1
|
Firdous KA, Vivek PJ, Resmi MS. Growth, structural adaptations, and physiological dynamics of Alternanthera tenella Colla. toward lead toxicity. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2025; 27:700-710. [PMID: 39660696 DOI: 10.1080/15226514.2024.2438768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Anthropogenic activities have accelerated lead (Pb) accumulation across different trophic levels in the ecosystem. This study focused on the physiological mechanisms of an invasive plant, Alternanthera tenella in a controlled hydroponic setting to understand its response to Pb stress. A. tenella was exposed to 680 µM of lead acetate for 21 days, showing high tolerance (83%) with minimal growth inhibition. Pb exposure altered macro- and micronutrient concentrations, suggesting essential mineral reallocation to enhance stress tolerance. Scanning electron microscopy (SEM) revealed Pb2+ depositions in the vacuoles and cell walls of root (∼14%) and leaf (∼3%) cells, a key mechanism for reducing Pb toxicity. Fourier transform infrared spectroscopy (FTIR) indicated that Pb2+ ions interacted with hydroxyl (-OH) and amide (CO-NH) groups, important for metal ion complexation. Physiological responses included increased proline, malondialdehyde, protein degradation, and elevated catalase (CAT) and ascorbate peroxidase (POD) activity. A. tenella accumulated 46,866.92 mg/kg DW of Pb, primarily in roots (2682.5 mg/kg DW), with limited Pb translocation to shoots, suggesting a protective mechanism. High biological concentration (BCF 19.04) highlight its potential for Pb phytostabilization. These findings are specific to hydroponic conditions, and further research is needed to assess its phytoremediation potential in field conditions.
Collapse
|
2
|
Elik Ü, Gül Z. Accumulation Potential of Lead and Cadmium Metals in Maize ( Zea mays L.) and Effects on Physiological-Morphological Characteristics. Life (Basel) 2025; 15:310. [PMID: 40003719 PMCID: PMC11857651 DOI: 10.3390/life15020310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025] Open
Abstract
Phytoremediation stands at the forefront of modern environmental science, offering an innovative and cost-effective solution for the remediation of heavy-metal-contaminated soils through the natural capabilities of plants. This study aims to investigate the effects of lead (Pb) and cadmium (Cd) metals on plant growth (e.g., seedling height, stem diameter, fresh and dry weight), physiological properties (e.g., tissue relative water content, tissue electrical conductivity), and biochemical parameters (e.g., chlorophyll content, superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) enzyme activities) of maize compared to the control group under greenhouse conditions at the Atatürk University Plant Production Application and Research Center. The results show that plant height decreased by 20% in the lead (Pb3000) application and by 42% in the cadmium (Cd300) application compared to the control group. The highest Pb dose (Pb3000) caused a 15% weight loss compared to the control, while the highest Cd dose (Cd300) caused a weight loss of 63%. The accumulation rates of heavy metals in soil, roots, and aboveground parts of plants indicated that maize absorbed and accumulated more Cd compared to Pb.
Collapse
Affiliation(s)
- Ümit Elik
- Artuklu District Directorate of Agriculture and Forestry, 47060 Mardin, Türkiye;
| | - Zeynep Gül
- Plant Production Application and Research Center, Atatürk University, 25100 Erzurum, Türkiye
| |
Collapse
|
3
|
Xia Z, Xue C, Liu R, Hui Q, Hu B, Rennenberg H. Lead accumulation and concomitant reactive oxygen species (ROS) scavenging in Robinia pseudoacacia are dependent on nitrogen nutrition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109388. [PMID: 39653007 DOI: 10.1016/j.plaphy.2024.109388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 02/05/2025]
Abstract
Heavy metal pollution combined with nitrogen (N) limitation is a major factor preventing revegetation of contaminated land. Woody N2-fixing legumes are a natural choice for phytoremediation. However, the physiological responses of woody legumes to lead (Pb) with low N exposure are currently unknown. In the present study, a common Robinia cultivar from Northeast China, inoculated and non-inoculated with rhizobia, was exposed to -Pb or + Pb at moderate (norN) or low N application (lowN). Our results showed that without inoculation, independent of N application, Pb taken up by the roots was allocated to the shoot and inhibited photosynthesis and biomass production. In non-inoculated Robinia, Pb-mediated oxidative stress resulted in reduced H2O2 scavenging as indicated by increased ascorbate peroxidase (APX) activity in the leaves and proline contents in the roots, independent of N application. Combined lowN∗Pb exposure significantly increased malondialdehyde (MDA) contents in roots and leaves and enhanced APX and dehydroascorbate reductase activities in leaves compared to individual Pb exposure. Rhizobia inoculation raised the abundance of nodules and promoted Pb uptake by roots. Under Pb exposure, inoculation with rhizobia reduced MDA contents, increased proline contents in leaves and roots and enhanced activity of nitrate reductase in the leaves, independent of N application. Under Pb exposure, nitrogenase activity of inoculated Robinia under low- and norN application were similar indicating that enhanced of N2-fixation at lowN was counteracted by Pb exposure. These results show that inoculation of Robinia with rhizobia can alleviate Pb toxicity at combined lowN and Pb exposure by reducing oxidative stress.
Collapse
Affiliation(s)
- Zhuyuan Xia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Caixin Xue
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Qiuling Hui
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, No. 2, Tiansheng Road, Beibei District, 400715, Chongqing, China
| |
Collapse
|
4
|
Liu T, Zhang K, Ming C, Tian J, Teng H, Xu Z, He J, Liu F, Zhou Y, Xu J, Moussa MG, Zhang S, Jia W. Lead toxicity in Nicotiana tabacum L.: Damage antioxidant system and disturb plant metabolism. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117837. [PMID: 39923568 DOI: 10.1016/j.ecoenv.2025.117837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
In this study, we treated tobacco seedlings with 0, 200, 400, and 800 mg/kg Pb2 +, and explored the response mechanism of tobacco under Pb stress through a combination of growth physiology and metabolomics analysis. The physiological results showed that compared with CK, with the increase of Pb concentration, Pb treatment inhibited tobacco growth, reduced the biomass and photosynthetic pigment content of tobacco seedlings, and severely damaged the chloroplast structure. In addition, compared with CK, the pore conductivity and pore density of Pb800 treatment decreased by 45.77 % and 93.55 %, respectively. Pb treatment disrupted the cell membrane system, and Pb800 treatment increased the content of malondialdehyde (MDA) in leaves and roots by 67.65 % and 31.90 %, respectively. Meanwhile, Pb treatment increased the activity of tobacco SOD and POD enzymes. Metabolomics results showed that Pb stress enhanced tryptophan metabolism, glutathione metabolism, alanine, aspartate, and glutamate metabolism, as well as cysteine and methionine metabolism pathways. These results indicate that increasing the content of photosynthetic pigments and hormones, clearing reactive oxygen species by enhancing antioxidant enzyme activity, and improving amino acid metabolism may play an important role in reducing the toxicity of Pb to tobacco.
Collapse
Affiliation(s)
- Tengfei Liu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Kai Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Chunlan Ming
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiashu Tian
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Huanyu Teng
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zicheng Xu
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Jiewang He
- Technology Center, China Tobacco Hubei Industrial Co., LTD, Wuhan 430040, China
| | - Fengfeng Liu
- Technology Center, China Tobacco Hubei Industrial Co., LTD, Wuhan 430040, China
| | - Yinghui Zhou
- Technology Center, China Tobacco Hubei Industrial Co., LTD, Wuhan 430040, China
| | - Jiayang Xu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Mohamed G Moussa
- International Center for Biosaline Agriculture, ICBA, Dubai 14660, United Arab Emirates; Soil and Water Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo 13759, Egypt
| | - Shenghua Zhang
- Technology Center, China Tobacco Hubei Industrial Co., LTD, Wuhan 430040, China.
| | - Wei Jia
- National Tobacco Cultivation and Physiology and Biochemistry Research Center, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
5
|
Wu J, Ye J, Liu X, Han Z, Bi X. Significant lead isotope 'fractionation' in maize records plant lead uptake, transfer, and detoxification mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176417. [PMID: 39306117 DOI: 10.1016/j.scitotenv.2024.176417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
Lead isotope analysis is the main method to trace the sources and cycling of Pb in the biosphere system. The linchpin of such application hinges on the assumption that there is negligible or no biologically mediated isotopic fractionation of Pb occurs in the environment. However, recent measurements by high-precision multi-collector mass spectrometry revealed that biological isotope fractionation of heavy mass elements is a prevalent phenomenon. This study shows that compared with the Pb sources, the maize plant (Zea mays L.) organs exhibit a wider range of Pb isotope compositions and a depletion of radioactive Pb isotopes (206Pb, 207Pb, and 208Pb). Moreover, three independent studies consistently indicate that the 206Pb/207Pb ratio of maize organs varies as root/leaf > stem/grain, reflecting a continuous loss of light Pb isotopes during transportation. The conventional wisdom fails to account for these phenomena, suggesting that maize may undergo Pb isotope fractionation during the absorption and transportation of Pb. However, compared with other non-traditional metal isotopes, Pb isotope exhibits a more significant fractionation magnitude. We tentatively attribute this fractionation to the Pb tolerance mechanism of maize and its selective absorption of various forms of Pb, which requires further research to validate. Findings from this study mandate caution in future Pb source tracing in plants using Pb isotope methods and open up applications in using Pb isotopic fractionation to track Pb uptake and transfer pathways and decipher the associated detoxification mechanisms in plants.
Collapse
Affiliation(s)
- Jin Wu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jiaxin Ye
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Xiaoqing Liu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhixuan Han
- Chinese Academy of Geological Sciences, Beijing 100037, China
| | - Xiangyang Bi
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
6
|
Jishnu VM, Sreelekshmi R, Vishnu B, Siril EA. An assessment of in vitro lead (Pb) bioaccumulation of Dianthus chinensis L. (Chinese pink). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61426-61436. [PMID: 39417938 DOI: 10.1007/s11356-024-35317-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Heavy metals (HM) also known as potentially toxic elements (PTEs), are well-known environmental pollutants, among which lead (Pb) is a widespread and hazardous soil contaminant. Its removal from soil sediments is often difficult to achieve. In this study, in vitro experiments were conducted to investigate the bioaccumulation capability of Dianthus chinensis L. in solid and liquid Murashige and Skoog (MS) medium supplemented with varying concentrations (0, 10, 100, and 200 µM) of Pb as lead nitrate [Pb(NO3)2] for 30 days. The objectives of the study were to assess the efficiency of the selected plant as a bio-accumulator in the in vitro system and to obtain data on morphological, biochemical, and molecular changes during Pb salt-induced stress. Significant growth patterns of initial growth promotion up to 100 µM lead nitrate supplemented medium were observed, with maximum shoot length and biomass production along with remarkable lead bioaccumulation. Molecular studies on in vitro raised plantlets confirm the high degree of genetic uniformity (98.3%) of the selected plants after a considerable duration (30 days) of Pb exposure. Biochemical parameters revealed significant stress effects, including a 284% reduction in total chlorophyll content, altered carotenoid, and proline level during the study. The experiment revealed the high tolerance capacity of D. chinensis to Pb salt and its bioaccumulation potential (397.33 mg/kg). This increases the possible use of such an ornamental and floriculture plant as a prospective candidate for the efficient removal of soil Pb pollutants, as they can remediate soils, coupled with aesthetic and profitable outcomes for the growers.
Collapse
Affiliation(s)
- Vijayakumari M Jishnu
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Radhamani Sreelekshmi
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Babu Vishnu
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India
| | - Elenjikkal A Siril
- Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, 695581, Kerala, India.
| |
Collapse
|
7
|
Zhang X, Li M, Ma X, Jin X, Wu X, Zhang H, Guan Z, Fu Z, Chen S, Wang P. Transcriptomics Combined with Physiology and Metabolomics Reveals the Mechanism of Tolerance to Lead Toxicity in Maize Seedling. PHYSIOLOGIA PLANTARUM 2024; 176:e14547. [PMID: 39327540 DOI: 10.1111/ppl.14547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 09/28/2024]
Abstract
Lead (Pb) exposure can induce molecular changes in plants, disrupt metabolites, and impact plant growth. Therefore, it is essential to comprehend the molecular mechanisms involved in Pb tolerance in plants to evaluate the long-term environmental consequences of Pb exposure. This research focused on maize as the test subject to study variations in biomass, root traits, genes, and metabolites under hydroponic conditions under Pb conditions. The findings indicate that high Pb stress significantly disrupts plant growth and development, leading to a reduction in catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) activities by 17.12, 5.78, and 19.38%, respectively. Conversely, Pb stress led to increase malondialdehyde (MDA) contents, ultimately impacting the growth of maize. The non-targeted metabolomics analysis identified 393 metabolites categorized into 12 groups, primarily consisting of organic acids and derivatives, organ heterocyclic compounds, lipids and lipid-like molecules and benzenoids. Further analysis indicated that Pb stress induced an accumulation of 174 metabolites mainly enriched in seven metabolic pathways, for example phenylpropanoid biosynthesis and flavonoid biosynthesis. Transcriptome analysis revealed 1933 shared differentially expressed genes (DEGs), with 1356 upregulated and 577 downregulated genes across all Pb treatments. Additionally, an integrated analysis identified several DEGs and differentially accumulated metabolites (DAMs), including peroxidase, alpha-trehalose, and D-glucose 6-phosphate, which were linked to cell wall biosynthesis. These findings imply the significance of this pathway in Pb detoxification. This comprehensive investigation, employing multiple methodologies, provides a detailed molecular-level insight into maize's response to Pb stress.
Collapse
Affiliation(s)
- Xiaoxiang Zhang
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Min Li
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Xingye Ma
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Xining Jin
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Xiangyuan Wu
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Huaisheng Zhang
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Zhongrong Guan
- Chongqing Yudongnan Academy of Agricultural Sciences, Chongqing, China
| | - Zhiyuan Fu
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, China
| | - Shilin Chen
- School of Agriculture, Henan Institute of Science and Technology, China
| | - Pingxi Wang
- School of Agriculture, Henan Institute of Science and Technology, China
| |
Collapse
|
8
|
Han Z, Zheng Y, Zhang X, Wang B, Guo Y, Guan Z. Flavonoid metabolism plays an important role in response to lead stress in maize at seedling stage. BMC PLANT BIOLOGY 2024; 24:726. [PMID: 39080516 PMCID: PMC11287917 DOI: 10.1186/s12870-024-05455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Pb stress, a toxic abiotic stress, critically affects maize production and food security. Although some progress has been made in understanding the damage caused by Pb stress and plant response strategies, the regulatory mechanisms and resistance genes involved in the response to lead stress in crops are largely unknown. RESULTS In this study, to uncover the response mechanism of maize to Pb stress phenotype, physiological and biochemical indexes, the transcriptome, and the metabolome under different concentrations of Pb stress were combined for comprehensive analysis. As a result, the development of seedlings and antioxidant system were significantly inhibited under Pb stress, especially under relatively high Pb concentrations. Transcriptome analysis revealed 3559 co-differentially expressed genes(co-DEG) under the four Pb concentration treatments (500 mg/L, 1000 mg/L, 2000 mg/L, and 3000 mg/L Pb(NO3)2), which were enriched mainly in the GO terms related to DNA-binding transcription factor activity, response to stress, response to reactive oxygen species, cell death, the plasma membrane and root epidermal cell differentiation. Metabolome analysis revealed 72 and 107 differentially expressed metabolites (DEMs) under T500 and T2000, respectively, and 36 co-DEMs. KEGG analysis of the DEMs and DEGs revealed a common metabolic pathway, namely, flavonoid biosynthesis. An association study between the flavonoid biosynthesis-related DEMs and DEGs revealed 20 genes associated with flavonoid-related metabolites, including 3 for genistin and 17 for calycosin. CONCLUSION In summary, the study reveals that flavonoid metabolism plays an important role in response to Pb stress in maize, which not only provides genetic resources for the genetic improvement of maize Pb tolerance in the future but also enriches the theoretical basis of the maize Pb stress response.
Collapse
Affiliation(s)
- Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, China.
| | - Yan Zheng
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Xiaoxiang Zhang
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang, China
| | - Bin Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Yiyang Guo
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Zhongrong Guan
- Chongqing Yudongnan Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
9
|
Roy J, Rahman A, Mosharaf MK, Hossain MS, Talukder MR, Ahmed M, Haque MA, Shozib HB, Haque MM. Augmentation of physiology and productivity, and reduction of lead accumulation in lettuce grown in lead contaminated soil by rhizobacteria-assisted rhizoengineeing. CHEMOSPHERE 2024; 360:142418. [PMID: 38795913 DOI: 10.1016/j.chemosphere.2024.142418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Abstract
Microbial-assisted rhizoengineering is a promising biotechnology for improving crop productivity. In this study, lettuce roots were bacterized with two lead (Pb) tolerant rhizobacteria including Pseudomonas azotoformans ESR4 and P. poae ESR6, and a consortium consisted of ESR4 and ESR6 to increase productivity, physiology and antioxidants, and reduce Pb accumulation grown in Pb-contaminated soil i.e., 80 (Pb in native soil), 400 and 800 mg kg-1 Pb. In vitro studies showed that these strains and the consortium produced biofilms, synthesized indole-3-acetic acid and NH3, and solubilized phosphate challenging to 0, 100, 200 and 400 mg L-1 of Pb. In static conditions and 400 mg L-1 Pb, ESR4, ESR6 and the consortium adsorbed 317.0, 339.5 and 357.4 mg L-1 Pb, respectively, while 384.7, 380.7 and 373.2 mg L-1 Pb, respectively, in shaking conditions. Fourier transform infrared spectroscopy results revealed that several functional groups [Pb-S, M - O, O-M-O (M = metal ions), S-S, PO, CO, -NH, -NH2, C-C-O, and C-H] were involved in Pb adsorption. ESR4, ESR6 and the consortium-assisted rhizoengineering (i) increased leaf numbers and biomass production, (ii) reduced H2O2 production, malondialdehyde, electrolyte leakages, and transpiration rate, (iii) augmented photosynthetic pigments, photosynthetic rate, water use efficiency, total antioxidant capacity, total flavonoid content, total phenolic content, and minerals like Ca2+ and Mg2+ in comparison to non-rhizoengineering plants grown in Pb-contaminated soil. Principal component analysis revealed that higher pigment production and photosynthetic rate, improved water use efficiency and increased uptake of Ca2+ were interlinked to increased productivity by bacterial rhizoengineering of lettuce grown in different levels of Pb exposures. Surprisingly, Pb accumulation in lettuce roots and shoots was remarkably decreased by rhizoengineering than in non-rhizoengineering. Thus, these bacterial strains and this consortium could be utilized to improve productivity and reduce Pb accumulation in lettuce.
Collapse
Affiliation(s)
- Joty Roy
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Ashikur Rahman
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Khaled Mosharaf
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Saddam Hossain
- Department of Agronomy, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Raihan Talukder
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Minhaz Ahmed
- Department of Agroforestry and Environment, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Md Amdadul Haque
- Department of Agro-processing, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Habibul Bari Shozib
- Grain Quality and Nutrition Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Md Manjurul Haque
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| |
Collapse
|
10
|
Ur Rahman S, Qin A, Zain M, Mushtaq Z, Mehmood F, Riaz L, Naveed S, Ansari MJ, Saeed M, Ahmad I, Shehzad M. Pb uptake, accumulation, and translocation in plants: Plant physiological, biochemical, and molecular response: A review. Heliyon 2024; 10:e27724. [PMID: 38500979 PMCID: PMC10945279 DOI: 10.1016/j.heliyon.2024.e27724] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/17/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024] Open
Abstract
Lead (Pb) is a highly toxic contaminant that is ubiquitously present in the ecosystem and poses severe environmental issues, including hazards to soil-plant systems. This review focuses on the uptake, accumulation, and translocation of Pb metallic ions and their toxicological effects on plant morpho-physiological and biochemical attributes. We highlight that the uptake of Pb metal is controlled by cation exchange capacity, pH, size of soil particles, root nature, and other physio-chemical limitations. Pb toxicity obstructs seed germination, root/shoot length, plant growth, and final crop-yield. Pb disrupts the nutrient uptake through roots, alters plasma membrane permeability, and disturbs chloroplast ultrastructure that triggers changes in respiration as well as transpiration activities, creates the reactive oxygen species (ROS), and activates some enzymatic and non-enzymatic antioxidants. Pb also impairs photosynthesis, disrupts water balance and mineral nutrients, changes hormonal status, and alters membrane structure and permeability. This review provides consolidated information concentrating on the current studies associated with Pb-induced oxidative stress and toxic conditions in various plants, highlighting the roles of different antioxidants in plants mitigating Pb-stress. Additionally, we discussed detoxification and tolerance responses in plants by regulating different gene expressions, protein, and glutathione metabolisms to resist Pb-induced phytotoxicity. Overall, various approaches to tackle Pb toxicity have been addressed; the phytoremediation techniques and biochar amendments are economical and eco-friendly remedies for improving Pb-contaminated soils.
Collapse
Affiliation(s)
- Shafeeq Ur Rahman
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Anzhen Qin
- Institute of Farmland Irrigation, Chinese Academy of Agricultural Sciences/Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and Rural Affairs, Xinxiang, 453002, China
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
| | - Zain Mushtaq
- Department of Soil Science, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Faisal Mehmood
- Department of Land and Water Management, Faculty of Agricultural Engineering, Sindh Agriculture University, Tandojam, 70060, Pakistan
| | - Luqman Riaz
- Department of Environmental Sciences, Kohsar University Murree, 47150, Punjab, Pakistan
| | - Sadiq Naveed
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), 244001, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, P.O. Box 2240, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Muhammad Shehzad
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| |
Collapse
|
11
|
Zhou Q, Li X, Zheng X, Zhang X, Jiang Y, Shen H. Metabolomics reveals the phytotoxicity mechanisms of foliar spinach exposed to bulk and nano sizes of PbCO 3. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133097. [PMID: 38113737 DOI: 10.1016/j.jhazmat.2023.133097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
PbCO3 is an ancient raw material for Pb minerals and continues to pose potential risks to the environment and human health through mining and industrial processes. However, the specific effects of unintentional PbCO3 discharge on edible plants remain poorly understood. This study unravels how foliar application of PbCO3 induces phytotoxicity by potentially influencing leaf morphology, photosynthetic pigments, oxidative stress, and metabolic pathways related to energy regulation, cell damage, and antioxidant defense in Spinacia oleracea L. Additionally, it quantifies the resultant human health risks. Plants were foliarly exposed to PbCO3 nanoparticles (NPs) and bulk products (BPs), as well as Pb2+ at 0, 5, 10, 25, 50, and 100 mg·L-1 concentrations once a day for three weeks. The presence and localization of PbCO3 NPs inside the plant cells were confirmed by TEM-EDS analysis. The maximum accumulation of total Pb was recorded in the root (2947.77 mg·kg-1 DW for ion exposure), followed by the shoot (942.50 mg·kg-1 DW for NPs exposure). The results revealed that PbCO3 and Pb2+ exposure had size- and dose-dependent inhibitory effects on spinach length, biomass, and photosynthesis attributes, inducing impacts on the antioxidase activity of CAT, membrane permeability, and nutrient elements absorption and translocation. Pb2+ exhibited pronounced toxicity in morphology and chlorophyll; PbCO3 BP exposure accumulated the most lipid peroxidation products of MDA and H2O2; and PbCO3 NPs triggered the largest cell membrane damage. Furthermore, PbCO3 NPs at 10 and 100 mg·L-1 induced dose-dependent metabolic reprogramming in spinach leaves, disturbing the metabolic mechanisms related to amino acids, antioxidant defense, oxidative phosphorylation, fatty acid cycle, and the respiratory chain. The spinach showed a non-carcinogenic health risk hierarchy: Pb2+ > PbCO3 NPs > PbCO3 BPs, with children more vulnerable than adults. These findings enhance our understanding of PbCO3 particle effects on food security, emphasizing the need for further research to minimize their impact on human dietary health.
Collapse
Affiliation(s)
- Qishang Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Xueming Zheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yueheng Jiang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - He Shen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
12
|
Yin F, Li J, Wang Y, Yang Z. Biodegradable chelating agents for enhancing phytoremediation: Mechanisms, market feasibility, and future studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116113. [PMID: 38364761 DOI: 10.1016/j.ecoenv.2024.116113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/18/2024]
Abstract
Heavy metals in soil significantly threaten human health, and their remediation is essential. Among the various techniques used, phytoremediation is one of the safest, most innovative, and effective. In recent years, the use of biodegradable chelators to assist plants in improving their remediation efficiency has gained popularity. These biodegradable chelators aid in the transformation of metal ions or metalloids, thereby facilitating their mobilization and uptake by plants. Developed countries are increasingly adopting biodegradable chelators for phytoremediation, with a growing emphasis on green manufacturing and technological innovation in the chelating agent market. Therefore, it is crucial to gain a comprehensive understanding of the mechanisms and market prospects of biodegradable chelators for phytoremediation. This review focuses on elucidating the uptake, translocation, and detoxification mechanisms of chelators in plants. In this study, we focused on the effects of biodegradable chelators on the growth and environmental development of plants treated with phytoremediation agents. Finally, the potential risks associated with biodegradable chelator-assisted phytoremediation are presented in terms of their availability and application prospects in the market. This study provides a valuable reference for future research in this field.
Collapse
Affiliation(s)
- Fengwei Yin
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China
| | - Jianbin Li
- Jiaojiang Branch of Taizhou Municipal Ecology and Environment Bureau, Taizhou 318000, People's Republic of China
| | - Yilu Wang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China; Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Zhongyi Yang
- School of Life Sciences, Taizhou University, Taizhou 318000, People's Republic of China.
| |
Collapse
|
13
|
Ilyas MZ, Sa KJ, Ali MW, Lee JK. Toxic effects of lead on plants: integrating multi-omics with bioinformatics to develop Pb-tolerant crops. PLANTA 2023; 259:18. [PMID: 38085368 DOI: 10.1007/s00425-023-04296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Lead disrupts plant metabolic homeostasis and key structural elements. Utilizing modern biotechnology tools, it's feasible to develop Pb-tolerant varieties by discovering biological players regulating plant metabolic pathways under stress. Lead (Pb) has been used for a variety of purposes since antiquity despite its toxic nature. After arsenic, lead is the most hazardous heavy metal without any known beneficial role in the biological system. It is a crucial inorganic pollutant that affects plant biochemical and morpho-physiological attributes. Lead toxicity harms plants throughout their life cycle and the extent of damage depends on the concentration and duration of exposure. Higher levels of lead exposure disrupt numerous key metabolic activities of plants including oxygen-evolving complex, organelles integrity, photosystem II connectivity, and electron transport chain. This review summarizes the detrimental effects of lead toxicity on seed germination, crop growth, and yield, oxidative and ultra-structural alterations, as well as nutrient absorption, transport, and assimilation. Further, it discusses the Pb-induced toxic modulation of stomatal conductance, photosynthesis, respiration, metabolic-enzymatic activity, osmolytes accumulation, and antioxidant activity. It is a comprehensive review that reports on omics-based studies along with morpho-physiological and biochemical modifications caused by lead stress. With advances in DNA sequencing technologies, genomics and transcriptomics are gradually becoming popular for studying Pb stress effects in plants. Proteomics and metabolomics are still underrated and there is a scarcity of published data, and this review highlights both their technical and research gaps. Besides, there is also a discussion on how the integration of omics with bioinformatics and the use of the latest biotechnological tools can aid in developing Pb-tolerant crops. The review concludes with core challenges and research directions that need to be addressed soon.
Collapse
Affiliation(s)
- Muhammad Zahaib Ilyas
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea
| | - Kyu Jin Sa
- Department of Crop Science, College of Ecology & Environmental Sciences, Kyungpook National University, Sangju, 37224, Korea
| | - Muhammad Waqas Ali
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Crop Genetics, John Innes Center, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Ju Kyong Lee
- Department of Applied Plant Sciences, College of Bio-Resource Sciences, Kangwon National University, Chuncheon, 24341, South Korea.
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
14
|
Jiang W, Chen R, Lyu J, Qin L, Wang G, Chen X, Wang Y, Yin C, Mao Z. Remediation of the microecological environment of heavy metal-contaminated soil with fulvic acid, improves the quality and yield of apple. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132399. [PMID: 37647659 DOI: 10.1016/j.jhazmat.2023.132399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/04/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
The excessive application of chemical fertilizers and pesticides in apple orchards is responsible for high levels of manganese and copper in soil, and this poses a serious threat to soil health. We conducted a three-year field experiment to study the remediation effect and mechanism of fulvic acid on soil with excess manganese and copper. The exogenous application of fulvic acid significantly reduced the content of manganese and copper in soil and plants; increased the content of calcium; promoted the growth of apple plants; improved the fruit quality and yield of apple; increased the content of chlorophyll; increased the activity of superoxide dismutase, peroxidase, and catalase; and reduced the content of malondialdehyde. The number of soil culturable microorganisms, soil enzyme activity, soil microbial community diversity, and relative abundance of functional bacteria were increased, and the detoxification of the glutathione metabolism function was enhanced. The results of this study provide new insights that will aid the remediation of soil with excess manganese and copper using fulvic acid.
Collapse
Affiliation(s)
- Weitao Jiang
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Ran Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Jinhui Lyu
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Lei Qin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Gongshuai Wang
- College of Forestry Engineering Shandong Agriculture and Engineering University, Ji'nan, Shandong 250000, PR China
| | - Xuesen Chen
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China
| | - Yanfang Wang
- College of Chemistry and Material Science Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Chengmiao Yin
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China.
| | - Zhiquan Mao
- College of Horticulture Science and Engineering Shandong Agricultural University, Tai'an, Shandong 271018, PR China; Apple Technology Innovation Center of Shandong Province, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
15
|
Buqaj L, Gashi B, Zogaj M, Vataj R, Sota V, Tuna M. Stress induced by soil contamination with heavy metals and their effects on some biomarkers and DNA damage in maize plants at the vicinity of Ferronikel smelter in Drenas, Kosovo. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:617-627. [PMID: 37671814 DOI: 10.1080/03601234.2023.2253114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
The Ferronikel smelter in Drenas is one of the main industrial areas in the Kosovo and pollution by heavy metals causes serious threat for all living organisms on this area. The objective of this study was to determine the concentration of some heavy metals (Fe, Cu, Mn, Cr, Cd, Ni and Pb) in agricultural soils and in maize plants, and their potential toxic effects on this plant through some sensitive biochemical and molecular markers. Maize seedlings growth in nine soil samples from different locations of this area. The highest concentrations of heavy metals in soils and maize leaves were conducted close to the Ferronikel smelter, and in some locations, the nickel and chromium concertation in soils exceeded 800 mg kg-1. A significant effects of heavy metals induced toxicity resulted in the, build-up aminolevulinic acid and reduced activity of δ-aminolevulinic acid dehydratase, and chlorophyll content in the maize leaves. In general, maize seedlings growth in polluted locations showed an increase in nuclear DNA content and in G2M phase. We concluded that locations close to the smelter are affected by soil heavy metals pollution and these biochemical and molecular analysis would be a powerful ecotoxicological tool in biomonitoring of heavy metal pollution.
Collapse
Affiliation(s)
- Liridon Buqaj
- Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina "Hasan Prishtina", Prishtinë, Kosovo
- Faculty of Environmental and Life Sciences, University "Ukshin Hoti" in Prizren, Prizren, Kosovo
| | - Bekim Gashi
- Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina "Hasan Prishtina", Prishtinë, Kosovo
| | - Muhamet Zogaj
- Department of Soil Sciences, Faculty of Agriculture and Veterinary, University of Prishtina "Hasan Prishtina", Prishtinë, Kosovo
| | - Ramë Vataj
- Department of Chemistry, Faculty of Mathematical and Natural Sciences, University of Prishtina "Hasan Prishtina", Prishtinë, Kosovo
| | - Valbona Sota
- Department of Biotechnology, Faculty of Natural Sciences, University of Tirana, Tirana, Albania
| | - Metin Tuna
- Department of Field Crops, Faculty of Agriculture, Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
16
|
Zhou B, Zhang T, Wang F. Unravelling the molecular and biochemical responses in cotton plants to biochar and biofertilizer amendments for Pb toxicity mitigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100799-100813. [PMID: 37644262 DOI: 10.1007/s11356-023-29382-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Over the past few years, there has been a rising interest in employing biochar (BC) and biofertilizers (BF) as a means of restoring soils that have been polluted by heavy metals. The primary objective of this study was to examine how the application of BC and BF affects the ability of cotton plants to withstand Pb toxicity at varying concentrations (0, 500, and 1000 mg/kg soil). The findings revealed that exposure to Pb stress, particularly at the 1000 mg/kg level, led to a decline in the growth and biomass of cotton plants. Pb toxicity triggered oxidative damage, impaired the photosynthetic apparatus, and diminished the levels of photosynthetic pigments. By increasing the expression of Rubisco-S, Rubisco-L, P5CR, and PRP5 genes and regulating proline metabolism, BC and BF increased the levels of proline and photosynthetic pigments and protected the photosynthetic apparatus. The application of BC and BF resulted in an upregulation of genes such as CuZnSOD, FeSOD, and APX1, as well as an increase in the activity of the glyoxalase system and antioxidant enzymes. These changes enhanced the antioxidant capacity of the plants and provided protection to membrane lipids from oxidative stress caused by Pb. The inclusion of BC and BF offered protection to photosynthesis and other essential intracellular processes in leaves by minimizing the transfer of Pb to leaves and promoting the accumulation of thiol compounds. This protective effect helped mitigate the negative impact of the toxic metal Pb on leaf function. By improving plant tolerance, reducing metal transfer, strengthening the antioxidant defense system, and enhancing the level of protective substances, these amendments show promise as valuable tools in tackling heavy metal pollution.
Collapse
Affiliation(s)
- Biao Zhou
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China
| | - Tiejian Zhang
- Urban and Rural Construction Institute, Hebei Agricultural University, Baoding, 071000, Hebei, China.
| | - Fei Wang
- College of Modern Science and Technology, Hebei Agricultural University, Baoding, 071000, Hebei, China
| |
Collapse
|
17
|
Han U, Lee YG, Byeon J, Chon K, Cho SK. Mitigation of benzoic acid-driven autotoxicity in waste nutrient solution using O 3 and O 3/H 2O 2 treatments: Seed germination and root growth of Lactuca sativa L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121930. [PMID: 37270051 DOI: 10.1016/j.envpol.2023.121930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/27/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Benzoic acid (BA), a secondary metabolite released through root exudates, is considered to be the most common inhibitor that leads to plant autotoxicity, even at low concentrations in closed hydroponic systems. In this study, to mitigate BA-driven autotoxicity, the effects of O3 and O3/H2O2 oxidation treatment (O3 concentration: 1, 2, 4, 8 mg L-1, H2O2 concentration: 4, 8 mg L-1) on waste nutrient solution (WNS) were investigated in terms of BA degradation, the rate of germination inhibition (GI), and the rate of root growth inhibition (RI). In the case of O3 treatment, the BA degradation rate improved up to 14.1% as the O3 concentration increased, while alleviation of GI was insignificant (94.6-100%), confirming that a single O3 treatment was unsuitable for mitigating autotoxicity. On the other hand, O3/H2O2 treatment increased BA degradation by up to 24.8%, thereby significantly reducing GI (up to 7.69%) and RI (up to 0.88%). Both the highest BA mineralization rate and phytotoxicity mitigation was observed at BA125 (4-4) (BA mineralization: 16.7%, GI: 12.82%, RI: 11.69%) and BA125 (1-8) (BA mineralization: 17.7%, GI: 7.69%, RI: 0.88%) at each H2O2 concentration. In addition, the operating costs were evaluated by a chemical and electricity cost analysis at the different treatments. As a result, the operating costs of BA125 (4-4) and BA125 (1-8) were calculated to be 0.40 and 0.42 $ L-1 mg-1 of mineralized BA, respectively. After consideration of the mineralization rate, autotoxicity mitigation, and operating cost, BA125 (1-8) was suggested for the optimal treatment condition and our findings would contribute to the alleviation of BA-driven autotoxicity.
Collapse
Affiliation(s)
- Uijeong Han
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido, 10326, Republic of Korea
| | - Yong-Gu Lee
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Jihui Byeon
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido, 10326, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, College of Engineering, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Kangwondaehak-gil, 1, Chuncheon-si, Gangwon-do, 24341, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido, 10326, Republic of Korea.
| |
Collapse
|
18
|
Methela NJ, Islam MS, Lee DS, Yun BW, Mun BG. S-Nitrosoglutathione (GSNO)-Mediated Lead Detoxification in Soybean through the Regulation of ROS and Metal-Related Transcripts. Int J Mol Sci 2023; 24:9901. [PMID: 37373048 DOI: 10.3390/ijms24129901] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Heavy metal toxicity, including lead (Pb) toxicity, is increasing in soils, and heavy metals are considered to be toxic in small amounts. Pb contamination is mainly caused by industrialization (e.g., smelting and mining), agricultural practices (e.g., sewage sludge and pests), and urban practices (e.g., lead paint). An excessive concentration of Pb can seriously damage and threaten crop growth. Furthermore, Pb adversely affects plant growth and development by affecting the photosystem, cell membrane integrity, and excessive production of reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) and superoxide (O2-). Nitric oxide (NO) is produced via enzymatic and non-enzymatic antioxidants to scavenge ROS and lipid peroxidation substrates to protect cells from oxidative damage. Thus, NO improves ion homeostasis and confers resistance to metal stress. In the present study, we investigated the effect of exogenously applied NO and S-nitrosoglutathione in soybean plants Our results demonstrated that exogenously applied NO aids in better growth under lead stress due to its ability in sensing, signaling, and stress tolerance in plants under heavy metal stress along with lead stress. In addition, our results showed that S-nitrosoglutathione (GSNO) has a positive effect on soybean seedling growth under lead-induced toxicity and that NO supplementation helps to reduce chlorophyll maturation and relative water content in leaves and roots following strong bursts under lead stress. GSNO supplementation (200 µM and 100 µM) reduced compaction and approximated the oxidative damage of MDA, proline, and H2O2. Moreover, under plant stress, GSNO application was found to relieve the oxidative damage by reactive oxygen species (ROS) scavenging. Additionally, modulation of NO and phytochelatins (PCS) after prolonged metal reversing GSNO application confirmed detoxification of ROS induced by the toxic metal lead in soybean. In summary, the detoxification of ROS caused by toxic metal concentrations in soybean is confirmed by using NO, PCS, and traditionally sustained concentrations of metal reversing GSNO application.
Collapse
Affiliation(s)
- Nusrat Jahan Methela
- Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Mohammad Shafiqul Islam
- Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
- Department of Agriculture, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Da-Sol Lee
- Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Byung-Wook Yun
- Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Bong-Gyu Mun
- Department of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
19
|
Saouli A, Adjroud O, Ncir M, Bachir A, El Feki A. Attenuating effects of selenium and zinc against hexavalent chromium-induced oxidative stress, hormonal instability, and placenta damage in preimplanted rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60050-60079. [PMID: 37017835 DOI: 10.1007/s11356-023-26700-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/24/2023] [Indexed: 05/10/2023]
Abstract
As a toxic metal, hexavalent chromium (CrVI) has effects on both the reproductive and endocrine systems. This study aimed to evaluate the protective effects of selenium (Se) and zinc (Zn) against the toxicity of chromium on the placenta in pregnant Wistar albino rats. Thirty pregnant Wistar rats were divided into control and four treated groups, receiving subcutaneously (s.c) on the 3rd day of pregnancy, K2Cr2O7 (10 mg/kg body weight (bw)) alone, or in association with Se (0.3 mg/kg bw), ZnCl2 (20 mg/kg bw), or both of them simultaneously. Plasma steroid hormones, placenta histoarchitecture, oxidative stress profile, and developmental parameters were investigated. These results showed that K2Cr2O7 exposure induced a significant increase in the levels of both plasma estradiol (E2) and placenta malondialdehyde (MDA), the number of fetal resorptions, and percent of post-implantation loss. On the other hand, K2Cr2O7 significantly reduced developmental parameters, maternal body and placenta weight, and plasma progesterone (P) and chorionic gonadotropin hormone (β HCG) levels. However, K2Cr2O7 significantly decreased the placenta activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), reduced glutathione (GSH), and nonprotein sulfhydryl (NPSH). These changes have been reinforced by histopathological evaluation of the placenta. Se and/or ZnCl2 supplementation provoked a significant improvement in most indices. These results suggest that the co-treatment with Se or ZnCl2 strongly opposes the placenta cytotoxicity induced by K2Cr2O7 through its antioxidant action.
Collapse
Affiliation(s)
- Asma Saouli
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria.
| | - Ounassa Adjroud
- Laboratory of Cellular and Molecular Physio-Toxicology-Pathology and Biomolecules, Department of Biology of Organisms, Faculty of Natural and Life Sciences, University of Batna 2, 5000, Batna, Algeria
| | - Marwa Ncir
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| | - Achouak Bachir
- Anatomy and Pathology Laboratory, EHS Salim Zemirli, 16200, El Harrach, Algeria
| | - Abdelfattah El Feki
- Animal Eco-Physiology Laboratory, Department of Life Sciences, Sciences Faculty of Sfax, University of Sfax, BP 1171, 3000, Sfax, Tunisia
| |
Collapse
|
20
|
Bodnar IS, Cheban EV. Joint effects of gamma radiation and zinc on duckweed Lemna minor L. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106438. [PMID: 36889126 DOI: 10.1016/j.aquatox.2023.106438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
When assessing the consequences of combined chemical and radiation pollution on bodies of water, it is important to take into account the interaction of different factors, especially the possible synergistic increase in the toxic effect on growth, biochemical and physiological processes of living organisms. In this work, we studied the combined effect of γ-radiation and zinc on freshwater duckweed Lemna minor L. Irradiated plants (doses were 18, 42, and 63 Gy) were placed on a medium with an excess of zinc (3.15, 6.3, 12.6 μmol/L) for 7 days. Our results showed that the accumulation of zinc in tissues increased in irradiated plants when compared to non-irradiated plants. The interaction of factors in assessing their effect on the growth rate of plants was most often additive, but there was also a synergistic increase in the toxic effect at a zinc concentration of 12.6 μmol/L and irradiation at doses of 42 and 63 Gy. When comparing the combined and separate effects of gamma radiation and zinc, it was found that a reduction in the area of fronds (leaf-like plates) was caused exclusively due to the effects of radiation. Zinc and γ-radiation contributed to the enhancement of membrane lipid peroxidation. Irradiation stimulated the production of chlorophylls a and b, as well as carotenoids.
Collapse
Affiliation(s)
- I S Bodnar
- Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., Syktyvkar, Komi Republic, Russia.
| | - E V Cheban
- Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., Syktyvkar, Komi Republic, Russia
| |
Collapse
|
21
|
Lin Q, Huai Z, Riaz L, Peng X, Wang S, Liu B, Yu F, Ma J. Aluminum phytotoxicity induced structural and ultrastructural changes in submerged plant Vallisneria natans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 250:114484. [PMID: 36608570 DOI: 10.1016/j.ecoenv.2022.114484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Aluminum (Al) is a concentration-dependent toxic metal found in the crust of earth that has no recognized biological use. Nonetheless, the mechanism of Al toxicity to submerged plants remains obscure, especially from a cell/subcellular structure and functional group perspective. Therefore, multiple dosages of Al3+ (0, 0.3, 0.6, 1.2, and 1.5 mg/L) were applied hydroponically to the submerged plant Vallisneria natans in order to determine the accumulation potential of Al at the subcellular level and their ultrastructural toxicity. More severe structural and ultrastructural damage was determined when V. natans exposed to ≥ 0.6 mg/L Al3+. In 1.2 and 1.5 mg/L Al3+ treatment groups, the total chlorophyll content of leaves significantly reduced 3.342, 3.838 mg/g FW, some leaves even exhibited chlorosis and fragility. Under 0.3 mg/L Al3+ exposure, the middle-age and young leaves were potent phytoexcluders, whereas at 1.5 mg/L Al3+, a large amount of Al could be transferred from the roots to other parts, among which the aged leaves were the most receptive tissues (7.306 mg/g). Scanning/Transmission electron microscopy analysis displayed the Al-mediated disruption of vascular bundle structure in leaf cells, intercellular space and several vegetative tissues, and demonstrated that Al in vacuole and chloroplast subcellular segregation into electron dense deposition. Al and P accumulation in the roots, stolons and leaves varied significantly among treatments and different tissues (P < 0.05). Fourier transform infrared spectroscopy of plant biomass also indicated possible metabolites (amine, unsaturated hydrocarbon, etc.) of V. natans that may bind Al3+. Conclusively, results revealed that Al3+ disrupts the cellular structure of leaves and roots or binds to functional groups of biological tissues, thereby affecting plant nutrient uptake and photosynthesis. Findings might have scientific and practical significance for the restoration of submerged vegetation in Al-contaminated lakes.
Collapse
Affiliation(s)
- Qingwei Lin
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China; Research Center for Ecological Management and Protection of the Yellow River Basin, Xinxiang 453007, China
| | - Zhiwen Huai
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China
| | - Luqman Riaz
- Department of Environmental Sciences, University of Narowal, 51750 Punjab, Pakistan
| | - Xue Peng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shishi Wang
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China
| | - Biyun Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Fei Yu
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China; Research Center for Ecological Management and Protection of the Yellow River Basin, Xinxiang 453007, China.
| | - Jianmin Ma
- Henan Normal University, College of Life Sciences, Xinxiang 453007, China; Research Center for Ecological Management and Protection of the Yellow River Basin, Xinxiang 453007, China.
| |
Collapse
|
22
|
Moulick D, Bhutia KL, Sarkar S, Roy A, Mishra UN, Pramanick B, Maitra S, Shankar T, Hazra S, Skalicky M, Brestic M, Barek V, Hossain A. The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 13:1083960. [PMID: 36684752 PMCID: PMC9846276 DOI: 10.3389/fpls.2022.1083960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Karma Landup Bhutia
- Department of Agricultural Biotechnology & Molecular Breeding, College of Basic Science and Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Udit Nandan Mishra
- Department of Crop Physiology and Biochemistry, Sri University, Cuttack, Odisha, India
| | - Biswajit Pramanick
- Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, PUSA, Samastipur, Bihar, India
- Department of Agronomy and Horticulture, University of Nebraska Lincoln, Scottsbluff, NE, United States
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Tanmoy Shankar
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Akbar Hossain
- Division of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
23
|
Asare MO, Száková J, Tlustoš P. The fate of secondary metabolites in plants growing on Cd-, As-, and Pb-contaminated soils-a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:11378-11398. [PMID: 36529801 PMCID: PMC9760545 DOI: 10.1007/s11356-022-24776-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 12/11/2022] [Indexed: 04/12/2023]
Abstract
The study used scattered literature to summarize the effects of excess Cd, As, and Pb from contaminated soils on plant secondary metabolites/bioactive compounds (non-nutrient organic substances). Hence, we provided a systematic overview involving the sources and forms of Cd, As, and Pb in soils, plant uptake, mechanisms governing the interaction of these risk elements during the formation of secondary metabolites, and subsequent effects. The biogeochemical characteristics of soils are directly responsible for the mobility and bioavailability of risk elements, which include pH, redox potential, dissolved organic carbon, clay content, Fe/Mn/Al oxides, and microbial transformations. The radial risk element flow in plant systems is restricted by the apoplastic barrier (e.g., Casparian strip) and chelation (phytochelatins and vacuole sequestration) in roots. However, bioaccumulation is primarily a function of risk element concentration and plant genotype. The translocation of risk elements to the shoot via the xylem and phloem is well-mediated by transporter proteins. Besides the dysfunction of growth, photosynthesis, and respiration, excess Cd, As, and Pb in plants trigger the production of secondary metabolites with antioxidant properties to counteract the toxic effects. Eventually, this affects the quantity and quality of secondary metabolites (including phenolics, flavonoids, and terpenes) and adversely influences their antioxidant, antiinflammatory, antidiabetic, anticoagulant, and lipid-lowering properties. The mechanisms governing the translocation of Cd, As, and Pb are vital for regulating risk element accumulation in plants and subsequent effects on secondary metabolites.
Collapse
Affiliation(s)
- Michael O Asare
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic.
| | - Jiřina Száková
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic
| | - Pavel Tlustoš
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences, Kamýcká 129, 165 21, Prague 6, Czech Republic
| |
Collapse
|
24
|
Yang Y, Jiang M, Liao J, Luo Z, Gao Y, Yu W, He R, Feng S. Effects of Simultaneous Application of Double Chelating Agents to Pb-Contaminated Soil on the Phytoremediation Efficiency of Indocalamus decorus Q. H. Dai and the Soil Environment. TOXICS 2022; 10:713. [PMID: 36548546 PMCID: PMC9781716 DOI: 10.3390/toxics10120713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/19/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Recent studies have shown that the combined application of ethylenediaminetetraacetic acid (EDTA) and degradable chelating agents can enhance EDTA's affinity for heavy metals and reduce its toxicity, but the effect of this combination on the phytoremediation remains largely unknown. This study evaluated and compared the effects of EDTA, nitrilotriacetic acid (NTA), and glutamic acid-N,N-diacetic acid (GLDA) alone (E, N, G treatment), and in combination (EN and EG treatment), on the growth of dwarf bamboo (Indocalamus decorus Q. H. Dai), their phytoremediation efficiency, and the soil environment in Pb-contaminated soil. The results showed that treatment E significantly reduced the biomass, while treatments N and EN were more conducive to the distribution of aerial plant biomass. Except for treatment E, the total Pb accumulation in all treatments increased significantly, with the highest increase in treatment EN. For double chelating agents, the acid-soluble Pb concentrations in rhizosphere and non-rhizosphere soils of treatments EN and EG were lower than those of treatment E, and the soil water-soluble Pb content after 20 days of treatment EN was significantly lower than that of treatment EG. Furthermore, chelating agents generally increased soil-enzyme activity in rhizosphere soil, indicating that chelating agents may promote plant heavy-metal uptake by changing the rhizosphere environment. In conclusion, treatment EN had the highest phytoremediation efficiency and significantly lower environmental risk than treatments E and EG, highlighting its massive potential for application in phytoremediation of Pb-contaminated soil when combined with I. decorus.
Collapse
|
25
|
Grassi G, Simonetti A, Gambacorta E, Perna A. Decrease of activity of antioxidant enzymes, lysozyme content, and protein degradation in milk contaminated with heavy metals (cadmium and lead). JDS COMMUNICATIONS 2022; 3:312-316. [PMID: 36340905 PMCID: PMC9623711 DOI: 10.3168/jdsc.2022-0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/11/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to evaluate the effect of added Cd and Pb to milk on its stability by determining antioxidant enzymatic activities, lysozyme content, and protein degradation. Antioxidant enzymatic activities were spectrophotometrically determined by superoxide dismutase, catalase, xanthine oxidase, and glutathione peroxidase assays; lysozyme was identified and quantified by HPLC-UV analysis, and protein degradation was investigated by spectrophotometric analysis of advanced oxidation protein products (AOPP) and dityrosine content. In this study, contaminated milk samples showed a significant reduction in activity of all studied enzymes compared with control milk. The contamination of milk also led to a significant reduction in the lysozyme content; lysozyme content was decreased about 22% and 18% in Pb milk and Cd milk, respectively, compared with control milk. The presence of the contaminants in the milk resulted in a significant increase of both dityrosine concentration and AOPP compared with the control milk. Moreover, between types of contaminated milk, dityrosine and AOPP values were significantly higher in the Pb milk than in the Cd milk. Therefore, it is important to monitor the presence of these toxic elements in milk for the damage they cause to consumer health both directly due to their ingestion and indirectly due to loss of milk stability.
Collapse
|
26
|
Rahim W, Khan M, Al Azzawi TNI, Pande A, Methela NJ, Ali S, Imran M, Lee DS, Lee GM, Mun BG, Moon YS, Lee IJ, Yun BW. Exogenously Applied Sodium Nitroprusside Mitigates Lead Toxicity in Rice by Regulating Antioxidants and Metal Stress-Related Transcripts. Int J Mol Sci 2022; 23:ijms23179729. [PMID: 36077126 PMCID: PMC9456452 DOI: 10.3390/ijms23179729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
Sustainable agriculture is increasingly being put in danger by environmental contamination with dangerous heavy metals (HMs), especially lead (Pb). Plants have developed a sophisticated mechanism for nitric oxide (NO) production and signaling to regulate hazardous effects of abiotic factors, including HMs. In the current study, we investigated the role of exogenously applied sodium nitroprusside (SNP, a nitric oxide (NO) donor) in ameliorating the toxic effects of lead (Pb) on rice. For this purpose, plants were subjected to 1.2 mM Pb alone and in combination with 100 µM SNP. We found that under 1.2 mM Pb stress conditions, the accumulation of oxidative stress markers, including hydrogen peroxide (H2O2) (37%), superoxide anion (O2−) (28%), malondialdehyde (MDA) (33%), and electrolyte leakage (EL) (34%), was significantly reduced via the application of 100 µM SNP. On the other hand, under the said stress of Pb, the activity of the reactive oxygen species (ROS) scavengers such as polyphenol oxidase (PPO) (60%), peroxidase (POD) (28%), catalase (CAT) (26%), superoxide dismutase (SOD) (42%), and ascorbate peroxidase (APX) (58%) was significantly increased via the application of 100 µM SNP. In addition, the application of 100 µM SNP rescued agronomic traits such as plant height (24%), number of tillers per plant (40%), and visible green pigments (44%) when the plants were exposed to 1.2 mM Pb stress. Furthermore, after exposure to 1.2 mM Pb stress, the expression of the heavy-metal stress-related genes OsPCS1 (44%), OsPCS2 (74%), OsMTP1 (83%), OsMTP5 (53%), OsMT-I-1a (31%), and OsMT-I-1b (24%) was significantly enhanced via the application of 100 µM SNP. Overall, our research evaluates that exogenously applied 100 mM SNP protects rice plants from the oxidative damage brought on by 1.2 mM Pb stress by lowering oxidative stress markers, enhancing the antioxidant system and the transcript accumulation of HMs stress-related genes.
Collapse
Affiliation(s)
- Waqas Rahim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Murtaza Khan
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | | | - Anjali Pande
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Nusrat Jahan Methela
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - Muhammad Imran
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Da-Sol Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Geun-Mo Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Bong-Gyu Mun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Yong-Sun Moon
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
| | - In-Jung Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
| | - Byung-Wook Yun
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea
- Correspondence:
| |
Collapse
|
27
|
Yang Y, Liao J, Chen Y, Tian Y, Chen Q, Gao S, Luo Z, Yu X, Lei T, Jiang M. Efficiency of heterogeneous chelating agents on the phytoremediation potential and growth of Sasa argenteostriata (Regel) E.G. Camus on Pb-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113603. [PMID: 35551046 DOI: 10.1016/j.ecoenv.2022.113603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 04/23/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Ethylenediaminetetraacetic acid (EDTA) is one of the most effective chelating agents for enhancing lead (Pb) accumulation in various plant organs. However, it has a higher risk of causing secondary pollution than other chelating agents. To reduce such environmental risks and increase remediation efficiency, EDTA can be combined with degradable chelating agents for use in phytoremediation, but there are few reports on the combination of EDTA and nitrilotriacetic acid (NTA). This study evaluated the effects of combined EDTA and NTA application at different concentrations (900, 1200, or 1500 mg/kg) and with different methods (1 application or 3 applications) on dwarf bamboo (Sasa argenteostriata (Regel) E.G. Camus) growth and phytoremediation efficiency and on the soil environment in pot experiments with Pb-contaminated soil. Applying EDTA and NTA together resulted in lower soil water-soluble Pb concentrations than applying EDTA alone and therefore resulted in lower environmental risk. The increased availability of soil Pb produced a stress response in the dwarf bamboo plants, which increased their biomass significantly. Moreover, under the chelating treatments, the soil Pb availability increased, which promoted Pb translocation in plants. The Pb content in the aerial parts of the dwarf bamboo increased significantly in all treatments (translocation factors increased by 300~1500% compared with that in CK). The Pb content increase in the aerial parts caused high proline accumulation in dwarf bamboo leaves, to alleviate Pb toxicity. Maximum Pb accumulation was observed in the EN1500 treatment, which was significantly higher than that in the other treatments except the EN900 treatment. This study elucidates the choice of remediation techniques and the physiological characteristics of the plants used in such studies. In conclusion, the EN900 treatment resulted in the lowest environmental risk, greatest biomass production, and highest phytoremediation efficiency of all treatments, indicating that it has great potential for application in phytoremediation with dwarf bamboo in Pb-contaminated soil.
Collapse
Affiliation(s)
- Yixiong Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Jiarong Liao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Yahui Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Yuan Tian
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Zhenghua Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan 611130, China.
| |
Collapse
|
28
|
González-Moscoso M, Juárez-Maldonado A, Cadenas-Pliego G, Meza-Figueroa D, SenGupta B, Martínez-Villegas N. Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34147-34163. [PMID: 35034295 DOI: 10.1007/s11356-021-17665-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
In this study, we simulate the irrigation of tomato plants with arsenic (As)-contaminated water (from 0 to 3.2 mg L-1) and investigate the effect of the application of silicon nanoparticle (Si NPs) in the form of silicon dioxide (0, 250, and 1000 mg L-1) on As uptake and stress. Arsenic concentrations were determined in substrate and plant tissue at three different stratums. Phytotoxicity, As accumulation and translocation, photosynthetic pigments, and antioxidant activity of enzymatic and non-enzymatic compounds were also determined. Our results show that irrigation of tomato plants with As-contaminated water caused As substrate enrichment and As bioaccumulation (roots > leaves > steam), showing that the higher the concentration in irrigation water, the farther As translocated through the different tomato stratums. Additionally, phytotoxicity was observed at low concentrations of As, while tomato yield increased at high concentrations of As. We found that application of Si NPs decreased As translocation, tomato yield, and root biomass. Increased production of photosynthetic pigments and improved enzymatic activity (CAT and APX) suggested tomato plant adaptation at high As concentrations in the presence of Si NPs. Our results reveal likely impacts of As and nanoparticles on tomato production in places where As in groundwater is common and might represent a risk.
Collapse
Affiliation(s)
- Magín González-Moscoso
- Doctorado en Agricultura Protegida, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, 25315, Saltillo, Coahuila, México
| | - Antonio Juárez-Maldonado
- Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, 25315, Saltillo, Coahuila, México
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Enrique Reyna H 140, 25294, Saltillo, Coahuila, México
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Blvd. Luis Encinas J, Calle Av. Rosales &, Centro, 83000, Hermosillo, Sonora, México
| | - Bhaskar SenGupta
- School of Energy, Geoscience, Infrastructure & Society, Water Academy, Heriot-Watt University, EGIS 2.02A William Arrol Building, Scotland, EH14 4AS, UK
| | - Nadia Martínez-Villegas
- IPICyT, Instituto Potosino de Investigación Científica Y Tecnológica, Camino a La Presa San José No. 2055, Col. Lomas 4a Sec., 78216, San Luis Potosí, SLP, México.
| |
Collapse
|
29
|
Iftikhar A, Abbas G, Saqib M, Shabbir A, Amjad M, Shahid M, Ahmad I, Iqbal S, Qaisrani SA. Salinity modulates lead (Pb) tolerance and phytoremediation potential of quinoa: a multivariate comparison of physiological and biochemical attributes. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:257-272. [PMID: 33907913 DOI: 10.1007/s10653-021-00937-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/12/2021] [Indexed: 05/17/2023]
Abstract
Salinity and lead (Pb) contamination of soil are important environmental issues. A hydroponics experiment was performed to unravel the effects of salinity on modulation of Pb tolerance and phytoremediation potential of quinoa. Four-week-old plants of quinoa genotype "Puno" were treated with different concentrations of NaCl (0, 150 and 300 mM), Pb (0, 250 and 500 μM) and their combinations. It was noticed that plant biomass, chlorophyll contents and stomatal conductance of quinoa were slightly affected at 150 mM NaCl or 250 μM Pb. However, the higher concentrations of NaCl (300 mM) and Pb (500 μM) caused significant decline in these attributes. The accumulation of Na in quinoa increased under the combined application of salt with highest level of Pb. The uptake of K was not affected at the lower levels of either salinity or Pb, but decreased significantly at their highest levels. The combination of salinity and Pb increased H2O2 contents and caused lipid peroxidation that was mitigated by the activation of antioxidant enzymes (superoxide dismutase, catalase, peroxidase, ascorbate peroxidase). The activities of these enzymes increased by 4-, 3.75-, 5.4- and 2-fold, respectively, in the combined application of 500 μM Pb and 300 mM NaCl with respect to control. A multivariate analysis indicated that Pb tolerance potential of quinoa under combined application of NaCl and Pb was higher at 150 than 300 mM NaCl. The bioconcentration factor and translocation factor for Pb remained less than one either in the absence or presence of salinity. Lead accumulation and tolerance potential indicated that quinoa genotype "Puno" is suitable for phytostabilization of Pb under saline conditions.
Collapse
Affiliation(s)
- Azka Iftikhar
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan.
| | - Muhammad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan.
| | - Arslan Shabbir
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| | - Shahid Iqbal
- Department of Agronomy, Muhammad Nawaz Sharif University of Agriculture, Multan, Pakistan
| | - Saeed Ahmad Qaisrani
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, Pakistan
| |
Collapse
|
30
|
Hou F, Liu K, Zhang N, Zou C, Yuan G, Gao S, Zhang M, Pan G, Ma L, Shen Y. Association mapping uncovers maize ZmbZIP107 regulating root system architecture and lead absorption under lead stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1015151. [PMID: 36226300 PMCID: PMC9549328 DOI: 10.3389/fpls.2022.1015151] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 05/22/2023]
Abstract
Lead (Pb) is a highly toxic contaminant to living organisms and the environment. Excessive Pb in soils affects crop yield and quality, thus threatening human health via the food chain. Herein, we investigated Pb tolerance among a maize association panel using root bushiness (BSH) under Pb treatment as an indicator. Through a genome-wide association study of relative BSH, we identified four single nucleotide polymorphisms (SNPs) and 30 candidate genes associated with Pb tolerance in maize seedlings. Transcriptome analysis showed that four of the 30 genes were differentially responsive to Pb treatment between two maize lines with contrasting Pb tolerance. Among these, the ZmbZIP107 transcription factor was confirmed as the key gene controlling maize tolerance to Pb by using gene-based association studies. Two 5' UTR_variants in ZmbZIP107 affected its expression level and Pb tolerance among different maize lines. ZmbZIP107 protein was specifically targeted to the nucleus and ZmbZIP107 mRNA showed the highest expression in maize seedling roots among different tissues. Heterologous expression of ZmbZIP107 enhanced rice tolerance to Pb stress and decreased Pb absorption in the roots. Our study provided the basis for revelation of the molecular mechanism underlying Pb tolerance and contributed to cultivation of Pb-tolerant varieties in maize.
Collapse
|
31
|
Zhang H, Qin Y, Huang K, Zhan F, Li R, Chen J. Root Metabolite Differences in Two Maize Varieties Under Lead (Pb) Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:656074. [PMID: 34887879 PMCID: PMC8649664 DOI: 10.3389/fpls.2021.656074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
To assess root metabolic differences of maize varieties in their response to lead (Pb) stress, the lead-tolerant variety Huidan No. 4 and the lead-sensitive variety Ludan No. 8 were tested under Pb-free and Pb-stressed conditions. Changes in metabolites were measured using ultra-performance liquid chromatography-mass spectrometry. Pb stress changed the levels of the amino acids proline, glutamine, lysine, and arginine in both varieties, whereas glutamate and phenylalanine levels changed only in Huidan No. 4. Pb stress altered cystine, valine, methionine, and tryptophan levels only in Ludan No. 8. Therefore, the synthesis and decomposition of amino acids may affect the response of maize to Pb stress. The degree of change in differential metabolites for Huidan No. 4 was greater than that for Ludan No. 8. In cell wall subcellular components, increases in superoxide dismutase (SOD), peroxidases (PODs), and Pb concentrations were greater in Huidan No. 4 than in Ludan No. 8. Therefore, the greater Pb tolerance of Huidan No. 4 could be due to better sequestration of Pb in cell walls and more effective removal of reactive oxygen species (ROS) from the plant. The levels of certain metabolites only increased in Ludan No. 8, indicating that Pb-sensitive varieties may use different metabolic pathways to cope with Pb stress. Both varieties showed increased levels of some metabolites related to antioxidant protection and osmotic regulation. This study provides an understanding of maize Pb tolerance mechanisms and a basis for further development of tools for use in maize breeding.
Collapse
Affiliation(s)
- Hanqian Zhang
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Yuying Qin
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Kai Huang
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Fangdong Zhan
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| | - Ru Li
- College of Plant Protection, Yunnan Agricultural University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Jianjun Chen
- College of Resource and Environment, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
32
|
Alleviation of Lead Stress on Sage Plant by 5-Aminolevulinic Acid (ALA). PLANTS 2021; 10:plants10091969. [PMID: 34579503 PMCID: PMC8466212 DOI: 10.3390/plants10091969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
Oxidative stress is imparted by a varying range of environmental factors involving heavy metal stress. Thus, the mechanisms of antioxidant resistance may advance a policy to improve metal tolerance. Lead as a toxic heavy metal negatively affects the metabolic activities and growth of medicinal and aromatic plants. This investigation aimed to assess the function of 5-aminolevulinic acid (ALA) in the alleviation of Pb stress in sage plants (Salvia officinalis L.) grown either hydroponically or in pots. Various concentrations of Pb (0, 100, 200, and 400 µM) and different concentrations of ALA (0, 10, and 20 mg L-1) were tested. This investigation showed that Pb altered the physiological parameters. Pb stress differentially reduced germination percentage and protein content compared to control plants. However, lead stress promoted malondialdehyde (MDA) and H2O2 contents in the treated plants. Also, lead stress enhanced the anti-oxidative enzyme activities; ascorbate peroxidase superoxide, dismutase, glutathione peroxidase, and glutathione reductase in Salvia plants. ALA application enhanced the germination percentage and protein content compared to their corresponding controls. Whereas, under ALA application MDA and H2O2 contents, as well as the activities of SOD, APX, GPX, and GR, were lowered. These findings suggest that ALA at the 20 mgL-1 level protects the Salvia plant from Pb stress. Therefore, the results recommend ALA application to alleviate Pb stress.
Collapse
|
33
|
Antimony induced structural and ultrastructural changes in Trapa natans. Sci Rep 2021; 11:10695. [PMID: 34021213 PMCID: PMC8140150 DOI: 10.1038/s41598-021-89865-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 12/15/2020] [Indexed: 02/04/2023] Open
Abstract
Antimony (Sb) is considered as a priority toxic metalloid in the earth crust having no known biological function. The current study was carried out in a hydroponic experiment to study the accumulation of ecotoxic Sb in subcellular level, and to find out the ultrastructural damage caused by Sb in different vegetative parts of Trapa natans. Sb-induced structural and ultrastructural changes of T. natans were investigated using scanning electron microscope (SEM) and transmission electron microscope (TEM). Experimental plants were exposed to different Sb(III) treatments: SbT1 (1.5 μmol/L), SbT2 (40 μmol/L) and SbT3 (60 μmol/L). Calculated bioconcentration factor (BCF) and translocation factor (TF) showed that at higher concentration (SbT2, SbT3), T. natans is a potent phytoexcluder whereas it can translocate a substantial amount of Sb to the aerial parts at lower concentration (SbT1). SEM analysis revealed Sb-mediated structural changes in the size of stomatal aperture, intercellular spaces and vascular bundles of different vegetative tissues of T. natans. TEM results showed subcellular compartmentalization of Sb in vacuole and cell wall as electron dense deposition. This is considered as a part of strategy of T. natans to detoxify the deleterious effects under Sb stress conditions. Fourier transform infrared spectroscopy (FTIR) study of plant biomass revealed possible metabolites of T. natans which can bind Sb.
Collapse
|
34
|
Angulo-Bejarano PI, Puente-Rivera J, Cruz-Ortega R. Metal and Metalloid Toxicity in Plants: An Overview on Molecular Aspects. PLANTS (BASEL, SWITZERLAND) 2021; 10:635. [PMID: 33801570 PMCID: PMC8066251 DOI: 10.3390/plants10040635] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Worldwide, the effects of metal and metalloid toxicity are increasing, mainly due to anthropogenic causes. Soil contamination ranks among the most important factors, since it affects crop yield, and the metals/metalloids can enter the food chain and undergo biomagnification, having concomitant effects on human health and alterations to the environment. Plants have developed complex mechanisms to overcome these biotic and abiotic stresses during evolution. Metals and metalloids exert several effects on plants generated by elements such as Zn, Cu, Al, Pb, Cd, and As, among others. The main strategies involve hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Recent studies in the omics era have increased knowledge on the plant genome and transcriptome plasticity to defend against these stimuli. The aim of the present review is to summarize relevant findings on the mechanisms by which plants take up, accumulate, transport, tolerate, and respond to this metal/metalloid stress. We also address some of the potential applications of biotechnology to improve plant tolerance or increase accumulation.
Collapse
Affiliation(s)
- Paola I. Angulo-Bejarano
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
- School of Engineering and Sciences, Centre of Bioengineering, Tecnologico de Monterrey, Queretaro 21620, Mexico
| | - Jonathan Puente-Rivera
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| | - Rocío Cruz-Ortega
- Laboratorio de Alelopatía, Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México, UNAM, 275, Ciudad Universitaria D.F. Circuito Exterior s/n Anexo al Jardín Botánico Exterior, México City 04510, Mexico; (P.I.A.-B.); (J.P.-R.)
| |
Collapse
|
35
|
Rehman M, Saleem MH, Fahad S, Maqbool Z, Peng D, Deng G, Liu L. Medium nitrogen optimized Boehmeria nivea L. growth in copper contaminated soil. CHEMOSPHERE 2021; 266:128972. [PMID: 33218736 DOI: 10.1016/j.chemosphere.2020.128972] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/30/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
Copper (Cu) pollution in agricultural soils is considered as a serious health risk due to its accumulation in plants. Thus, there is an urgent need to optimize nutrient application for higher yield with lower Cu uptake to ensure food security. A pot experiment was conducted to investigate the effectiveness of nitrogen fertilizer (N) on Boehmeria nivea growth, gas exchange characteristics, antioxidant capacity and uptake of Cu in contaminated soil. Therefore, combinations of Cu levels (0, 100, 300 mg kg-1) and N levels (0, 140, 280, 420 kg ha-1) were applied. The results showed that N at 280 kg ha-1 significantly (≤0.05) increased plant growth in terms of fresh biomass, plant height, stem diameter and number of leaves per plant up to100 mg kg-1 Cu in soil for all harvests (H1, H2, H3 and H4). However, the interactive effect of Cu and N on Cu uptake by plant varied among N levels. Furthermore, N at 280 kg ha-1 also improved the gas exchange characteristics viz., net photosynthesis (Pn), transpiration rate (Tr) and stomatal conductance (gs), while decreased oxidative stress in B. nivea up to 100 mg kg-1 Cu in soil, relative to control. Thus N at 280 kg ha-1 can be considered as an effective dose for high fresh biomass with lower Cu uptake by B. nivea grown as fodder in Cu contaminated soils (≤100 mg kg-1). Overall, present research highlighted the necessity of balanced or optimum N application for sustainable B. nivea forage production in Cu contaminated agricultural lands.
Collapse
Affiliation(s)
- Muzammal Rehman
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; School of Agriculture, Yunnan University, Kunming, 650504, China.
| | - Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China; Department of Agronomy, The University of Haripur, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan.
| | - Zahid Maqbool
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Pakistan.
| | - Dingxiang Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Gang Deng
- School of Agriculture, Yunnan University, Kunming, 650504, China.
| | - Lijun Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
36
|
Mitra A, Chatterjee S, Kataki S, Rastogi RP, Gupta DK. Bacterial tolerance strategies against lead toxicity and their relevance in bioremediation application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:14271-14284. [PMID: 33528774 DOI: 10.1007/s11356-021-12583-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Among heavy metals, lead (Pb) is a non-essential metal having a higher toxicity and without any crucial known biological functions. Being widespread, non-biodegradable and persistent in every sphere of soil, air and water, Pb is responsible for severe health and environmental issues, which need appropriate remediation measures. However, microbes inhabiting Pb-contaminated area are found to have evolved distinctive mechanisms to successfully thrive in the Pb-contaminated environment without exhibiting any negative effects on their growth and metabolism. The defensive strategies used by bacteria to ameliorate the toxic effects of lead comprise biosorption, efflux, production of metal chelators like siderophores and metallothioneins and synthesis of exopolysaccharides, extracellular sequestration and intracellular bioaccumulation. Lead remediation technologies by employing microbes may appear as potential advantageous alternatives to the conventional physical and chemical means due to specificity, suitability for applying in situ condition and feasibility to upgrade by genetic engineering. Developing strategies by designing transgenic bacterial strain having specific metal binding properties and metal chelating proteins or higher metal adsorption ability and using bacterial activity such as incorporating plant growth-promoting rhizobacteria for improved Pb resistance, exopolysaccharide and siderophores and metallothionein-mediated immobilization may prove highly effective for formulating bioremediation vis-a-vis phytoremediation strategies.
Collapse
Affiliation(s)
- Anindita Mitra
- Bankura Christian College, Bankura, West Bengal, 722101, India
| | - Soumya Chatterjee
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, Assam, 784001, India
| | - Sampriti Kataki
- Defence Research Laboratory, DRDO, Post Bag No. 02, Tezpur, Assam, 784001, India
| | - Rajesh P Rastogi
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Aliganj, Jorbagh Road, New Delhi, 110003, India
| | - Dharmendra K Gupta
- Ministry of Environment, Forest and Climate Change, Indira Paryavaran Bhawan, Aliganj, Jorbagh Road, New Delhi, 110003, India.
| |
Collapse
|
37
|
Rehman AU, Nazir S, Irshad R, Tahir K, ur Rehman K, Islam RU, Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114455] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Peco JD, Higueras P, Campos JA, Olmedilla A, Romero-Puertas MC, Sandalio LM. Deciphering lead tolerance mechanisms in a population of the plant species Biscutella auriculata L. from a mining area: Accumulation strategies and antioxidant defenses. CHEMOSPHERE 2020; 261:127721. [PMID: 32745740 DOI: 10.1016/j.chemosphere.2020.127721] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/06/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
The uptake and distribution of Pb and the mechanisms involved in the metal tolerance have been investigated in a mine population of Biscutella auriculata. Seedlings were exposed to 125 μM Pb(NO3)2 for 15 days under semihydroponic conditions. The results showed an increase in the size of Pb-treated seedlings and symptoms of toxicity were not observed. ICP-OES analyses showed that Pb accumulation was restricted to root tissue. Imaging of Pb accumulation by dithizone histochemistry revealed the presence of the metal in vacuoles and cell wall in root cells. The accumulation of Pb in vacuoles could be stimulated by an increase in phytochelatin PC2 content. Pb did not promote oxidative damage and this is probably due the increase of antioxidative defenses. In the leaves, Pb produced a significant increase in superoxide dismutase activity, while in roots an increase in catalase and components of the Foyer- Halliwell-Asada cycle were observed. The results indicated that Biscutella auriculata has a high capacity to tolerate Pb and this is mainly due to a very efficient mechanism to sequester the metal in roots and a capacity to avoid oxidative stress. This species could therefore be very useful for phytostabilization and repopulation of areas contaminated with Pb.
Collapse
Affiliation(s)
- J D Peco
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha (UCLM), Ronda de Calatrava 7, 13071, Ciudad Real, Spain; Instituto de Geología Aplicada, Universidad de Castilla-La Mancha (UCLM), Plaza de Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain
| | - P Higueras
- Instituto de Geología Aplicada, Universidad de Castilla-La Mancha (UCLM), Plaza de Manuel Meca 1, 13400, Almadén, Ciudad Real, Spain
| | - J A Campos
- Escuela Técnica Superior de Ingenieros Agrónomos, Universidad de Castilla-La Mancha (UCLM), Ronda de Calatrava 7, 13071, Ciudad Real, Spain
| | - A Olmedilla
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental Del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419 E, 18080, Granada, Spain
| | - M C Romero-Puertas
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental Del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419 E, 18080, Granada, Spain
| | - L M Sandalio
- Department of Biochemistry and Molecular and Cellular Biology of Plants, Estación Experimental Del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Apartado 419 E, 18080, Granada, Spain.
| |
Collapse
|
39
|
Singh R, Kesavan AK, Landi M, Kaur S, Thakur S, Zheng B, Bhardwaj R, Sharma A. 5-aminolevulinic acid regulates Krebs cycle, antioxidative system and gene expression in Brassica juncea L. to confer tolerance against lead toxicity. J Biotechnol 2020; 323:283-292. [DOI: 10.1016/j.jbiotec.2020.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 10/23/2022]
|
40
|
Wang R, Hou D, Chen J, Li J, Fu Y, Wang S, Zheng W, Lu L, Tian S. Distinct rhizobacterial functional assemblies assist two Sedum alfredii ecotypes to adopt different survival strategies under lead stress. ENVIRONMENT INTERNATIONAL 2020; 143:105912. [PMID: 32650147 DOI: 10.1016/j.envint.2020.105912] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
Lead (Pb) contamination presents a widespread environmental plague. Sedum alfredii is widely used for soil phytoremediation owing to its capacity to extract heavy metals, such as Pb. Although efficient Pb extraction is mediated by complex interactions between the roots and rhizospheric bacteria, the mechanism by which S. alfredii recruits microorganisms under Pb stress remains unclear. The Pb-accumulating ecotype (AE) and non-accumulating ecotype (NAE) of S. alfredii recruited different rhizobacterial communities. Under Pb stress, AE rhizosphere-enriched bacteria assembled into stable-connected clusters with higher phylogenetic and functional diversity. These microbes, e.g., Flavobacterium, could release indoleacetic acid to promote plant growth and siderophores, thereby increasing Pb availability. The NAE rhizosphere-enriched functional bacteria "desperately" assembled into highly specialized functional clusters with extremely low phylogenetic diversity. These bacteria, e.g., Pseudomonas, could enhance phosphorus solubilization and Pb precipitation, thereby reducing Pb stress and plant Pb accumulation. High niche overlap level of the rhizo-enriched species raised challenges in soil resource utilization, whereas the NAE community assembly was markedly constrained by environmental "selection effect" than that of AE rhizobacterial community. These results indicate that different ecotypes of S. alfredii recruit distinct bacterial functional assemblies to drive specific plant-soil feedbacks for different survival in Pb-contaminated soils. To cope with heavy metal stress, NAE formed a highly functional and specialized but vulnerable community and efficiently blocked heavy metal absorption by plants. However, the AE community adopted a more stable and elegant strategy to promote plant growth and the accumulation of dry matter via multiple evolutionary strategies that ensured a high yield of heavy metal phytoextraction. This for the first time provides new insights into the roles of rhizosphere microbes in plant adaptations to abiotic stresses.
Collapse
Affiliation(s)
- Runze Wang
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dandi Hou
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiuzhou Chen
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiahao Li
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyi Fu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Sen Wang
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wei Zheng
- College of Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Lingli Lu
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
41
|
|
42
|
Gawryluk A, Wyłupek T, Wolański P. Assessment of Cu, Pb and Zn content in selected species of grasses and in the soil of the roadside embankment. Ecol Evol 2020; 10:9841-9852. [PMID: 33005348 PMCID: PMC7520191 DOI: 10.1002/ece3.6627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/29/2020] [Accepted: 07/08/2020] [Indexed: 11/29/2022] Open
Abstract
It was assumed in the study that heavy metals occurring in soils and the air accumulate in grasses constituting the main species used in the turfing of soil in road verges and embankments along traffic routes and in other parts of urbanized areas. The aim of the present study was to assess the bioaccumulation of Cu, Pb, and Zn in three selected lawn cultivars of five grass species and in the soil of the roadside green belt in terms of soil properties and heavy metal uptake by plants in the aspect of determining their usefulness in protecting the soils from contamination caused by motor vehicle traffic. Samples of the plant material and soil were collected for chemical analysis in the autumn of 2018 (October) on the embankment along National Road No. 17 between Piaski and Łopiennik (Poland), where 15 lawn cultivars of five grass species had been sown 2 years earlier. During the study, Cu, Pb, and Zn levels were determined in the aboveground biomass of the grasses under study and in the soil beneath these grasses (the 0-20 cm layer). All the grass species under study can thus be regarded as accumulators of Cu and Zn because the levels of these elements in the aboveground biomass of the grasses were higher than in the soil beneath these grasses. The present study demonstrates that the grasses can accumulate a large amount of Cu and Zn from soils and transfer it to the aboveground biomass. Tested species of grasses are not a higher bioaccumulators for Pb. The best grass species for the sowing of roadsides embankment, with the highest BCF values for the studied metals, is Lolium perenne (Taya variety).
Collapse
Affiliation(s)
- Adam Gawryluk
- Department of Grassland and Landscape Shaping Faculty of Agrobioengineering University of Life Sciences in Lublin Lublin Poland
| | - Teresa Wyłupek
- Department of Grassland and Landscape Shaping Faculty of Agrobioengineering University of Life Sciences in Lublin Lublin Poland
| | - Paweł Wolański
- Department of Agroecology and Landscape Architecture Faculty of Biology and Agriculture Rzeszów University Rzeszów Poland
| |
Collapse
|
43
|
Growth and antioxidant responses of Trigonella foenum-graecum L. seedlings to lead and simulated acid rain exposure. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00478-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
44
|
Vergara Cid C, Ferreyroa GV, Pignata ML, Rodriguez JH. Biosolid compost with wood shavings and yard trimmings alleviates stress and improves grain quality in soybean grown in lead polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:27786-27795. [PMID: 32399877 DOI: 10.1007/s11356-020-09135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Heavy metals induce stress in plants, thereby affecting growth, crop quality, and food security. Most studies addressing the mitigation of these effects by soil amendment have focused on metals in soils and plant uptake, with there still being a great deal of uncertainty about how amendment application in polluted soils can modify plant stress response and, consequently, yield and food safety. Thus, the aim of this study was to evaluate the effect of biosolid compost amendment on stress response, growth, and lead accumulation in Glycine max, when applied to lead polluted agricultural soils. Soybean was grown in lead polluted soils with 0%, 5%, or 10% (w/w) biosolid compost amendment under controlled conditions in a greenhouse, and the stress response indicators chlorophylls, proteins, sugars, malondialdehyde, glutathione S-transferase activity, carotenes, and the ferric reducing antioxidant power were investigated. In addition, the biomass and lead accumulation in different organs were determined and evaluated with respect to the plant stress. Our results revealed that the addition of 10% biosolid compost improved the grain biomass and appeared to reduce the amount of defective grains, which was related to higher Pb concentrations. Furthermore, 10% compost treatment reduced the stress in plants, leading to a better performance of the photosynthetic system, and with the antioxidant response being positively correlated to Pb accumulation. Lead uptake in plants was decreased by between 35 and 57% after this treatment in comparison with unamended soils. These results indicate that biosolid compost amendment may be an effective way to alleviate Pb uptake and metal stress in soybeans.
Collapse
Affiliation(s)
- Carolina Vergara Cid
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, FCEFyN, Universidad Nacional de Córdoba, CONICET, Av. Vélez Sársfield 1611, X5016CGA, Córdoba, Argentina.
| | - Gisele V Ferreyroa
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, FCEFyN, Universidad Nacional de Córdoba, CONICET, Av. Vélez Sársfield 1611, X5016CGA, Córdoba, Argentina
| | - María L Pignata
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, FCEFyN, Universidad Nacional de Córdoba, CONICET, Av. Vélez Sársfield 1611, X5016CGA, Córdoba, Argentina
| | - Judith H Rodriguez
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, FCEFyN, Universidad Nacional de Córdoba, CONICET, Av. Vélez Sársfield 1611, X5016CGA, Córdoba, Argentina
| |
Collapse
|
45
|
Alamer KH, Fayez KA. Impact of salicylic acid on the growth and physiological activities of parsley plants under lead toxicity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:1361-1373. [PMID: 32647454 PMCID: PMC7326881 DOI: 10.1007/s12298-020-00830-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/30/2020] [Accepted: 05/13/2020] [Indexed: 05/07/2023]
Abstract
Impact of spraying 50 µM salicylic acid (SA), lead nitrate soil treatments [1 and 2 mM Pb (NO3)2] and their combinations on parsley leaves (Petroselinum crispum L.) for 3 weeks was studied to evaluate leaf symptoms, photosynthetic pigments, anthocyanin, ultrastructure, malondialdehyde (MDA), soluble proteins, phenolic compounds, and guaiacol peroxidase activity (GPOX). Under Pb effect, parsley leaves showed chlorosis and decline in the content of photosynthetic pigments chlorophyll a (Chl a), chlorophyll b (Chl b) and carotenoid (Car) with increasing Pb treatments compared to the control. SA spraying helped to reduce chlorosis and increase photosynthetic pigments of Pb-treated plants compared to that of Pb treatment alone. Leaf anthocyanin content of SA-sprayed plants significantly increased compared to the control. On contrast, the anthocyanin content of Pb-treated plants with or without SA treatment decreased compared to the control. Parsley leaf chloroplasts were characterized by many and large starch grains. Deformations of chloroplast shape, increasing formation of plastoglobules and degeneration of chloroplast grana thylakoids were observed in Pb-treated plants. MDA and total phenolic compound contents increased in Pb-treated plants compared to the control. In contrast, soluble protein content decreased in Pb-treated plants. The decrease in leaf photosynthetic pigments and increase MDA contents was Pb-concentration dependent. The results as indicated by increasing lipid peroxidation confirmed Pb treatments generated reactive oxygen species (ROS) which caused oxidative stress. In contrast, SA application declined the extent of detrimental and harmful influence of Pb toxicity as indicated by the decrease MDA content, and increase in photosynthetic pigments, anthocyanin and phenolic compound contents of parsley leaves.
Collapse
Affiliation(s)
- Khalid Hasan Alamer
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Biology Department, Science and Arts College–Rabigh Campus, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khalaf Ali Fayez
- Botany and Microbiology Department, Faculty of Science, Sohag University Sohag, Sohag, Egypt
| |
Collapse
|
46
|
Vergara Cid C, Pignata ML, Rodriguez JH. Effects of co-cropping on soybean growth and stress response in lead-polluted soils. CHEMOSPHERE 2020; 246:125833. [PMID: 31927384 DOI: 10.1016/j.chemosphere.2020.125833] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/21/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Phytoremediation by co-cropping may be a promising approach to produce safe crops while remediating the soil. However, the effects of plant interaction, especially stress response, remain unclear. The aims of this study were to investigate the effect of co-cropping on plant growth, stress response and lead (Pb) uptake in soybean and Tagetes minuta, and to assess the feasibility of agricultural production in Pb-polluted soils. A pot experiment was conducted to study the effect of co-cropping vs monocrop at three soil Pb concentrations. The following parameters were analyzed: biomass, Pb content in plants, and stress response indicators (chlorophylls, proteins, sugars, malondialdehyde, glutathione S-transferase activity, carotenes and antioxidant power). Results showed that in co-cropping, both species were benefited in polluted soils, since biomass and stress response were improved. T. minuta reduced adverse effects of Pb on soybean by improving grain quality and even survival in polluted soils, where soybean in monocrop grew only up to early vegetative stages. This effect was related to a 50% reduction in lipid peroxidation for soybean in co-cropping along with a sharp increase in the antioxidant response. In addition, co-cropping enhanced Pb accumulation in T. minuta (45% higher), as well as content of chlorophylls and carotenes (66% and 42% of increment, respectively) and glutathione S-transferase activity (two times higher) in the highly polluted soil. Our results showed that rhizosphere interactions can help enhance tolerance to Pb toxicity in both species, allowing soybean production in highly polluted soils without posing health risk from grain consumption.
Collapse
Affiliation(s)
- Carolina Vergara Cid
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina.
| | - María L Pignata
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina
| | - Judith H Rodriguez
- Instituto Multidisciplinario de Biología Vegetal, Área Contaminación y Bioindicadores, Universidad Nacional de Córdoba, CONICET, FCEFyN, Av. Vélez Sársfield, 1611, X5016CGA, Córdoba, Argentina
| |
Collapse
|
47
|
Yan A, Wang Y, Tan SN, Mohd Yusof ML, Ghosh S, Chen Z. Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. FRONTIERS IN PLANT SCIENCE 2020; 11:359. [PMID: 32425957 PMCID: PMC7203417 DOI: 10.3389/fpls.2020.00359] [Citation(s) in RCA: 470] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/12/2020] [Indexed: 05/18/2023]
Abstract
Heavy metal accumulation in soil has been rapidly increased due to various natural processes and anthropogenic (industrial) activities. As heavy metals are non-biodegradable, they persist in the environment, have potential to enter the food chain through crop plants, and eventually may accumulate in the human body through biomagnification. Owing to their toxic nature, heavy metal contamination has posed a serious threat to human health and the ecosystem. Therefore, remediation of land contamination is of paramount importance. Phytoremediation is an eco-friendly approach that could be a successful mitigation measure to revegetate heavy metal-polluted soil in a cost-effective way. To improve the efficiency of phytoremediation, a better understanding of the mechanisms underlying heavy metal accumulation and tolerance in plant is indispensable. In this review, we describe the mechanisms of how heavy metals are taken up, translocated, and detoxified in plants. We focus on the strategies applied to improve the efficiency of phytostabilization and phytoextraction, including the application of genetic engineering, microbe-assisted and chelate-assisted approaches.
Collapse
Affiliation(s)
- An Yan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Yamin Wang
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | - Swee Ngin Tan
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
| | | | - Subhadip Ghosh
- Centre for Urban Greenery and Ecology, National Parks Board, Singapore, Singapore
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Zhong Chen
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, Singapore, Singapore
- M Grass International Institute of Smart Urban Greenology, Singapore, Singapore
| |
Collapse
|
48
|
Jiang M, Cai X, Liao J, Yang Y, Chen Q, Gao S, Yu X, Luo Z, Lei T, Lv B, Liu S. Different strategies for lead detoxification in dwarf bamboo tissues. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110329. [PMID: 32088553 DOI: 10.1016/j.ecoenv.2020.110329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/07/2020] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
Dwarf bamboo Sasa argenteostriata (Regel) E.G. Camus is considered as potential plants for metal phytoremediation in previous filed observations. However, the mechanisms of lead (Pb) detoxification has not been described. The objective of this study was to explore the difference strategies or mechanisms of Pb detoxification in plant tissues. In this regard, four Pb treatments with hydroponics including 0 (control), 300, 600, and 900 mg L-1 were conducted to examine subcellular compartmentalization, Pb accumulation/species and antioxidant-assisted chelation. Our findings showed the retention of Pb by the whip-root system is one of its detoxification mechanisms to avoid damage the shoots. In addition, the cell wall retention is the dominant detoxification strategy of whips, new roots, old roots and new/old stems, while vacuolar compartmentalization is for new/old leaves. Interestingly, four low-mobility/-toxicity Pb species (i.e., FNaCl, FHAc, FHCl and FR) are distributed in roots, whips and stems, while two high-mobility/-toxicity Pb species (FE and FW) in leaves. The conversion of Pb to low-toxicity/-migration is a Pb-detoxification strategy in roots, whips and stems but not in leaves. Besides, the new/old roots and leaves can alleviate Pb damage through the synthesis of non-protein thiol, glutathione and phytochelatins. Among these, phytochelatins play a leading role in the detoxification in new/old roots, while glutathione is in new/old leaves. This study provides the first comprehensive evidence regarding the different strategies for Pb detoxification in dwarf bamboo tissues from physiological to cellular level, supporting that this plant could be rehabilitated for phytoremediation in Pb-contaminated media.
Collapse
Affiliation(s)
- Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xinyi Cai
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jiarong Liao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Yixiong Yang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qibing Chen
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaofang Yu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhenghua Luo
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ting Lei
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Bingyang Lv
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Shiliang Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
49
|
Can Ceylon Leadwort ( Plumbago zeylanica L.) Acclimate to Lead Toxicity?-Studies of Photosynthetic Apparatus Efficiency. Int J Mol Sci 2020; 21:ijms21051866. [PMID: 32182862 PMCID: PMC7084747 DOI: 10.3390/ijms21051866] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022] Open
Abstract
Ceylon leadwort (Plumbago zeylanica) is ornamental plant known for its pharmacological properties arising from the abundant production of various secondary metabolites. It often grows in lead polluted areas. The aim of presented study was to evaluate the survival strategy of P. zeylanica to lead toxicity via photosynthetic apparatus acclimatization. Shoots of P. zeylanica were cultivated on media with different Pb concentrations (0.0, 0.05, and 0.1 g Pb∙l−1). After a four-week culture, the efficiency of the photosynthetic apparatus of plants was evaluated by Chl a fluorescence measurement, photosynthetic pigment, and Lhcb1, PsbA, PsbO, and RuBisCo protein accumulation, antioxidant enzymes activity, and chloroplast ultrastructure observation. Plants from lower Pb concentration revealed no changes in photosynthetic pigments content and light-harvesting complex (LHCII) size, as well as no limitation on the donor side of Photosystem II Reaction Centre (PSII RC). However, the activity and content of antioxidant enzymes indicated a high risk of limitation on the acceptor side of Photosystem I. In turn, plants from 0.1 g Pb∙l−1 showed a significant decrease in pigments content, LHCII size, the amount of active PSII RC, oxygen-evolving complex activity, and significant remodeling of chloroplast ultrastructure indicated limitation of PSII RC donor side. Obtained results indicate that P. zeylanica plants acclimate to lead toxicity by Pb accumulation in roots and, depending on Pb concentration, by adjusting their photosynthetic apparatus via the activation of alternative (cyclic and pseudocyclic) electron transport pathways.
Collapse
|
50
|
Zhao X, Han L, Xiao J, Wang L, Liang T, Liao X. A comparative study of the physiological and biochemical properties of tomato (Lycopersicon esculentum M.) and maize (Zea mays L.) under palladium stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135938. [PMID: 31818552 DOI: 10.1016/j.scitotenv.2019.135938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
There is great concern about the environmental impact and toxicity of palladium (Pd) because of its widespread use in automotive catalytic converters and other applications. Pd migrates and transforms in the environment and is absorbed by plant roots where it affects plant growth and eventually enters the food chain. Here we explored the effects of Pd on the physicochemical and biochemical characteristics of C3 (tomato) and C4 (maize) plants. We measured physicochemical and biochemical properties, including chlorophyll, protein, soluble sugar, antioxidant enzymes, malondialdehyde, proline, and root activity, in tomato and maize seedlings after cultivation in different concentrations of PdCl2 solution (0, 0.2, 0.5, and 1 mM) in order to observe how Pd stresses them. Results showed that, with increasing Pd concentration, chlorophyll a and chlorophyll b contents and root activity decreased. Meanwhile, malondialdehyde, proline, protein, and soluble sugar contents increased. After cultivation in 1 mM PdCl2, the Pd contents in the roots, stems, and leaves of tomato seedlings were 12.389, 1.132, and 0.206 mg/g, respectively. In general, Pd has significant effects on the physiological and biochemical properties of both tomato and maize. Additionally, tomato seedlings were more sensitive to Pd stress, photosynthesis in maize was less inhibited by Pd and the antioxidant capability of maize was stronger. These results indicated that maize (C4 plant) exhibited a higher tolerance to Pd than tomato (C3 plant). Pd migration in tomato was observed and the translocation factor (TF) was calculated. The values of TFstem/root, TFleaf/root, TFleaf/stem, and TFshoot/root were 0.09, 0.02, 0.18, and 0.11 in tomato seedlings, respectively. Pd accumulated most in the roots, followed in turn by stems, leaves, and only trace amount of Pd was transferred into shoots.
Collapse
Affiliation(s)
- Xiaohong Zhao
- School of Civil Engineering, Chang'an University, Xi'an 710061, China
| | - Liu Han
- School of Civil Engineering, Chang'an University, Xi'an 710061, China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Jun Xiao
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tao Liang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|