1
|
Smith PF, Zheng Y. Applications of Multivariate Statistical and Data Mining Analyses to the Search for Biomarkers of Sensorineural Hearing Loss, Tinnitus, and Vestibular Dysfunction. Front Neurol 2021; 12:627294. [PMID: 33746881 PMCID: PMC7966509 DOI: 10.3389/fneur.2021.627294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 11/24/2022] Open
Abstract
Disorders of sensory systems, as with most disorders of the nervous system, usually involve the interaction of multiple variables to cause some change, and yet often basic sensory neuroscience data are analyzed using univariate statistical analyses only. The exclusive use of univariate statistical procedures, analyzing one variable at a time, may limit the potential of studies to determine how interactions between variables may, as a network, determine a particular result. The use of multivariate statistical and data mining methods provides the opportunity to analyse many variables together, in order to appreciate how they may function as a system of interacting variables, and how this system or network may change as a result of sensory disorders such as sensorineural hearing loss, tinnitus or different types of vestibular dysfunction. Here we provide an overview of the potential applications of multivariate statistical and data mining techniques, such as principal component and factor analysis, cluster analysis, multiple linear regression, random forest regression, linear discriminant analysis, support vector machines, random forest classification, Bayesian classification, and orthogonal partial least squares discriminant analysis, to the study of auditory and vestibular dysfunction, with an emphasis on classification analytic methods that may be used in the search for biomarkers of disease.
Collapse
Affiliation(s)
- Paul F. Smith
- Department of Pharmacology and Toxicology, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand Centre of Research Excellence, University of Auckland, Auckland, New Zealand
- The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| | - Yiwen Zheng
- Department of Pharmacology and Toxicology, Brain Health Research Centre, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Brain Research New Zealand Centre of Research Excellence, University of Auckland, Auckland, New Zealand
- The Eisdell Moore Centre for Hearing and Balance Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
2
|
Hippocampal LTP modulation and glutamatergic receptors following vestibular loss. Brain Struct Funct 2018; 224:699-711. [PMID: 30470894 DOI: 10.1007/s00429-018-1792-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 11/08/2018] [Indexed: 12/31/2022]
Abstract
Vestibular dysfunction strongly impairs hippocampus-dependent spatial memory performance and place cell function. However, the hippocampal encoding of vestibular information at the synaptic level, remains sparsely explored and controversial. We investigated changes in in vivo long-term potentiation (LTP) and NMDA glutamate receptor (NMDAr) density and distribution after bilateral vestibular lesions (BVL) in adult rats. At day 30 (D30) post-BVL, the LTP of the population spike recorded in the dentate gyrus (DG) was higher in BVL rats, for the entire 3 h of LTP recording, while no difference was observed in the fEPSP slope. However, there was an increase in EPSP-spike (E-S) potentiation in lesioned rats. NMDArs were upregulated at D7 and D30 predominantly within the DG and CA1. At D30, we observed a higher NMDAr density in the left hippocampus. NMDArs were overexpressed on both neurons and non-neuronal cells, suggesting a decrease of the entorhinal glutamatergic inputs to the hippocampus following BVL. The EPSP-spike (E-S) potentiation increase was consistent with the dorsal hippocampus NMDAr upregulation. Such an increase could reflect a non-specific enhancement of synaptic efficacy, leading to a disruption of memory encoding, and therefore might underlie the memory deficits previously reported in rats and humans following vestibular loss.
Collapse
|
3
|
Benoit A, Besnard S, Guillamin M, Philoxene B, Sola B, Le Gall A, Machado ML, Toulouse J, Hitier M, Smith PF. Differential regulation of NMDA receptor-expressing neurons in the rat hippocampus and striatum following bilateral vestibular loss demonstrated using flow cytometry. Neurosci Lett 2018; 683:43-47. [PMID: 29936267 DOI: 10.1016/j.neulet.2018.06.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
There is substantial evidence that loss of vestibular function impairs spatial learning and memory related to hippocampal (HPC) function, as well as increasing evidence that striatal (Str) plasticity is also implicated. Since the N-methyl-d-aspartate (NMDA) subtype of glutamate receptor is considered essential to spatial memory, previous studies have investigated whether the expression of HPC NMDA receptors changes following vestibular loss; however, the results have been contradictory. Here we used a novel flow cytometric method to quantify the number of neurons expressing NMDA receptors in the HPC and Str following bilateral vestibular loss (BVL) in rats. At 7 and 30 days post-op., there was a significant increase in the number of HPC neurons expressing NMDA receptors in the BVL animals, compared to sham controls (P ≤ 0.004 and P ≤ 0.0001, respectively). By contrast, in the Str, at 7 days there was a significant reduction in the number of neurons expressing NMDA receptors in the BVL group (P ≤ 0.05); however, this difference had disappeared by 30 days post-op. These results suggest that BVL causes differential changes in the number of neurons expressing NMDA receptors in the HPC and Str, which may be related to its long-term impairment of spatial memory.
Collapse
Affiliation(s)
- Alice Benoit
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | - Stephane Besnard
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | - Maryline Guillamin
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France; University Normandie, IFR ICORE, Caen, 14032, France
| | - Bruno Philoxene
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | | | - Anne Le Gall
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | | | - Joseph Toulouse
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | - Martin Hitier
- Normandie Univ, Inserm, CHU Caen, COMETE U1075, 14000, Caen, France
| | - Paul F Smith
- Dept. of Pharmacology and Toxicology, School of Biomedical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand; Brain Research New Zealand, Centre of Research Excellence, New Zealand; The Eisdell Moore Centre, University of Auckland, New Zealand.
| |
Collapse
|
4
|
Storage of passive motion pattern in hippocampal CA1 region depends on CaMKII/CREB signaling pathway in a motion sickness rodent model. Sci Rep 2017; 7:43385. [PMID: 28230177 PMCID: PMC5322525 DOI: 10.1038/srep43385] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 01/20/2017] [Indexed: 11/25/2022] Open
Abstract
Sensory mismatch between actual motion information and anticipated sensory patterns (internal model) is the etiology of motion sickness (MS). Some evidence supports that hippocampus might involve the neural storage of the “internal model”. This study established an “internal model” acquisition-retention behavioral model using a repeated habituation rotation training protocol. We tried to identify the hippocampal subregion involved in “internal model” retention using chemical lesion methods. Hippocampal kinases (CaMK, CaMKIV, CREB and ERK1/2) phosphorylation in the target subregion was assayed and the effects of kinase inhibitors (KN93 or U0126) on “internal model” retention were investigated. The activities of potential kinases (CaMKII and CREB) were also examined in otoliths deficit het/het mice. In habituated rats, CA1 lesion reproduced MS-related behavioral responses on “internal model” retention day. Habituation training increased CaMKII and CREB activity but had no effect on CaMKIV and ERK1/2 activity in the CA1, while inhibition of CaMKII but not ERK1/2 impaired “internal model” retention. In het/het mice, CaMKII and CREB were not activated in the CA1 on the retention day. These results suggested that CaMKII/CREB pathway might potentially contribute to the storage of the “internal model” in the hippocampal CA1 after motion sickness induced by vestibular stimulation.
Collapse
|
5
|
Smith P, Darlington C, Zheng Y. The Effects of Complete Vestibular Deafferentation on Spatial Memory and the Hippocampus in the Rat: The Dunedin Experience. Multisens Res 2015; 28:461-85. [DOI: 10.1163/22134808-00002469] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our studies conducted over the last 14 years have demonstrated that a complete bilateral vestibular deafferentation (BVD) in rats results in spatial memory deficits in a variety of behavioural tasks, such as the radial arm maze, the foraging task and the spatial T maze, as well as deficits in other tasks such as the five-choice serial reaction time task (5-CSRT task) and object recognition memory task. These deficits persist long after the BVD, and are not simply attributable to ataxia, anxiety, hearing loss or hyperactivity. In tasks such as the foraging task, the spatial memory deficits are evident in darkness when vision is not required to perform the task. The deficits in the radial arm maze, the foraging task and the spatial T maze, in particular, suggest hippocampal dysfunction following BVD, and this is supported by the finding that both hippocampal place cells and theta rhythm are dysfunctional in BVD rats. Now that it is clear that the hippocampus is adversely affected by BVD, the next challenge is to determine what vestibular information is transmitted to it and how that information is used by the hippocampus and the other brain structures with which it interacts.
Collapse
Affiliation(s)
- Paul F. Smith
- Dept. Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Cynthia L. Darlington
- Dept. Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yiwen Zheng
- Dept. Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Smith PF, Zheng Y. From ear to uncertainty: vestibular contributions to cognitive function. Front Integr Neurosci 2013; 7:84. [PMID: 24324413 PMCID: PMC3840327 DOI: 10.3389/fnint.2013.00084] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 11/07/2013] [Indexed: 12/31/2022] Open
Abstract
In addition to the deficits in the vestibulo-ocular and vestibulo-spinal reflexes that occur following vestibular dysfunction, there is substantial evidence that vestibular loss also causes cognitive disorders, some of which may be due to the reflexive deficits and some of which are related to the role that ascending vestibular pathways to the limbic system and neocortex play in spatial orientation. In this review we summarize the evidence that vestibular loss causes cognitive disorders, especially spatial memory deficits, in animals and humans and critically evaluate the evidence that these deficits are not due to hearing loss, problems with motor control, oscillopsia or anxiety and depression. We review the evidence that vestibular lesions affect head direction and place cells as well as the emerging evidence that artificial activation of the vestibular system, using galvanic vestibular stimulation (GVS), can modulate cognitive function.
Collapse
Affiliation(s)
- Paul F. Smith
- Department Pharmacology and Toxicology, School of Medical Sciences, and the Brain Health Research Centre, University of OtagoDunedin, New Zealand
| | | |
Collapse
|