1
|
Azadirachta indica MicroRNAs: Genome-Wide Identification, Target Transcript Prediction, and Expression Analyses. Appl Biochem Biotechnol 2021; 193:1924-1944. [PMID: 33523368 DOI: 10.1007/s12010-021-03500-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/07/2021] [Indexed: 10/22/2022]
Abstract
MicroRNAs are short, endogenous, non-coding RNAs, liable for essential regulatory function. Numerous miRNAs have been identified and studied in plants with known genomic or small RNA resources. Despite the availability of genomic and transcriptomic resources, the miRNAs have not been reported in the medicinal tree Azadirachta indica (Neem) till date. Here for the first time, we report extensive identification of miRNAs and their possible targets in A. indica which might help to unravel their therapeutic potential. A comprehensive search of miRNAs in the A. indica genome by C-mii tool was performed. Overall, 123 miRNAs classified into 63 families and their stem-loop hairpin structures were predicted. The size of the A. indica (ain)-miRNAs ranged between 19 and 23 nt in length, and their corresponding ain-miRNA precursor sequence MFEI value averaged as -1.147 kcal/mol. The targets of ain-miRNAs were predicted in A. indica as well as Arabidopsis thaliana plant. The gene ontology (GO) annotation revealed the involvement of ain-miRNA targets in developmental processes, transport, stress, and metabolic processes including secondary metabolism. Stem-loop qRT-PCR was carried out for 25 randomly selected ain-miRNAs and differential expression patterns were observed in different A. indica tissues. Expression of miRNAs and its targets shows negative correlation in a dependent manner.
Collapse
|
2
|
Whitaker VM, Knapp SJ, Hardigan MA, Edger PP, Slovin JP, Bassil NV, Hytönen T, Mackenzie KK, Lee S, Jung S, Main D, Barbey CR, Verma S. A roadmap for research in octoploid strawberry. HORTICULTURE RESEARCH 2020; 7:33. [PMID: 32194969 PMCID: PMC7072068 DOI: 10.1038/s41438-020-0252-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 01/26/2020] [Indexed: 05/02/2023]
Abstract
The cultivated strawberry (Fragaria × ananassa) is an allo-octoploid species, originating nearly 300 years ago from wild progenitors from the Americas. Since that time the strawberry has become the most widely cultivated fruit crop in the world, universally appealing due to its sensory qualities and health benefits. The recent publication of the first high-quality chromosome-scale octoploid strawberry genome (cv. Camarosa) is enabling rapid advances in genetics, stimulating scientific debate and provoking new research questions. In this forward-looking review we propose avenues of research toward new biological insights and applications to agriculture. Among these are the origins of the genome, characterization of genetic variants, and big data approaches to breeding. Key areas of research in molecular biology will include the control of flowering, fruit development, fruit quality, and plant-pathogen interactions. In order to realize this potential as a global community, investments in genome resources must be continually augmented.
Collapse
Affiliation(s)
- Vance M Whitaker
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Steven J Knapp
- 2Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Michael A Hardigan
- 2Department of Plant Sciences, University of California, Davis, CA 95616 USA
| | - Patrick P Edger
- 3Department of Horticulture, Michigan State University, East Lansing, MI 48824 USA
| | - Janet P Slovin
- USDA-ARS Genetic Improvement of Fruits and Vegetables Laboratory, Beltsville, MA 20705 USA
| | - Nahla V Bassil
- 5USDA-ARS National Clonal Germplasm Repository, Corvallis, OR 97333 USA
| | - Timo Hytönen
- 6Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
- 7Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
- NIAB EMR, Kent, ME19 6BJ UK
| | - Kathryn K Mackenzie
- 6Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, 00790 Finland
| | - Seonghee Lee
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Sook Jung
- 9Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Dorrie Main
- 9Department of Horticulture, Washington State University, Pullman, WA 99164 USA
| | - Christopher R Barbey
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| | - Sujeet Verma
- 1University of Florida, Institute of Food and Agricultural Sciences, Gulf Coast Research and Education Center, Wimauma, Florida 33598 USA
| |
Collapse
|
3
|
Zheng G, Wei W, Li Y, Kan L, Wang F, Zhang X, Li F, Liu Z, Kang C. Conserved and novel roles of miR164-CUC2 regulatory module in specifying leaf and floral organ morphology in strawberry. THE NEW PHYTOLOGIST 2019; 224:480-492. [PMID: 31179543 DOI: 10.1111/nph.15982] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 06/04/2019] [Indexed: 06/09/2023]
Abstract
MicroRNAs (miRNAs) are a kind of short noncoding RNA (20-24 nt), playing versatile roles in plant growth and development. Strawberry generates leaves and flowers with unique features. However, few miRNAs have been functionally characterised in strawberry, especially for their developmental regulation. Here, we identified one ethyl methanesulfonate (EMS) mutant, deeply serrated (des), in the woodland strawberry Fragaria vesca that has wrinkled leaves with deeper serrations, serrated petals and deformed carpels. The causative mutation occurs in the 19th nucleotide of the FvemiR164a mature sequence. Overexpressing FveMIR164A rescued the phenotypes of des/fvemir164a except the petal serrations. Furthermore, we identified two allelic mutants of FveCUC2a, one target of FvemiR164a, which developed leaves with smooth margins and fused leaflets. Phenotypes of the double mutant fvemir164a fvecuc2a indicated that the two genes act linearly in leaf and carpel development, but synergistically in the development of other floral organs and inflorescence architecture. This work demonstrates the conserved and novel roles of the miR164-CUC2 module in leaf and flower development in different plant species, and reveals that the 19th nucleotide of FvemiR164a is important for its processing.
Collapse
Affiliation(s)
- Guanghui Zheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Wei
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongping Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijun Kan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fuxi Wang
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Xi Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhongchi Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Wang Y, Li W, Chang H, Zhou J, Luo Y, Zhang K, Wang B. Sweet cherry fruit miRNAs and effect of high CO 2 on the profile associated with ripening. PLANTA 2019; 249:1799-1810. [PMID: 30840178 DOI: 10.1007/s00425-019-03110-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/12/2019] [Indexed: 05/11/2023]
Abstract
157 known and 55 novel miRNAs were found in sweet cherry fruit. MiRNA target genes involved in fruit ripening and the differentially expressed miRNAs under CO2 treatment were identified. MicroRNAs (miRNAs) are short non-coding RNAs and play important functions in many biological processes, including fruit ripening and senescence. In the current study, the high-throughput sequencing and bioinformatics methods were implemented to decipher the miRNAs landscape in sweet cherry fruit. A total of 157 known miRNAs belonging to 50 families and 55 putative novel miRNAs were found. Target genes of the miRNAs were predicted and genes involved in fruit ripening were found, including F-box proteins and TFs such as SPL, TCP, NAC, MYB, ARF and AP2/ERF. And these target genes were further confirmed by degradome sequencing. A regulatory network model was constructed to uncover the miRNAs and their targets involved in fruit ripening and senescence. Importantly, elevated carbon dioxide can significantly postpone the ripening and senescence of sweet cherry fruit and the differentially expressed miRNAs exposed to CO2 were identified. These miRNAs included miR482j, miR6275, miR164, miR166, miR171, miR393, miR858, miR3627a, miR6284, miR6289 and miR7122b, and some of their functions were linked to fruit ripening. This study was the first report to profile miRNAs in sweet cherry fruit and it would provide more information for further study of miRNA roles in the ripening processes and their regulation mechanism underlying the effects of high carbon dioxide treatment on fruit ripening.
Collapse
Affiliation(s)
- Yunxiang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- National R&D Center For Fruit Processing, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China
| | - Wensheng Li
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- National R&D Center For Fruit Processing, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China
| | - Hong Chang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- National R&D Center For Fruit Processing, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China
| | - Jiahua Zhou
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- National R&D Center For Fruit Processing, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Kaichun Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
- National R&D Center For Fruit Processing, Beijing, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China.
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China.
| | - Baogang Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China.
- National R&D Center For Fruit Processing, Beijing, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, China.
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, China.
| |
Collapse
|
5
|
Davoodi Mastakani F, Pagheh G, Rashidi Monfared S, Shams-Bakhsh M. Identification and expression analysis of a microRNA cluster derived from pre-ribosomal RNA in Papaver somniferum L. and Papaver bracteatum L. PLoS One 2018; 13:e0199673. [PMID: 30067748 PMCID: PMC6070170 DOI: 10.1371/journal.pone.0199673] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 06/12/2018] [Indexed: 11/19/2022] Open
Abstract
Opium poppy (Papaver somniferum L.) is one of the ancient medical crops, which produces several important alkaloids such as morphine, noscapine, sanguinarine and codeine. MicroRNAs are endogenous non-coding RNAs that play important regulatory roles in plant diverse biological processes. Many plant miRNAs are encoded as single transcriptional units, in contrast to animal miRNAs, which are often clustered. Herein, using computational approaches, a total of 22 miRNA precursors were identified, which five of them were located as a clustered in pre-ribosomal RNA. Afterward, the transcript level of the precursor and the mature of clustered miRNAs in two species of the Papaveraceae family, i.e. P. somniferum L. and P. bracteatum L, were quantified by RT-PCR. With respect to obtained results, these clustered miRNAs were expressed differentially in different tissues of these species. Moreover, using target prediction and Gene Ontology (GO)-based on functional classification indicated that these miRNAs might play crucial roles in various biological processes as well as metabolic pathways. In this study, we discovered the clustered miRNA derived from pre-rRNA, which may shed some light on the importance of miRNAs in the plant kingdom.
Collapse
Affiliation(s)
- Farshad Davoodi Mastakani
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Gabriel Pagheh
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Sajad Rashidi Monfared
- Department of Agricultural Biotechnology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Identification and characterization of known and novel microRNAs in strawberry fruits induced by Botrytis cinerea. Sci Rep 2018; 8:10921. [PMID: 30026481 PMCID: PMC6053406 DOI: 10.1038/s41598-018-29289-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs are endogenous small non-coding RNAs that negatively regulate mRNAs, mainly at the post-transcriptional level, and play an important role in resistance response of plants. To date, there are few reports on resistance response of strawberry miRNAs to pathogens. In this study, using high-throughput sequencing, 134 conserved and 35 novel miRNAs were identified in six libraries within the treatment of Botrytis cinerea. A total 497 potential target genes were predicted using Fragaria vesca genome. Most of the differential expressed miRNAs in strawberry fruits were up-regulated in early libraries and down-regulated in late libraries. PIRL, the target gene of miR5290a, showed the opposite expressed trend compared with miR5290 from T1 to T3 libraries, and functional analysis of the PIRL gene shows that it has obvious resistance to B. cinerea in the strawberry fruits with overexpressed PIRL gene. We speculate that miR5290a negatively regulates its target gene PIRL to increase resistance to pathogen infection, and further analysis of PIRL function is meaningful for studying the plant-pathogen relationship and improving strawberry fruit quality and yield.
Collapse
|
7
|
Abstract
Our understanding of cancer pathways has been changed by the determination of noncoding transcripts in the human genome in recent years. miRNAs and pseudogenes are key players of the noncoding transcripts from the genome, and alteration of their expression levels provides clues for significant biomarkers in pathogenesis of diseases. Especially, miRNAs and pseudogenes have both oncogenic and tumor-suppressive roles in each step of cancer tumorigenesis. In this current study, association between oncogenes and miRNAs-pseudogenes was reviewed and determined in human cancer by the CellMiner web-tool.
Collapse
Affiliation(s)
- Lütfi Tutar
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Ahi Evran University, Kırşehir, Turkey
| | - Aykut Özgür
- Division of Biochemistry, Department of Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, 58140, Sivas, Turkey
| | - Yusuf Tutar
- Division of Biochemistry, Department of Basic Sciences, Faculty of Pharmacy, Cumhuriyet University, 58140, Sivas, Turkey.
- Department of Nutrition and Dietetics, Health Sciences Faculty, University of Health Sciences, Üsküdar, Istanbul, 34668, Turkey.
| |
Collapse
|
8
|
Huang Y, Yang YB, Sun XH. Genome-wide identification of microRNAs and their target genes in Cynoglossus semilaevis using computational approach. GENE REPORTS 2016. [DOI: 10.1016/j.genrep.2016.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Huang Y, Cheng JH, Luo FN, Pan H, Sun XJ, Diao LY, Qin XJ. Genome-wide identification and characterization of microRNA genes and their targets in large yellow croaker (Larimichthys crocea). Gene 2015; 576:261-7. [PMID: 26523500 DOI: 10.1016/j.gene.2015.10.044] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/04/2015] [Accepted: 10/13/2015] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs or miRs) are a class of non-coding RNAs of 20-25 nucleotides (nt) in length, which regulates the expression of gene in eukaryotic organism. Studies has been confirmed that miRNA plays an important role in various biological and metabolic processes in both animals and plants. Predicting new miRNAs by computer based homology search analysis is an effective way to discover novel miRNAs. Though a large number of miRNAs have been reported in many fish species, reports of miRNAs in large yellow croaker (L. crocea) are limited especially via the computational-based approaches. In this paper, a method of comparative genomic approach by computational genomic homology based on the conservation of miRNA sequences and the stem-loop hairpin secondary structures of miRNAs was adopted. A total of 199 potential miRNAs were predicted representing 81 families. 12 of them were chose to be validated by real time RT-PCR, apart from miR-7132b-5p which was not detected. Results indicated that the prediction method that we used to identify the miRNAs was effective. Furthermore, 948 potential target genes were predicted. Gene ontology (GO) analysis revealed that 175, 287, and 486 target genes were involved in cellular components, biological processes and molecular functions, respectively. Overall, our findings provide a first computational identification and characterization of L. crocea miRNAs and their potential targets in functional analysis, and will be useful in laying the foundation for further characterization of their role in the regulation of diversity of physiological processes.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China.
| | - Jia-Heng Cheng
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Fu-Nong Luo
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Hao Pan
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiao-Juan Sun
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Lan-Yu Diao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Xiao-Juan Qin
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
10
|
Huang Y, Ren HT, Wang ZB, Sun XH. Identification and validation of novel microrna molecule from the Pelodiscus sinensis by bioinformatics approaches. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2015. [DOI: 10.1134/s1068162015040147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|