1
|
Zhou D, Liu B, Liu L, Liu G, Zhu F, Huang Z, Zhang S, He Z, Fan L. Essential Regulation of Spermatogonial Stem Cell Fate Decisions and Male Fertility by APBB1 via Interaction with KAT5 and GDF15 in Humans and Mice. RESEARCH (WASHINGTON, D.C.) 2025; 8:0647. [PMID: 40151319 PMCID: PMC11948500 DOI: 10.34133/research.0647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/09/2024] [Accepted: 03/08/2025] [Indexed: 03/29/2025]
Abstract
Spermatogonial stem cells (SSCs) are essential for initiating and maintaining normal spermatogenesis, and notably, they have important applications in both reproduction and regenerative medicine. Nevertheless, the molecular mechanisms controlling the fate determinations of human SSCs remain elusive. In this study, we identified a selective expression of APBB1 in dormant human SSCs. We demonstrated for the first time that APBB1 interacted with KAT5, which led to the suppression of GDF15 expression and consequent inhibition of human SSC proliferation. Intriguingly, Apbb1-/- mice assumed the disrupted spermatogenesis and markedly reduced fertility. SSC transplantation assays revealed that Apbb1 silencing enhanced SSC colonization and impeded their differentiation, which resulted in the impaired spermatogenesis. Notably, 4 deleterious APBB1 mutation sites were identified in 2,047 patients with non-obstructive azoospermia (NOA), and patients with the c.1940C>G mutation had a similar testicular phenotype with Apbb1-/- mice. Additionally, we observed lower expression levels of APBB1 in NOA patients with spermatogenic arrest than in obstructive azoospermia patients with normal spermatogenesis. Collectively, our findings highlight an essential role of APBB1/KAT5/GDF15 in governing human SSC fate decisions and maintaining normal spermatogenesis and underscore them as therapeutic targets for treating male infertility.
Collapse
Affiliation(s)
- Dai Zhou
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science,
Central South University, Changsha, Hunan 410000, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Hunan 410013, China
- Hainan Academy of Medical Sciences,
Hainan Medical University, Hainan 570311, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410000, China
| | - Bang Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Lvjun Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Guangmin Liu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science,
Central South University, Changsha, Hunan 410000, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410000, China
| | - Fang Zhu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science,
Central South University, Changsha, Hunan 410000, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410000, China
| | - Zenghui Huang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science,
Central South University, Changsha, Hunan 410000, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410000, China
| | - Shusheng Zhang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defect Prevention and Control, Changsha Hospital for Maternal and Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410000, China
| | - Zuping He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province; Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, Institute of Interdisciplinary Studies, Hunan Normal University, Hunan 410013, China
- Hainan Academy of Medical Sciences,
Hainan Medical University, Hainan 570311, China
| | - Liqing Fan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medicine Science,
Central South University, Changsha, Hunan 410000, China
- Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, Hunan 410000, China
| |
Collapse
|
2
|
Damyanova KB, Nixon B, Johnston SD, Gambini A, Benitez PP, Lord T. Spermatogonial stem cell technologies: applications from human medicine to wildlife conservation†. Biol Reprod 2024; 111:757-779. [PMID: 38993049 PMCID: PMC11473898 DOI: 10.1093/biolre/ioae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.
Collapse
Affiliation(s)
- Katerina B Damyanova
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Stephen D Johnston
- School of Environment, The University of Queensland, Gatton, QLD 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Andrés Gambini
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Patricio P Benitez
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Tessa Lord
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
3
|
Lord T, Oatley JM. Spermatogenic Stem Cells: Core Biology, Defining Features, and Utilities. Mol Reprod Dev 2024; 91:e23777. [PMID: 39392153 DOI: 10.1002/mrd.23777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024]
Abstract
The actions of spermatogenic stem cells (SSCs) provide the foundation for continual spermatogenesis and regeneration of the cognate lineage following cytotoxic insult or transplantation. Several decades of research with rodent models have yielded knowledge about the core biology, morphological features, and molecular profiles of mammalian SSCs. Translation of these discoveries to utilities for human fertility preservation, improving animal agriculture, and wildlife conservation are actively being pursued. Here, we provide overviews of these aspects covering both historical and current states of understanding.
Collapse
Affiliation(s)
- Tessa Lord
- Discipline of Biological Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Jon M Oatley
- Center for Reproductive Biology, School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
4
|
Martin JH, Bernstein IR, Lyons JM, Brady AR, Mabotuwana NS, Stanger SJ, De Oliveira CS, Damyanova KB, Nixon B, Lord T. EPAS1 expression contributes to maintenance of the primordial follicle pool in the mouse ovary. Sci Rep 2024; 14:8770. [PMID: 38627575 PMCID: PMC11021563 DOI: 10.1038/s41598-024-59382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
Oxygen availability can have profound effects on cell fate decisions and survival, in part by regulating expression of hypoxia-inducible factors (HIFs). In the ovary, HIF expression has been characterised in granulosa cells, however, any requirement in oocytes remains relatively undefined. Here we developed a Hif2a/Epas1 germline-specific knockout mouse line in which females were fertile, however produced 40% fewer pups than controls. No defects in follicle development were detected, and quality of MII oocytes was normal, as per assessments of viability, intracellular reactive oxygen species, and spindle parameters. However, a significant diminishment of the primordial follicle pool was evident in cKO females that was attributed to accelerated follicle loss from postnatal day 6 onwards, potentially via disruption of the autophagy pathway. These data demonstrate the importance of HIF signalling in oocytes, particularly at the primordial follicle stage, and lend to the importance of controlling oxygen tension in the development of in vitro growth and maturation approaches for assisted reproduction.
Collapse
Affiliation(s)
- Jacinta H Martin
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Program, New Lambton Heights, NSW, 2305, Australia
| | - Ilana R Bernstein
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jess M Lyons
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ariel R Brady
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nishani S Mabotuwana
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Simone J Stanger
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Camila Salum De Oliveira
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Katerina B Damyanova
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Brett Nixon
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, Infertility and Reproduction Program, New Lambton Heights, NSW, 2305, Australia
| | - Tessa Lord
- Priority Research Centre for Reproductive Science, Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute, Infertility and Reproduction Program, New Lambton Heights, NSW, 2305, Australia.
| |
Collapse
|