1
|
Faqir Y, Li Z, Gul T, Zahoor, Jiang Z, Yu L, Tan C, Chen X, Ma J, Feng J. Uranium's hazardous effects on humans and recent developments in treatment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118043. [PMID: 40080936 DOI: 10.1016/j.ecoenv.2025.118043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 03/15/2025]
Abstract
Uranium, a naturally occurring element, is predominantly recognized for its role as fuel in both civilian and military energy sectors. Concerns have been raised regarding the adverse environmental impacts and health risks associated with uranium mining due to the exposure it causes. Such exposure leads to systemic toxicity, affecting pulmonary, hepatic, renal, reproductive, neurological, and bone health. This review identifies significant research gaps regarding detoxification methods for uranium contamination and recommends further advancements, including genetic modification and exploration of plant compounds. A comprehensive review of published research materials from diverse sources of uranium, including various treatments and hazardous impacts on the human body, was conducted. Additionally, a PRISMA analysis was performed in this study. This review emphasizes the importance of collaboration and the formulation of research-informed regulations to effectively safeguard vulnerable communities from the consequences of contamination. Public discourse often emphasizes the significance of radiotoxicity; however, the non-radioactive chemotoxicity of uranium has been identified as a significant risk factor for environmental exposures, contingent upon species, enrichment, and exposure route. Given these serious health consequences, several methods are being investigated to ameliorate uranium toxicity. In response to these concerns, several techniques, such as phytomedicinal treatments, biochemical approaches, and chelation therapy, have been investigated to minimize the adverse effects of uranium exposure in the human body.
Collapse
Affiliation(s)
- Yahya Faqir
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ziang Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Talaal Gul
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zahoor
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ziwei Jiang
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China
| | - Chengjia Tan
- School of Life Science and Technology, Mianyang Teachers' College, Mianyang 621000, China
| | - Xi Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China; NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang 621000, China
| | - Jiahua Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, China.
| | - Jiafu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (MIANYANG CENTRAL HOSPITAL), Mianyang 621000, China.
| |
Collapse
|
2
|
Li J, Li Y, Zhao Y, Liu S, Li W, Tan H, Shen L, Ran Y, Hao Y. Mitigation of depleted uranium-induced mitochondrial damage by ethylmalonic encephalopathy 1 protein via modulation of hydrogen sulfide and glutathione pathways. Arch Toxicol 2025; 99:1133-1141. [PMID: 39729112 DOI: 10.1007/s00204-024-03949-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Depleted uranium (DU) is a byproduct of uranium enrichment, which can cause heavy-metal toxicity and radiation toxicity as well as serious damage to the kidneys. However, the mechanism of renal injury induced by DU is still unclear. This study aimed to explore the role of ethylmalonic encephalopathy 1 (ETHE1) in DU-induced mitochondrial dysfunction and elucidate the underlying mechanisms. Using ETHE1 gene knockout C57BL/6 mice (10 mg/kg DU) and renal cell models (500 µM DU) exposed to DU, we observed significantly reduced levels of hydrogen sulfide (H2S) and glutathione (GSH), alongside decreased adenosine triphosphate (ATP) content and increased oxidative stress. Our results demonstrated that knocking out or silencing ETHE1 led to a significant reduction in H2S and GSH levels, whereas the opposite occurred when was ETHE1 overexpressed. When the H2S donor sodium hydrosulfide and GSH precursor N-acetylcysteine were used to treat animals or cells, cellular ATP levels were increased, oxidative stress markers were reduced, and kidney damage was mitigated. In addition, H2S and GSH interacted with each other after DU poisoning. These findings suggest that the ETHE1/H2S/GSH pathway plays a critical role in mediating DU-induced mitochondrial dysfunction in renal cells, highlighting potential therapeutic targets for mitigating the harmful effects of DU. Thus, this study expands our understanding of DU-induced renal damage pathways, providing avenues for further research and intervention strategies.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yong Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yazhen Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Suiyi Liu
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Wenrun Li
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Huanhuan Tan
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Li Shen
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China
| | - Yonghong Ran
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| | - Yuhui Hao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Zhang H, Wang Y, Wang R, Zhang X, Chen H. TRPML1 agonist ML-SA5 mitigates uranium-induced nephrotoxicity via promoting lysosomal exocytosis. Biomed Pharmacother 2024; 181:117728. [PMID: 39647321 DOI: 10.1016/j.biopha.2024.117728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Uranium (U) released from U mining and spent nuclear fuel reprocessing in the nuclear industry, nuclear accidents and military activities as a primary environmental pollutant (e.g., drinking water pollution) is a threat to human health. Kidney is one of the main target organs for U accumulation, leading to nephrotoxicity mainly associated with the injuries in proximal tubular epithelial cells (PTECs). Transient receptor potential mucolipin 1 (TRPML1) is a novel therapeutic target for nephrotoxicity caused by acute or chronic U poisoning. We herein investigate the therapeutic efficacy of ML-SA5, a small molecule agonist of TRPML1, in U-induced nephrotoxicity in acute U intoxicated mice. We demonstrate that delayed treatment with ML-SA5 enhances U clearance from the kidneys via urine excretion by activating lysosomal exocytosis, and thereby attenuates U-induced kidney dysfunction and cell death/apoptosis of renal PTECs in acute U intoxicated mice. In addition, ML-SA5 promotes the nuclear translocation of transcription factor EB (TFEB) in renal PTECs in acute U intoxicated mice. Mechanistically, ML-SA5 triggers the TRPML1-mediated lysosomal calcium release and consequently induces TFEB activation in U-loaded renal PTECs-derived HK-2 cells. Moreover, knockdown of TRPML1 or TFEB abolishes the effects of ML-SA5 on the removal of intracellular U and reduction of the cellular injury/death in U-loaded HK-2 cells. Our findings indicate that pharmacological activation of TRPML1 is a promising therapeutic approach for the delayed treatment of U-induced nephrotoxicity via the activation of the positive feedback loop of TRPML1 and TFEB and consequent the induction of lysosomal exocytosis.
Collapse
Affiliation(s)
- Hongjing Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Yifei Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Ruiyun Wang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Xuxia Zhang
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China
| | - Honghong Chen
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, No. 2094, Xie-Tu Road, Shanghai 200032, PR China.
| |
Collapse
|
4
|
Wang H, Li L, Fan X, Zhang Y, Lu Q, Ma N, Yu B, Li X, Gao J. Health Implications of Depleted Uranium: An Update. J Appl Toxicol 2024. [PMID: 39517117 DOI: 10.1002/jat.4720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Depleted uranium (DU), as a heavy metal material extensively utilized in the industrial sector, poses potential health risks to humans through various exposure pathways, including inhalation, ingestion, and dermal contact. To comprehensively understand the toxicological hazards of DU, this study conducted a literature search in the Web of Science Core Collection database using "DU" and "toxicity" as keywords, covering the period from January 2000 to December 2023. A total of 65 papers related to human, animal, or cellular studies on DU were included. This review delves into the latest research advancements on the origin and toxicokinetics of DU, as well as its pulmonary toxicity, neurotoxicity, nephrotoxicity, immunotoxicity, hepatotoxicity, reproductive toxicity, cancer, bone toxicity, and hematological toxicity. The aim of this review is to gain a deeper understanding of the health hazards posed by DU, which is of significant importance for formulating corresponding protection strategies and measures.
Collapse
Affiliation(s)
- Hong Wang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Liang Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Xiaolin Fan
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Yuhao Zhang
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Qing Lu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Ning Ma
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Boya Yu
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Xiao Li
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| | - Junhong Gao
- Xi'an Key Laboratory of Toxicology and Biological Effects, Research Center for Toxicology and Biological Effects, Institute for Hygiene of Ordnance Industry, Xi'an, China
| |
Collapse
|
5
|
Wang Z, Cao Y, Li W, Liu R, Wu L, Zhao Q, Liu Y, Tang K, Jiang Y, Chen Z, Li X, Zhu L, Duan T. Natural Products of Licorice for Uranium Decorporation with Low Toxicity and High Efficiency. Inorg Chem 2024; 63:13653-13663. [PMID: 38967129 DOI: 10.1021/acs.inorgchem.4c01915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The development and exploration of uranium decorporation agents with straightforward synthesis, high removal ability, and low toxicity are crucial guarantees for the safety of workers in the nuclear industry and the public. Herein, we report the use of traditional Chinese medicine licorice for uranium decorporation. Licorice has good adsorption performance and excellent selectivity for uranium in the simulated human environment. Glycyrrhizic acid (GL) has a high affinity for uranium (p(UO2) = 13.67) and will complex with uranium at the carbonyl site. Both licorice and GL exhibit lower cytotoxicity compared to the commercial clinical decorporation agent diethylenetriamine pentaacetate sodium salts (CaNa3-DTPA). Notably, at the cellular level, the uranium removal efficiency of GL is eight times higher than that of CaNa3-DTPA. Administration of GL by prophylactic intraperitoneal injection demonstrates that its uranium removal efficiency from kidneys and bones is 55.2 and 23.9%, while CaNa3-DTPA shows an insignificant effect. The density functional theory calculation of the bonding energy between GL and uranium demonstrates that GL exhibits a higher binding affinity (-2.01 vs -1.15 eV) to uranium compared to DTPA. These findings support the potential of licorice and its active ingredient, GL, as promising candidates for uranium decorporation agents.
Collapse
Affiliation(s)
- Zeru Wang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Yalan Cao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Wenhao Li
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruixi Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Linzhen Wu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
| | - Qian Zhao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Yawen Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Kui Tang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Yao Jiang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zhengguo Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Xiaoan Li
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, Mianyang 621010, China
| |
Collapse
|
6
|
Yang Y, Dai C, Chen X, Zhang B, Li X, Yang W, Wang J, Feng J. Role of uranium toxicity and uranium-induced oxidative stress in advancing kidney injury and endothelial inflammation in rats. BMC Pharmacol Toxicol 2024; 25:14. [PMID: 38308341 PMCID: PMC10837886 DOI: 10.1186/s40360-024-00734-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/18/2024] [Indexed: 02/04/2024] Open
Abstract
OBJECTIVE Uranium exposure may cause serious pathological injury to the body, which is attributed to oxidative stress and inflammation. However, the pathogenesis of uranium toxicity has not been clarified. Here, we evaluated the level of oxidative stress to determine the relationship between uranium exposure, nephrotoxic oxidative stress, and endothelial inflammation. METHODS Forty male Sprague-Dawley rats were divided into three experimental groups (U-24h, U-48h, and U-72h) and one control group. The three experimental groups were intraperitoneally injected with 2.0 mg/kg uranyl acetate, and tissue and serum samples were collected after 24, 48, and 72 h, respectively, whereas the control group was intraperitoneally injected with 1.0 ml/kg normal saline and samples were collected after 24 h. Then, we observed changes in the uranium levels and oxidative stress parameters, including the total oxidative state (TOS), total antioxidant state (TAS), and oxidative stress index (OSI) in kidney tissue and serum. We also detected the markers of kidney injury, namely urea (Ure), creatine (Cre), cystatin C (CysC), and neutrophil gelatinase-associated lipocalin (NGAL). The endothelial inflammatory markers, namely C-reactive protein (CRP), lipoprotein phospholipase A2 (Lp-PLA2), and homocysteine (Hcy), were also quantified. Finally, we analyzed the relationship among these parameters. RESULTS TOS (z = 3.949; P < 0.001), OSI (z = 5.576; P < 0.001), Ure (z = 3.559; P < 0.001), Cre (z = 3.476; P < 0.001), CysC (z = 4.052; P < 0.001), NGAL (z = 3.661; P < 0.001), and CRP (z = 5.286; P < 0.001) gradually increased after uranium exposure, whereas TAS (z = -3.823; P < 0.001), tissue U (z = -2.736; P = 0.001), Hcy (z = -2.794; P = 0.005), and Lp-PLA2 (z = -4.515; P < 0.001) gradually decreased. The serum U level showed a V-shape change (z = -1.655; P = 0.094). The uranium levels in the kidney tissue and serum were positively correlated with TOS (r = 0.440 and 0.424; P = 0.005 and 0.007) and OSI (r = 0.389 and 0.449; P = 0.013 and 0.004); however, serum U levels were negatively correlated with TAS (r = -0.349; P = 0.027). Partial correlation analysis revealed that NGAL was closely correlated to tissue U (rpartial = 0.455; P = 0.003), CysC was closely correlated to serum U (rpartial = 0.501; P = 0.001), and Lp-PLA2 was closely correlated to TOS (rpartial = 0.391; P = 0.014), TAS (rpartial = 0.569; P < 0.001), and OSI (rpartial = -0.494; P = 0.001). Pearson correlation analysis indicated that the Hcy levels were negatively correlated with tissue U (r = -0.344; P = 0.030) and positively correlated with TAS (r = 0.396; P = 0.011). CONCLUSION The uranium-induced oxidative injury may be mainly reflected in enhanced endothelial inflammation, and the direct chemical toxicity of uranium plays an important role in the process of kidney injury, especially in renal tubular injury. In addition, CysC may be a sensitive marker reflecting the nephrotoxicity of uranium; however, Hcy is not suitable for evaluating short-term endothelial inflammation involving oxidative stress.
Collapse
Affiliation(s)
- Yuwei Yang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China.
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China.
| | - Chunmei Dai
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Xi Chen
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Bin Zhang
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China
| | - Xiaohan Li
- Affiliated Hospital of Southwest Medical University, Luzhou, 646000, P.R. China
| | - Wenyu Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Jun Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China
| | - Jiafu Feng
- NHC Key Laboratory of Nuclear Technology Medical Transformation (Mianyang Central Hospital), Mianyang, 621000, P.R. China.
- Mianyang Central Hospital, Affiliated to School of Medicine, University of Electronic Science and Technology of China, No. 12 Changjia Lane, Jingzhong Street, Mianyang, 621000, P.R. China.
| |
Collapse
|
7
|
Liang J, Yan Z, Zhang Y, Xu H, Song W. Proteomics analysis of resistance mechanism of Trichoderma harzianum under U(VI) stress. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107303. [PMID: 37783189 DOI: 10.1016/j.jenvrad.2023.107303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/04/2023]
Abstract
Trichoderma harzianum has a certain resistance to Hexavalent Uranium (U(VI)), but its resistance mechanism is unknown. Based on proteomics sequencing using DIA mode, differentially expressed proteins (DEPs) of Trichoderma harzianum under U(VI) stress were identified. GO enrichment, KEGG annotation analysis and DEPs annotation were performed. The results showed that 8 DEPs, 8 DEPs and 15 DEPs were obtained in the low-dose, medium-dose and high-dose groups, respectively. The functional classification of GO demonstrated that DEPs were associated with 17 molecular functions, 5 biological processes, and 5 cellular components. Furthermore, DEPs were enriched in transport and catabolism, energy metabolism, translation, and signal transduction. These findings showed that Trichoderma harzianum was significantly changed in protein expression and signaling pathway after U(VI) exposure. Therefore, these results have provided Trichoderma harzianum with a theoretical background that can be applied to environmental cleanup.
Collapse
Affiliation(s)
- Jun Liang
- Jianghuai College of Anhui University, Hefei, 230031, China.
| | - Zhuna Yan
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Yan Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China
| | - Huan Xu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China
| | - Wencheng Song
- School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China; Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health & Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123, Suzhou, China.
| |
Collapse
|
8
|
Meyer JN, Pan WK, Ryde IT, Alexander T, Klein-Adams JC, Ndirangu DS, Falvo MJ. Bioenergetic function is decreased in peripheral blood mononuclear cells of veterans with Gulf War Illness. PLoS One 2023; 18:e0287412. [PMID: 37910447 PMCID: PMC10619881 DOI: 10.1371/journal.pone.0287412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/26/2023] [Indexed: 11/03/2023] Open
Abstract
Gulf War Illness (GWI) is a major health problem for approximately 250,000 Gulf War (GW) veterans, but the etiology of GWI is unclear. We hypothesized that mitochondrial dysfunction is an important contributor to GWI, based on the similarity of some GWI symptoms to those occurring in some mitochondrial diseases; the plausibility that certain pollutants to which GW veterans were exposed affect mitochondria; mitochondrial effects observed in studies in laboratory models of GWI; and previous evidence of mitochondrial outcomes in studies in GW veterans. A primary role of mitochondria is generation of energy via oxidative phosphorylation. However, direct assessment of mitochondrial respiration, reflecting oxidative phosphorylation, has not been carried out in veterans with GWI. In this case-control observational study, we tested multiple measures of mitochondrial function and integrity in a cohort of 114 GW veterans, 80 with and 34 without GWI as assessed by the Kansas definition. In circulating white blood cells, we analyzed multiple measures of mitochondrial respiration and extracellular acidification, a proxy for non-aerobic energy generation; mitochondrial DNA (mtDNA) copy number; mtDNA damage; and nuclear DNA damage. We also collected detailed survey data on demographics; deployment; self-reported exposure to pesticides, pyridostigmine bromide, and chemical and biological warfare agents; and current biometrics, health and activity levels. We observed a 9% increase in mtDNA content in blood in veterans with GWI, but did not detect differences in DNA damage. Basal and ATP-linked oxygen consumption were respectively 42% and 47% higher in veterans without GWI, after adjustment for mtDNA amount. We did not find evidence for a compensatory increase in anaerobic energy generation: extracellular acidification was also lower in GWI (12% lower at baseline). A subset of 27 and 26 veterans returned for second and third visits, allowing us to measure stability of mitochondrial parameters over time. mtDNA CN, mtDNA damage, ATP-linked OCR, and spare respiratory capacity were moderately replicable over time, with intraclass correlation coefficients of 0.43, 0.44, 0.50, and 0.57, respectively. Other measures showed higher visit-to-visit variability. Many measurements showed lower replicability over time among veterans with GWI compared to veterans without GWI. Finally, we found a strong association between recalled exposure to pesticides, pyridostigmine bromide, and chemical and biological warfare agents and GWI (p < 0.01, p < 0.01, and p < 0.0001, respectively). Our results demonstrate decreased mitochondrial respiratory function as well as decreased glycolytic activity, both of which are consistent with decreased energy availability, in peripheral blood mononuclear cells in veterans with GWI.
Collapse
Affiliation(s)
- Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| | - William K. Pan
- Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, NC, United States of America
| | - Thomas Alexander
- Department of Veterans Affairs, War Related Illness and Injury Study Center, East Orange, NJ, United States of America
| | - Jacquelyn C. Klein-Adams
- Department of Veterans Affairs, War Related Illness and Injury Study Center, East Orange, NJ, United States of America
| | - Duncan S. Ndirangu
- Department of Veterans Affairs, War Related Illness and Injury Study Center, East Orange, NJ, United States of America
| | - Michael J. Falvo
- Department of Veterans Affairs, War Related Illness and Injury Study Center, East Orange, NJ, United States of America
- New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, United States of America
| |
Collapse
|
9
|
Alruwaili A, Khorram-Manesh A, Ratnayake A, Robinson Y, Goniewicz K. Supporting the Frontlines: A Scoping Review Addressing the Health Challenges of Military Personnel and Veterans. Healthcare (Basel) 2023; 11:2870. [PMID: 37958012 PMCID: PMC10648823 DOI: 10.3390/healthcare11212870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/13/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
(1) Background: Military personnel and veterans meet unique health challenges that stem from the complex interplay of their service experiences, the nature of warfare, and their interactions with both military and civilian healthcare systems. This study aims to examine the myriad of injuries and medical conditions specific to this population, encompassing physical and psychological traumas. (2) Methods: A scoping review (systematic search and non-systematic review) was performed to evaluate the current landscape of military healthcare. (3) Results: A significant change in the injury profile over time is identified, linked to shifts in combat strategies and the integration of advanced technologies in warfare. Environmental exposures to diverse chemical or natural agents further complicate the health of service members. Additionally, the stressors they face, ranging from routine stress to traumatic experiences, lead to various mental health challenges. A major concern is the gap in healthcare accessibility and quality, worsened by challenges in the civilian healthcare system's capacity to address these unique needs and the military healthcare system's limitations. (4) Conclusions: This review underscores the need for holistic, integrated approaches to care, rigorous research, and targeted interventions to better serve the health needs of military personnel and veterans.
Collapse
Affiliation(s)
- Abdullah Alruwaili
- Department of Emergency Medical Services, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Al Ahsa 36428, Saudi Arabia
- King Abdullah International Medical Research Center, Al Ahsa 36428, Saudi Arabia
- Ministry of National Guard—Health Affairs, Al Ahsa 36428, Saudi Arabia
- School of Health, University of New England, Armidale, NSW 2350, Australia
| | - Amir Khorram-Manesh
- Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Goteborg, Sweden;
- Centre for Disaster Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Gothenburg Emergency Medicine Research Group (GEMREG), Sahlgrenska University Hospital, 413 05 Goteborg, Sweden
| | - Amila Ratnayake
- Department of Surgery, Army Hospital Colombo, Colombo 00800, Sri Lanka;
| | - Yohan Robinson
- Centre for Disaster Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden;
- Swedish Armed Forces Centre for Defence Medicine, 426 05 Västra Frölunda, Sweden
| | | |
Collapse
|
10
|
Berntsson E, Vosough F, Noormägi A, Padari K, Asplund F, Gielnik M, Paul S, Jarvet J, Tõugu V, Roos PM, Kozak M, Gräslund A, Barth A, Pooga M, Palumaa P, Wärmländer SKTS. Characterization of Uranyl (UO 22+) Ion Binding to Amyloid Beta (Aβ) Peptides: Effects on Aβ Structure and Aggregation. ACS Chem Neurosci 2023; 14:2618-2633. [PMID: 37487115 PMCID: PMC10401651 DOI: 10.1021/acschemneuro.3c00130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023] Open
Abstract
Uranium (U) is naturally present in ambient air, water, and soil, and depleted uranium (DU) is released into the environment via industrial and military activities. While the radiological damage from U is rather well understood, less is known about the chemical damage mechanisms, which dominate in DU. Heavy metal exposure is associated with numerous health conditions, including Alzheimer's disease (AD), the most prevalent age-related cause of dementia. The pathological hallmark of AD is the deposition of amyloid plaques, consisting mainly of amyloid-β (Aβ) peptides aggregated into amyloid fibrils in the brain. However, the toxic species in AD are likely oligomeric Aβ aggregates. Exposure to heavy metals such as Cd, Hg, Mn, and Pb is known to increase Aβ production, and these metals bind to Aβ peptides and modulate their aggregation. The possible effects of U in AD pathology have been sparsely studied. Here, we use biophysical techniques to study in vitro interactions between Aβ peptides and uranyl ions, UO22+, of DU. We show for the first time that uranyl ions bind to Aβ peptides with affinities in the micromolar range, induce structural changes in Aβ monomers and oligomers, and inhibit Aβ fibrillization. This suggests a possible link between AD and U exposure, which could be further explored by cell, animal, and epidemiological studies. General toxic mechanisms of uranyl ions could be modulation of protein folding, misfolding, and aggregation.
Collapse
Affiliation(s)
- Elina Berntsson
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Faraz Vosough
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Andra Noormägi
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Kärt Padari
- Institute
of Molecular and Cell Biology, University
of Tartu, 50090 Tartu, Estonia
| | - Fanny Asplund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Maciej Gielnik
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus, Denmark
| | - Suman Paul
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Vello Tõugu
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Per M. Roos
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- University
Healthcare Unit of Capio St. Göran Hospital, 112 81 Stockholm, Sweden
| | - Maciej Kozak
- Department
of Biomedical Physics, Institute of Physics, Faculty of Physics, Adam Mickiewicz University, 61-712 Poznań, Poland
- SOLARIS
National Synchrotron Radiation Centre, Jagiellonian
University, 31-007 Kraków, Poland
| | - Astrid Gräslund
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Andreas Barth
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
| | - Margus Pooga
- Institute
of Technology, University of Tartu, 50090 Tartu, Estonia
| | - Peep Palumaa
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 19086 Tallinn, Estonia
| | - Sebastian K. T. S. Wärmländer
- Chemistry
Section, Arrhenius Laboratories, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| |
Collapse
|
11
|
Zong P, Xu M, Yan N, Shao M, Xu X, Yang Y, Chen J, Qiu Z, Wang S. Comprehensive evaluation of cobalt incorporated cryptomelane-type manganese oxide molecular sieve as an efficient adsorbent for enhanced removal of europium from wastewater systems. ENVIRONMENTAL RESEARCH 2022; 214:113965. [PMID: 35948145 DOI: 10.1016/j.envres.2022.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/26/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Extraction of radionuclide contaminants from wastewater systems has recently drawn widespread attention, and then developing a novel and green extracting technology has also become an enormous challenge. Herein, a facile hydrothermal method was employed to fabricate cobalt-incorporated cryptomelane-type manganese oxide molecular sieve (Co-OMS-2) for extraction Eu(III) from wastewater under diverse experimental conditions. All kinds of characterized techniques, such as SEM, TEM, XRD, FTIR, BET, EDS and XPS had verified the qualified synthesis process and splendid structural features of the Co-OMS-2. The maximum adsorption capacity of Co-OMS-2 was 7.62 × 10-4 mol/g for Eu(III) at 298 K, which was superior than primarily traditional materials reported previous literatures. The high adsorption capacity of Eu(III) onto Co-OMS-2 was primarily attributed to high specific surface area and abundant surface functional groups, and the interactions were mainly contributed to strong surface complexation and electrostatic attraction. Under the condition of low pH, the outer-sphere surface complexation and cation exchange were primary mechanisms to Eu(III) adsorption onto Co-OMS-2 composites, while inner-sphere surface complexation was mainly assigned to Eu(III) adsorption onto Co-OMS-2 under the high pH sections. The Co-OMS-2 composite achieved equilibrium in a relatively short time, and this excellent performance was conducive to the treatment of Eu(III) under the extreme emergency conditions. In view of the extraordinary adsorption capacity and recycled reusability, the Co-OMS-2 composites can be as prospective adsorbents adopted for the extraction of Eu(III) in real wastewater management.
Collapse
Affiliation(s)
- Pengfei Zong
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China.
| | - Ming Xu
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Ning Yan
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Min Shao
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Xuejuan Xu
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Yixuan Yang
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Jiahao Chen
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Zhengrong Qiu
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Shoufang Wang
- School of Science, North University of China, Taiyuan, Shanxi, 030051, PR China
| |
Collapse
|
12
|
Zhang L, Chu J, Xia B, Xiong Z, Zhang S, Tang W. Health Effects of Particulate Uranium Exposure. TOXICS 2022; 10:575. [PMID: 36287855 PMCID: PMC9610560 DOI: 10.3390/toxics10100575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Uranium contamination has become a nonnegligible global health problem. Inhalation of particulate uranium is one of the predominant routes of occupational and environmental exposure. Uranium particle is a complex two-phase flow of matter that is both particulate and flowable. This particular physicochemical property may alter its biological activity. Epidemiological studies from occupationally exposed populations in the uranium industry have concluded that there is a possible association between lung cancer risk and uranium exposure, while the evidence for the risk of other tumors is not sufficient. The toxicological effects of particulate uranium exposure to animals have been shown in laboratory tests to focus on respiratory and central nervous system damage. Fibrosis and tumors can occur in the lung tissue of the respiratory tract. Uranium particles can also induce a concentration-dependent increase in cytotoxicity, targeting mitochondria. The understanding of the health risks and potential toxicological mechanisms of particulate uranium contamination is still at a preliminary stage. The diversity of particle parameters has limited the in-depth exploration. This review summarizes the current evidence on the toxicology of particulate uranium and highlights the knowledge gaps and research prospects.
Collapse
|
13
|
Disasters with oil spills in the oceans: Impacts on food safety and analytical control methods. Food Res Int 2022; 157:111366. [DOI: 10.1016/j.foodres.2022.111366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
|
14
|
Soil Chemical Pollution and Military Actions: A Bibliometric Analysis. SUSTAINABILITY 2022. [DOI: 10.3390/su14127138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Contrary to the optimistic expectations three decades ago, global military expenditure is increasing rather rapidly, fueled by the increasing intensity of international tensions. As a consequence of this, the military-caused soil pollution gains in importance. On the basis of a bibliometric analysis of 3500 articles, it is obvious that the level of interest in this topic has been rather fluctuating in the last decades, but in the last years, more than two hundred and fifty new publications have been appearing annually. The majority of publications are authored by US, Chinese, and Western European authors. Five main research areas could be identified by the cluster analysis of the following keywords: Heavy metal pollution, water resource pollution, consequences of soil pollution in the food chain, pollution by organic components and soil remediation, and analytic method development. The most central problem of research is heavy metal contamination. The basic topics of research are risk management, water contamination, and the depleted uranium problem. There is a further need to study the possibilities of decreasing of level of chemical pollutants, especially heavy metals.
Collapse
|
15
|
Attaluri S, Upadhya R, Kodali M, Madhu LN, Upadhya D, Shuai B, Shetty AK. Brain-Specific Increase in Leukotriene Signaling Accompanies Chronic Neuroinflammation and Cognitive Impairment in a Model of Gulf War Illness. Front Immunol 2022; 13:853000. [PMID: 35572589 PMCID: PMC9099214 DOI: 10.3389/fimmu.2022.853000] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent cognitive impairment is a primary central nervous system-related symptom in veterans afflicted with chronic Gulf War Illness (GWI). Previous studies in a rat model have revealed that cognitive dysfunction in chronic GWI is associated with neuroinflammation, typified by astrocyte hypertrophy, activated microglia, and enhanced proinflammatory cytokine levels. Studies in a mouse model of GWI have also shown upregulation of several phospholipids that serve as reservoirs of arachidonic acid, a precursor of leukotrienes (LTs). However, it is unknown whether altered LT signaling is a component of chronic neuroinflammatory conditions in GWI. Therefore, this study investigated changes in LT signaling in the brain of rats displaying significant cognitive impairments six months after exposure to GWI-related chemicals and moderate stress. The concentration of cysteinyl LTs (CysLTs), LTB4, and 5-Lipoxygenase (5-LOX), the synthesizing enzyme of LTs, were evaluated. CysLT and LTB4 concentrations were elevated in the hippocampus and the cerebral cortex, along with enhanced 5-LOX expression in neurons and microglia. Such changes were also associated with increased proinflammatory cytokine levels in the hippocampus and the cerebral cortex. Enhanced CysLT and LTB4 levels in the brain could also be gleaned from their concentrations in brain-derived extracellular vesicles in the circulating blood. The circulating blood in GWI rats displayed elevated proinflammatory cytokines with no alterations in CysLT and LTB4 concentrations. The results provide new evidence that a brain-specific increase in LT signaling is another adverse alteration that potentially contributes to the maintenance of chronic neuroinflammation in GWI. Therefore, drugs capable of modulating LT signaling may reduce neuroinflammation and improve cognitive function in GWI. Additional findings demonstrate that altered LT levels in the brain could be tracked efficiently by analyzing brain-derived EVs in the circulating blood.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX, United States
| |
Collapse
|
16
|
Attaluri S, Arora M, Madhu LN, Kodali M, Shuai B, Melissari L, Upadhya R, Rao X, Bates A, Mitra E, Ghahfarouki KR, Ravikumar MNV, Shetty AK. Oral Nano-Curcumin in a Model of Chronic Gulf War Illness Alleviates Brain Dysfunction with Modulation of Oxidative Stress, Mitochondrial Function, Neuroinflammation, Neurogenesis, and Gene Expression. Aging Dis 2022; 13:583-613. [PMID: 35371600 PMCID: PMC8947830 DOI: 10.14336/ad.2021.0829] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/29/2021] [Indexed: 12/14/2022] Open
Abstract
Unrelenting cognitive and mood impairments concomitant with incessant oxidative stress and neuroinflammation are among the significant symptoms of chronic Gulf War Illness (GWI). Curcumin (CUR), an antiinflammatory compound, has shown promise to alleviate brain dysfunction in a model of GWI following intraperitoneal administrations at a high dose. However, low bioavailability after oral treatment has hampered its clinical translation. Therefore, this study investigated the efficacy of low-dose, intermittent, oral polymer nanoparticle encapsulated CUR (nCUR) for improving brain function in a rat model of chronic GWI. Intermittent administration of 10 or 20 mg/Kg nCUR for 8 weeks in the early phase of GWI improved brain function and reduced oxidative stress (OS) and neuroinflammation. We next examined the efficacy of 12-weeks of intermittent nCUR at 10 mg/Kg in GWI animals, with treatment commencing 8 months after exposure to GWI-related chemicals and stress, mimicking treatment for the persistent cognitive and mood dysfunction displayed by veterans with GWI. GWI rats receiving nCUR exhibited better cognitive and mood function associated with improved mitochondrial function and diminished neuroinflammation in the hippocampus. Improved mitochondrial function was evident from normalized expression of OS markers, antioxidants, and mitochondrial electron transport genes, and complex proteins. Lessened neuroinflammation was noticeable from reductions in astrocyte hypertrophy, NF-kB, activated microglia with NLRP3 inflammasomes, and multiple proinflammatory cytokines. Moreover, nCUR treated animals displayed enhanced neurogenesis with a normalized expression of synaptophysin puncta, and multiple genes linked to cognitive dysfunction. Thus, low-dose, intermittent, oral nCUR therapy has promise for improving brain function in veterans with GWI.
Collapse
Affiliation(s)
- Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Meenakshi Arora
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Laila Melissari
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Raghavendra Upadhya
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Adrian Bates
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Eeshika Mitra
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - Keyhan R Ghahfarouki
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| | - M. N. V Ravikumar
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, Texas, USA.
| |
Collapse
|
17
|
Magnavita N, Congedo MT, Di Prinzio RR, Iuliano A. War journalism: an occupational exposure. BMJ Case Rep 2021; 14:e245165. [PMID: 34649858 PMCID: PMC8522660 DOI: 10.1136/bcr-2021-245165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 11/05/2022] Open
Abstract
Apart from the risk of accidents, war theatres present a hazard related to numerous long-lasting toxic agents. For 10 years, a >60-year-old male journalist worked in war theatres in the Far and Near East where he was exposed to asbestos and other toxic substances (metals, silica, clays, polycyclic aromatic hydrocarbons and other organic substances) contained in dust and smoke of destroyed buildings. More than 15 years later, he developed a mucoepidermoid carcinoma of the soft palate and, subsequently, a pleural malignant mesothelioma. The safety of war journalists should focus not only on preventing the risk of being killed, but also on providing protection from toxic and carcinogenic agents. Exposure to substances released during the destruction of buildings can also pose a carcinogenic risk for survivors.
Collapse
Affiliation(s)
- Nicola Magnavita
- Postgraduate School of Occupational Health, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Lazio, Italy
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Lazio, Italy
| | - Maria Teresa Congedo
- Department of Medical and Surgical Sciences, Operational Unit of Thoracic Surgery, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Lazio, Italy
| | - Reparata Rosa Di Prinzio
- Postgraduate School of Occupational Health, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Lazio, Italy
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Lazio, Italy
| | - Angela Iuliano
- Postgraduate School of Occupational Health, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Lazio, Italy
- Department of Woman, Child and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Lazio, Italy
| |
Collapse
|
18
|
Kodali M, Mishra V, Hattiangady B, Attaluri S, Gonzalez JJ, Shuai B, Shetty AK. Moderate, intermittent voluntary exercise in a model of Gulf War Illness improves cognitive and mood function with alleviation of activated microglia and astrocytes, and enhanced neurogenesis in the hippocampus. Brain Behav Immun 2021; 97:135-149. [PMID: 34245811 PMCID: PMC9885810 DOI: 10.1016/j.bbi.2021.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/28/2021] [Accepted: 07/04/2021] [Indexed: 02/01/2023] Open
Abstract
Persistent cognitive and mood impairments in Gulf War Illness (GWI) are associated with chronic neuroinflammation, typified by hypertrophied astrocytes, activated microglia, and increased proinflammatory mediators in the brain. Using a rat model, we investigated whether a simple lifestyle change such as moderate voluntary physical exercise would improve cognitive and mood function in GWI. Because veterans with GWI exhibit fatigue and post-exertional malaise, we employed an intermittent voluntary running exercise (RE) regimen, which prevented exercise-induced stress. The GWI rats were provided access to running wheels three days per week for 13 weeks, commencing ten weeks after the exposure to GWI-related chemicals and stress (GWI-RE group). Groups of age-matched sedentary GWI rats (GWI-SED group) and naïve rats were maintained parallelly. Interrogation of rats with behavioral tests after the 13-week RE regimen revealed improved hippocampus-dependent object location memory and pattern separation function and reduced anxiety-like behavior in the GWI-RE group compared to the GWI-SED group. Moreover, 13 weeks of RE in GWI rats significantly reversed activated microglia with short and less ramified processes into non-inflammatory/antiinflammatory microglia with highly ramified processes and reduced the hypertrophy of astrocytes. Moreover, the production of new neurons in the hippocampus was enhanced when examined eight weeks after the commencement of RE. Notably, increased neurogenesis continued even after the cessation of RE. Collectively, the results suggest that even a moderate, intermittent physical exercise has the promise to improve brain function in veterans with GWI in association with suppression of neuroinflammation and enhancement of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Vikas Mishra
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Bharathi Hattiangady
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States
| | - Jenny Jaimes Gonzalez
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States
| | - Ashok K. Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, United States,Research Service, Olin E. Teague Veterans Affairs Medical Center, Central Texas Veterans Health Care System, Temple, TX, United States,Corresponding author at: Institute for Regenerative Medicine, Texas A&M Health Science Center, College of Medicine, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77843, United States. (A.K. Shetty)
| |
Collapse
|
19
|
Xie J, Dai Y, Wang Y, Liu Y, Zhang Z, Wang Y, Tao Q, Liu Y. Facile immobilization of NiFeAl-LDHs into electrospun poly(vinyl alcohol)/poly(acrylic acid) nanofibers for uranium adsorption. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07860-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Zong P, Shao M, Cao D, Xu X, Wang S, Zhang H. Synthesis of potential Ca-Mg-Al layered double hydroxides coated graphene oxide composites for simultaneous uptake of europium and fulvic acid from wastewater systems. ENVIRONMENTAL RESEARCH 2021; 196:110375. [PMID: 33130174 DOI: 10.1016/j.envres.2020.110375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
High background electrolyte and natural organic matter are favorable to migration of hazardous radionuclides in geochemical repository. Herein, Ca-Mg-Al layered double hydroxide coated onto graphene oxide (Ca-Mg-Al LDH/GO) composites were successfully synthesized, characterized and adopted to decontaminate Eu(III) and fulvic acid (FA) under diverse experimental conditions. Diverse concentration gradients and different addition sequences on Eu(III) and FA were also obtained, which revealed different interaction mechanisms. The experimental results displayed that the coexistence of FA and Eu(III) respectively promoted adsorption performance of Eu(III) and FA under the ternary systems. The acquired Ca-Mg-Al LDH/GO composites were adopted to remove Eu(III) and FA, which further illustrated excellent chemo-physical stability and adsorption capacity of 1.12 × 10-3 mol/g and 3.54 × 10-4 mol/g, respectively. The remarkable adsorption performances of Ca-Mg-Al LDH/GO were confirmed through kinetic procedures and depending-temperature isotherms, illustrating that the kinetics processes were simulated using pseudo-second-order pattern, and the adsorption isotherms were splendidly simulated using Langmuir pattern. XPS spectrum analysis revealed that these containing oxygen groups took significant part in the restricting of Eu(III) and FA onto the surfaces of Ca-Mg-Al LDH/GO composites. In view of experimental results, the Ca-Mg-Al LDH/GO composites can be as potential adsorbents with availably recycled reusability for the decontamination of Eu(III) and FA from nuclear fuel partition or nuclear wastewater systems.
Collapse
Affiliation(s)
- Pengfei Zong
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China.
| | - Min Shao
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Duanlin Cao
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China.
| | - Xuejuan Xu
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Shoufang Wang
- School of Science, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Hangzhou Zhang
- Reactor Operation and Application Sub-Institute, Nuclear Power Institute of China, Chengdu, 610005, PR China
| |
Collapse
|
21
|
Madhu LN, Kodali M, Attaluri S, Shuai B, Melissari L, Rao X, Shetty AK. Melatonin improves brain function in a model of chronic Gulf War Illness with modulation of oxidative stress, NLRP3 inflammasomes, and BDNF-ERK-CREB pathway in the hippocampus. Redox Biol 2021; 43:101973. [PMID: 33933884 PMCID: PMC8105671 DOI: 10.1016/j.redox.2021.101973] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023] Open
Abstract
Persistent cognitive and mood dysfunction is the primary CNS symptom in veterans afflicted with Gulf War Illness (GWI). This study investigated the efficacy of melatonin (MEL) for improving cognitive and mood function with antioxidant, antiinflammatory, and pro-cognitive effects in a rat model of chronic GWI. Six months after exposure to GWI-related chemicals and stress, rats were treated with vehicle or MEL (5, 10, 20, 40, and 80 mg/kg) for eight weeks. Behavioral tests revealed cognitive and mood dysfunction in GWI rats receiving vehicle, which were associated with elevated oxidative stress, reduced NRF2, catalase and mitochondrial complex proteins, astrocyte hypertrophy, activated microglia with NLRP3 inflammasomes, elevated proinflammatory cytokines, waned neurogenesis, and synapse loss in the hippocampus. MEL at 10 mg/kg alleviated simple and associative recognition memory dysfunction and anhedonia, along with reduced oxidative stress, enhanced glutathione and complex III, and reduced NLRP3 inflammasomes, IL-18, TNF-α, and IFN-γ. MEL at 20 mg/kg also normalized NRF2 and catalase and increased microglial ramification. MEL at 40 mg/kg, in addition, reduced astrocyte hypertrophy, activated microglia, NF-kB-NLRP3-caspase-1 signaling, IL-1β, MCP-1, and MIP-1α. Moreover, MEL at 80 mg/kg activated the BDNF-ERK-CREB signaling pathway, enhanced neurogenesis and diminished synapse loss in the hippocampus, and improved a more complex hippocampus-dependent cognitive function. Thus, MEL therapy is efficacious for improving cognitive and mood function in a rat model of chronic GWI, and MEL's effect was dose-dependent. The study provides the first evidence of MEL's promise for alleviating neuroinflammation and cognitive and mood impairments in veterans with chronic GWI. A low dose of Melatonin alleviated recognition memory dysfunction and anhedonia in a model of chronic GWI. A moderate dose of Melatonin improved more complex cognitive function in a model of chronic GWI. Melatonin treatment reduced oxidative stress and enhanced mitochondrial complex proteins in the GWI brain. Melatonin inhibited NLRP3 inflammasomes and proinflammatory cytokines in the GWI brain. Melatonin activated the BDNF-ERK-CREB signaling pathway and enhanced neurogenesis in the GWI brain.
Collapse
Affiliation(s)
- Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Maheedhar Kodali
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Sahithi Attaluri
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Bing Shuai
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Laila Melissari
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Xiaolan Rao
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University College of Medicine, College Station, TX, USA.
| |
Collapse
|
22
|
Yu L, Li W, Chu J, Chen C, Li X, Tang W, Xia B, Xiong Z. Uranium inhibits mammalian mitochondrial cytochrome c oxidase and ATP synthase. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116377. [PMID: 33401214 DOI: 10.1016/j.envpol.2020.116377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
As an emerging pollutant, uranium poses serious concerns to ecological and human health. The kidney has been established as a major deposition site and the most sensitive target organ for uranium poisoning, and the underlying toxicological mechanisms have been associated with oxidative stress and mitochondrial respiration. However, the identities of key molecular targets in uranium-induced toxicity remain elusive. In this study, we comprehensively evaluated the in vitro effects of uranium on ten critical enzymes in the mitochondrial respiration pathway and discovered that respiratory chain complex IV (cytochrome c oxidase) and complex V (ATP synthase) were strongly inhibited. The inhibitory effects were validated with mitochondria from human renal proximal tubule cells-the most affected renal site in uranium poisoning. The IC50 values (around 1 mg/L) are physiologically relevant, as they are comparable to known kidney accumulation levels in uranium poisoning. In addition, these inhibitory effects could explain the well-documented uranium-induced reactive oxygen species generation and mitochondrial alterations. In conclusion, cytochrome c oxidase and ATP synthase are possibly key molecular targets underlying the toxic effects of uranium.
Collapse
Affiliation(s)
- Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China.
| | - Wenjing Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China; School of Life Science and Engineering, Southwest University of Science and Technology, No. 59, Middle Section of Qinglong Avenue, Mianyang, 621010, China
| | - Jian Chu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Chun Chen
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Xijian Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Wei Tang
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Binyuan Xia
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| | - Zhonghua Xiong
- Institute of Materials, China Academy of Engineering Physics, Mianyang, 621907, China
| |
Collapse
|
23
|
Dickey B, Madhu LN, Shetty AK. Gulf War Illness: Mechanisms Underlying Brain Dysfunction and Promising Therapeutic Strategies. Pharmacol Ther 2020; 220:107716. [PMID: 33164782 DOI: 10.1016/j.pharmthera.2020.107716] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Gulf War Illness (GWI), a chronic multisymptom health problem, afflicts ~30% of veterans served in the first GW. Impaired brain function is among the most significant symptoms of GWI, which is typified by persistent cognitive and mood impairments, concentration problems, headaches, chronic fatigue, and musculoskeletal pain. This review aims to discuss findings from animal prototypes and veterans with GWI on mechanisms underlying its pathophysiology and emerging therapeutic strategies for alleviating brain dysfunction in GWI. Animal model studies have linked brain impairments to incessantly elevated oxidative stress, chronic inflammation, inhibitory interneuron loss, altered lipid metabolism and peroxisomes, mitochondrial dysfunction, modified expression of genes relevant to cognitive function, and waned hippocampal neurogenesis. Furthermore, the involvement of systemic alterations such as the increased intensity of reactive oxygen species and proinflammatory cytokines in the blood, transformed gut microbiome, and activation of the adaptive immune response have received consideration. Investigations in veterans have suggested that brain dysfunction in GWI is linked to chronic activation of the executive control network, impaired functional connectivity, altered blood flow, persistent inflammation, and changes in miRNA levels. Lack of protective alleles from Class II HLA genes, the altered concentration of phospholipid species and proinflammatory factors in the circulating blood have also been suggested as other aiding factors. While some drugs or combination therapies have shown promise for alleviating symptoms in clinical trials, larger double-blind, placebo-controlled trials are needed to validate such findings. Based on improvements seen in animal models of GWI, several antioxidants and anti-inflammatory compounds are currently being tested in clinical trials. However, reliable blood biomarkers that facilitate an appropriate screening of veterans for brain pathology need to be discovered. A liquid biopsy approach involving analysis of brain-derived extracellular vesicles in the blood appears efficient for discerning the extent of neuropathology both before and during clinical trials.
Collapse
Affiliation(s)
- Brandon Dickey
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA; Texas A&M University Health Science Center College of Medicine, Temple, TX, USA
| | - Leelavathi N Madhu
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA
| | - Ashok K Shetty
- Institute for Regenerative Medicine, Department of Molecular and Cellular Medicine, Texas A&M University Health Science Center College of Medicine, College Station, TX, USA.
| |
Collapse
|
24
|
Semenova Y, Pivina L, Zhunussov Y, Zhanaspayev M, Chirumbolo S, Muzdubayeva Z, Bjørklund G. Radiation-related health hazards to uranium miners. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:34808-34822. [PMID: 32638305 DOI: 10.1007/s11356-020-09590-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Concerns on health effects from uranium (U) mining still represent a major issue of debate. Any typology of active job in U mines is associated with exposure to U and its decay products, such as radon (Rn), thorium (Th), and radium (Ra) and its decay products with alpha-emission and gamma radiation. Health effects in U miners have been investigated in several cohort studies in the USA, Canada, Germany, the Czech Republic, and France. While public opinion is particularly addressed to pay attention to the safety of nuclear facilities, health hazard associated with mining is poorly debated. According to the many findings from cohort studies, the most significant positive dose-response relationship was found between occupational U exposure and lung cancer. Other types of tumors associated with occupational U exposure are leukemia and lymphoid cancers. Furthermore, it was found increased but not statistically significant death risk in U miners due to cancers in the liver, stomach, and kidneys. So far, there has not been found a significant association between U exposure and increased cardiovascular mortality in U miners. This review tries to address the current state of the art of these studies.
Collapse
Affiliation(s)
- Yuliya Semenova
- Semey Medical University, Semey, Kazakhstan
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | - Lyudmila Pivina
- Semey Medical University, Semey, Kazakhstan
- CONEM Kazakhstan Environmental Health and Safety Research Group, Semey Medical University, Semey, Kazakhstan
| | | | | | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- CONEM Scientific, Verona, Italy
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610, Mo i Rana, Norway.
| |
Collapse
|
25
|
Neurotoxicity in Gulf War Illness and the potential role of glutamate. Neurotoxicology 2020; 80:60-70. [DOI: 10.1016/j.neuro.2020.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
|
26
|
Environmental, Neuro-immune, and Neuro-oxidative Stress Interactions in Chronic Fatigue Syndrome. Mol Neurobiol 2020; 57:4598-4607. [PMID: 32761353 DOI: 10.1007/s12035-020-01939-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 05/13/2020] [Indexed: 12/19/2022]
Abstract
Chronic fatigue syndrome/myalgic encephalomyelitis (CFS) is a complex, multisystem disease that is characterized by long-term fatigue, exhaustion, disabilities, pain, neurocognitive impairments, gastrointestinal symptoms, and post-exertional malaise, as well as lowered occupational, educational, and social functions. The clinical and biomarker diagnosis of this disorder is hampered by the lack of validated diagnostic criteria and laboratory tests with adequate figures of merit, although there are now many disease biomarkers indicating the pathophysiology of CFS. Here, we review multiple factors, such as immunological and environmental factors, which are associated with CFS and evaluate current concepts on the involvement of immune and environmental factors in the pathophysiology of CFS. The most frequently reported immune dysregulations in CFS are modifications in immunoglobulin contents, changes in B and T cell phenotypes and cytokine profiles, and decreased cytotoxicity of natural killer cells. Some of these immune aberrations display a moderate diagnostic performance to externally validate the clinical diagnosis of CFS, including the expression of activation markers and protein kinase R (PKR) activity. Associated with the immune aberrations are activated nitro-oxidative pathways, which may explain the key symptoms of CFS. This review shows that viral and bacterial infections, as well as nutritional deficiencies, may further aggravate the immune-oxidative pathophysiology of CFS. Targeted treatments with antioxidants and lipid replacement treatments may have some clinical efficacy in CFS. We conclude that complex interactions between immune and nitro-oxidative pathways, infectious agents, environmental factors, and nutritional deficiencies play a role in the pathophysiology of CFS.
Collapse
|
27
|
Bjørklund G, Semenova Y, Pivina L, Dadar M, Rahman MM, Aaseth J, Chirumbolo S. Uranium in drinking water: a public health threat. Arch Toxicol 2020; 94:1551-1560. [DOI: 10.1007/s00204-020-02676-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 02/11/2020] [Indexed: 12/31/2022]
|