1
|
Mykhailenko O, Jalil B, McGaw LJ, Echeverría J, Takubessi M, Heinrich M. Climate change and the sustainable use of medicinal plants: a call for "new" research strategies. Front Pharmacol 2025; 15:1496792. [PMID: 39963365 PMCID: PMC11830725 DOI: 10.3389/fphar.2024.1496792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/24/2024] [Indexed: 02/20/2025] Open
Abstract
Climate change and human activities severely impact the viability of plants and ecosystems, threatening the environment, biodiversity, and the sustainable development of plant-based products. Biotic and abiotic (ecosystem) determinants affect species distribution and long-term survival, which in turn influence the quality of plants used as herbal medicines and other high-value products. In recent decades, diverse anthropogenic impacts have significantly affected these quality aspects. Climate change, excessive plant exploitation, habitat loss, species vulnerability, and other factors have adversely affected the growth, reproduction, and adaptation of species populations, as well as the quality and volume of primary plant materials supplied to pharmaceutical markets. Despite these growing challenges, there is limited knowledge of potential strategies to prevent or mitigate these impacts, particularly for vulnerable species collected from the wild or harvested from traditional production systems. Hence, effective strategies for preserving and increasing plant populations are urgently needed. In this study, we propose a new framework including the main sustainability factors to better understand and address the vulnerability of a species, hence mitigate the impact of climate change. We assess the applicability of our proposed framework via seven case studies of vulnerable species (i.e., Aquilaria malaccensis Lam., Boswellia sacra Flück., Crocus sativus L., Panax quinquefolius L., Pilocarpus microphyllus Stapf ex Wardlew., Rhodiola rosea L., and Warburgia salutaris (G.Bertol.) Chiov.) from main biogeographic realms, all widely used as medicinal plants. These species present various challenges related to the sustainability of their use, impacting their current and future status locally and globally. Their economic importance, combined with rising demands and specific risks of overexploitation, are also key factors considered here. The suggested framework for the sustainability of medicinal and other high-value plant-based products in the phytopharmaceutical industry emphasises strategies that promote conservation and sustainable resource use. It can also be adapted for other vulnerable species requiring urgent attention.
Collapse
Affiliation(s)
- Olha Mykhailenko
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
- Pharmaceutical Chemistry Department, National University of Pharmacy, Kharkiv, Ukraine
| | - Banaz Jalil
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Marce Takubessi
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
- Pharmacy Department, Health Polytechnic of the Ministry of Health Kupang, Kupang, Indonesia
| | - Michael Heinrich
- Pharmacognosy and Phytotherapy, UCL School of Pharmacy, London, United Kingdom
- Department of Pharmaceutical Sciences and Chinese Medicine Resources, Chinese Medicine Research Center, College of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Wang T, Rangji C, Liu W, Ma J, Zhou R, Leng L, Zhang Y. Multi-Omics on Traditional Medicinal Plant of the Genus Aconitum: Current Progress and Prospect. Molecules 2024; 30:118. [PMID: 39795175 PMCID: PMC11722372 DOI: 10.3390/molecules30010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Aconitum stands out among the Ranunculaceae family for its notable use as an ornamental and medicinal plant. Diterpenoid alkaloids (DAs), the characteristic compounds of Aconitum, have been found to have effective analgesic and anti-inflammatory effects. Despite their medicinal potential, the toxicity of most DAs restricts the direct use of Aconitum in traditional medicine, necessitating complex processing before use. The use of high-throughput omics allows for the investigation of Aconitum plant genetics, gene regulation, metabolic pathways, and growth and development. We have collected comprehensive information on the omics studies of Aconitum medicinal plants, encompassing genomics, transcriptomics, metabolomics, proteomics, and microbiomics, from internationally recognized electronic scientific databases such as Web of Science, PubMed, and CNKI. In light of this, we identified research gaps and proposed potential areas and key objectives for Aconitum omics research, aiming to establish a framework for quality improvement, molecular breeding, and a deeper understanding of specialized metabolite production in Aconitum plants.
Collapse
Affiliation(s)
- Ting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- Ethnic Medicine Academic Heritage Innovation Research Center, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cai Rangji
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- Ethnic Medicine Academic Heritage Innovation Research Center, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenbin Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jing Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- Ethnic Medicine Academic Heritage Innovation Research Center, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruichen Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Leng
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (T.W.); (C.R.); (W.L.); (J.M.); (R.Z.)
- Ethnic Medicine Academic Heritage Innovation Research Center, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| |
Collapse
|
3
|
Gururani R, Patel S, Bisht A, Jain S, Kumari K, Paliwal S, Dwivedi J, Sharma S. Airways Relaxant and Antiasthmatic Activity of Aconitum heterophyllum Wall ex Royle. Roots: A Mechanistic Insight. Cell Biochem Biophys 2024; 82:2607-2624. [PMID: 38995530 DOI: 10.1007/s12013-024-01374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Aconitum heterophyllum Wall ex Royle. (Ranunculaceae) is a traditional medicinal herb that has shown extensive pharmacological potential to treat cough, diarrhea, and infectious diseases but no scientific evidence is available to validate its antiasthmatic potential. In this study, we have investigated the tracheal relaxation and antiasthmatic activity of the selected bioactive fraction of A. heterophyllum. Chemical profiling of the most effective fraction obtained via bioassay-guided fractionation was done using LC-MS (Liquid chromatography-mass spectrometry, a technique utilized in the identification, separation, and quantification of known and unknown compounds). Molecular docking analysis of characterized constituents was performed to recognize the binding receptors, followed by an evaluation of the tracheal relaxation ability of active fraction. An acute oral toxicity study of the most effective fraction was done using OECD guidelines 423. Further, the therapeutic efficacy of the fraction was validated in asthma using a guinea pig model of ovalbumin (OVA) induced allergic asthma. The bio-guided activity revealed that hydro-methanolic extract of A. heterophyllum roots (F-1) was the most active fraction. LC-MS analysis of F-1 showed the presence of six major bioactive compounds in F-1. Molecular docking studies revealed strong binding affinities of identified constituents with histaminic receptor (H1) and muscarinic receptor (M3). The ex vivo study demonstrated smooth muscle relaxant activity of F-1 via dysregulating diverse signal transduction pathways viz. histaminic and muscarinic receptors antagonism (non-competitive), stimulation of β2-adrenergic receptor pathway, and soluble guanylyl cyclase activation. The findings of acute oral toxicity studies revealed that F-1 had no toxicity up to the dose of 2000 mg/Kg. The anti-asthmatic therapeutic efficacy of F-1 was further confirmed by the amelioration of respiratory hyperresponsiveness in asthmatic guinea pigs. This is the first evidence-based study showing the antiasthmatic therapeutic potential of the traditionally used herb A. heterophyllum through, computational and animal studies.
Collapse
Affiliation(s)
- Ritika Gururani
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Saraswati Patel
- Department of Pharmacology, Saveetha College of Pharmacy, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Kajal Kumari
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India.
| |
Collapse
|
4
|
Ashraf MV, Khan S, Misri S, Gaira KS, Rawat S, Rawat B, Khan MAH, Shah AA, Asgher M, Ahmad S. High-Altitude Medicinal Plants as Promising Source of Phytochemical Antioxidants to Combat Lifestyle-Associated Oxidative Stress-Induced Disorders. Pharmaceuticals (Basel) 2024; 17:975. [PMID: 39204080 PMCID: PMC11357401 DOI: 10.3390/ph17080975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen, nitrogen, and sulphur species (ROS, RNS, RSS), poses a significant threat to cellular integrity and human health. Generated during mitochondrial respiration, inflammation, UV exposure and pollution, these species damage cells and contribute to pathologies like cardiovascular issues, neurodegeneration, cancer, and metabolic syndromes. Lifestyle factors exert a substantial influence on oxidative stress levels, with mitochondria emerging as pivotal players in ROS generation and cellular equilibrium. Phytochemicals, abundant in plants, such as carotenoids, ascorbic acid, tocopherols and polyphenols, offer diverse antioxidant mechanisms. They scavenge free radicals, chelate metal ions, and modulate cellular signalling pathways to mitigate oxidative damage. Furthermore, plants thriving in high-altitude regions are adapted to extreme conditions, and synthesize secondary metabolites, like flavonoids and phenolic compounds in bulk quantities, which act to form a robust antioxidant defence against oxidative stress, including UV radiation and temperature fluctuations. These plants are promising sources for drug development, offering innovative strategies by which to manage oxidative stress-related ailments and enhance human health. Understanding and harnessing the antioxidant potential of phytochemicals from high-altitude plants represent crucial steps in combating oxidative stress-induced disorders and promoting overall wellbeing. This study offers a comprehensive summary of the production and physio-pathological aspects of lifestyle-induced oxidative stress disorders and explores the potential of phytochemicals as promising antioxidants. Additionally, it presents an appraisal of high-altitude medicinal plants as significant sources of antioxidants, highlighting their potential for drug development and the creation of innovative antioxidant therapeutic approaches.
Collapse
Affiliation(s)
- Mohammad Vikas Ashraf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Sajid Khan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Surya Misri
- Section of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Kailash S. Gaira
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Sandeep Rawat
- Sikkim Regional Centre, G.B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok 737101, Sikkim, India; (K.S.G.); (S.R.)
| | - Balwant Rawat
- School of Agriculture, Graphic Era University, Dehradun 24800, Utarakhand, India;
| | - M. A. Hannan Khan
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Ali Asghar Shah
- Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India; (M.A.H.K.); (A.A.S.)
| | - Mohd Asgher
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| | - Shoeb Ahmad
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, Jammu and Kashmir, India;
| |
Collapse
|
5
|
Anmol, Aggarwal G, Sharma M, Singh R, Shivani, Sharma U. Ethnopharmacologically important highly subsidized Indian medicinal plants: Systematic review on their traditional uses, phytochemistry, pharmacology, quality control, conservation status and future prospective. JOURNAL OF ETHNOPHARMACOLOGY 2024; 320:117385. [PMID: 37951375 DOI: 10.1016/j.jep.2023.117385] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/14/2023] [Accepted: 11/02/2023] [Indexed: 11/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE India has an extensive reservoir of traditional wisdom and a diverse range of medicinal plants that enrich its heritage. Plants have actively been used for healthcare practices globally since the time immemorial. Medicinal uses of plants have been well recognized in India, evident from plant species documented in different traditional medicinal systems such as Ayurveda (1400-1800 species), Siddha (500-900 species), Unani (400-700 species), Homeopathy (about 372 species), and Sowa-Rigpa (about 250 species), etc. AIM OF THE STUDY: The primary purpose of this review is to provide systematic updated information on thirteen medicinal plants prioritized by the Indian government (providing75 % subsidy on cultivation cost) based on the availability and market demand of these plants. Updated information regarding the traditional uses, phytochemistry, pharmacology, quality control, and conservation status of these plants will help in understanding their pharmacological and commercial importance. This will also help in developing new strategies for their conservation. MATERIAL AND METHODS Online databases such as SciFinder, Web of Science, Pubmed, and Google Scholar were used to collect the electronically available literature on targeted thirteen plants. Also, different Indian government official websites such as AYUSH (https://www.ayush.gov.in); NMPB (National Medicinal Plants Board) (https://nmpb.nic.in); e.charak (https://echarak.in) were used for collecting information related to the amount of subsidy, trade and price related information of these plants. RESULTS To promote medicinal plant cultivation, the Indian government provides subsidies for cultivating some traditionally important medicinal plants. These plants are divided into three categories according to the subsidy provided to farmers, i.e., 30%, 50%, and 75% of the cost of cultivation. Thirteen medicinal plants which are provided 75% subsidy are Aconitum ferox Wall., Aconitum heterophyllum Wall., Aquilaria agallocha Roxb., Berberis aristata DC., Commiphora wightii (Arn.) Bhandari, Nardostachys jatamansi (D.Don) DC., Oroxylum indicum (L.) Benth. ex Kurz, Picrorhiza kurroa Royle ex Benth., Podophyllum hexandrum Royle, Pterocarpus santalinus L.f., Santalum Album L., Saussurea costus (Falc.) Lipsch., and Swertia chirayita (Roxb.) H.Karst. The literature survey reveals the enormous traditional medicinal importance, wide geographical distribution, diverse range of natural products, and broad spectrum of pharmacological activities of these plants. CONCLUSION A comprehensive literature survey revealed that although remarkable progress has been made in isolation, bioactivity evaluation, quality assessment, and conservation, there is still a lot of scope for further scientific interventions. Scientific validation of traditionally claimed medicinal potential is lacking for various bioactivities. Some of the bioactivities are performed just on extracts/fractions, so there is a need for proper phytochemical studies to identify active constituents responsible for the specific bioactivity. Further, quality assessment methods using both targeted and non-targeted tools are required to evaluate the quality of these highly-priced medicinal plants and their adulterants. Ultimately, to encourage the cultivation of these endangered medicinal plant species, it is imperative to implement proper legislation and employ in-situ and ex-situ conservation tools.
Collapse
Affiliation(s)
- Anmol
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav Aggarwal
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mehak Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Raman Singh
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivani
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh, 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Parasher M, Pandey DK, Manhas RK. Traditionally used anti-diabetic plants in Kathua district of Union Territory of Jammu and Kashmir, India. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117087. [PMID: 37683931 DOI: 10.1016/j.jep.2023.117087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/27/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023]
Affiliation(s)
- Madhvi Parasher
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India; Department of Botany, Govt. Degree College, Marh, 181206, Jammu, JKUT, India.
| | - Devendra Kumar Pandey
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
| | - R K Manhas
- Department of Botany, Govt. Degree College, Basohli, 184201, JKUT, India.
| |
Collapse
|
7
|
Choudhary A, Shekhawat D, Pathania J, Sita K, Sharma S, Chawla A, Jaiswal V. Exploring DNA barcode for accurate identification of threatened Aconitum L. species from Western Himalaya. Mol Biol Rep 2024; 51:75. [PMID: 38175298 DOI: 10.1007/s11033-023-08927-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Aconitum species, belonging to Ranunculaceae, have high medicinal importance but due to their overexploitation come under IUCN (International Union for Conservation of Nature) red list. The precise identification of the Aconitum species is equally important because they are used in herbal formulations. The present study aimed to develop an efficient DNA barcode system for the authentic identification of Aconitum species. METHODS AND RESULTS A set of 92 barcode gene sequences (including 12 developed during the present study and 80 retrieved from NCBI) of 5 Aconitum species (A. heterophyllum, A. vialoceum, A. japonicum, A. napellus, and A. stapfianum) were analyzed using three methods (tree-based, distance-based, and similarity-based) for species discrimination. The PWG-distance method was found most effective for species discrimination. The discrimination rate of PWG- distance ranged from 33.3% (rbcL + trnH-psbA) to 100% (ITS, rbcL + ITS, ITS + trnH-psbA and rbcL + ITS + trnH-psbA). Among DNA barcodes and their combinations, the ITS marker had the highest degree of species discrimination (NJ-40%, PWG-100% and BLAST-40%), followed by trnH-psbA (NJ-20%, PWG-60% and BLAST-20%). ITS also had higher barcoding gap as compared to other individual barcodes and their combinations. Further, we also analyzed six Aconitum species (A. balfourii, A. ferox, A. heterophyllum, A. rotundifolium, A. soongaricum and A. violaceum) existing in Western Himalaya. These species were distinguished clearly through tree-based method using the ITS barcode gene with 100% species resolution. CONCLUSION ITS showed the best species discrimination power and was used to develop species-specific barcodes for Aconitum species. DNA barcodes developed during the present study can be used to identify Aconitum species.
Collapse
Affiliation(s)
- Anita Choudhary
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Deepika Shekhawat
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Jyotsna Pathania
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Kumari Sita
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Shailika Sharma
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Amit Chawla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Environmental Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India
| | - Vandana Jaiswal
- Biotechnology, Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
8
|
Tiwari S, Acharya P, Solanki B, Sharma AK, Rawat S. A review on efforts for improvement in medicinally important chemical constituents in Aconitum through biotechnological interventions. 3 Biotech 2023; 13:190. [PMID: 37193333 PMCID: PMC10183062 DOI: 10.1007/s13205-023-03578-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/21/2023] [Indexed: 05/18/2023] Open
Abstract
The genus Aconitum belongs to the family Ranunculaceae, is endowed with more than 350 species on the earth. Medicinally important aconitine type of diterpenoid alkaloids are the characteristic compounds in most of the Aconitum species. The present review endeavored the major research carried out in the field of genetic resource characterization, pharmacological properties, phytochemistry, major factors influencing quantity, biosynthetic pathways and processing methods for recovery of active ingredients, variety improvement, propagation methods, and important metabolite production through cell/organ culture of various Aconitum species. More than 450 derivatives of aconitine-type C19 and C20-diterpenoid alkaloids along with a few other non-alkaloidal compounds, such as phenylpropanoids, flavonoids, terpenoids, and fatty acids, have been identified in the genus. A few Aconitum species and their common diterpenoid alkaloid compounds are also well characterized for analgesic, inflammatory and cytotoxic properties. However, the different isolated compound needs to be validated for supporting other traditional therapeutical uses of the plant species. Aconitine alkaloids shared common biosynthesis pathway, but their diversification mechanism remains unexplored in the genus. Furthermore, the process needs to be developed on secondary metabolite recovery, mass-scale propagation methods, and agro-technologies for maintaining the quality of products. Many species are losing their existence in nature due to over-exploitation or anthropogenic factors; thus, temporal monitoring of the population status in its habitat, and suitable management programs for ascertaining conservation needs to be developed.
Collapse
Affiliation(s)
- Sekhar Tiwari
- Department of Biotechnology, School of Sciences, P. P. Savani University, Surat, Gujarat India
| | - Puja Acharya
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok, Sikkim India
| | - Bharat Solanki
- Department of Biochemistry, M. B. Patel Science College, Sardar Patel University, Anand, Gujarat India
| | - Anish Kumar Sharma
- Department of Biotechnology, School of Sciences, P. P. Savani University, Surat, Gujarat India
| | - Sandeep Rawat
- Sikkim Regional Centre, G. B. Pant National Institute of Himalayan Environment, Pangthang, Gangtok, Sikkim India
| |
Collapse
|
9
|
El Merzougui S, Benelli C, El Boullani R, Serghini MA. The Cryopreservation of Medicinal and Ornamental Geophytes: Application and Challenges. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112143. [PMID: 37299120 DOI: 10.3390/plants12112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Nowadays, plant genetic resources are often at risk of loss and destruction. Geophytes are herbaceous or perennial species that are annually renewed by bulbs, rhizomes, tuberous roots, or tubers. They are often subject to overexploitation, which, combined with other biotic and abiotic stresses, can make these plants more vulnerable to a decline in their diffusion. As a result, multiple endeavors have been undertaken to establish better conservation strategies. Plant cryopreservation at ultra-low temperatures in liquid nitrogen (-196 °C) has proven to be an effective, long-term, low-cost, and suitable conservation method for many plant species. Over the last two decades, major advances in cryobiology studies have enabled successful explants of multiple genera and types, including pollen, shoot tips, dormant buds, and zygotic and somatic embryos. This review provides an update on recent advances and developments in cryopreservation and its application to medicinal and ornamental geophytes. In addition, the review includes a brief summary of factors limiting the success of bulbous germplasm conservation. The critical analysis underpinning this review will benefit biologists and cryobiologists in their further studies on the optimization of geophyte cryopreservation protocols and will support a more complete and wider application of knowledge in this area.
Collapse
Affiliation(s)
- Soumaya El Merzougui
- Laboratory of Biotechnology and Valorization of Natural Resources, Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 8106, Morocco
| | - Carla Benelli
- Institute of BioEconomy, National Research Council (CNR/IBE), Sesto Fiorentino, 50019 Florence, Italy
| | - Rachida El Boullani
- Laboratory of Biotechnology and Valorization of Natural Resources, Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 8106, Morocco
| | - Mohammed Amine Serghini
- Laboratory of Biotechnology and Valorization of Natural Resources, Department of Biology, Faculty of Sciences, Ibn Zohr University, Agadir 8106, Morocco
| |
Collapse
|
10
|
Zhang D, Cheng H, Zhang Y, Zhou Y, Wu J, Liu J, Feng W, Peng C. Ameliorative effect of Aconite aqueous extract on diarrhea is associated with modulation of the gut microbiota and bile acid metabolism. Front Pharmacol 2023; 14:1189971. [PMID: 37266146 PMCID: PMC10229775 DOI: 10.3389/fphar.2023.1189971] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/25/2023] [Indexed: 06/03/2023] Open
Abstract
Introduction: Aconite is a form of traditional Chinese medicine (TCM) that has been widely used to treat diarrhea for thousands of years. However, it is not clear whether the anti-diarrhea role of aconite aqueous extract (AA) is associated with regulation of the gut microbiota or with bile acid (BA) metabolism. This study aimed to confirm whether AA exerts its anti-diarrhea effects by regulating the gut microbiota and BA metabolism. Methods: The therapeutic effect of AA in a mouse model of diarrhea was measured based on analysis of body weight, fecal water content, diarrhea scores, intestinal propulsion rate, colonic pathology, and colonic immunohistochemistry. In addition, 16S rRNA high-throughput sequencing was conducted to analyze the effect of AA on the gut microbiota, and targeted metabolomics was employed to analyze the effect of AA on metabolism of BAs. Results: The results showed that treatment with AA reduced fecal water content and diarrhea scores, inhibited intestinal propulsion rate and pathological changes in the colon, and increased AQP3 and AQP4 content in the colon. In addition, AA was found to be capable of regulating the gut microbiota. Effects included increasing its richness (according to the ACE and Chao1 indices); altering the gut microbiota community structure (PCA, PCoA, and NMDS); increasing the relative abundance of norank_f_Muribaculaceae, Ruminococcus, Lachnospiraceae_NK4A136_group, Prevotellaceae_UCG-001, and norank_f_norank_o_Clostridia_UCG-014; and decreasing the relative abundance of Escherichia-Shigella, unclassified_f_Ruminococcaceae, Ruminococcus_torques_group, and Parasutterella. More importantly, AA significantly increased fecal TCA (a primary BA) and DCA, LCA, GDCA, dehydro-LCA, and 12-keto-LCA (secondary BAs), thus restoring BA homeostasis. Moreover, AA increased the ratios of DCA/CA, DCA/TCA, and LCA/CDCA and decreased the ratios of TLCA/LCA, GLCA/LCA, and TUDCA/UDCA. Conclusion: The anti-diarrhea effect of AA was associated with restoration of the gut microbiota and BA metabolism-related homeostasis. The results of this study provide insights into the application of AA and the treatment of diarrhea.
Collapse
Affiliation(s)
- Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuxi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Key Laboratory of the Ministry of Education for Standardization of Chinese Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
11
|
Punia A, Joshi R, Kumar R. Identification and quantification of eight alkaloids in Aconitum heterophyllum using UHPLC-DAD-QTOF-IMS: A valuable tool for quality control. PHYTOCHEMICAL ANALYSIS : PCA 2022; 33:1121-1134. [PMID: 35794832 DOI: 10.1002/pca.3164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Aconitum spp. are prime medicinal plants rich in alkaloids and have been used as the main constituents of traditional medicine in India and China. The whole plant can be toxic and creates pathophysiological conditions inside the human body. Therefore, simultaneous quantification of alkaloids within plant parts and herbal medicines associated with this genus is essential for quality control. OBJECTIVE We aimed to develop and validate methods using ultra-high-performance liquid chromatography-diode array detector-quadrupole time-of-flight ion mobility mass spectrometry (UHPLC-DAD-QTOF-IMS) and to develop an analytical strategy for the identification and quantification of alkaloid compounds (aconitine, hypaconitine, mesaconitine, aconine, benzoylmesaconitine, benzoylaconine, bulleyaconitine A, and deoxyaconitine) from Aconitum heterophyllum. METHODOLOGY We developed a simultaneous identification and quantification method for eight alkaloids using UHPLC-DAD-QTOF-IMS. The method was validated as per International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) guidelines and also in IMS mode. RESULTS The developed method has good linearity (r2 = 0.997-0.999), LOD (0.63-8.31 μg/mL), LOQ (0.63-2.80 μg/mL), recovery (86.01-104.33%), reproducibility, intra- and inter-day variability (<3.25%), and stability. Significant qualitative and quantitative variations were found among different plant parts (flower, leaf, stem, root, and tuber) and five market products of A. heterophyllum. Furthermore, a total of 21 metabolites were also profiled based on the fragmentation pattern of MS2 using the validated method. CONCLUSION An appropriate mobile phase using acetonitrile and water in a gradient elution gave a satisfactory chromatographic separation of eight Aconitum alkaloids with their adjacent peaks. Therefore, this method could provide a scientific and technical platform for quality control assurance.
Collapse
Affiliation(s)
- Ashwani Punia
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (H.P.), India
| | - Robin Joshi
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (H.P.), India
| | - Rajiv Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (IHBT), Palampur, HP, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh (H.P.), India
| |
Collapse
|
12
|
Wang X, Yang Z, Zhang Y, Cheng F, Xing X, Wen F, Hu Y, Chen C, Wei B, Bai P, Wang X, Liu Y, Zhang H, Hao B, Wang S. Tandem mass tag labeled quantitative proteomic analysis of differential protein expression on total alkaloid of Aconitum flavum Hand.-Mazz. against melophagus ovinus. Front Vet Sci 2022; 9:951058. [PMID: 35968012 PMCID: PMC9365070 DOI: 10.3389/fvets.2022.951058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Melophagus ovinus disease is a common ectoparasitosis, which can lead to a decrease in animal production performance, product quality, and even death. Aconitum flavum Hand.-Mazz. has many pharmacological activities including insecticidal, heat-clearing, analgesic, and dehumidifying. However, there are few researches focused on the effects and related mechanism of Aconitum flavum Hand.-Mazz. in killing Melophagus ovinus. In this study, 11 alkaloids of Aconitum flavum Hand.-Mazz. were detected, and its total alkaloid activity was determined. The results showed when the total alkaloid concentration was 64 mg/ml and the treatment time was 16 h, the killing rate of Melophagus ovinus reached 100%. Through the observation of the differences in the surface of Melophagus ovinus in each experimental group, it was found that the morphology of the posterior end of the female Melophagus ovinus in the alkaloid treatment group was significantly different from that of the blank and positive control groups, and most of the epidermal tissue was obsessive and missing. Moreover, the enzyme activity determination results of 64 mg/ml group were significantly different when compared with the normal control group, while there was no significant difference in other groups. Then, the Melophagus ovinus gene library was established by the unreferenced genome transcriptome sequencing, the proteomic comparison was performed using tandem mass tag labeled protein detection technology, and finally, the samples were quantitatively analyzed by liquid chromatography-mass spectrometry tandem and bioinformatics methods. Based on the above experimental results, it was speculated that Aconitum flavum Hand.-Mazz. total alkaloids may cause the imbalance of protein disulfide isomerase expressions by affecting the regulation of Hsp40 cellular protein homeostasis and the oxidation of protein disulfide isomerase and related proteins. This would affect the selective recognition of signal sequence, the targeted transport of Sec 61, and the correct folding of the three-dimensional structure of amino acid chain, weakening the clearance of amino acid chains that cannot be correctly folded and eventually resulting in the killing of Melophagus ovinus. This study preliminarily revealed the mechanism of Aconitum flavum Hand.-Mazz. total alkaloids against Melophagus ovinus and provided a theoretical basis for the screening of Melophagus ovinus action targets and the development of new veterinary drugs.
Collapse
Affiliation(s)
- Xinjian Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Zhen Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Yujun Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Feng Cheng
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Xiaoyong Xing
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Fengqin Wen
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Yonghao Hu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Changjiang Chen
- Animal Husbandry and Veterinary Station of Huangyuan County, Xining, China
| | - Bin Wei
- Animal Husbandry and Veterinary Station of Huangyuan County, Xining, China
| | - Pengxia Bai
- Qinghai College of Animal Husbandry and Veterinary Technology, Xining, China
| | - Xuehong Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Yu Liu
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Hongjuan Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, China
| |
Collapse
|