1
|
Jiang M, Chen ZG, Li H, Zhang TT, Yang MJ, Peng XX, Peng B. Succinate and inosine coordinate innate immune response to bacterial infection. PLoS Pathog 2022; 18:e1010796. [PMID: 36026499 PMCID: PMC9455851 DOI: 10.1371/journal.ppat.1010796] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/08/2022] [Accepted: 08/04/2022] [Indexed: 12/17/2022] Open
Abstract
Macrophages restrict bacterial infection partly by stimulating phagocytosis and partly by stimulating release of cytokines and complement components. Here, we treat macrophages with LPS and a bacterial pathogen, and demonstrate that expression of cytokine IL-1β and bacterial phagocytosis increase to a transient peak 8 to 12 h post-treatment, while expression of complement component 3 (C3) continues to rise for 24 h post-treatment. Metabolomic analysis suggests a correlation between the cellular concentrations of succinate and IL-1β and of inosine and C3. This may involve a regulatory feedback mechanism, whereby succinate stimulates and inosine inhibits HIF-1α through their competitive interactions with prolyl hydroxylase. Furthermore, increased level of inosine in LPS-stimulated macrophages is linked to accumulation of adenosine monophosphate and that exogenous inosine improves the survival of bacterial pathogen-infected mice and tilapia. The implications of these data suggests potential therapeutic tools to prevent, manage or treat bacterial infections.
Collapse
Affiliation(s)
- Ming Jiang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Zhuang-gui Chen
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
| | - Tian-tuo Zhang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
| | - Man-jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
| | - Xuan-xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
| | - Bo Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Guangdong Key Laboratory of Pharmaceutical Functional Genes, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Higher Education Mega Center, Guangzhou, People’s Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, People’s Republic of China
- * E-mail:
| |
Collapse
|
2
|
Simultaneous detection of ATP metabolites in human plasma and urine based on palladium nanoparticle and poly(bromocresol green) composite sensor. Biosens Bioelectron 2018; 126:758-766. [PMID: 30554097 DOI: 10.1016/j.bios.2018.11.056] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/14/2018] [Accepted: 11/24/2018] [Indexed: 02/07/2023]
Abstract
A sensitive voltammetric sensor based on palladium nanoparticles (PdNPs) and poly-bromocresol green (pBG) composite layer immobilized on amide functionalized single-walled carbon nanotubes (AmSWCNTs) modified pyrolytic graphite (PdNPs:pBG/AmSWCNTs/PG) has been prepared for the simultaneous determination of adenosine triphosphate (ATP) catabolites, inosine (INO), hypoxanthine (HX), xanthine (XT), and uric acid (UA). The modified PdNPs:pBG/AmSWCNTs/PG was characterized by electrochemical experiments and surface analysis, which exhibited exceptional electrocatalytic effects towards the oxidation of INO, HX, XT, and UA with a significant enhanced peak current and well resolved peaks separation for all the analytes. The linear calibration curves were obtained in the concentration range of 0.001-175 µM, 0.001-200 µM, 0.001-150 µM, and 0.001-200 µM and limits of detection were found as 0.95 nM, 1.04 nM, 1.07 nM, and 0.43 nM corresponding to INO, HX, XT, and UA, respectively. The common metabolites present in the biological fluids did not interfere in the determination. The applicability of the proposed sensor was successfully demonstrated by determining INO, HX, XT, and UA in the human plasma and urine and the obtained results were validated by using HPLC.
Collapse
|
3
|
Adenosine A1 receptor-dependent antinociception induced by inosine in mice: pharmacological, genetic and biochemical aspects. Mol Neurobiol 2014; 51:1368-78. [PMID: 25064055 DOI: 10.1007/s12035-014-8815-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 07/11/2014] [Indexed: 01/15/2023]
Abstract
Inosine is an endogenous nucleoside that has anti-inflammatory and antinociceptive properties. Inosine is a metabolite of adenosine, and some of its actions suggest the involvement of adenosine A1 receptors (A1Rs). The purpose of this study was to better understand mechanisms of inosine-induced antinociception by investigating the role of A1Rs and purine metabolism inhibitors. Inosine antinociception was evaluated using the formalin test in mice. An A1R-selective antagonist (DPCPX), A1R knockout mice (gene deletion) and mice with A1R reduced expression (antisense oligonucleotides) were used to assess the role of A1Rs in the antinociceptive action of inosine. Binding assays were performed to compare the affinity of inosine and adenosine for A1Rs. Finally, the role of adenosine and inosine breakdown was assessed using deoxycoformycin (DCF) and forodesine (FDS) as enzymatic inhibitors of adenosine deaminase and purine nucleoside phosphorylase, respectively. Inosine induced antinociception in the formalin test when given by systemic, spinal and peripheral routes. Systemically, inosine exhibited a potency similar to adenosine, and its effects were inhibited by DPCPX. Inosine did not induce antinociception in A1R knockout mice or in mice with reduced A1R expression. In binding studies, inosine bound to A1Rs with an affinity similar to adenosine. DCF had no effect on inosine actions. FDS augmented the antinociceptive effect of a low systemic dose of inosine and, at a higher dose, induced antinociception by itself. Collectively, these data indicate that inosine is an agonist for A1Rs with antinociceptive properties and a potency similar to adenosine and can be considered another endogenous ligand for this receptor.
Collapse
|
4
|
Burnstock G. Purinergic signalling in the reproductive system in health and disease. Purinergic Signal 2014; 10:157-87. [PMID: 24271059 PMCID: PMC3944041 DOI: 10.1007/s11302-013-9399-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/24/2013] [Indexed: 12/16/2022] Open
Abstract
There are multiple roles for purinergic signalling in both male and female reproductive organs. ATP, released as a cotransmitter with noradrenaline from sympathetic nerves, contracts smooth muscle via P2X1 receptors in vas deferens, seminal vesicles, prostate and uterus, as well as in blood vessels. Male infertility occurs in P2X1 receptor knockout mice. Both short- and long-term trophic purinergic signalling occurs in reproductive organs. Purinergic signalling is involved in hormone secretion, penile erection, sperm motility and capacitation, and mucous production. Changes in purinoceptor expression occur in pathophysiological conditions, including pre-eclampsia, cancer and pain.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical School, Rowland Hill Street, London, NW3 2PF, UK,
| |
Collapse
|
5
|
Muto J, Lee H, Lee H, Uwaya A, Park J, Nakajima S, Nagata K, Ohno M, Ohsawa I, Mikami T. Oral administration of inosine produces antidepressant-like effects in mice. Sci Rep 2014; 4:4199. [PMID: 24569499 PMCID: PMC3935199 DOI: 10.1038/srep04199] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 02/06/2014] [Indexed: 12/22/2022] Open
Abstract
Inosine, a breakdown product of adenosine, has recently been shown to exert immunomodulatory and neuroprotective effects. We show here that the oral administration of inosine has antidepressant-like effects in two animal models. Inosine significantly enhanced neurite outgrowth and viability of primary cultured neocortical neurons, which was suppressed by adenosine A1 and A2A receptor agonists. Oral administration of inosine to mice transiently increased its concentration in the brain and enhanced neuronal proliferation in the dentate gyrus, accompanied by phosphorylation of mitogen-activated protein kinase and increase in transcript level of brain-derived neurotrophic factor. In stress models, oral inosine prevented an increase in immobility time in forced swim test after chronically unexpected stress and mitigated a reduction in sucrose preference after chronic social defeat stress. These results indicate that oral administration of inosine has the potential to prevent depressive disorder via adenosine receptors.
Collapse
Affiliation(s)
- Junko Muto
- 1] Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan [2] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan
| | - Hosung Lee
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Hyunjin Lee
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Akemi Uwaya
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Jonghyuk Park
- 1] Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan [2] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan
| | - Sanae Nakajima
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan [3] Kyoritsu Women's Junior College, Tokyo, Japan
| | - Kazufumi Nagata
- 1] Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan [2] Department of Biochemistry and Cell Biology, Institute of Development and Aging Science, Graduate School of Medicine, Nippon Medical School, Kawasaki, Japan
| | - Makoto Ohno
- Graduate School of Health and Sport Science, Nippon Sport Science University, Tokyo, Japan
| | - Ikuroh Ohsawa
- Biological Process of Aging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Toshio Mikami
- Department of Health and Sports Science, Nippon Medical School, Kawasaki, Japan
| |
Collapse
|
6
|
Jackson EK, Cheng D, Jackson TC, Verrier JD, Gillespie DG. Extracellular guanosine regulates extracellular adenosine levels. Am J Physiol Cell Physiol 2012; 304:C406-21. [PMID: 23242185 DOI: 10.1152/ajpcell.00212.2012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The aim of this investigation was to test the hypothesis that extracellular guanosine regulates extracellular adenosine levels. Rat preglomerular vascular smooth muscle cells were incubated with adenosine, guanosine, or both. Guanosine (30 μmol/l) per se had little effect on extracellular adenosine levels. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) were 0.125 ± 0.020 μmol/l, indicating rapid disposition of extracellular adenosine. Extracellular adenosine levels 1 h after addition of adenosine (3 μmol/l) plus guanosine (30 μmol/l) were 1.173 ± 0.061 μmol/l, indicating slow disposition of extracellular adenosine. Cell injury increased extracellular levels of endogenous adenosine and guanosine, and the effects of cell injury on endogenous extracellular adenosine were modulated by altering the levels of endogenous extracellular guanosine with exogenous purine nucleoside phosphorylase (converts guanosine to guanine) or 8-aminoguanosine (inhibits purine nucleoside phosphorylase). Extracellular guanosine also slowed the disposition of extracellular adenosine in rat preglomerular vascular endothelial cells, mesangial cells, cardiac fibroblasts, and kidney epithelial cells and in human aortic and coronary artery vascular smooth muscle cells and coronary artery endothelial cells. The effects of guanosine on adenosine levels were not mimicked or attenuated by 5-iodotubericidin (adenosine kinase inhibitor), erythro-9-(2-hydroxy-3-nonyl)-adenine (adenosine deaminase inhibitor), 5-aminoimidazole-4-carboxamide (guanine deaminase inhibitor), aristeromycin (S-adenosylhomocysteine hydrolase inhibitor), low sodium (inhibits concentrative nucleoside transporters), S-(4-nitrobenzyl)-6-thioinosine [inhibits equilibrative nucleoside transporter (ENT) type 1], zidovudine (inhibits ENT type 2), or acadesine (known modulator of adenosine levels). Guanosine also increases extracellular inosine, uridine, thymidine, and cytidine, yet decreases extracellular uric acid. In conclusion, extracellular guanosine regulates extracellular adenosine levels.
Collapse
Affiliation(s)
- Edwin K Jackson
- Dept. of Pharmacology and Chemical Biology, 100 Technology Drive, Rm. 514, Univ. of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.
| | | | | | | | | |
Collapse
|
7
|
Selective determination of inosine in the presence of uric acid and hypoxanthine using modified electrode. Anal Biochem 2012; 421:278-84. [DOI: 10.1016/j.ab.2011.10.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 11/21/2022]
|
8
|
Tumor necrosis factor-alpha impairs the recovery of synaptic transmission from hypoxia in rat hippocampal slices. J Neuroimmunol 2009; 218:21-7. [PMID: 19942300 DOI: 10.1016/j.jneuroim.2009.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/15/2009] [Accepted: 11/05/2009] [Indexed: 01/20/2023]
Abstract
Cerebral ischaemia is a common occurrence in a range of pathological conditions, including stroke and traumatic brain injury. Two of the components in ischaemia are tissue hypoxia and the release of pro-inflammatory agents such as TNF-alpha. The role of TNF-alpha in an ischaemic/hypoxic episode is still controversial, although deleterious effects of pro-inflammatory cytokines in the area of injury are well documented. One of the prime adaptive mechanisms in response to hypoxia is the cellular activation of adenosine 1 receptors (A1Rs), which inhibits excitatory synaptic transmission. In the present study we have examined the effect of TNF-alpha application on synaptic transmission during hypoxic exposure and re-oxygenation using extracellular recordings in the CA1 region of the rat hippocampal slice. Hypoxia caused a reversible depression of the field EPSP (29.6+/-9.7% of control, n=5), which was adenosine A(1) receptor-dependent (85.7+/-4.3%, in the presence of DPCPX (200 nM), the adenosine A(1) receptor antagonist). DPCPX inhibited the maintenance of long-term potentiation obtained 30 min post hypoxia (143.8+/-8.2% versus 96.4+/-10.6% respectively, 1h post tetanus; n=5; p<0.005). In TNF-alpha (150 pM) treated slices hypoxic depression was similar to controls but a reduction in fEPSP slope was observed during re-oxygenation (66.8+/-1.4%, n=5). This effect was reversed by pre-treatment with SB 203580 (1 microM), a p38 MAP kinase inhibitor (91.8+/-6.9%, n=5). These results demonstrate a novel p38 MAPK dependent role for TNF-alpha in attenuating synaptic transmission after a hypoxic episode.
Collapse
|
9
|
Assaife-Lopes N, Wengert M, de Sá Pinheiro AA, Leão-Ferreira LR, Caruso-Neves C. Inhibition of renal Na+-ATPase activity by inosine is mediated by A1 receptor-induced inhibition of the cAMP signaling pathway. Arch Biochem Biophys 2009; 489:76-81. [PMID: 19709567 DOI: 10.1016/j.abb.2009.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/07/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
We have previously demonstrated that adenosine is deaminated to inosine in the isolated basolateral membrane (BLM) of kidney proximal tubules. This work investigates the possible effect of inosine on proximal tubule Na(+)-ATPase activity. Inosine reduced Na(+)-ATPase activity by 70%. This effect of inosine was completely attenuated by 10(-8) M DPCPX, an A(1) receptor-selective antagonist, but it was not affected by either 10(-8) M DMPX or 10(-7) M MRS1523, A(2) and A(3) receptor-selective antagonists, respectively. The inhibitory effect of inosine was blocked by: (1) 10(-6) M GDPbetaS, a trimeric G protein inhibitor; (2) 1microg/ml pertussis toxin, a Gi protein inhibitor; (3) 10(-6) M forskolin, an adenylyl cyclase activator; (4) 10(-9) M cholera toxin, a Gs protein activator; (5) 10(-6)M cAMP. Our results demonstrate that the inhibitory effect of inosine on the sodium pump is mediated by the A(1) receptor/Gi/cAMP pathway.
Collapse
Affiliation(s)
- Natália Assaife-Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CCS Bloco G, 21949 Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
10
|
Electrooxidation of biologically important hypoxanthine nucleosides and nucleotides at solid electrodes. Electrochim Acta 2006. [DOI: 10.1016/j.electacta.2006.07.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Controlled potential electrolysis of inosine: Dependence of the selected potential on the nature of the electrooxidised products. J Electroanal Chem (Lausanne) 2006. [DOI: 10.1016/j.jelechem.2006.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|