soil on the growth performance of young Salix (Salix schwerinii E. L. Wolf) and the potential for phytoremediation of heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 183:467-477. [PMID: 27614557 DOI: 10.1016/j.jenvman.2016.08.082] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 08/29/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Salix schwerinii was tested in a pot experiment to assess plant growth performance i.e., relative height and dry biomass and the potential for heavy metal uptake in soils polluted with chromium, zinc, copper, nickel and total petroleum hydrocarbons. The soil used in the pot experiment was collected from a landfill area in Finland. Peat soil was added at different quantities to the polluted soil to stimulate plant growth. The plants were irrigated with tap water or processed water (municipal waste water) to further investigate the effects of nutrient loading on plant biomass growth. The soil was treated at two pH levels (4 and 6). The results showed that the addition of 40-70% peat soil at pH 6 to a polluted soil, and irrigation with processed water accelerated plant growth and phytoextraction efficiency. In the pot experiment, Salix grown in chromium, zinc, copper, nickel and total petroleum hydrocarbons -contaminated field soil for 141 days were unaffected by the contaminated soil and took up excess nutrients from the soil and water. Total mean chromium concentration in the plant organs ranged from 17.05 to 250.45 mg kg-1, mean zinc concentration ranged from 142.32 to 1616.59 mg kg-1, mean copper concentration ranged from 12.11 to 223.74 mg kg-1 and mean nickel concentration ranged from 10.11 to 75.90 mg kg-1. Mean chromium concentration in the plant organs ranged from 46 to 94%, mean zinc concentration ranged from 44 to 76%, mean copper concentration ranged from 19 to 54% and mean nickel concentration ranged from 8 to 21% across all treatments. Under the different treatments, chromium was taken up by Salix in the largest quantities, followed by zinc, copper and nickel respectively. Salix also produced a moderate reduction in total petroleum total petroleum hydrocarbons in the polluted soil. The results from the pot experiment suggest that Salix schwerinii has the potential to accumulate significant amounts of chromium, zinc, copper and nickel. However, long term research is needed to verify the phytoextraction abilities of Salix observed in the pot experiment.
Collapse
Affiliation(s)
- Mir Md Abdus Salam
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland.
| | - Erik Kaipiainen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland
| | - Muhammad Mohsin
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland
| | - Aki Villa
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland
| | - Suvi Kuittinen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland
| | - Pertti Pulkkinen
- Natural Resources Institute Finland (Luke), Haapastensyrjä Research Unit, Haapastensyrjäntie 34, FIN-12600, Läyliäinen, Finland
| | - Paavo Pelkonen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland
| | - Lauri Mehtätalo
- School of Computing, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland
| | - Ari Pappinen
- School of Forest Sciences, University of Eastern Finland, Yliopistokatu 7, P.O. Box 111, 80100, Joensuu, Finland
| |
Collapse
|
34
|
Shi X, Chen YT, Wang SF, Pan HW, Sun HJ, Liu CX, Liu JF, Jiang ZP. Phytoremediation potential of transplanted bare-root seedlings of trees for lead/zinc and copper mine tailings. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:1155-1163. [PMID: 27216539 DOI: 10.1080/15226514.2016.1189399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Selecting plant species that can overcome unfavorable conditions and increase the recovery of degraded mined lands remains a challenge. A pot experiment was conducted to evaluate the feasibility of using transplanted tree seedlings for the phytoremediation of lead/zinc and copper mine tailings. One-year-old bare-root of woody species (Rhus chinensis Mill, Quercus acutissima Carruth, Liquidambar formosana Hance, Vitex trifolia Linn. var. simplicifolia Cham, Lespedeza cuneata and Amorpha fruticosa Linn) were transplanted into pots with mine tailings and tested as potential metal-tolerant plants. Seedling survival, plant growth, root trait, nutrient uptake, and metal accumulation and translocation were assessed. The six species grew in both tailings and showed different tolerance level. A. fruticosa was highly tolerant of Zn, Pb and Cu, and grew normally in both tailings. Metal concentrations were higher in the roots than in the shoots of the six species. All of the species had low bioconcentration and translocation factor values. However, R. chinensis and L. formosana had significantly higher translocation factor values for Pb (0.88) and Zn (1.78) than the other species. The nitrogen-fixing species, A. fruticosa, had the highest tolerance and biomass production, implying that it has great potential in the phytoremediation of tailing areas in southern China.
Collapse
Affiliation(s)
- Xiang Shi
- a Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry , Hangzhou , China
| | - Yi-Tai Chen
- a Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry , Hangzhou , China
| | - Shu-Feng Wang
- a Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry , Hangzhou , China
| | - Hong-Wei Pan
- a Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry , Hangzhou , China
| | - Hai-Jing Sun
- a Research Institute of Subtropical Forestry, Key Laboratory of Tree Breeding of Zhejiang Province, Chinese Academy of Forestry , Hangzhou , China
| | - Cai-Xia Liu
- b Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China
| | - Jian-Feng Liu
- b Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China
| | - Ze-Ping Jiang
- b Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry , Beijing , China
| |
Collapse
|
35
|
Rodrigues CG, Krüger AP, Barbosa WF, Guedes RNC. Leaf Fertilizers Affect Survival and Behavior of the Neotropical Stingless Bee Friesella schrottkyi (Meliponini: Apidae: Hymenoptera). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1001-1008. [PMID: 27069099 DOI: 10.1093/jee/tow044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/18/2016] [Indexed: 06/05/2023]
Abstract
The ongoing concern about bee decline has largely focused on honey bees and neonicotinoid insecticides, while native pollinators such as Neotropical stingless bees and agrochemicals such as other insecticide groups, pesticides in general, and fertilizers-especially leaf fertilizers-remain neglected as potential contributors to pollination decline. In an effort to explore this knowledge gap, we assessed the lethal and sublethal behavioral impact of heavy metal-containing leaf fertilizers in a native pollinator of ecological importance in the Neotropics: the stingless bee Friesella schrottkyi (Friese). Two leaf fertilizers-copper sulfate (24% Cu) and a micronutrient mix (Arrank L: 5% S, 5% Zn, 3% Mn, 0.6% Cu, 0.5% B, and 0.06% Mo)-were used in oral and contact exposure bioassays. The biopesticide spinosad and water were used as positive and negative controls, respectively. Copper sulfate compromised the survival of stingless bee workers, particularly with oral exposure, although less than spinosad under contact exposure. Sublethal exposure to both leaf fertilizers at their field rates also caused significant effects in exposed workers. Copper sulfate enhanced flight take-off on stingless bee workers, unlike workers exposed to the micronutrient mix. There was no significant effect of leaf fertilizers on the overall activity and walking behavior of worker bees. No significant effect was observed for the respiration rate of worker bees under contact exposure, but workers orally exposed to the micronutrient mix exhibited a reduced respiration rate. Therefore, leaf fertilizers do affect F. schrottkyi , what may also occur with other stingless bees, potentially compromising their pollination activity deserving attention.
Collapse
|
36
|
Feng H, Qian Y, Gallagher FJ, Zhang W, Yu L, Liu C, Jones KW, Tappero R. Synchrotron micro-scale measurement of metal distributions in Phragmites australis and Typha latifolia root tissue from an urban brownfield site. J Environ Sci (China) 2016; 41:172-182. [PMID: 26969063 DOI: 10.1016/j.jes.2015.07.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/12/2015] [Accepted: 07/08/2015] [Indexed: 06/05/2023]
Abstract
Liberty State Park in New Jersey, USA, is a "brownfield" site containing various levels of contaminants. To investigate metal uptake and distributions in plants on the brownfield site, Phragmites australis and Typha latifolia were collected in Liberty State Park during the growing season (May-September) in 2011 at two sites with the high and low metal loads, respectively. The objective of this study was to understand the metal (Fe, Mn, Cu, Pb and Zn) concentration and spatial distributions in P. australis and T. latifolia root systems with micro-meter scale resolution using synchrotron X-ray microfluorescence (μXRF) and synchrotron X-ray computed microtomography (μCMT) techniques. The root structure measurement by synchrotron μCMT showed that high X-ray attenuation substance appeared in the epidermis. Synchrotron μXRF measurement showed that metal concentrations and distributions in the root cross-section between epidermis and vascular tissue were statistically different. Significant correlations were found between metals (Cu, Mn, Pb and Zn) and Fe in the epidermis, implying that metals were scavenged by Fe oxides. The results from this study suggest that the expression of metal transport and accumulation within the root systems may be element specific. The information derived from this study can improve our current knowledge of the wetland plant ecological function in brownfield remediation.
Collapse
Affiliation(s)
- Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA.
| | - Yu Qian
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA
| | - Frank J Gallagher
- Urban Forestry Program, Department of Ecology, Evolution and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Weiguo Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Lizhong Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
| | - Changjun Liu
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Keith W Jones
- Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Ryan Tappero
- Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
37
|
Chen B, Ma X, Liu G, Xu X, Pan F, Zhang J, Tian S, Feng Y, Yang X. An endophytic bacterium Acinetobacter calcoaceticus Sasm3-enhanced phytoremediation of nitrate-cadmium compound polluted soil by intercropping Sedum alfredii with oilseed rape. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:17625-17635. [PMID: 26146371 DOI: 10.1007/s11356-015-4933-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 06/19/2015] [Indexed: 06/04/2023]
Abstract
Intensive agricultural system with high input of fertilizer results in high agricultural output. However, excessive fertilization in intensive agricultural system has great potential to cause nitrate and heavy metal accumulation in soil, which is adverse to human health. The main objective of the present study was to observe the effects of intercropping and inoculation of endophytic bacterium Acinetobacter calcoaceticus Sasm3 on phytoremediation of combined contaminated soil in oilseed rape (Brassica napus L.). The results showed that with Sasm3 inoculation, the biomass of rape was increased by 10-20% for shoot, 64% for root, and 23-29% for seeds while the nitrate accumulation in rape was decreased by 14% in root and by 12% in shoot. The cadmium concentration in rape increased significantly with mono-inoculating treatment, whereas it decreased significantly after intercropping treatment. By denaturing gradient gel electrophoresis (DGGE) and real-time quantitative PCR analysis, the diversity of bacterial community and the number of nirS and nirK gene copies increased significantly with inoculation or/and intercropping treatment. In conclusion, the endophytic bacterium Sasm3-inoculated intercropping system not only improved the efficiency of clearing cadmium from soil without obstructing crop production, but also improved the quality of crop.
Collapse
Affiliation(s)
- Bao Chen
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiaoxiao Ma
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Guiqing Liu
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Xiaomeng Xu
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Fengshan Pan
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jie Zhang
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Ying Feng
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China.
| | - Xiaoe Yang
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
38
|
Wójcik M, Dresler S, Plak A, Tukiendorf A. Naturally evolved enhanced Cd tolerance of Dianthus carthusianorum L. is not related to accumulation of thiol peptides and organic acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7906-17. [PMID: 25510617 PMCID: PMC4432087 DOI: 10.1007/s11356-014-3963-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/05/2014] [Indexed: 05/20/2023]
Abstract
Two contrasting ecotypes of Dianthus carthusianorum L., metallicolous (M) and nonmetallicolous (NM), were cultivated in hydroponics at 0-50 μM Cd for 14 days to compare their Cd accumulation, sensitivity and tolerance mechanisms. While both ecotypes contained similar concentrations of Cd in the shoots and roots, the M ecotype was more Cd-tolerant (as measured by fresh weight production and root and leaf viability). Both ecotypes accumulated phytochelatins (PCs) in response to Cd with a higher amount thereof found in the NM ecotype. Concentrations of PCs remained unchanged with increasing Cd concentrations in the root tissues, but their content in the shoots increased. The addition of L-buthionine-sulfoximine (BSO) diminished glutathione (GSH) accumulation and arrested PC production, which increased the sensitivity to Cd of the NM, but not M ecotype. Organic acids (malate and citrate) as well as proline accumulation did not change significantly after Cd exposition and was at the same level in both ecotypes. The enhanced Cd tolerance of the M ecotype of D. carthusianorum cannot be explained in terms of restricted Cd uptake and differential production of PCs, organic acids or proline; some other mechanisms must be involved in its adaptation to the high Cd content in the environment.
Collapse
Affiliation(s)
- Małgorzata Wójcik
- Department of Plant Physiology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033, Lublin, Poland,
| | | | | | | |
Collapse
|
39
|
Yang W, Li H, Zhang T, Sen L, Ni W. Classification and identification of metal-accumulating plant species by cluster analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:10626-10637. [PMID: 24888623 DOI: 10.1007/s11356-014-3102-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
Identification and classification of metal-accumulating plant species is essential for phytoextraction. Cluster analysis is used for classifying individuals based on measured characteristics. In this study, classification of plant species for metal accumulation was conducted using cluster analysis based on a practical survey. Forty plant samples belonging to 21 species were collected from an ancient silver-mining site. Five groups such as hyperaccumulator, potential hyperaccumulator, accumulator, potential accumulator, and normal accumulating plant were graded. For Cd accumulation, the ancient silver-mining ecotype of Sedum alfredii was treated as a Cd hyperaccumulator, and the others were normal Cd-accumulating plants. For Zn accumulation, S. alfredii was considered as a potential Zn hyperaccumulator, Conyza canadensis and Artemisia lavandulaefolia were Zn accumulators, and the others were normal Zn-accumulating plants. For Pb accumulation, S. alfredii and Elatostema lineolatum were potential Pb hyperaccumulators, Rubus hunanensis, Ajuga decumbens, and Erigeron annuus were Pb accumulators, C. canadensis and A. lavandulaefolia were potential Pb accumulators, and the others were normal Pb-accumulating plants. Plant species with the potential for phytoextraction were identified such as S. alfredii for Cd and Zn, C. canadensis and A. lavandulaefolia for Zn and Pb, and E. lineolatum, R. hunanensis, A. decumbens, and E. annuus for Pb. Cluster analysis is effective in the classification of plant species for metal accumulation and identification of potential species for phytoextraction.
Collapse
Affiliation(s)
- Wenhao Yang
- College of Environmental and Resource Sciences, MOE Key Laboratory of Environment Remediation and Ecosystem Health, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
Yang WD, Wang YY, Zhao FL, Ding ZL, Zhang XC, Zhu ZQ, Yang XE. Variation in copper and zinc tolerance and accumulation in 12 willow clones: implications for phytoextraction. J Zhejiang Univ Sci B 2014; 15:788-800. [PMID: 25183033 PMCID: PMC4162880 DOI: 10.1631/jzus.b1400029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/08/2014] [Indexed: 11/11/2022]
Abstract
Willows (Salix spp.) have shown high potential for the phytoextraction of heavy metals. This study compares variations in copper (Cu) and zinc (Zn) tolerance and accumulation potential among 12 willow clones grown in a nutrient solution treated with 50 μmol/L of Cu or Zn, respectively. The results showed differences in the tolerance and accumulation of Cu and Zn with respect to different species/clones. The biomass variation among clones in response to Cu or Zn exposure ranged from the stimulation of growth to inhibition, and all of the clones tested showed higher tolerance to Cu than to Zn. The clones exhibited less variation in Cu accumulation but larger variation in Zn accumulation. Based on translocation factors, it was found that most of the Cu was retained in the roots and that Zn was more mobile than Cu for all clones. It is concluded that most willow clones are good accumulators of Zn and Cu.
Collapse
Affiliation(s)
- Wei-dong Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-yan Wang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Feng-liang Zhao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Danzhou Scientific Observation and Experimental Agro-Environment Station, Ministry of Agriculture, Danzhou 571737, China
| | - Zhe-li Ding
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin-cheng Zhang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhi-qiang Zhu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- College of Agriculture, Hainan University, Haikou 570228, China
| | - Xiao-e Yang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
41
|
Pollard AJ, Reeves RD, Baker AJM. Facultative hyperaccumulation of heavy metals and metalloids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 217-218:8-17. [PMID: 24467891 DOI: 10.1016/j.plantsci.2013.11.011] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/15/2013] [Accepted: 11/16/2013] [Indexed: 05/20/2023]
Abstract
Approximately 500 species of plants are known to hyperaccumulate heavy metals and metalloids. The majority are obligate metallophytes, species that are restricted to metalliferous soils. However, a smaller but increasing list of plants are "facultative hyperaccumulators" that hyperaccumulate heavy metals when occurring on metalliferous soils, yet also occur commonly on normal, non-metalliferous soils. This paper reviews the biology of facultative hyperaccumulators and the opportunities they provide for ecological and evolutionary research. The existence of facultative hyperaccumulator populations across a wide edaphic range allows intraspecific comparisons of tolerance and uptake physiology. This approach has been used to study zinc and cadmium hyperaccumulation by Noccaea (Thlaspi) caerulescens and Arabidopsis halleri, and it will be instructive to make similar comparisons on species that are distributed even more abundantly on normal soil. Over 90% of known hyperaccumulators occur on serpentine (ultramafic) soil and accumulate nickel, yet there have paradoxically been few experimental studies of facultative nickel hyperaccumulation. Several hypotheses suggested to explain the evolution of hyperaccumulation seem unlikely when most populations of a species occur on normal soil, where plants cannot hyperaccumulate due to low metal availability. In such species, it may be that hyperaccumulation is an ancestral phylogenetic trait or an anomalous manifestation of physiological mechanisms evolved on normal soils, and may or may not have direct adaptive benefits.
Collapse
Affiliation(s)
- A Joseph Pollard
- Department of Biology, Furman University, Greenville SC 29613, USA.
| | | | - Alan J M Baker
- School of Botany, The University of Melbourne and Centre for Mined Land Rehabilitation, University of Queensland, Australia
| |
Collapse
|
42
|
Zhang X, Lin L, Chen M, Zhu Z, Yang W, Chen B, Yang X, An Q. A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. JOURNAL OF HAZARDOUS MATERIALS 2012; 229-230:361-370. [PMID: 22749969 DOI: 10.1016/j.jhazmat.2012.06.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 06/07/2012] [Accepted: 06/08/2012] [Indexed: 06/01/2023]
Abstract
Low biomass and shallow root systems limit the application of heavy metal phytoextraction by hyperaccumulators. Plant growth-promoting microbes may enhance hyperaccumulators'phytoextraction. A heavy metal-resistant fungus belonged to the Fusarium oxysporum complex was isolated from the Zn/Cd co-hyperaccumulator Sedum alfredii Hance grown in a Pb/Zn mined area. This Fusarium fungus was not pathogenic to plants but promoted host growth. Hydroponic experiments showed that 500 μM Zn(2+) or 50 μM Cd(2+) combined with the fungus increased root length, branches, and surface areas, enhanced nutrient uptake and chlorophyll synthesis, leading to more vigorous hyperaccumulators with greater root systems. Soil experiments showed that the fungus increased root and shoot biomass and S. alfredii-mediated heavy metal availabilities, uptake, translocation or concentrations, and thus increased phytoextraction of Zn (144% and 44%), Cd (139% and 55%), Pb (84% and 85%) and Cu (63% and 77%) from the original Pb/Zn mined soil and a multi-metal contaminated paddy soil. Together, the nonpathogenic Fusarium fungus was able to increase S. alfredii root systems and function, metal availability and accumulation, plant biomass, and thus phytoextraction efficiency. This study showed a great application potential for culturable indigenous fungi other than symbiotic mycorrhizas to enhance the phytoextraction by hyperaccumulators.
Collapse
Affiliation(s)
- Xincheng Zhang
- MOE Key Laboratory of Environment Remediation and Ecosystem Health, College of Environmental and Resources Science, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Craciun AR, Meyer CL, Chen J, Roosens N, De Groodt R, Hilson P, Verbruggen N. Variation in HMA4 gene copy number and expression among Noccaea caerulescens populations presenting different levels of Cd tolerance and accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:4179-89. [PMID: 22581842 DOI: 10.1093/jxb/ers104] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
There is huge variability among populations of the hyperaccumulator Noccaea caerulescens (formerly Thlaspi caerulescens) in their capacity to tolerate and accumulate cadmium. To gain new insights into the mechanisms underlying this variability, we estimated cadmium fluxes and further characterized the N. caerulescens heavy metal ATPase 4 (NcHMA4) gene in three populations (two calamine, Saint-Félix-de-Pallières, France and Prayon, Belgium; one serpentine, Puente Basadre, Spain) presenting contrasting levels of tolerance and accumulation. Cadmium uptake and translocation varied among populations in the same way as accumulation; the population with the highest cadmium concentration in shoots (Saint Félix-de-Pallières) presented the highest capacity for uptake and translocation. We demonstrated that the four NcHMA4 copies identified in a previous study are not fixed at the species level, and that the copy truncated in the C-terminal part encodes a functional protein. NcHMA4 expression and gene copy number was lower in the serpentine population, which was the least efficient in cadmium translocation compared to the calamine populations. NcHMA4 expression was associated with the vascular tissue in all organs, with a maximum at the crown. Overall, our results indicate that differences in cadmium translocation ability of the studied populations appear to be controlled, at least partially, by NcHMA4, while the overexpression of NcHMA4 in the two calamine populations may result from convergent evolution.
Collapse
Affiliation(s)
- Adrian R Craciun
- Laboratoire de Physiologie et Génétique Moléculaire des Plantes, Université Libre de Bruxelles, Campus de la Plaine, CP242, Bd du Triomphe, 1050 Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
44
|
Lu S, Du Y, Zhong D, Zhao B, Li X, Xu M, Li Z, Luo Y, Yan J, Wu L. Comparison of trace element emissions from thermal treatments of heavy metal hyperaccumulators. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:5025-5031. [PMID: 22458922 DOI: 10.1021/es202616v] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Phytoextraction has become one of the most promising remediation techniques for heavy metal (HM) contaminated soils. However, the technique invariably produces large amounts of HM-enriched hyperaccumulators, which need further safe disposal. In this study, two different thermal treatment methods are investigated as potential options for evaporative separation of HMs from the residues. A horizontal tube furnace and a vertical entrained flow tube furnace were used for testing the disposal of grounded hyperaccumulators. The release characteristics of HMs (Cd, Cu, Pb, and Zn) into flue gas and residues were investigated for thermal treatment of the Cd and Zn hyperaccumulators Sedum plumbizincicola and Sedum alfredii. In a horizontal tube furnace, incineration favors the volatilization of Cu and Cd in contrast to pyrolysis. The percentages of HMs in residues after incineration are lower than those after pyrolysis, especially for Cd, Pb, and Zn. However, in an entrained flow tube furnace, Zn content in flue gas increases with increasing temperature, but Cu and Cd contents are fluctuated. In addition, a higher incineration temperature enhances the Cu content in residues.
Collapse
Affiliation(s)
- Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering of Zhejiang University, Hangzhou 310027, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Li WC, Wong MH. Interaction of Cd/Zn hyperaccumulating plant (Sedum alfredii) and rhizosphere bacteria on metal uptake and removal of phenanthrene. JOURNAL OF HAZARDOUS MATERIALS 2012; 209-210:421-33. [PMID: 22309655 DOI: 10.1016/j.jhazmat.2012.01.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 01/16/2012] [Accepted: 01/16/2012] [Indexed: 05/13/2023]
Abstract
The effects of bacteria (Burkholderia cepacia) on plant growth, metal uptake, tolerance index and phenanthrene degradation by a hyperaccumulating plant (Sedum alfredii) were investigated. It was found that inoculation of bacteria did not enhance plant growth and metal uptake; while both metal translocation factor (up to 84% for Cd and 42% for Zn) and tolerance index (up to 23.2% for shoot and 72% for root) were significantly increased. In addition, inoculation of bacteria also alleviated the reductions of bioaccumulation factor and phytoextraction efficiency of As, Cu and Zn with the increasing proportions of polluted soil applied, while they were even increased for Cd and Pb (up to 31.2 and 124%, respectively). Up to 96.3% of phenanthrene was removed in the treatment with both plant and bacteria at the end of the experiment. A positive correlation between metal and P accumulation in plants was observed, it is suggested that high P uptake is directly involved in metal detoxification and leading to an increased P requirement. With the assistance of bacteria, S. alfredii could be able to withstand higher metal concentrations and it could also provide a practical tool for phytoremediation.
Collapse
Affiliation(s)
- W C Li
- Croucher Institute for Environmental Sciences, and Department of Biology, Hong Kong Baptist University, Hong Kong SAR, PR China
| | | |
Collapse
|
46
|
|
47
|
Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Sarangi R, Newville M, Commisso J, Brown P. Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. PLANT PHYSIOLOGY 2011; 157:1914-25. [PMID: 22025609 PMCID: PMC3327216 DOI: 10.1104/pp.111.183947] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 10/23/2011] [Indexed: 05/03/2023]
Abstract
Spatial imaging of cadmium (Cd) in the hyperaccumulator Sedum alfredii was investigated in vivo by laser ablation inductively coupled plasma mass spectrometry and x-ray microfluorescence imaging. Preferential Cd accumulation in the pith and cortex was observed in stems of the Cd hyperaccumulating ecotype (HE), whereas Cd was restricted to the vascular bundles in its contrasting nonhyperaccumulating ecotype. Cd concentrations of up to 15,000 μg g(-1) were measured in the pith cells, which was many fold higher than the concentrations in the stem epidermis and vascular bundles in the HE plants. In the leaves of the HE, Cd was mainly localized to the mesophyll and vascular cells rather than the epidermis. The distribution pattern of Cd in both stems and leaves of the HE was very similar to calcium but not zinc, irrespective of Cd exposure levels. Extended x-ray absorption fine structure spectroscopy analysis showed that Cd in the stems and leaves of the HE was mainly associated with oxygen ligands, and a larger proportion (about 70% in leaves and 47% in stems) of Cd was bound with malic acid, which was the major organic acid in the shoots of the plants. These results indicate that a majority of Cd in HE accumulates in the parenchyma cells, especially in stems, and is likely associated with calcium pathways and bound with organic acid (malate), which is indicative of a critical role of vacuolar sequestration of Cd in the HE S. alfredii.
Collapse
Affiliation(s)
| | | | | | - Xiaoe Yang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China (S.T., L.L., X.Y.); Department of Plant Sciences, University of California, Davis, California 95616 (S.T., L.L., J.L., H.H., J.C., P.B.); Indian River Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Fort Pierce, Florida 34945 (Z.H.); Stanford Synchrotron Radiation Lightsource, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, California 94025 (R.S.); GSECARS Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (M.N.)
| | | | | | | | | | | | | |
Collapse
|
48
|
Nickel Hyperaccumulating Plants and Alyssum bertolonii: Model Systems for Studying Biogeochemical Interactions in Serpentine Soils. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-23327-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
49
|
Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2011; 180:169-81. [PMID: 21421358 DOI: 10.1016/j.plantsci.2010.08.016] [Citation(s) in RCA: 753] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 05/18/2023]
Abstract
The term "hyperaccumulator" describes a number of plants that belong to distantly related families, but share the ability to grow on metalliferous soils and to accumulate extraordinarily high amounts of heavy metals in the aerial organs, far in excess of the levels found in the majority of species, without suffering phytotoxic effects. Three basic hallmarks distinguish hyperaccumulators from related non-hyperaccumulating taxa: a strongly enhanced rate of heavy metal uptake, a faster root-to-shoot translocation and a greater ability to detoxify and sequester heavy metals in leaves. An interesting breakthrough that has emerged from comparative physiological and molecular analyses of hyperaccumulators and related non-hyperaccumulators is that most key steps of hyperaccumulation rely on different regulation and expression of genes found in both kinds of plants. In particular, a determinant role in driving the uptake, translocation to leaves and, finally, sequestration in vacuoles or cell walls of great amounts of heavy metals, is played in hyperaccumulators by constitutive overexpression of genes encoding transmembrane transporters, such as members of ZIP, HMA, MATE, YSL and MTP families. Among the hypotheses proposed to explain the function of hyperaccumulation, most evidence has supported the "elemental defence" hypothesis, which states that plants hyperaccumulate heavy metals as a defence mechanism against natural enemies, such as herbivores. According to the more recent hypothesis of "joint effects", heavy metals can operate in concert with organic defensive compounds leading to enhanced plant defence overall. Heavy metal contaminated soils pose an increasing problem to human and animal health. Using plants that hyperaccumulate specific metals in cleanup efforts appeared over the last 20 years. Metal accumulating species can be used for phytoremediation (removal of contaminant from soils) or phytomining (growing plants to harvest the metals). In addition, as many of the metals that can be hyperaccumulated are also essential nutrients, food fortification and phytoremediation might be considered two sides of the same coin. An overview of literature discussing the phytoremediation capacity of hyperaccumulators to clean up soils contaminated with heavy metals and the possibility of using these plants in phytomining is presented.
Collapse
Affiliation(s)
- Nicoletta Rascio
- Department of Biology, University of Padova, via U. Bassi 58/B, I-35121 Padova, Italy.
| | | |
Collapse
|
50
|
Lux A, Vaculík M, Martinka M, Lišková D, Kulkarni MG, Stirk WA, Van Staden J. Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea. ANNALS OF BOTANY 2011; 107:285-92. [PMID: 21118841 PMCID: PMC3025738 DOI: 10.1093/aob/mcq240] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Revised: 10/05/2010] [Accepted: 11/05/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Merwilla plumbea is an important African medicinal plant. As the plants grow in soils contaminated with metals from mining activities, the danger of human intoxication exists. An experiment with plants exposed to cadmium (Cd) was performed to investigate the response of M. plumbea to this heavy metal, its uptake and translocation to plant organs and reaction of root tissues. METHODS Plants grown from seeds were cultivated in controlled conditions. Hydroponic cultivation is not suitable for this species as roots do not tolerate aquatic conditions, and additional stress by Cd treatment results in total root growth inhibition and death. After cultivation in perlite the plants exposed to 1 and 5 mg Cd L(-1) in half-strength Hoagland's solution were compared with control plants. Growth parameters were evaluated, Cd content was determined by inductively coupled plasma mass spectroscopy (ICP-MS) and root structure was investigated using various staining procedures, including the fluorescent stain Fluorol yellow 088 to detect suberin deposition in cell walls. KEY RESULTS The plants exposed to Cd were significantly reduced in growth. Most of the Cd taken up by plants after 4 weeks cultivation was retained in roots, and only a small amount was translocated to bulbs and leaves. In reaction to higher Cd concentrations, roots developed a hypodermal periderm close to the root tip. Cells produced by cork cambium impregnate their cell walls by suberin. CONCLUSIONS It is suggested that the hypodermal periderm is developed in young root parts in reaction to Cd toxicity to protect the root from radial uptake of Cd ions. Secondary meristems are usually not present in monocotyledonous species. Another interpretation explaining formation of protective suberized layers as a result of periclinal divisions of the hypodermis is discussed. This process may represent an as yet unknown defence reaction of roots when exposed to elemental stress.
Collapse
Affiliation(s)
- Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B-2, SK-842 15 Bratislava, Slovak Republic
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovak Republic
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B-2, SK-842 15 Bratislava, Slovak Republic
| | - Michal Martinka
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina B-2, SK-842 15 Bratislava, Slovak Republic
| | - Desana Lišková
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 9, SK-845 38 Bratislava, Slovak Republic
| | - Manoj G. Kulkarni
- Research Centre for Plant Growth and Development, School of Biological and Conservation Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Wendy A. Stirk
- Research Centre for Plant Growth and Development, School of Biological and Conservation Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| | - Johannes Van Staden
- Research Centre for Plant Growth and Development, School of Biological and Conservation Sciences, University of KwaZulu-Natal Pietermaritzburg, Private Bag X01, Scottsville 3209, South Africa
| |
Collapse
|