1
|
Deng LR, Harmata GIS, Barsotti EJ, Williams AJ, Christensen GE, Voss MW, Saleem A, Rivera-Dompenciel AM, Richards JG, Sathyaputri L, Mani M, Abdolmotalleby H, Fiedorowicz JG, Xu J, Shaffer JJ, Wemmie JA, Magnotta VA. Machine learning with multiple modalities of brain magnetic resonance imaging data to identify the presence of bipolar disorder. J Affect Disord 2025; 368:448-460. [PMID: 39278469 PMCID: PMC11560692 DOI: 10.1016/j.jad.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/18/2024]
Abstract
BACKGROUND Bipolar disorder (BD) is a chronic psychiatric mood disorder that is solely diagnosed based on clinical symptoms. These symptoms often overlap with other psychiatric disorders. Efforts to use machine learning (ML) to create predictive models for BD based on data from brain imaging are expanding but have often been limited using only a single modality and the exclusion of the cerebellum, which may be relevant in BD. METHODS In this study, we sought to improve ML classification of BD by combining information from structural, functional, and diffusion-weighted imaging. Participants (108 BD I, 78 control) with BD type I and matched controls were recruited into an imaging study. This dataset was randomly divided into training and testing sets. For each of the three modalities, a separate ML model was selected, trained, and then used to generate a prediction of the class of each test subject. Majority voting was used to combine results from the three models to make a final prediction of whether a subject had BD. An independent replication sample was used to evaluate the ability of the ML classification to generalize to data collected at other sites. RESULTS Combining the three machine learning models through majority voting resulted in an accuracy of 89.5 % for classification of the test subjects as being in the BD or control group. Bootstrapping resulted in a 95 % confidence interval of 78.9 %-97.4 % for test accuracy. Performance was reduced when only using 2 of the 3 modalities. Analysis of feature importance revealed that the cerebellum and nodes of the emotional control network were among the most important regions for classification. The machine learning model performed at chance on the independent replication sample. CONCLUSION BD I could be identified with high accuracy in our relatively small sample by combining structural, functional, and diffusion-weighted imaging data within a single site but not generalize well to an independent replication sample. Future studies using harmonized imaging protocols may facilitate generalization of ML models.
Collapse
Affiliation(s)
- Lubin R Deng
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Gail I S Harmata
- Department of Radiology, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA
| | | | | | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
| | - Michelle W Voss
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
| | - Arshaq Saleem
- Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | | | | - Merry Mani
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | | | | | - Jia Xu
- Department of Radiology, University of Iowa, Iowa City, IA, USA
| | - Joseph J Shaffer
- Department of Biosciences, Kansas City University, Kansas City, MO, USA
| | - John A Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA; Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA, USA; Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
2
|
Kerr-Gaffney J, Nuerzati Y, Kopra EI, Young AH. Impulsivity in first-degree relatives at risk of psychosis and mania: a systematic review and meta-analysis. Psychol Med 2024; 54:1-9. [PMID: 39397693 PMCID: PMC11536112 DOI: 10.1017/s0033291724001752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 10/15/2024]
Abstract
Impulsivity is elevated in psychosis and during mania in bipolar disorder. Studies in unaffected relatives may help establish whether impulsivity is a heritable, state independent endophenotype. The aim of this systematic review and meta-analysis was to examine whether impulsivity is elevated in unaffected relatives of those with bipolar disorder, schizophrenia, and schizoaffective disorder, compared to controls. Databases were systematically searched up until March 2023 for articles reporting data on a behavioral or self-report measure of impulsivity in first-degree relatives and controls. Nineteen studies were included. Behavioral (10 studies, d = 0.35, p < 0.001) and self-reported impulsivity was significantly elevated in bipolar disorder relatives compared to controls (5 studies, d = 0.46, p < 0.001), with small effect sizes. Relatives of those with schizophrenia did not show significantly elevated impulsivity compared to controls on behavioral measures (6 studies, d = 0.42, p = 0.102). There were not enough studies to conduct a meta-analysis on self-report data in schizophrenia relatives or schizoaffective disorder relatives (self-report or behavioral). Study quality was good, however there was moderate to high heterogeneity in behavioral meta-analyses. Results suggest elevated impulsivity may be an endophenotype for bipolar disorder, present in an attenuated state before and after the illness and in at-risk individuals. This trait, amongst other behavioral and psychological indices, could be used to identify those who are at risk of developing bipolar disorder. Future research should refine measurement across studies and establish which components of impulsivity are affected in those at risk of psychotic and bipolar disorders.
Collapse
Affiliation(s)
- Jess Kerr-Gaffney
- Psychology, and Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Yahufu Nuerzati
- Psychology, and Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Emma I. Kopra
- Psychology, and Neuroscience, Institute of Psychiatry, King's College London, London, UK
| | - Allan H. Young
- Psychology, and Neuroscience, Institute of Psychiatry, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, London, UK
| |
Collapse
|
3
|
Hoffman LJ, Foley JM, Leong JK, Sullivan-Toole H, Elliott BL, Olson IR. A Virtual In Vivo Dissection and Analysis of Socioaffective Symptoms Related to Cerebellum-Midbrain Reward Circuitry in Humans. J Neurosci 2024; 44:e1031242024. [PMID: 39256045 PMCID: PMC11466071 DOI: 10.1523/jneurosci.1031-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Emerging research in nonhuman animals implicates cerebellar projections to the ventral tegmental area (VTA) in appetitive behaviors, but these circuits have not been characterized in humans. Here, we mapped cerebello-VTA white matter connectivity in a cohort of men and women using probabilistic tractography on diffusion imaging data from the Human Connectome Project. We uncovered the topographical organization of these connections by separately tracking from parcels of cerebellar lobule VI, crus I/II, vermis, paravermis, and cerebrocerebellum. Results revealed that connections between the cerebellum and VTA predominantly originate in the right cerebellar hemisphere, interposed nucleus, and paravermal cortex and terminate mostly ipsilaterally. Paravermal crus I sends the most connections to the VTA compared with other lobules. We discovered a mediolateral gradient of connectivity, such that the medial cerebellum has the highest connectivity with the VTA. Individual differences in microstructure were associated with measures of negative affect and social functioning. By splitting the tracts into quarters, we found that the socioaffective effects were driven by the third quarter of the tract, corresponding to the point at which the fibers leave the deep nuclei. Taken together, we produced detailed maps of cerebello-VTA structural connectivity for the first time in humans and established their relevance for trait differences in socioaffective regulation.
Collapse
Affiliation(s)
- Linda J Hoffman
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19122
| | - Julia M Foley
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19122
| | - Josiah K Leong
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas 72701
| | - Holly Sullivan-Toole
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19122
| | - Blake L Elliott
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19122
| | - Ingrid R Olson
- Department of Psychology and Neuroscience, Temple University, Philadelphia, Pennsylvania 19122
| |
Collapse
|
4
|
Dusi N, Esposito CM, Delvecchio G, Prunas C, Brambilla P. Case report and systematic review of cerebellar vermis alterations in psychosis. Int Clin Psychopharmacol 2024; 39:223-231. [PMID: 38266159 PMCID: PMC11136271 DOI: 10.1097/yic.0000000000000535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 01/26/2024]
Abstract
INTRODUCTION Cerebellar alterations, including both volumetric changes in the cerebellar vermis and dysfunctions of the corticocerebellar connections, have been documented in psychotic disorders. Starting from the clinical observation of a bipolar patient with cerebellar hypoplasia, the purpose of this review is to summarize the data in the literature about the association between hypoplasia of the cerebellar vermis and psychotic disorders [schizophrenia (SCZ) and bipolar disorder (BD)]. METHODS A bibliographic search on PubMed has been conducted, and 18 articles were finally included in the review: five used patients with BD, 12 patients with SCZ and one subject at psychotic risk. RESULTS For SCZ patients and subjects at psychotic risk, the results of most of the reviewed studies seem to suggest a gray matter volume reduction coupled with an increase in white matter volumes in the cerebellar vermis, compared to healthy controls. Instead, the results of the studies on BD patients are more heterogeneous with evidence showing a reduction, no difference or even an increase in cerebellar vermis volume compared to healthy controls. CONCLUSIONS From the results of the reviewed studies, a possible correlation emerged between cerebellar vermis hypoplasia and psychotic disorders, especially SCZ, ultimately supporting the hypothesis of psychotic disorders as neurodevelopmental disorders.
Collapse
Affiliation(s)
- Nicola Dusi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan
| | | | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan
| | - Cecilia Prunas
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan
| | - Paolo Brambilla
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan
- Department of Pathophisiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Hoffman LJ, Foley JM, Leong JK, Sullivan-Toole H, Elliott BL, Olson IR. An in vivo Dissection, and Analysis of Socio-Affective Symptoms related to Cerebellum-Midbrain Reward Circuitry in Humans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.29.560239. [PMID: 38798382 PMCID: PMC11118266 DOI: 10.1101/2023.09.29.560239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Emerging research in non-human animals implicates cerebellar projections to the ventral tegmental area (VTA) in appetitive behaviors, but these circuits have not been characterized in humans. Here, we mapped cerebello-VTA white-matter connectivity in humans using probabilistic tractography on diffusion imaging data from the Human Connectome Project. We uncovered the topographical organization of these connections by separately tracking from parcels of cerebellar lobule VI, crus I/II, vermis, paravermis, and cerebrocerebellum. Results revealed that connections from the cerebellum to the VTA predominantly originate in the right hemisphere, interposed nucleus, and paravermal cortex, and terminate mostly ipsilaterally. Paravermal crus I sends the most connections to the VTA compared to other lobules. We discovered a medial-to-lateral gradient of connectivity, such that the medial cerebellum has the highest connectivity with the VTA. Individual differences in microstructure were associated with measures of negative affect and social functioning. By splitting the tracts into quarters, we found that the socio-affective effects were driven by the third quarter of the tract, corresponding to the point at which the fibers leave the deep nuclei. Taken together, we produced detailed maps of cerebello-VTA structural connectivity for the first time in humans and established their relevance for trait differences in socio-affective regulation.
Collapse
Affiliation(s)
- Linda J. Hoffman
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Julia M. Foley
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Josiah K. Leong
- University of Arkansas, Department of Psychological Science, Fayetteville, AR, USA
| | - Holly Sullivan-Toole
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Blake L. Elliott
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| | - Ingrid R. Olson
- Temple University, Department of Psychology and Neuroscience, Philadelphia, PA, USA
| |
Collapse
|
6
|
Kim JH, Kapse K, Limperopoulos C, De Asis-Cruz J. Cerebellar volume and functional connectivity in neonates predicts social and emotional development in toddlers. Front Neurosci 2024; 18:1294527. [PMID: 38756409 PMCID: PMC11097671 DOI: 10.3389/fnins.2024.1294527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
Over the past decade, a growing body of research in adults has emphasized the role of the cerebellum in social and emotional cognition. This has been further supported by findings of delayed social and emotional development in toddlers with cerebellar injury during the fetal and newborn periods. However, the contributions of the cerebellum to social-emotional development in typically developing newborns are unclear. To bridge this gap in knowledge, we used multimodal MRI to investigate associations between cerebellar structure and function in 88 healthy neonates (mean ± sd of postmenstrual age, = 42.00 ± 1.91 weeks) and social-emotional development at 18-months assessed using the Infant-Toddler Social-Emotional Assessment (ITSEA) (mean age on ITSEA: 18.32 ± 1.19 months old). We found that cerebellar volume was not associated with ITSEA domain scores at 18 months. We further demonstrated cerebellar functional gradient (FGR) defined using principal component analysis (PCA) was associated with Externalizing domain (linear regression model, false-discovery-rate-adjusted p = 0.013). This cluster (FGR7) included the left dentate, right VI, left Vermis VIIIb, and right V lobules. Finally, we demonstrated that either structural or functional features of the cerebellum reliably predicted scores on the Externalizing and Internalizing domains (correlation between actual and predicted scores: for structural, Fisher's z = 0.48 ± 0.01 for Internalizing, p = 0.01; for functional, Fisher's z = 0.45 ± 0.01 for Externalizing, p = 0.02; with permutation test). Collectively, our findings suggest that the cerebellum plays an important role in social-emotional development during the critical early stages of life.
Collapse
|
7
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
8
|
Harmata GIS, Barsotti EJ, Casten LG, Fiedorowicz JG, Williams A, Shaffer JJ, Richards JG, Sathyaputri L, Schmitz SL, Christensen GE, Long JD, Gaine ME, Xu J, Michaelson JJ, Wemmie JA, Magnotta VA. Cerebellar morphological differences and associations with extrinsic factors in bipolar disorder type I. J Affect Disord 2023; 340:269-279. [PMID: 37562560 PMCID: PMC10529949 DOI: 10.1016/j.jad.2023.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND The neural underpinnings of bipolar disorder (BD) remain poorly understood. The cerebellum is ideally positioned to modulate emotional regulation circuitry yet has been understudied in BD. Literature suggests differences in cerebellar activity and metabolism in BD, however findings on structural differences remain contradictory. Potential reasons include combining BD subtypes, small sample sizes, and potential moderators such as genetics, adverse childhood experiences (ACEs), and pharmacotherapy. METHODS We collected 3 T MRI scans from participants with (N = 131) and without (N = 81) BD type I, as well as blood and questionnaires. We assessed differences in cerebellar volumes and explored potentially influential factors. RESULTS The cerebellar cortex was smaller bilaterally in participants with BD. Polygenic propensity score did not predict any cerebellar volumes, suggesting that non-genetic factors may have greater influence on the cerebellar volume difference we observed in BD. Proportionate cerebellar white matter volumes appeared larger with more ACEs, but this may result from reduced ICV. Time from onset and symptom burden were not associated with cerebellar volumes. Finally, taking sedatives was associated with larger cerebellar white matter and non-significantly larger cortical volume. LIMITATIONS This study was cross-sectional, limiting interpretation of possible mechanisms. Most of our participants were White, which could limit the generalizability. Additionally, we did not account for potential polypharmacy interactions. CONCLUSIONS These findings suggest that external factors, such as sedatives and childhood experiences, may influence cerebellum structure in BD and may mask underlying differences. Accounting for such variables may be critical for consistent findings in future studies.
Collapse
Affiliation(s)
- Gail I S Harmata
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Radiology, The University of Iowa, United States
| | - Ercole John Barsotti
- Department of Psychiatry, The University of Iowa, United States; Department of Epidemiology, The University of Iowa, United States
| | - Lucas G Casten
- Department of Psychiatry, The University of Iowa, United States; Interdisciplinary Graduate Program in Genetics, The University of Iowa, United States
| | - Jess G Fiedorowicz
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Psychiatry, University of Ottawa, Canada
| | - Aislinn Williams
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States
| | - Joseph J Shaffer
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Radiology, The University of Iowa, United States; Department of Biosciences, Kansas City University, United States
| | | | | | | | - Gary E Christensen
- Department of Electrical and Computer Engineering, The University of Iowa, United States; Department of Radiation Oncology, The University of Iowa, United States
| | - Jeffrey D Long
- Department of Psychiatry, The University of Iowa, United States; Department of Biostatistics, The University of Iowa, United States
| | - Marie E Gaine
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Pharmaceutical Sciences and Experimental Therapeutics (PSET), College of Pharmacy, The University of Iowa, United States
| | - Jia Xu
- Department of Radiology, The University of Iowa, United States
| | - Jake J Michaelson
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Interdisciplinary Graduate Program in Genetics, The University of Iowa, United States
| | - John A Wemmie
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Molecular Physiology and Biophysics, The University of Iowa, United States; Department of Neurosurgery, The University of Iowa, United States; Veterans Affairs Medical Center, Iowa City, United States
| | - Vincent A Magnotta
- Department of Psychiatry, The University of Iowa, United States; Iowa Neuroscience Institute, The University of Iowa, United States; Department of Radiology, The University of Iowa, United States; Department of Biomedical Engineering, The University of Iowa, United States.
| |
Collapse
|
9
|
Chew QH, Jia S, Sim K. Cerebellar Dysfunction and Relationship With Psychopathology, Cognitive Functioning, Resilience, and Coping in Schizophrenia. J Nerv Ment Dis 2023; 211:876-880. [PMID: 37890027 DOI: 10.1097/nmd.0000000000001706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
ABSTRACT In this study, we examined the cerebellar dysfunction in schizophrenia by evaluating the clinical, cognitive, resilience, and coping correlates of cerebellar signs (CSs) in 162 subjects (63 patients with schizophrenia and 99 healthy controls). The presence of CS was evaluated based on six clinical tests. Measures to assess the severity of psychopathology, cognitive functioning, resilience, and frequency of coping strategies used were included. Patients had more CS than controls. Patients with more CS were older, had more severe psychopathology, had poorer performance on Brief Assessment of Cognition for Schizophrenia token motor task, and used less self-distraction as a coping strategy than those with fewer CS. Patients without CS used less self-blame coping at higher level of resilience. The association of less self-distraction with more CS may be related to cognitive inflexibility as a result of cerebellar dysfunction. Greater attentiveness to the presence of CS in schizophrenia patients may aid in better management of their psychotic condition.
Collapse
Affiliation(s)
- Qian Hui Chew
- Research Division, Institute of Mental Health, Singapore
| | - Shuhong Jia
- Ambulatory Services/Nursing, Institute of Mental Health, Singapore
| | | |
Collapse
|
10
|
Wang Y, Ma L, Chen R, Liu N, Zhang H, Li Y, Wang J, Hu M, Zhao G, Men W, Tan S, Gao J, Qin S, He Y, Dong Q, Tao S. Emotional and behavioral problems change the development of cerebellar gray matter volume, thickness, and surface area from childhood to adolescence: A longitudinal cohort study. CNS Neurosci Ther 2023; 29:3528-3548. [PMID: 37287420 PMCID: PMC10580368 DOI: 10.1111/cns.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023] Open
Abstract
AIMS Increasing evidence indicates that major neurodevelopmental disorders have potential links to abnormal cerebellar development. However, the developmental trajectories of cerebellar subregions from childhood to adolescence are lacking, and it is not clear how emotional and behavioral problems affect them. We aim to map the developmental trajectories of gray matter volume (GMV), cortical thickness (CT), and surface area (SA) in cerebellar subregions from childhood to adolescence and examine how emotional and behavioral problems change the cerebellar development trajectory in a longitudinal cohort study. METHOD This population-based longitudinal cohort study used data on a representative sample of 695 children. Emotional and behavioral problems were assessed at baseline and at three annual follow-ups with the Strengths and Difficulties Questionnaire (SDQ). RESULTS Using an innovative automated image segmentation technique, we quantified the GMV, CT, and SA of the whole cerebellum and 24 subdivisions (lobules I-VI, VIIB, VIIIA&B, and IX-X plus crus I-II) with 1319 MRI scans from a large longitudinal sample of 695 subjects aged 6-15 years and mapped their developmental trajectories. We also examined sex differences and found that boys showed more linear growth, while girls showed more nonlinear growth. Boys and girls showed nonlinear growth in the cerebellar subregions; however, girls reached the peak earlier than boys. Further analysis found that emotional and behavioral problems modulated cerebellar development. Specifically, emotional symptoms impede the expansion of the SA of the cerebellar cortex, and no gender differences; conduct problems lead to inadequate cerebellar GMV development only in girls, but not boys; hyperactivity/inattention delays the development of cerebellar GMV and SA, with left cerebellar GMV, right VIIIA GMV and SA in boys and left V GMV and SA in girls; peer problems disrupt CT growth and SA expansion, resulting in delayed GMV development, with bilateral IV, right X CT in boys and right Crus I GMV, left V SA in girls; and prosocial behavior problems impede the expansion of the SA and lead to excessive CT growth, with bilateral IV, V, right VI CT, left cerebellum SA in boys and right Crus I GMV in girls. CONCLUSIONS This study maps the developmental trajectories of GMV, CT, and SA in cerebellar subregions from childhood to adolescence. In addition, we provide the first evidence for how emotional and behavioral problems affect the dynamic development of GMV, CT, and SA in the cerebellum, which provides an important basis and guidance for the prevention and intervention of cognitive and emotional behavioral problems in the future.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Haibo Zhang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yuanyuan Li
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Mingming Hu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan HospitalPeking UniversityBeijingChina
| | - Jia‐Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
11
|
Li L, Jiang J, Wu B, Lin J, Roberts N, Sweeney JA, Gong Q, Jia Z. Distinct gray matter abnormalities in children/adolescents and adults with history of childhood maltreatment. Neurosci Biobehav Rev 2023; 153:105376. [PMID: 37643682 DOI: 10.1016/j.neubiorev.2023.105376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 07/20/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Gray matter (GM) abnormalities have been reported in both adults and children/adolescents with histories of childhood maltreatment (CM). A comparison of effects in youth and adulthood may be informative regarding life-span effects of CM. Voxel-wise meta-analyses of whole-brain voxel-based morphometry studies were conducted in all datasets and age-based subgroups respectively, followed by a quantitative comparison of the subgroups. Thirty VBM studies (31 datasets) were included. The pooled meta-analysis revealed increased GM in left supplementary motor area, and reduced GM in bilateral cingulate/paracingulate gyri, left occipital lobe, and right middle frontal gyrus in maltreated individuals compared to the controls. Maltreatment-exposed youth showed less GM in the cerebellum, and greater GM in bilateral middle cingulate/paracingulate gyri and bilateral visual cortex than maltreated adults. Opposite GM alterations in bilateral middle cingulate/paracingulate gyri were found in maltreatment-exposed adults (decreased) and children/adolescents (increased). Our findings demonstrate different patterns of GM changes in youth closer to maltreatment events than those seen later in life, suggesting detrimental effects of CM on the developmental trajectory of brain structure.
Collapse
Affiliation(s)
- Lei Li
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jing Jiang
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China; Department of Radiology, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Jinping Lin
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Neil Roberts
- The Queens Medical Research Institute (QMRI), School of Clinical Sciences, University of Edinburgh, Edinburgh, UK
| | - John A Sweeney
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Departments of Radiology, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China; Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China.
| | - Zhiyun Jia
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China; Functional and Molecular Imaging Key Laboratory of Sichuan University, Chengdu, China; Department of Nuclear Medicine, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
12
|
Chen YL, Huang TH, Tu PC, Bai YM, Su TP, Chen MH, Hong JS, Wu YT. Neurobiological Markers for Predicting Treatment Response in Patients with Bipolar Disorder. Biomedicines 2022; 10:biomedicines10123047. [PMID: 36551802 PMCID: PMC9775451 DOI: 10.3390/biomedicines10123047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Predictive neurobiological markers for prognosis are essential but underemphasized for patients with bipolar disorder (BD), a neuroprogressive disorder. Hence, we developed models for predicting symptom and functioning changes. Sixty-one patients with BD were recruited and assessed using the Young Mania Rating Scale (YMRS), Montgomery−Åsberg Depression Rating Scale (MADRS), Positive and Negative Syndrome Scale (PANSS), UKU Side Effect Rating Scale (UKU), Personal and Social Performance Scale (PSP), and Global Assessment of Functioning scale both at baseline and after 1-year follow-up. The models for predicting the changes in symptom and functioning scores were trained using data on the brain morphology, functional connectivity, and cytokines collected at baseline. The correlation between the predicted and actual changes in the YMRS, MADRS, PANSS, and UKU scores was higher than 0.86 (q < 0.05). Connections from subcortical and cerebellar regions were considered for predicting the changes in the YMRS, MADRS, and UKU scores. Moreover, connections of the motor network were considered for predicting the changes in the YMRS and MADRS scores. The neurobiological markers for predicting treatment-response symptoms and functioning changes were consistent with the neuropathology of BD and with the differences found between treatment responders and nonresponders.
Collapse
Affiliation(s)
- Yen-Ling Chen
- Department of Occupational Therapy, I-Shou University, Kaohsiung 840, Taiwan
| | - Tzu-Hsuan Huang
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Pei-Chi Tu
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Philosophy of Mind and Cognition, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (Y.-M.B.); (Y.-T.W.)
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Department of Psychiatry, Cheng-Hsin General Hospital, Taipei 112, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei 112, Taiwan
- Division of Psychiatry, Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Jia-Sheng Hong
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Correspondence: (Y.-M.B.); (Y.-T.W.)
| |
Collapse
|
13
|
Hasin N, Riggs LM, Shekhtman T, Ashworth J, Lease R, Oshone RT, Humphries EM, Badner JA, Thomson PA, Glahn DC, Craig DW, Edenberg HJ, Gershon ES, McMahon FJ, Nurnberger JI, Zandi PP, Kelsoe JR, Roach JC, Gould TD, Ament SA. Rare variants implicate NMDA receptor signaling and cerebellar gene networks in risk for bipolar disorder. Mol Psychiatry 2022; 27:3842-3856. [PMID: 35546635 DOI: 10.1038/s41380-022-01609-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Bipolar disorder is an often-severe mental health condition characterized by alternation between extreme mood states of mania and depression. Despite strong heritability and the recent identification of 64 common variant risk loci of small effect, pathophysiological mechanisms remain unknown. Here, we analyzed genome sequences from 41 multiply-affected pedigrees and identified variants in 741 genes with nominally significant linkage or association with bipolar disorder. These 741 genes overlapped known risk genes for neurodevelopmental disorders and clustered within gene networks enriched for synaptic and nuclear functions. The top variant in this analysis - prioritized by statistical association, predicted deleteriousness, and network centrality - was a missense variant in the gene encoding D-amino acid oxidase (DAOG131V). Heterologous expression of DAOG131V in human cells resulted in decreased DAO protein abundance and enzymatic activity. In a knock-in mouse model of DAOG131, DaoG130V/+, we similarly found decreased DAO protein abundance in hindbrain regions, as well as enhanced stress susceptibility and blunted behavioral responses to pharmacological inhibition of N-methyl-D-aspartate receptors (NMDARs). RNA sequencing of cerebellar tissue revealed that DaoG130V resulted in decreased expression of two gene networks that are enriched for synaptic functions and for genes expressed, respectively, in Purkinje neurons or granule neurons. These gene networks were also down-regulated in the cerebellum of patients with bipolar disorder compared to healthy controls and were enriched for additional rare variants associated with bipolar disorder risk. These findings implicate dysregulation of NMDAR signaling and of gene expression in cerebellar neurons in bipolar disorder pathophysiology and provide insight into its genetic architecture.
Collapse
Affiliation(s)
- Naushaba Hasin
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Lace M Riggs
- Program in Neuroscience and Training Program in Integrative Membrane Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tatyana Shekhtman
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Robert Lease
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Rediet T Oshone
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Humphries
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Program in Molecular Epidemiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Judith A Badner
- Department of Psychiatry, Rush University Medical College, Chicago, IL, USA
| | - Pippa A Thomson
- Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, Scotland, UK
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - David W Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, CA, USA
| | - Howard J Edenberg
- Departments of Biochemistry and Molecular Biology and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Elliot S Gershon
- Departments of Psychiatry and Human Genetics, University of Chicago, Chicago, IL, USA
| | - Francis J McMahon
- Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA
| | - John I Nurnberger
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Peter P Zandi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - John R Kelsoe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | | | - Todd D Gould
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
- Departments of Pharmacology and Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Veterans Affairs Maryland Health Care System, Baltimore, MD, USA
| | - Seth A Ament
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Abstract
Objective of the study is to investigate the altered intrinsic functional hubs in patients with comitant exotropia (CE) using the voxel-wise degree centrality (DC) analysis method. A total of 28 CE patients and 28 healthy controls (HCs) similarly matched in sex, age, and education level were recruited in this study. All subjects underwent a resting-state functional MRI scan, the voxel-wise DC method was applied to evaluate brain network hubs alterations in CE patients. Then, the DC maps between two groups were chosen to be classification features to distinguish patients with CE from HCs based on the support vector machine (SVM) model. The algorithm performance was evaluated by a permutation test. Compared with HCs, CE patients exhibited significant enhanced DC value in the left cerebelum 8 and the right cerebelum 3; and remarkably decreased DC value in the right precentral gyrus, right anterior cingulated, and paracingulate gyri (two-tailed, voxel level: P < 0.01; GRF correction, cluster level: P < 0.05). However, no relationship was found between the observed average DC of the different brain regions and the clinical features ( P > 0.05). In addition, the SVM model showed an accuracy of 83.93% to clarify CE patients from HCs using the DC maps as a classification feature. CE patients displayed altered functional network hubs in multiple brain areas associated with cognition and motor control, and the DC variability could classify patients from HCs with high accuracy. These findings may assist to understand the neuropathological mechanism for the disease.
Collapse
|
15
|
Frazier MR, Hoffman LJ, Popal H, Sullivan-Toole H, Olino TM, Olson IR. A missing link in affect regulation: the cerebellum. Soc Cogn Affect Neurosci 2022; 17:1068-1081. [PMID: 35733348 PMCID: PMC9714429 DOI: 10.1093/scan/nsac042] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 01/12/2023] Open
Abstract
The cerebellum is one-third the size of the cerebrum yet holds twice the number of neurons. Historically, its sole function was thought to be in the calibration of smooth movements through the creation and ongoing modification of motor programs. This traditional viewpoint has been challenged by findings showing that cerebellar damage can lead to striking changes in non-motor behavior, including emotional changes. In this manuscript, we review the literature on clinical and subclinical affective disturbances observed in individuals with lesions to the cerebellum. Disorders include pathological laughing and crying, bipolar disorder, depression and mixed mood changes. We propose a theoretical model based on cerebellar connectivity to explain how the cerebellum calibrates affect. We conclude with actionable steps for future researchers to test this model and improve upon the limitations of past literature.
Collapse
Affiliation(s)
| | - Linda J Hoffman
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Haroon Popal
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | | | - Thomas M Olino
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | - Ingrid R Olson
- Correspondence should be addressed to Ingrid R. Olson, Department of Psychology, Temple University, 1701 N. 13th Street, Philadelphia, PA 19122, USA. E-mail:
| |
Collapse
|
16
|
Cutando L, Puighermanal E, Castell L, Tarot P, Belle M, Bertaso F, Arango-Lievano M, Ango F, Rubinstein M, Quintana A, Chédotal A, Mameli M, Valjent E. Cerebellar dopamine D2 receptors regulate social behaviors. Nat Neurosci 2022; 25:900-911. [PMID: 35710984 DOI: 10.1038/s41593-022-01092-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 05/10/2022] [Indexed: 01/18/2023]
Abstract
The cerebellum, a primary brain structure involved in the control of sensorimotor tasks, also contributes to higher cognitive functions including reward, emotion and social interaction. Although the regulation of these behaviors has been largely ascribed to the monoaminergic system in limbic regions, the contribution of cerebellar dopamine signaling in the modulation of these functions remains largely unknown. By combining cell-type-specific transcriptomics, histological analyses, three-dimensional imaging and patch-clamp recordings, we demonstrate that cerebellar dopamine D2 receptors (D2Rs) in mice are preferentially expressed in Purkinje cells (PCs) and regulate synaptic efficacy onto PCs. Moreover, we found that changes in D2R levels in PCs of male mice during adulthood alter sociability and preference for social novelty without affecting motor functions. Altogether, these findings demonstrate novel roles for D2R in PC function and causally link cerebellar D2R levels of expression to social behaviors.
Collapse
Affiliation(s)
- Laura Cutando
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France. .,Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Emma Puighermanal
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France.,Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Laia Castell
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Pauline Tarot
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Morgane Belle
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | | | | | - Fabrice Ango
- IGF, Univ. Montpellier, CNRS, Inserm, Montpellier, France.,INM, Univ. Montpellier, CNRS, Inserm, Montpellier, France
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET; FCEN, Universidad de Buenos Aires, Buenos Aires, Argentina; and Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Albert Quintana
- Institut de Neurociències and Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Alain Chédotal
- Institut de la Vision, Sorbonne Université, INSERM, CNRS, Paris, France
| | - Manuel Mameli
- Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland.,Inserm UMR-S 1270, Paris, France
| | | |
Collapse
|
17
|
Borchers LR, Bruckert L, Chahal R, Mastrovito D, Ho TC, Gotlib IH. White Matter Microstructural Properties of the Cerebellar Peduncles Predict Change in Symptoms of Psychopathology in Adolescent Girls. CEREBELLUM (LONDON, ENGLAND) 2022; 21:380-390. [PMID: 34309819 PMCID: PMC8811714 DOI: 10.1007/s12311-021-01307-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 01/02/2023]
Abstract
Internalizing symptoms typically emerge in adolescence and are more prevalent in females than in males; in contrast, externalizing symptoms typically emerge in childhood and are more commonly observed in males. Previous research has implicated aspects of white matter organization, including fractional anisotropy (FA), of cerebral tracts in both internalizing and externalizing symptoms. Although the cerebellum has been posited to integrate limbic and cortical regions, its role in psychopathology is not well understood. In this longitudinal study, we investigated whether FA of the superior (SCP), middle (MCP), and inferior cerebellar peduncles (ICP) predict change in symptoms and whether sex moderates this association. One hundred eleven adolescents completed the Youth Self-Report, assessing symptoms at baseline (ages 9-13 years) and again 2 years later. Participants also underwent diffusion-weighted imaging at baseline. We used deterministic tractography to segment and compute mean FA of the cerebellar peduncles. Lower FA of the right SCP at baseline predicted increases in internalizing symptoms in females only. Lower FA in the right SCP and ICP also predicted increases in externalizing symptoms in females, but these associations did not survive multiple comparison correction. There was no association between FA of the cerebellar peduncles and change in symptoms in males or between MCP FA and symptom changes in males or females. Organizational properties of the SCP may be a sex-specific marker of internalizing symptom changes in adolescence. The cerebellar peduncles should be explored further in future studies to elucidate sex differences in symptoms.
Collapse
Affiliation(s)
- Lauren R Borchers
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA.
| | - Lisa Bruckert
- Developmental-Behavioral Pediatrics, Stanford School of Medicine, 1265 Welch Road, Stanford, CA, 94305, USA
| | - Rajpreet Chahal
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA
| | - Dana Mastrovito
- Allen Institute, 615 Westlake Avenue North, Seattle, WA, 98109, USA
| | - Tiffany C Ho
- Department of Psychiatry & Weill Institute for Neurosciences, University of California, San Francisco, 401 Parnassus Ave, San Francisco, CA, 94143, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, 450 Jane Stanford Way, Stanford, CA, 94305, USA
| |
Collapse
|
18
|
Yan K, Shi WQ, Su T, Liao XL, Wu SN, Li QY, Yu J, Shu HY, Zhang LJ, Pan YC, Shao Y. Brain Activity Changes in Slow 5 and Slow 4 Frequencies in Patients With Optic Neuritis: A Resting State Functional MRI Study. Front Neurol 2022; 13:823919. [PMID: 35265028 PMCID: PMC8900534 DOI: 10.3389/fneur.2022.823919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
Objective We used the amplitude of low-frequency fluctuation (ALFF) method to investigate spontaneous brain activity in patients with optic neuritis (ON) in specific frequency bands. Data and Methods A sample of 21 patients with ON (13 female and eight male) and 21 healthy controls (HCs) underwent functional magnetic resonance imaging (fMRI) scans in the resting state. We analyzed the ALFF values at different frequencies (slow-4 band: 0.027–0.073 Hz; slow-5 band: 0.01–0.027 Hz) in ON patients and HCs. Results In the slow-4 frequency range, compared with HCs, ON patients had apparently lower ALFF in the insula and the whack precuneus. In the slow-5 frequency range, ON patients showed significantly increased ALFF in the left parietal inferior and the left postcentral. Conclusion Our results suggest that ON may be involved in abnormal brain function and can provide a basis for clinical research.
Collapse
Affiliation(s)
- Kai Yan
- Department of Radiology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Wen-Qing Shi
- Department of Ophthalmology, Jiangxi Centre of National Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ting Su
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Xu-Lin Liao
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Shi-Nan Wu
- Department of Ophthalmology, Jiangxi Centre of National Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qiu-Yu Li
- Department of Ophthalmology, Jiangxi Centre of National Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jing Yu
- Department of Acupuncture and Moxibustion, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Hui-Ye Shu
- Department of Ophthalmology, Jiangxi Centre of National Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li-Juan Zhang
- Department of Ophthalmology, Jiangxi Centre of National Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi-Cong Pan
- Department of Ophthalmology, Jiangxi Centre of National Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yi Shao
- Department of Ophthalmology, Jiangxi Centre of National Clinical Ophthalmology Institute, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Latha M, Kavitha G. Combined Metaheuristic Algorithm and Radiomics Strategy for the Analysis of Neuroanatomical Structures in Schizophrenia and Schizoaffective Disorders. Ing Rech Biomed 2021. [DOI: 10.1016/j.irbm.2020.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Lapomarda G, Grecucci A, Messina I, Pappaianni E, Dadomo H. Common and different gray and white matter alterations in bipolar and borderline personality disorder: A source-based morphometry study. Brain Res 2021; 1762:147401. [PMID: 33675742 DOI: 10.1016/j.brainres.2021.147401] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 02/15/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022]
Abstract
According to the nosological classification, Bipolar Disorder (BD) and Borderline Personality Disorder (BPD) are different syndromes. However, these pathological conditions share a number of affective symptoms that make the diagnosis difficult. Affective symptoms range from abnormal mood swings, characterizing both BD and BPD, to regulation dysfunctions, more specific to BPD. To shed light on the neural bases of these aspects, and to better understand differences and similarities between the two disorders, we analysed for the first time gray and white matter features of both BD and BPD. Structural T1 images from 30 patients with BD, 20 with BPD, and 45 controls were analysed by capitalizing on an innovative whole-brain multivariate method known as Source-based Morphometry. Compared to controls, BD patients showed increased gray matter concentration (p = .003) in a network involving mostly subcortical structures and cerebellar areas, possibly related to abnormal mood experiences. Notably, BPD patients showed milder alterations in the same circuit, standing in the middle of a continuum between BD and controls. In addition to this, we found an altered white matter network specific to BPD (p = .018), including frontal-parietal and temporal regions possibly associated with dysfunctional top-down emotion regulation. These findings may shed light on a better understanding of affective disturbances behind the two disorders, with BD patients more characterized by abnormalities in neural structures involved in mood oscillations, and BPD by deficits in the cognitive regulation of emotions. These results may help developing better treatments tailored to the specific affective disturbances displayed by these patients.
Collapse
Affiliation(s)
- Gaia Lapomarda
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy.
| | - Alessandro Grecucci
- Clinical and Affective Neuroscience Lab, Department of Psychology and Cognitive Sciences, University of Trento, Rovereto, Italy
| | | | - Edoardo Pappaianni
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Harold Dadomo
- Department of Neuroscience, University of Parma, Parma, Italy
| |
Collapse
|
21
|
Sankar A, Purves K, Colic L, Lippard ETC, Millard H, Fan S, Spencer L, Wang F, Pittman B, Constable RT, Gross JJ, Blumberg HP. Altered frontal cortex functioning in emotion regulation and hopelessness in bipolar disorder. Bipolar Disord 2021; 23:152-164. [PMID: 32521570 PMCID: PMC7790437 DOI: 10.1111/bdi.12954] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Emotion regulation difficulties precipitate and exacerbate acute mood symptoms in individuals with bipolar disorder (BD), and contribute to suicidal behavior. However, few studies have examined regional brain responses in explicit emotion regulation during acute BD mood states, or hopelessness, a major suicide risk factor. We assessed brain responses during explicit emotion regulation, and their relationship with hopelessness, in acutely symptomatic and euthymic individuals with BD. METHODS Functional MRI data were obtained from individuals with BD who were either in acute negative (BD-A; n = 24) or euthymic (BD-E; n = 24) mood states, and from healthy volunteers (HV; n = 55), while participants performed a paradigm that instructed them to downregulate their responses to fearful (EmReg-Fear) and happy (EmReg-Happy) facial stimuli. Emotion regulation-related differences in brain responses during negative and euthymic BD states, as well as their associations with negative affective symptoms (hopelessness and depression), were examined. RESULTS Decreased responses were observed in ventral and dorsal frontal regions, including medial orbitofrontal (mOFC) and dorsal anterior cingulate cortices, during EmReg-Fear across symptomatic and euthymic states in participants with BD relative to HVs. The lowest responses were observed in the BD-A group. Across BD participants, negative associations were observed between mOFC responses and hopelessness, particularly due to loss of motivation. Differences were not significant during EmReg-Happy. CONCLUSIONS Lesser emotion regulation-related ventral and dorsal frontal engagement in BD could represent a trait abnormality that worsens during acute negative states. The reduced mOFC engagement in BD during explicit regulation of negative emotions may contribute to hopelessness particularly in the context of diminished motivation.
Collapse
Affiliation(s)
- Anjali Sankar
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Kirstin Purves
- Department of Psychiatry, Yale School of Medicine, New Haven, CT,Social, Genetic Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Lejla Colic
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Elizabeth T Cox Lippard
- Department of Psychiatry, Yale School of Medicine, New Haven, CT,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT,Department of Psychiatry, Dell Medical School, University of Texas, Austin, TX
| | - Hun Millard
- Department of Psychiatry, Yale School of Medicine, New Haven, CT,Child Study Center, Yale School of Medicine, New Haven, CT
| | - Siyan Fan
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Linda Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT
| | - R. Todd Constable
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - James J Gross
- Department of Psychology, Stanford University, Stanford, CA
| | - Hilary P Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT,Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT,Child Study Center, Yale School of Medicine, New Haven, CT
| |
Collapse
|
22
|
Busatto G, Rosa PG, Serpa MH, Squarzoni P, Duran FL. Psychiatric neuroimaging research in Brazil: historical overview, current challenges, and future opportunities. REVISTA BRASILEIRA DE PSIQUIATRIA (SAO PAULO, BRAZIL : 1999) 2021; 43:83-101. [PMID: 32520165 PMCID: PMC7861184 DOI: 10.1590/1516-4446-2019-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/03/2020] [Indexed: 11/23/2022]
Abstract
The last four decades have witnessed tremendous growth in research studies applying neuroimaging methods to evaluate pathophysiological and treatment aspects of psychiatric disorders around the world. This article provides a brief history of psychiatric neuroimaging research in Brazil, including quantitative information about the growth of this field in the country over the past 20 years. Also described are the various methodologies used, the wealth of scientific questions investigated, and the strength of international collaborations established. Finally, examples of the many methodological advances that have emerged in the field of in vivo neuroimaging are provided, with discussion of the challenges faced by psychiatric research groups in Brazil, a country of limited resources, to continue incorporating such innovations to generate novel scientific data of local and global relevance.
Collapse
Affiliation(s)
- Geraldo Busatto
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Pedro G. Rosa
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Mauricio H. Serpa
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paula Squarzoni
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Fabio L. Duran
- Laboratório de Neuroimagem em Psiquiatria (LIM 21), Departamento e Instituto de Psiquiatria, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
23
|
Argyropoulos GD, Christidi F, Karavasilis E, Velonakis G, Antoniou A, Bede P, Seimenis I, Kelekis N, Douzenis A, Papakonstantinou O, Efstathopoulos E, Ferentinos P. Cerebro-cerebellar white matter connectivity in bipolar disorder and associated polarity subphenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104:110034. [PMID: 32710925 DOI: 10.1016/j.pnpbp.2020.110034] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/08/2020] [Accepted: 07/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The cerebellum has a crucial role in mood regulation. While cerebellar grey matter (GM) alterations have been previously reported in bipolar disorder (BD), cerebro-cerebellar white matter (WM) connectivity alterations and cerebellar GM profiles have not been characterised in the context of predominant polarity (PP) and onset polarity (OP) subphenotypes of BD patients which is the aim of the present study. METHODS Forty-two euthymic BD patients stratified for PP and OP and 42 healthy controls (HC) were included in this quantitative neuroimaging study to evaluate cerebellar GM patterns and cerebro-cerebellar WM connections. Diffusion tensor tractography was used to characterise afferent and efferent cerebro-cerebellar tract integrity. False discovery rate corrections were applied in post-hoc comparisons. RESULTS BD patients exhibited higher fractional anisotropy (FA) in fronto-ponto-cerebellar tracts bilaterally compared to HC. Subphenotype-specific FA profiles were identified within the BD cohort. Regarding PP subgroups, we found FA changes in a) left contralateral fronto-ponto-cerebellar tract (depressive-PP > HC) and b) contralateral/ipsilateral fronto-ponto-cerebellar tracts bilaterally (manic-PP > HC). Regarding OP subgroups, we observed FA changes in a) left/right contralateral fronto-ponto-cerebellar tracts (depressive-OP > HC) and b) all fronto-ponto-cerebellar, most parieto-ponto-cerebellar and right contralateral occipito-ponto-cerebellar tracts (manic-OP>HC). In general, greater and more widespread cerebro-cerebellar changes were observed in manic-OP patients than in depressive-OP patients compared to HC. Manic-OP showed higher FA compared to depressive-OP patients in several afferent WM tracts. No GM differences were identified between BD and HC and across BD subgroups. CONCLUSIONS Our findings highlight fronto-ponto-cerebellar connectivity alterations in euthymic BD. Polarity-related subphenotypes have distinctive cerebro-cerebellar WM signatures with potential clinical and pathobiological implications.
Collapse
Affiliation(s)
- Georgios D Argyropoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini Christidi
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece; Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| | - Efstratios Karavasilis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Velonakis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Antoniou
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Peter Bede
- Biomedical Imaging Laboratory, Sorbonne University, CNRS, INSERM, Paris, France; Computational Neuroimaging Group, Trinity College Dublin, Ireland
| | - Ioannis Seimenis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Kelekis
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Douzenis
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Olympia Papakonstantinou
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efstathios Efstathopoulos
- Research Unit of Radiology and Medical Imaging, 2nd Department of Radiology, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Ferentinos
- 2nd Department of Psychiatry, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
24
|
Chen YL, Tu PC, Huang TH, Bai YM, Su TP, Chen MH, Wu YT. Using Minimal-Redundant and Maximal-Relevant Whole-Brain Functional Connectivity to Classify Bipolar Disorder. Front Neurosci 2020; 14:563368. [PMID: 33192250 PMCID: PMC7641629 DOI: 10.3389/fnins.2020.563368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/23/2020] [Indexed: 12/04/2022] Open
Abstract
Background A number of mental illness is often re-diagnosed to be bipolar disorder (BD). Furthermore, the prefronto-limbic-striatal regions seem to be associated with the main dysconnectivity of BD. Functional connectivity is potentially an appropriate objective neurobiological marker that can assist with BD diagnosis. Methods Health controls (HC; n = 173) and patients with BD who had been diagnosed by experienced physicians (n = 192) were separated into 10-folds, namely, a ninefold training set and a onefold testing set. The classification involved feature selection of the training set using minimum redundancy/maximum relevance. Support vector machine was used for training. The classification was repeated 10 times until each fold had been used as the testing set. Results The mean accuracy of the 10 testing sets was 76.25%, and the area under the curve was 0.840. The selected functional within-network/between-network connectivity was mainly in the subcortical/cerebellar regions and the frontoparietal network. Furthermore, similarity within the BD patients, calculated by the cosine distance between two functional connectivity matrices, was smaller than between groups before feature selection and greater than between groups after the feature selection. Limitations The major limitations were that all the BD patients were receiving medication and that no independent dataset was included. Conclusion Our approach effectively separates a relatively large group of BD patients from HCs. This was done by selecting functional connectivity, which was more similar within BD patients, and also seems to be related to the neuropathological factors associated with BD.
Collapse
Affiliation(s)
- Yen-Ling Chen
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Pei-Chi Tu
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Philosophy of Mind and Cognition, National Yang-Ming University, Taipei, Taiwan
| | - Tzu-Hsuan Huang
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tung-Ping Su
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan.,Department of Psychiatry, Cheng-Hsin General Hospital, Taipei, Taiwan
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan.,Division of Psychiatry, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
25
|
Kim J, Cho H, Kim J, Kim A, Kang Y, Kang W, Choi KW, Ham BJ, Han KM, Tae WS. Changes in cortical thickness and volume of cerebellar subregions in patients with bipolar disorders. J Affect Disord 2020; 271:74-80. [PMID: 32479334 DOI: 10.1016/j.jad.2020.03.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 01/26/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Numerous studies have suggested that structural changes in the cerebellum are implicated in the pathophysiology of bipolar disorder (BD). We aimed to investigate differences in the volume and cortical thickness of the cerebellar subregions between patients with BD and healthy controls (HCs). METHODS Ninety patients with BD and one hundred sixty-six HCs participated in this study and underwent T1-weighted structural magnetic resonance imaging. We analyzed the volume and cortical thickness of each cerebellar hemisphere divided into 12 subregions using T1-weighted images of participants. One-way analysis of covariance was used to evaluate differences between the groups, with age, sex, medication, and total intracranial cavity volume used as covariates. RESULTS The BD group had significantly increased cortical thickness of the cerebellum in all cerebellar subregions compared to the HC group. The cortical thicknesses of the whole cerebellum and each hemisphere were also significantly thicker in the BD group than in the HC group. The volume of the left lobule IX was significantly lower in patients with BD than in HCs, whereas no significant differences in the volumes were observed in the other subregions. LIMITATIONS Our cross-sectional design cannot provide a causal relationship between the increased cortical thickness of the cerebellum and the risk of BD. CONCLUSIONS We observed widespread and significant cortical thickening in all the cerebellar subregions. Our results provide evidence for the involvement of the cerebellum in BD. Further studies are required to integrate neurobiological evidence and structural brain imaging to elucidate the pathophysiology of BD.
Collapse
Affiliation(s)
- Jooyeon Kim
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Heejoon Cho
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jinha Kim
- Department of Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Aram Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Youbin Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Wooyoung Kang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwan Woo Choi
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Byung-Joo Ham
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea; Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Kyu-Man Han
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
26
|
11th International Congress on Psychopharmacology & 7th International Symposium on Child and Adolescent Psychopharmacology. PSYCHIAT CLIN PSYCH 2019. [DOI: 10.1080/24750573.2019.1606883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
27
|
Wu YY, Yuan Q, Li B, Lin Q, Zhu PW, Min YL, Shi WQ, Shu YQ, Zhou Q, Shao Y. Altered spontaneous brain activity patterns in patients with retinal vein occlusion indicated by the amplitude of low-frequency fluctuation: A functional magnetic resonance imaging study. Exp Ther Med 2019; 18:2063-2071. [PMID: 31410162 PMCID: PMC6676080 DOI: 10.3892/etm.2019.7770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 03/22/2019] [Indexed: 12/12/2022] Open
Abstract
The aim of the present study was to explore the amplitude of low-frequency fluctuations (ALFF; a measurement of spontaneous brain activity) in different brain regions of patients with retinal vein occlusion (RVO) and its association with vision changes measurements. A total of 24 RVO patients (12 males and 12 females) and 24 healthy controls (HCs, 12 males and 12 females) were recruited, and they were closely matched regarding age, gender and education level (classified according to nine-year compulsory education in China and higher education, all including primary school, junior school, high school and university). ALFF values of different brain regions were gathered and analyzed, and statistical analysis software was used to explore the correlations between the average ALFF signals and clinical features. The ability of ALFF values to distinguish between subjects with RVO and HCs was analyzed by receiver operating characteristic (ROC) curves. The results indicated that the subjects from the RVO group had higher ALFF values than the HCs in the posterior lobe of the left cerebellum, inferior temporal gyrus, cerebellar anterior lobe, right cerebellum posterior/anterior lobe, and lower ALFF values in the medial frontal gyrus, right precuneus, left middle frontal gyrus, right angular gyrus and right superior frontal gyrus. The ROC curve analysis of each brain region indicated that the accuracy of the area under the ROC curves regarding the prediction of RVO was excellent. The best-corrected visual acuity (VA) in the left eye was positively correlated with the ALFF value of the right precuneus (r=0.767, P=0.004) and the best-corrected VA in the right eye was positively correlated with the ALFF value of the left middle frontal gyrus (r=0.935, P<0.001). The central subfield retinal thickness in the left eye was negatively correlated with the ALFF value of the right precuneus (r=−0.895; P<0.001). The duration of RVO in the right eye was positively correlated with the ALFF value of the left middle frontal gyrus (r=0.868; P<0.001). In conclusion, the present results indicate that RVO is associated with dysfunction of diverse brain regions, including language- and movement-associated areas, which may reflect the underlying pathogenic mechanisms of RVO (trial registry no. CDYFY-LL-2017025).
Collapse
Affiliation(s)
- Yuan-Yuan Wu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Qing Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Biao Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Qi Lin
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Pei-Wen Zhu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - You-Lan Min
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Wen-Qing Shi
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Yong-Qiang Shu
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Jiangxi Province Clinical Ophthalmology Institute, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
28
|
Demirgören BS, Özbek A, Göçmen Karabekir N, Ay B, Turan S, Yonguç GN, Karabekir S, Polat Aİ, Hız AS, Gencer Kıdak Ö. Cerebellar volumes in early-onset bipolar disorder: a pilot study of a stereological measurement technique. PSYCHIAT CLIN PSYCH 2019; 29:293-297. [DOI: 10.1080/24750573.2019.1637040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 10/26/2022] Open
Affiliation(s)
- Burcu Serim Demirgören
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Aylin Özbek
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Bari Ay
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Serkan Turan
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | | | - Selim Karabekir
- Department of Neurosurgery, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayşe İpek Polat
- Department of Child Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Ayşe Semra Hız
- Department of Child Neurology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Özlem Gencer Kıdak
- Department of Child and Adolescent Psychiatry, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
29
|
van Dun K, Mitoma H, Manto M. Cerebellar Cortex as a Therapeutic Target for Neurostimulation. THE CEREBELLUM 2018; 17:777-787. [PMID: 30276522 DOI: 10.1007/s12311-018-0976-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Non-invasive stimulation of the cerebellum is growingly applied both in the clinic and in research settings to modulate the activities of cerebello-cerebral loops. The anatomical location of the cerebellum, the high responsiveness of the cerebellar cortex to magnetic/electrical stimuli, and the implication of the cerebellum in numerous cerebello-cerebral networks make the cerebellum an ideal target for investigations and therapeutic purposes. In this mini-review, we discuss the potentials of cerebellar neuromodulation in major brain disorders in order to encourage large-scale sham-controlled research and explore this therapeutic aid further.
Collapse
Affiliation(s)
- Kim van Dun
- Clinical and Experimental Neurolinguistics, CLIN, Vrije Universiteit Brussels, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.,Service des Neurosciences, UMons, Mons, Belgium
| |
Collapse
|
30
|
Domínguez-Baleón C, Gutiérrez-Mondragón LF, Campos-González AI, Rentería ME. Neuroimaging Studies of Suicidal Behavior and Non-suicidal Self-Injury in Psychiatric Patients: A Systematic Review. Front Psychiatry 2018; 9:500. [PMID: 30386264 PMCID: PMC6198177 DOI: 10.3389/fpsyt.2018.00500] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 09/24/2018] [Indexed: 01/19/2023] Open
Abstract
Background: With around 800,000 people taking their own lives every year, suicide is a growing health concern. Understanding the factors that underlie suicidality and identifying specific variables associated with increased risk is paramount for increasing our understanding of suicide etiology. Neuroimaging methods that enable the investigation of structural and functional brain markers in vivo are a promising tool in suicide research. Although a number of studies in clinical samples have been published to date, evidence about neuroimaging correlates for suicidality remains controversial. Objective: Patients with mental disorders have an increased risk for both suicidal behavior and non-suicidal self-injury. This manuscript aims to present an up-to-date overview of the literature on potential neuroimaging markers associated with SB and NSSI in clinical samples. We sought to identify consistently reported structural changes associated with suicidal symptoms within and across psychiatric disorders. Methods: A systematic literature search across four databases was performed to identify all English-language neuroimaging articles involving patients with at least one psychiatric diagnosis and at least one variable assessing SB or NSSI. We evaluated and screened evidence in these articles against a set of inclusion/exclusion criteria and categorized them by disease, adhering to the PRISMA guidelines. Results: Thirty-three original scientific articles investigating neuroimaging correlates of SB in psychiatric samples were found, but no single article focusing on NSSI alone. Associations between suicidality and regions in frontal and temporal cortex were reported by 15 and 9 studies across four disorders, respectively. Furthermore, differences in hippocampus were reported by four studies across three disorders. However, we found a significant lack of replicability (consistency in size and direction) of results across studies. Conclusions: Our systematic review revealed a lack of neuroimaging studies focusing on NSSI in clinical samples. We highlight several potential sources of bias in published studies, and conclude that future studies should implement more rigorous study designs to minimize bias risk. Despite several studies reporting associations between SB and anatomical differences in the frontal cortex, there was a lack of consistency across them. We conclude that better-powered samples, standardized neuroimaging and analytical protocols are needed to continue advancing knowledge in this field.
Collapse
Affiliation(s)
- Carmen Domínguez-Baleón
- Licenciatura en Ciencias Genómicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Luis F. Gutiérrez-Mondragón
- Licenciatura en Ciencias Genómicas, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Adrián I. Campos-González
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| | - Miguel E. Rentería
- Department of Genetics & Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
- Faculty of Medicine, The University of Queensland, Herston, QLD, Australia
| |
Collapse
|
31
|
Bani-Fatemi A, Tasmim S, Graff-Guerrero A, Gerretsen P, Strauss J, Kolla N, Spalletta G, De Luca V. Structural and functional alterations of the suicidal brain: An updated review of neuroimaging studies. Psychiatry Res Neuroimaging 2018; 278:77-91. [PMID: 29929763 DOI: 10.1016/j.pscychresns.2018.05.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 05/10/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
Abstract
Brain imaging is a non-invasive and in vivo direct estimation of detailed brain structure, regional brain functioning and estimation of molecular processes in the brain. The main objective of this review was to analyze functional and structural neuroimaging studies of individuals at risk for suicide. We reviewed articles published between 2005 and 2018, indexed in PubMed and Medline, assessing structural and functional alterations of the brain of individuals at high risk for suicide and at low risk for suicide. We reviewed functional and structural neuroimaging studies which included individuals with a history of suicidal ideation or attempt in major depressive disorder (MDD), bipolar disorder (BD), psychosis, and borderline personality disorder (BPD). We selected 45 papers that focused on suicidality in MDD, 17 papers on BD, 11 papers on psychosis, and 5 papers on BPD. The suicidal brain across psychiatric diagnoses seems to heavily involve dysfunction of the fronto-temporal network, primarily involving reductions of gray and white matter volumes in the pre-frontal cortex (PFC), anterior cingulate, and superior temporal gyrus. Nonetheless, there are several ways to define suicidal behaviour and ideation. Therefore, it still remains difficult to combine the evidence from imaging studies that used different definitions of suicidality.
Collapse
Affiliation(s)
- Ali Bani-Fatemi
- Group for Suicide Studies, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Samia Tasmim
- Group for Suicide Studies, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON M5T 1R8, Canada; Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ariel Graff-Guerrero
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute; Multimodal Imaging Group at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Philip Gerretsen
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute; Multimodal Imaging Group at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - John Strauss
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Medical Informatics; Child, Youth and Family Program at the Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nathan Kolla
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Campbell Family Mental Health Research Institute
| | - Gianfranco Spalletta
- IRCCS Santa Lucia Foundation, Rome, Italy; Menninger Department of psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Vincenzo De Luca
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, 250 College St, Toronto, ON M5T 1R8, Canada.
| |
Collapse
|
32
|
Bauer IE, Suchting R, Cazala F, Alpak G, Sanches M, Nery FG, Zunta-Soares GB, Soares JC. Changes in amygdala, cerebellum, and nucleus accumbens volumes in bipolar patients treated with lamotrigine. Psychiatry Res Neuroimaging 2018; 278:13-20. [PMID: 29944976 DOI: 10.1016/j.pscychresns.2018.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 12/21/2022]
Abstract
The neural mechanisms underlying the therapeutic effects of lamotrigine in bipolar depression are still unexplored. This preliminary study compares the effects of a 12-week treatment with lamotrigine on brain volumes in adults with bipolar disorder (BD).12 BD type II patients (age: 49.33 ± 9.95 years, 3 males, 9 females) and 12 age and gender-matched healthy controls (HC) (HC; age: 41 ± 8.60 years, 3 males, 9 females). BD patients were initially administered 25 mg/day of lamotrigine, which was progressively escalated to 200 mg/d. BD participants underwent brain imaging prior to and following lamotrigine treatment. A 50% reduction in depressive scores indicated "remission". Bayesian general linear models controlled for age, gender and intracranial volume were used to examine changes in relevant brain region following treatment. A posterior probability > 0.90 indicated evidence that there was an effect of diagnosis or remission on brain volumes. Probability distributions of interaction effects between remission and time indicated that BD responders displayed decreased amygdala, cerebellum and nucleus accumbens volumes following lamotrigine treatment. No serious adverse side effects were reported. The antidepressant effects of lamotrigine may be linked to volumetric changes in brain regions involved in mood and emotional regulation. These findings are preliminary and replication in a larger sample is warranted.
Collapse
Affiliation(s)
- Isabelle E Bauer
- University of Texas Health Science Center at Houston, McGovern Medical School, Department of Psychiatry and Behavioral Sciences, Houston, TX 77054, United States.
| | - Robert Suchting
- University of Texas Health Science Center at Houston, McGovern Medical School, Department of Psychiatry and Behavioral Sciences, Houston, TX 77054, United States
| | - Fadwa Cazala
- University of Texas Health Science Center at Houston, McGovern Medical School, Department of Psychiatry and Behavioral Sciences, Houston, TX 77054, United States
| | - Gokay Alpak
- University of Texas Health Science Center at Houston, McGovern Medical School, Department of Psychiatry and Behavioral Sciences, Houston, TX 77054, United States
| | - Marsal Sanches
- University of Texas Health Science Center at Houston, McGovern Medical School, Department of Psychiatry and Behavioral Sciences, Houston, TX 77054, United States
| | - Fabiano G Nery
- Department of Psychiatry & Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States
| | - Giovana B Zunta-Soares
- University of Texas Health Science Center at Houston, McGovern Medical School, Department of Psychiatry and Behavioral Sciences, Houston, TX 77054, United States
| | - Jair C Soares
- University of Texas Health Science Center at Houston, McGovern Medical School, Department of Psychiatry and Behavioral Sciences, Houston, TX 77054, United States
| |
Collapse
|
33
|
Prusty BK, Gulve N, Govind S, Krueger GRF, Feichtinger J, Larcombe L, Aspinall R, Ablashi DV, Toro CT. Active HHV-6 Infection of Cerebellar Purkinje Cells in Mood Disorders. Front Microbiol 2018; 9:1955. [PMID: 30186267 PMCID: PMC6110891 DOI: 10.3389/fmicb.2018.01955] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/02/2018] [Indexed: 12/25/2022] Open
Abstract
Early-life infections and associated neuroinflammation is incriminated in the pathogenesis of various mood disorders. Infection with human roseoloviruses, HHV-6A and HHV-6B, allows viral latency in the central nervous system and other tissues, which can later be activated causing cognitive and behavioral disturbances. Hence, this study was designed to evaluate possible association of HHV-6A and HHV-6B activation with three different groups of psychiatric patients. DNA qPCR, immunofluorescence and FISH studies were carried out in post-mortem posterior cerebellum from 50 cases each of bipolar disorder (BPD), schizophrenia, 15 major depressive disorder (MDD) and 50 appropriate control samples obtained from two well-known brain collections (Stanley Medical Research Institute). HHV-6A and HHV-6B late proteins (indicating active infection) and viral DNA were detected more frequently (p < 0.001 for each virus) in human cerebellum in MDD and BPD relative to controls. These roseolovirus proteins and DNA were found less frequently in schizophrenia cases. Active HHV-6A and HHV-6B infection in cerebellar Purkinje cells were detected frequently in BPD and MDD cases. Furthermore, we found a significant association of HHV-6A infection with reduced Purkinje cell size, suggesting virus-mediated abnormal Purkinje cell function in these disorders. Finally, gene expression analysis of cerebellar tissue revealed changes in pathways reflecting an inflammatory response possibly to HHV-6A infection. Our results provide molecular evidence to support a role for active HHV-6A and HHV-6B infection in BPD and MDD.
Collapse
Affiliation(s)
- Bhupesh K Prusty
- Biocenter, Department of Microbiology, University of Würzburg, Würzburg, Germany.,Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Nitish Gulve
- Biocenter, Department of Microbiology, University of Würzburg, Würzburg, Germany
| | - Sheila Govind
- Division of Virology, National Institute for Biological Standards and Control, Hertfordshire, United Kingdom
| | - Gerhard R F Krueger
- Department of Pathology and Laboratory Medicine, UT-Houston Medical School, Houston, TX, United States
| | - Julia Feichtinger
- Institute of Computational Biotechnology, Graz University of Technology, Graz, Austria.,BioTechMed Omics Center, Graz, Austria
| | - Lee Larcombe
- Applied Exomics Ltd., Stevenage Bioscience Catalyst, Stevenage, United Kingdom
| | - Richard Aspinall
- Faculty of Health and Life Sciences, Coventry University, Coventry, United Kingdom
| | | | - Carla T Toro
- HHV-6 Foundation, Santa Barbara, CA, United States.,The Institute of Digital Healthcare, The University of Warwick, Warwick, United Kingdom
| |
Collapse
|
34
|
Rabellino D, Densmore M, Théberge J, McKinnon MC, Lanius RA. The cerebellum after trauma: Resting-state functional connectivity of the cerebellum in posttraumatic stress disorder and its dissociative subtype. Hum Brain Mapp 2018; 39:3354-3374. [PMID: 29667267 PMCID: PMC6866303 DOI: 10.1002/hbm.24081] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/25/2022] Open
Abstract
The cerebellum plays a key role not only in motor function but also in affect and cognition. Although several psychopathological disorders have been associated with overall cerebellar dysfunction, it remains unclear whether different regions of the cerebellum contribute uniquely to psychopathology. Accordingly, we compared seed-based resting-state functional connectivity of the anterior cerebellum (lobule IV-V), of the posterior cerebellum (Crus I), and of the anterior vermis across posttraumatic stress disorder (PTSD; n = 65), its dissociative subtype (PTSD + DS; n = 37), and non-trauma-exposed healthy controls (HC; n = 47). Here, we observed decreased functional connectivity of the anterior cerebellum and anterior vermis with brain regions involved in somatosensory processing, multisensory integration, and bodily self-consciousness (temporo-parietal junction, postcentral gyrus, and superior parietal lobule) in PTSD + DS as compared to PTSD and HC. Moreover, the PTSD + DS group showed increased functional connectivity of the posterior cerebellum with cortical areas related to emotion regulation (ventromedial prefrontal and orbito-frontal cortex, subgenual anterior cingulum) as compared to PTSD. By contrast, PTSD showed increased functional connectivity of the anterior cerebellum with cortical areas associated with visual processing (fusiform gyrus), interoceptive awareness (posterior insula), memory retrieval, and contextual processing (hippocampus) as compared to HC. Finally, we observed decreased functional connectivity between the posterior cerebellum and prefrontal regions involved in emotion regulation, in PTSD as compared to HC. These findings not only highlight the crucial role of each cerebellar region examined in the psychopathology of PTSD but also reveal unique alterations in functional connectivity distinguishing the dissociative subtype of PTSD versus PTSD.
Collapse
Affiliation(s)
- Daniela Rabellino
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
| | - Maria Densmore
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
| | - Jean Théberge
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
- Department of Medical BiophysicsUniversity of Western OntarioLondonOntarioCanada
| | - Margaret C. McKinnon
- Mood Disorders Program, St. Joseph's HealthcareHamiltonOntarioCanada
- Department of Psychiatry and Behavioural NeurosciencesMcMaster UniversityHamiltonOntarioCanada
- Homewood Research InstituteGuelphOntarioCanada
| | - Ruth A. Lanius
- Department of PsychiatryUniversity of Western OntarioLondonOntarioCanada
- Imaging DivisionLawson Health Research InstituteLondonOntarioCanada
| |
Collapse
|
35
|
Beckwith TJ, Dietrich KN, Wright JP, Altaye M, Cecil KM. Reduced regional volumes associated with total psychopathy scores in an adult population with childhood lead exposure. Neurotoxicology 2018; 67:1-26. [PMID: 29634994 PMCID: PMC6054826 DOI: 10.1016/j.neuro.2018.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/05/2023]
Abstract
Childhood lead exposure has been correlated to acts of delinquency and criminal behavior; however, little research has been conducted to examine its potential long term influence on behavioral factors such as personality, specifically psychopathic personality. Neuroimaging studies have demonstrated that the effects of childhood lead exposure persist into adulthood, with structural abnormalities found in gray and white matter regions involved in behavioral decision making. The current study examined whether measurements of adult psychopathy were associated with neuroanatomical differences in structural brain volumes for a longitudinal cohort with measured childhood lead exposure. We hypothesized that increased total psychopathy scores and increased blood lead concentration at 78 months of age (PbB78) would be inversely associated with volumetric measures of gray and white matter brain structures responsible for executive and emotional processing. Analyses did not display a direct effect between total psychopathy score and gray matter volume; however, reduced white matter volume in the cerebellum and brain stem in relation to increased total psychopathy scores was observed. An interaction between sex and total psychopathy score was also detected. Females displayed increased gray matter volume in the frontal, temporal, and parietal lobes associated with increased total psychopathy score, but did not display any white matter volume differences. Males primarily displayed reductions in frontal gray and white matter brain volume in relation to increased total psychopathy scores. Additionally, reduced gray and white matter volume was associated with increased blood lead levels in the frontal lobes; reduced white matter volume was also observed in the parietal and temporal lobes. Females demonstrated gray and white matter volume loss associated with increased PbB78 values in the right temporal lobe, as well as reduced gray matter volume in the frontal lobe. Males displayed reduced white matter volumes associated with increased PbB78 values in the frontal, temporal, and parietal lobes. Comparison of the two primary models revealed a volumetric decrease in the white matter of the left prefrontal cortex associated with increased total psychopathy scores and increased blood lead concentration in males. The results of this study suggested that increased psychopathy scores in this cohort may be attributable to the neuroanatomical abnormalities observed and that childhood lead exposure may be influential to these outcomes.
Collapse
Affiliation(s)
- Travis J Beckwith
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.
| | - Kim N Dietrich
- Department of Environmental Health, Division of Epidemiology and Biostatistics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - John P Wright
- School of Criminal Justice, University of Cincinnati, Cincinnati, OH, United States
| | - Mekibib Altaye
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Kim M Cecil
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States; Department of Environmental Health, Division of Epidemiology and Biostatistics, University of Cincinnati College of Medicine, Cincinnati, OH, United States; Department of Radiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
36
|
Serati M, Delvecchio G, Orsenigo G, Perlini C, Barillari M, Ruggeri M, Altamura AC, Bellani M, Brambilla P. Potential Gender-Related Aging Processes Occur Earlier and Faster in the Vermis of Patients with Bipolar Disorder: An MRI Study. Neuropsychobiology 2018; 75:32-38. [PMID: 28803247 DOI: 10.1159/000477967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/29/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND In the last decades, there has been increasing interest in investigating the role of the vermis in bipolar disorder (BD), especially because of its involvement in cognitive processes. The main aims of this study were to explore the integrity of the vermis and elucidate the role of demographic and clinical variables on vermis volumes in BD patients, stratified according to gender. METHODS T1-weighted images were obtained for 38 BD patients and 38 healthy controls using a 1.5-T MRI scanner. Images were analyzed with a PC workstation with BRAINS2 software on a Linux system. Anatomical regions were traced manually from a blinded operator, with respect to subject identity and other clinical variables. RESULTS The direct comparison between the 2 groups showed no significant gray matter differences in vermis volumes. Interestingly, vermis volumes were significantly inversely associated with chronological age and age of BD onset, particularly in male subjects. CONCLUSIONS Our study provides evidence of the impact of aging on the vermis in BD, potentially related to earlier and faster gender-related neurodegenerative phenomena occurring during the progression of the disease.
Collapse
Affiliation(s)
- Marta Serati
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Johnson CP, Christensen GE, Fiedorowicz JG, Mani M, Shaffer JJ, Magnotta VA, Wemmie JA. Alterations of the cerebellum and basal ganglia in bipolar disorder mood states detected by quantitative T1ρ mapping. Bipolar Disord 2018; 20:381-390. [PMID: 29316081 PMCID: PMC5995598 DOI: 10.1111/bdi.12581] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 10/21/2017] [Indexed: 01/20/2023]
Abstract
OBJECTIVES Quantitative mapping of T1 relaxation in the rotating frame (T1ρ) is a magnetic resonance imaging technique sensitive to pH and other cellular and microstructural factors, and is a potentially valuable tool for identifying brain alterations in bipolar disorder. Recently, this technique identified differences in the cerebellum and cerebral white matter of euthymic patients vs healthy controls that were consistent with reduced pH in these regions, suggesting an underlying metabolic abnormality. The current study built upon this prior work to investigate brain T1ρ differences across euthymic, depressed, and manic mood states of bipolar disorder. METHODS Forty participants with bipolar I disorder and 29 healthy control participants matched for age and gender were enrolled. Participants with bipolar disorder were imaged in one or more mood states, yielding 27, 12, and 13 imaging sessions in euthymic, depressed, and manic mood states, respectively. Three-dimensional, whole-brain anatomical images and T1ρ maps were acquired for all participants, enabling voxel-wise evaluation of T1ρ differences between bipolar mood state and healthy control groups. RESULTS All three mood state groups had increased T1ρ relaxation times in the cerebellum compared to the healthy control group. Additionally, the depressed and manic groups had reduced T1ρ relaxation times in and around the basal ganglia compared to the control and euthymic groups. CONCLUSIONS The study implicated the cerebellum and basal ganglia in the pathophysiology of bipolar disorder and its mood states, the roles of which are relatively unexplored. These findings motivate further investigation of the underlying cause of the abnormalities, and the potential role of altered metabolic activity in these regions.
Collapse
Affiliation(s)
| | - Gary E. Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA,Department of Radiation Oncology, University of Iowa, Iowa City, IA
| | - Jess G. Fiedorowicz
- Department of Psychiatry, University of Iowa, Iowa City, IA,Department of Epidemiology, University of Iowa, Iowa City, IA,Department of Internal Medicine, University of Iowa, Iowa City, IA,Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
| | - Merry Mani
- Department of Radiology, University of Iowa, Iowa City, IA
| | | | - Vincent A. Magnotta
- Department of Radiology, University of Iowa, Iowa City, IA,Department of Psychiatry, University of Iowa, Iowa City, IA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA,Department of Biomedical Engineering, University of Iowa, Iowa City, IA,Corresponding Authors: Vincent A. Magnotta, PhD, L311 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-335-5482, Fax: 319-353-6275, ; John A. Wemmie, MD, PhD, 1314 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-384-3174, Fax: 319-384-3176,
| | - John A. Wemmie
- Department of Psychiatry, University of Iowa, Iowa City, IA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA,Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA,Department of Neurosurgery, University of Iowa, Iowa City, IA,Veterans Affairs Medical Center, Iowa City, IA,Corresponding Authors: Vincent A. Magnotta, PhD, L311 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-335-5482, Fax: 319-353-6275, ; John A. Wemmie, MD, PhD, 1314 PBDB, 169 Newton Road, Iowa City, IA 52242, Tel: 319-384-3174, Fax: 319-384-3176,
| |
Collapse
|
38
|
Fichtl A, Büttner A, Hof PR, Schmitz C, Kiessling MC. Delineation of Subregions in the Early Postnatal Human Cerebellum for Design-Based Stereologic Studies. Front Neuroanat 2018; 11:134. [PMID: 29358908 PMCID: PMC5766680 DOI: 10.3389/fnana.2017.00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023] Open
Abstract
Recent design-based stereologic studies have shown that the early postnatal (<1 year of age) human cerebellum is characterized by very high plasticity and may thus be very sensitive to external and internal influences during the first year of life. A potential weakness of these studies is that they were not separately performed on functionally relevant subregions of the cerebellum, as was the case in a few design-based stereologic studies on the adult human cerebellum. The aim of the present study was to assess whether it is possible to identify unequivocally the primary, superior posterior, horizontal, ansoparamedian, and posterolateral fissures in the early postnatal human cerebellum, based on which functionally relevant subregions could be delineated. This was tested in 20 human post mortem cerebellar halves from subjects aged between 1 day and 11 months by means of a combined macroscopic and microscopic approach. We found that the superior posterior, horizontal, and posterolateral fissures can be reliably identified on all of the specimens. However, reliable and reproducible identification of the primary and ansoparamedian fissures was not possible. Accordingly, it appears feasible to perform subregion-specific investigations in the early postnatal human cerebellum when the identification of subregions is restricted to crus I (bordered by the superior posterior and horizontal fissures) and the flocculus (bordered by the posterolateral fissure). As such, it is recommended to define the entire cerebellar cortex as the region of interest in design-based stereologic studies on the early postnatal human cerebellum to guarantee reproducibility of results.
Collapse
Affiliation(s)
- Anna Fichtl
- Chair of Neuroanatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Andreas Büttner
- Institute of Forensic Medicine, University of Rostock, Rostock, Germany
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christoph Schmitz
- Chair of Neuroanatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maren C Kiessling
- Chair of Neuroanatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
39
|
Adamaszek M, D'Agata F, Ferrucci R, Habas C, Keulen S, Kirkby KC, Leggio M, Mariën P, Molinari M, Moulton E, Orsi L, Van Overwalle F, Papadelis C, Priori A, Sacchetti B, Schutter DJ, Styliadis C, Verhoeven J. Consensus Paper: Cerebellum and Emotion. THE CEREBELLUM 2017; 16:552-576. [PMID: 27485952 DOI: 10.1007/s12311-016-0815-8] [Citation(s) in RCA: 367] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Over the past three decades, insights into the role of the cerebellum in emotional processing have substantially increased. Indeed, methodological refinements in cerebellar lesion studies and major technological advancements in the field of neuroscience are in particular responsible to an exponential growth of knowledge on the topic. It is timely to review the available data and to critically evaluate the current status of the role of the cerebellum in emotion and related domains. The main aim of this article is to present an overview of current facts and ongoing debates relating to clinical, neuroimaging, and neurophysiological findings on the role of the cerebellum in key aspects of emotion. Experts in the field of cerebellar research discuss the range of cerebellar contributions to emotion in nine topics. Topics include the role of the cerebellum in perception and recognition, forwarding and encoding of emotional information, and the experience and regulation of emotional states in relation to motor, cognitive, and social behaviors. In addition, perspectives including cerebellar involvement in emotional learning, pain, emotional aspects of speech, and neuropsychiatric aspects of the cerebellum in mood disorders are briefly discussed. Results of this consensus paper illustrate how theory and empirical research have converged to produce a composite picture of brain topography, physiology, and function that establishes the role of the cerebellum in many aspects of emotional processing.
Collapse
Affiliation(s)
- M Adamaszek
- Department of Clinical and Cognitive Neurorehabilitation, Klinik Bavaria Kreischa, An der Wolfsschlucht, 01731, Kreischa, Germany.
| | - F D'Agata
- Department of Neuroscience, University of Turin, Turin, Italy
| | - R Ferrucci
- Fondazione IRCCS Ca' Granda, Granada, Italy
- Università degli Studi di Milano, Milan, Italy
| | - C Habas
- Service de NeuroImagerie (NeuroImaging department) Centre Hospitalier national D'Ophtalmologie des 15/20, Paris, France
| | - S Keulen
- Department of Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Center for Language and Cognition Groningen, Rijksuniversiteit Groningen, Groningen, The Netherlands
| | - K C Kirkby
- Psychiatry, School of Medicine, University of Tasmania, Hobart, Australia
| | - M Leggio
- I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - P Mariën
- Department of Clinical and Experimental Neurolinguistics, CLIEN, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Neurology and Memory Clinic, ZNA Middelheim Hospital, Antwerp, Belgium
| | - M Molinari
- I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - E Moulton
- P.A.I.N. Group, Center for Pain and the Brain, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - L Orsi
- Neurologic Division 1, Department of Neuroscience and Mental Health, Città della Salute e della Scienza di Torino, Turin, Italy
| | - F Van Overwalle
- Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - C Papadelis
- Fetal-Neonatal Neuroimaging and Developmental Center, Boston Children's Hospital, Boston, MA, USA
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Priori
- Fondazione IRCCS Ca' Granda, Granada, Italy
- Università degli Studi di Milano, Milan, Italy
- III Clinica Neurologica, Polo Ospedaliero San Paolo, San Paolo, Italy
| | - B Sacchetti
- Department of Neuroscience, Section of Physiology, University of Turin, Torino, Italy
| | - D J Schutter
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - C Styliadis
- Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - J Verhoeven
- Department of Language and Communication Science, City University, London, UK
- Computational Linguistics and Psycholinguistics Research Center (CLIPS), Universiteit Antwerpen, Antwerp, Belgium
| |
Collapse
|
40
|
Weißflog L, Becker N, Bossert N, Freudenberg F, Kittel-Schneider S, Reif A. Expressional profile of the diacylglycerol kinase eta gene DGKH. Eur Arch Psychiatry Clin Neurosci 2017; 267:445-454. [PMID: 27085324 DOI: 10.1007/s00406-016-0695-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/09/2016] [Indexed: 11/25/2022]
Abstract
Bipolar disorder (BPD) is a genetically complex mental disorder, which is characterized by recurrent depressive and manic episodes, occurring with a typical cyclical course. In a recent study, we were able to identify a risk haplotype for BPD, as well as for unipolar depression and adult attention-deficit/hyperactivity disorder (ADHD), within the DGKH gene. DGKH codes for the eta (η) isoform of diacylglycerol kinase, which is involved in the phosphoinositol pathway. In the present study, we determined the expressional profile of Dgkh using quantitative real-time PCR (qPCR), in situ hybridization and immunohistological staining in the human and in the mouse brain. Expression studies showed that two different Dgkh transcripts exhibited distinct occurrence in a variety of murine tissues and also differed in their expression levels. The proteins encoded by those transcripts differ in functional protein domains suggesting distinct biochemical and cell biological properties and functions. qPCR analyses revealed an increase in Dgkh expression during mouse brain development indicating a possible role of this kinase in late developmental stages. Immunostainings revealed strong Dgkh expression in neurons of the hippocampus and the cerebellum of the murine brain, whereas highest expression levels of DGKH in the human brain were found in the striatum. Taken together, our studies revealed expressional changes during mouse brain development and occurrence of Dgkη in neurons of regions that have been linked to BPD as well as ADHD in humans providing evidence for the implication of DGKH in those disorders.
Collapse
Affiliation(s)
- Lena Weißflog
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany.
| | - Nils Becker
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Würzburg, Füchsleinstr. 15, 97080, Würzburg, Germany
- Department of Behavioral Physiology and Sociobiology, Theodor-Boveri-Institute of Bioscience, University of Würzburg, Würzburg, Germany
| | - Nelli Bossert
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Würzburg, Füchsleinstr. 15, 97080, Würzburg, Germany
- Leiden Institute of Physics, Leiden University, Leiden, Netherlands
| | - Florian Freudenberg
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital of Frankfurt, Heinrich-Hoffmann-Str. 10, 60528, Frankfurt, Germany
| |
Collapse
|
41
|
Duarte DGG, Neves MDCL, Albuquerque MR, Turecki G, Ding Y, de Souza-Duran FL, Busatto G, Correa H. Structural brain abnormalities in patients with type I bipolar disorder and suicidal behavior. Psychiatry Res Neuroimaging 2017; 265:9-17. [PMID: 28494347 DOI: 10.1016/j.pscychresns.2017.04.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 04/24/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022]
Abstract
Some studies have identified brain morphological changes in the frontolimbic network (FLN) in bipolar subjects who attempt suicide (SA). The present study investigated neuroanatomical abnormalities in the FLN to find a possible neural signature for suicidal behavior in patients with bipolar disorder type I (BD-I). We used voxel-based morphometry to compare euthymic patients with BD-I who had attempted suicide (n=20), who had not attempted suicide (n=19) and healthy controls (HCs) (n=20). We also assessed the highest medical lethality of their previous SA. Compared to the participants who had not attempted suicide, the patients with BD-I who had attempted suicide exhibited significantly increased gray matter volume (GMV) in the right rostral anterior cingulate cortex (ACC), which was more pronounced and extended further to the left ACC in the high-lethality subgroup (p<0.05, with family-wise error (FWE) correction for multiple comparisons using small-volume correction). GMV in the insula and orbitofrontal cortex was also related to suicide lethality (p<0.05, FWE-corrected). The current findings suggest that morphological changes in the FLN could be a signature of previous etiopathogenic processes affecting regions related to suicidality and its severity in BD-I patients.
Collapse
Affiliation(s)
- Dante G G Duarte
- Mental Health Department, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | - Maila de Castro L Neves
- Mental Health Department, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | | | - Gustavo Turecki
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Montreal, Canada.
| | - Yang Ding
- McGill Group for Suicide Studies, Department of Psychiatry, McGill University, Montreal, Canada.
| | - Fabio Luis de Souza-Duran
- Laboratory of Neuroimaging in Psychiatry (LIM-21), Research in Applied Neuroscience, Support Care of the University of São Paulo (NAPNA-USP), São Paulo, Brazil.
| | - Geraldo Busatto
- Laboratory of Neuroimaging in Psychiatry (LIM-21), Research in Applied Neuroscience, Support Care of the University of São Paulo (NAPNA-USP), São Paulo, Brazil.
| | - Humberto Correa
- Mental Health Department, Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| |
Collapse
|
42
|
Shinn AK, Roh YS, Ravichandran CT, Baker JT, Öngür D, Cohen BM. Aberrant cerebellar connectivity in bipolar disorder with psychosis. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 2:438-448. [PMID: 28730183 DOI: 10.1016/j.bpsc.2016.07.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The cerebellum, which modulates affect and cognition in addition to motor functions, may contribute substantially to the pathophysiology of mood and psychotic disorders, such as bipolar disorder. A growing literature points to cerebellar abnormalities in bipolar disorder. However, no studies have investigated the topographic representations of resting state cerebellar networks in bipolar disorder, specifically their functional connectivity to cerebral cortical networks. METHODS Using a well-defined cerebral cortical parcellation scheme as functional connectivity seeds, we compared ten cerebellar resting state networks in 49 patients with bipolar disorder and a lifetime history of psychotic features and 55 healthy control participants matched for age, sex, and image signal-to-noise ratio. RESULTS Patients with psychotic bipolar disorder showed reduced cerebro-cerebellar functional connectivity in somatomotor A, ventral attention, salience, and frontoparietal control A and B networks relative to healthy control participants. These findings were not significantly correlated with current symptoms. CONCLUSIONS Patients with psychotic bipolar disorder showed evidence of cerebro-cerebellar dysconnectivity in selective networks. These disease-related changes were substantial and not explained by medication exposure or substance use. Therefore, they may be mechanistically relevant to the underlying susceptibility to mood dysregulation and psychosis. Cerebellar mechanisms deserve further exploration in psychiatric conditions, and this study's findings may have value in guiding future studies on pathophysiology and treatment of mood and psychotic disorders, in particular.
Collapse
Affiliation(s)
- Ann K Shinn
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Youkyung S Roh
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA
| | - Caitlin T Ravichandran
- Program for Neuropsychiatric Research, McLean Hospital, Belmont, MA, USA.,Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Justin T Baker
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Dost Öngür
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Bruce M Cohen
- Program for Neuropsychiatric Research, McLean Hospital, Belmont, MA, USA.,Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Johnston JAY, Wang F, Liu J, Blond BN, Wallace A, Liu J, Spencer L, Cox Lippard ET, Purves KL, Landeros-Weisenberger A, Hermes E, Pittman B, Zhang S, King R, Martin A, Oquendo MA, Blumberg HP. Multimodal Neuroimaging of Frontolimbic Structure and Function Associated With Suicide Attempts in Adolescents and Young Adults With Bipolar Disorder. Am J Psychiatry 2017; 174:667-675. [PMID: 28135845 PMCID: PMC5939580 DOI: 10.1176/appi.ajp.2016.15050652] [Citation(s) in RCA: 163] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Bipolar disorder is associated with high risk for suicidal behavior that often develops in adolescence and young adulthood. Elucidation of involved neural systems is critical for prevention. This study of adolescents and young adults with bipolar disorder with and without a history of suicide attempts combines structural, diffusion tensor, and functional MR imaging methods to investigate implicated abnormalities in the morphology and structural and functional connectivity within frontolimbic systems. METHOD The study had 26 participants with bipolar disorder who had a prior suicide attempt (the attempter group) and 42 participants with bipolar disorder without a suicide attempt (the nonattempter group). Regional gray matter volume, white matter integrity, and functional connectivity during processing of emotional stimuli were compared between groups, and differences were explored for relationships between imaging modalities and associations with suicide-related symptoms and behaviors. RESULTS Compared with the nonattempter group, the attempter group showed significant reductions in gray matter volume in the orbitofrontal cortex, hippocampus, and cerebellum; white matter integrity in the uncinate fasciculus, ventral frontal, and right cerebellum regions; and amygdala functional connectivity to the left ventral and right rostral prefrontal cortex. In exploratory analyses, among attempters, there was a significant negative correlation between right rostral prefrontal connectivity and suicidal ideation and between left ventral prefrontal connectivity and attempt lethality. CONCLUSIONS Adolescent and young adult suicide attempters with bipolar disorder demonstrate less gray matter volume and decreased structural and functional connectivity in a ventral frontolimbic neural system subserving emotion regulation. Among attempters, reductions in amygdala-prefrontal functional connectivity may be associated with severity of suicidal ideation and attempt lethality.
Collapse
Affiliation(s)
| | - Fei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Jie Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Benjamin N. Blond
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Amanda Wallace
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Jiacheng Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Linda Spencer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | | | - Kirstin L. Purves
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US,Division of Psychology and Language Sciences, University College London, London, UK
| | - Angeli Landeros-Weisenberger
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US,Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Eric Hermes
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Brian Pittman
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Sheng Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US
| | - Robert King
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US,Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Andrés Martin
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US,Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Maria A. Oquendo
- Department of Psychiatry, Columbia University, New York, NY, USA
| | - Hilary P. Blumberg
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, US,Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
44
|
Consistently altered expression of gene sets in postmortem brains of individuals with major psychiatric disorders. Transl Psychiatry 2016; 6:e890. [PMID: 27622934 PMCID: PMC5048210 DOI: 10.1038/tp.2016.173] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
Abstract
The measurement of gene expression in postmortem brain is an important tool for understanding the pathogenesis of serious psychiatric disorders. We hypothesized that major molecular deficits associated with psychiatric disease would affect the entire brain, and such deficits may be shared across disorders. We performed RNA sequencing and quantified gene expression in the hippocampus of 100 brains in the Stanley Array Collection followed by replication in the orbitofrontal cortex of 57 brains in the Stanley Neuropathology Consortium. We then identified genes and canonical pathway gene sets with significantly altered expression in schizophrenia and bipolar disorder in the hippocampus and in schizophrenia, bipolar disorder and major depression in the orbitofrontal cortex. Although expression of individual genes varied, gene sets were significantly enriched in both of the brain regions, and many of these were consistent across diagnostic groups. Further examination of core gene sets with consistently increased or decreased expression in both of the brain regions and across target disorders revealed that ribosomal genes are overexpressed while genes involved in neuronal processes, GABAergic signaling, endocytosis and antigen processing have predominantly decreased expression in affected individuals compared to controls without a psychiatric disorder. Our results highlight pathways of central importance to psychiatric health and emphasize messenger RNA processing and protein synthesis as potential therapeutic targets for all three of the disorders.
Collapse
|
45
|
Wang Y, Zhong S, Jia Y, Sun Y, Wang B, Liu T, Pan J, Huang L. Disrupted Resting-State Functional Connectivity in Nonmedicated Bipolar Disorder. Radiology 2016; 280:529-36. [DOI: 10.1148/radiol.2016151641] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Koh DJ, Kim NY, Kim YW. Predictors of Depressive Mood in Patients With Isolated Cerebellar Stroke: A Retrospective Study. Ann Rehabil Med 2016; 40:412-9. [PMID: 27446777 PMCID: PMC4951359 DOI: 10.5535/arm.2016.40.3.412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 09/25/2015] [Indexed: 11/08/2022] Open
Abstract
Objective To identify predictive factors of depressive mood in patients with isolated cerebellar stroke. Methods A retrospective chart review was performed in patients who had experienced their first isolated cerebellar stroke during 2002–2014. The patients were classified into two groups by the Geriatric Depression Scale (GDS) (non-depressive group, 0≤GDS≤16; depressive group, 17≤GDS≤30). Data on demographic and socioeconomic factors, comorbidities, functional level, cognitive and linguistic function, and stroke characteristics were collected. Significant variables in univariate analysis were analyzed using logistic regression. Results Fifty-two patients were enrolled, of whom 55.8% had depressive mood, were older (p=0.021), and had higher hypertension rates (p=0.014). Cognitive and linguistic functions did not differ between the two groups. The depressive group had higher ischemic stroke rates (p=0.035) and showed a dominant right posterior cerebellar hemisphere lesion (p=0.028), which was independently associated with depressive mood in the multiple logistic regression analysis (odds ratio, 5.081; 95% confidence interval, 1.261–20.479). Conclusion The risk of depressive mood after cerebellar stroke was increased in patients at old age, with a history of hypertension, ischemic stroke, and lesion of the right posterior cerebellar hemisphere. The most significant determining factor was stroke lesion of the right posterior cerebellar hemisphere. Early detection of risk factors is important to prevent and manage depressive mood after cerebellar stroke.
Collapse
Affiliation(s)
- Dong Jin Koh
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine & Severance Hospital, Seoul, Korea
| | - Na Young Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine & Severance Hospital, Seoul, Korea
| | - Yong Wook Kim
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine & Severance Hospital, Seoul, Korea
| |
Collapse
|
47
|
Hozer F, Houenou J. Can neuroimaging disentangle bipolar disorder? J Affect Disord 2016; 195:199-214. [PMID: 26896814 DOI: 10.1016/j.jad.2016.01.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/02/2016] [Accepted: 01/24/2016] [Indexed: 01/03/2023]
Abstract
BACKGROUND Bipolar disorder heterogeneity is large, leading to difficulties in identifying neuropathophysiological and etiological mechanisms and hindering the formation of clinically homogeneous patient groups in clinical trials. Identifying markers of clinically more homogeneous groups would help disentangle BD heterogeneity. Neuroimaging may aid in identifying such groups by highlighting specific biomarkers of BD subtypes or clinical dimensions. METHODS We performed a systematic literature search of the neuroimaging literature assessing biomarkers of relevant BD phenotypes (type-I vs. II, presence vs. absence of psychotic features, suicidal behavior and impulsivity, rapid cycling, good vs. poor medication response, age at onset, cognitive performance and circadian abnormalities). RESULTS Consistent biomarkers were associated with suicidal behavior, i.e. frontal/anterior alterations (prefrontal and cingulate grey matter, prefrontal white matter) in patients with a history of suicide attempts; and with cognitive performance, i.e. involvement of frontal and temporal regions, superior and inferior longitudinal fasciculus, right thalamic radiation, and corpus callosum in executive dysfunctions. For the other dimensions and sub-types studied, no consistent biomarkers were identified. LIMITATIONS Studies were heterogeneous both in methodology and outcome. CONCLUSIONS Though theoretically promising, neuroimaging has not yet proven capable of disentangling subtypes and dimensions of bipolar disorder, due to high between-study heterogeneity. We issue recommendations for future studies.
Collapse
Affiliation(s)
- Franz Hozer
- Neurospin, UNIACT, Psychiatry Team, I2BM, CEA Saclay, F-91191 Gif-Sur-Yvette, France; INSERM U955, IMRB, Université Paris Est, Equipe 15 "Psychiatrie Translationnelle", Créteil F-94000, France; Fondation Fondamental, Créteil F-94010, France
| | - Josselin Houenou
- Neurospin, UNIACT, Psychiatry Team, I2BM, CEA Saclay, F-91191 Gif-Sur-Yvette, France; INSERM U955, IMRB, Université Paris Est, Equipe 15 "Psychiatrie Translationnelle", Créteil F-94000, France; Fondation Fondamental, Créteil F-94010, France; AP-HP, Hôpitaux Universitaires Mondor, DHU PePsy, Pôle de Psychiatrie, Créteil F-94000, France.
| |
Collapse
|
48
|
Neurological and cerebellar soft signs do not discriminate schizophrenia from bipolar disorder patients. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:96-101. [PMID: 26241859 DOI: 10.1016/j.pnpbp.2015.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/16/2015] [Accepted: 07/26/2015] [Indexed: 12/12/2022]
Abstract
Patients with schizophrenia (SZ) and bipolar disorder (BD) share subtle motor abnormalities called the neurological soft signs (NSS). Since in both diseases there is evidence for alterations in cerebellar functions, structure and connectivity, we expected that the cerebellar soft signs (CSS), analogue of NSS focusing strictly on cerebellar symptoms, would be also a common trait in SZ and BD. We examined 30 patients with BD, 30 patients with SZ and 28 control subjects using the Neurological Evaluation Scale (NES, for NSS) and International Cooperative Ataxia Rating Scale (ICARS, for CSS). SZ and BD did not differ in total and subscales' scores in both NES and ICARS. Subscale analysis revealed that SZ performed significantly worse than controls in all the subscales of both NES and ICARS. BD patients scored significantly worse than controls in all NES subscales and in oculomotor and kinetic subscales of the ICARS, while other ICARS subscales did not differentiate those two groups. To our knowledge this is the first study to show that CSS constitute common symptoms in BD and SZ. We recommend a special focus on those diseases in further research regarding structural and functional changes of cerebellum and their clinical outcome.
Collapse
|
49
|
Liu H, Wang Y, Liu W, Wei D, Yang J, Du X, Tian X, Qiu J. Neuroanatomical correlates of attitudes toward suicide in a large healthy sample: A voxel-based morphometric analysis. Neuropsychologia 2015; 80:185-193. [PMID: 26593961 DOI: 10.1016/j.neuropsychologia.2015.11.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 10/24/2015] [Accepted: 11/13/2015] [Indexed: 12/22/2022]
Abstract
Previous studies have indicated that permissive attitudes toward suicide are positively associated with mental illness (e.g., depression and loneliness). Evidence suggests that there are abnormalities in the cognitive and brain functioning of suicidal patients. Nevertheless, there has been no evidence of the correlation between attitudes toward suicide and abnormal brain structure variations in healthy people. Therefore, in this study, we seek to investigate the neuroanatomical differences in healthy participants with regard to attitudes toward suicide. The results show that permissive attitudes toward suicide were significantly correlated with gray matter volume (GMV) in the left dorsolateral prefrontal cortex (DLPFC) and the left cerebellum in the large sample (n=405), which may be related to inefficient inhibitory control of negative emotion. Then, in a subset of healthy individuals with permissive attitudes (n=113), we also observed that stronger permissive attitudes toward suicide were positively related to the larger GMV in the left DLPFC and the left middle temporal gyrus (MTG), which may be associated with sensitivity of emotional feeling. Furthermore, loneliness had a mediating effect on the relation between the DLPFC volume and attitudes toward suicide. Taken together, neuroanatomical differences in healthy participants with permissive attitudes toward suicide may provide a better understanding of permissive attitudes toward suicide as a likely risk factor for suicidal behavior.
Collapse
Affiliation(s)
- Huijuan Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University, Chongqing 400715, China
| | - Yongchao Wang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University, Chongqing 400715, China
| | - Wei Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University, Chongqing 400715, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University, Chongqing 400715, China
| | - Junyi Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University, Chongqing 400715, China
| | - Xue Du
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University, Chongqing 400715, China
| | - Xue Tian
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University, Chongqing 400715, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing 400715, China; Department of Psychology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
50
|
Neuroanatomical correlates of genetic risk for bipolar disorder: A voxel-based morphometry study in bipolar type I patients and healthy first degree relatives. J Affect Disord 2015; 186:110-8. [PMID: 26233321 DOI: 10.1016/j.jad.2015.06.055] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/25/2015] [Accepted: 06/29/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND Bipolar disorder (BD) is a highly heritable mental illness which is associated with neuroanatomical abnormalities. Investigating healthy individuals at high genetic risk for bipolar disorder may help to identify neuroanatomical markers of risk and resilience without the confounding effects of burden of illness or medication. METHODS Structural magnetic resonance imaging scans were acquired from 30 euthymic patients with BD-I (BP), 28 healthy first degree relatives of BD-I patients (HR), and 30 healthy controls (HC). Data was analyzed using DARTEL for voxel based morphometry in SPM8. RESULTS Whole-brain analysis revealed a significant main effect of group in the gray matter volume in bilateral inferior frontal gyrus, left parahippocampal gyrus, left lingual gyrus and cerebellum, posterior cingulate gyrus, and supramarginal gyrus (alphasim corrected (≤0.05 FWE)). Post-hoc t-tests showed that inferior frontal gyrus volumes were bilaterally larger both in BP and HR than in HC. BP and HR also had smaller cerebellar volume compared with HC. In addition, BP had smaller left lingual gyrus volume, whereas HR had larger left parahippocampal and supramarginal gyrus volume compared with HC. LIMITATIONS This study was cross-sectional and the sample size was not large. All bipolar patients were on medication, therefore we were not able to exclude medication effects in bipolar group in this study. CONCLUSIONS Our findings suggest that increased inferior frontal gyrus and decreased cerebellar volumes might be associated with genetic predisposition for bipolar disorder. Longitudinal studies are needed to better understand the predictive and prognostic value of structural changes in these regions.
Collapse
|