1
|
Melkikh AV. The problem of evolutionary directionality 50 years following the works of Sergei Meyen. Biosystems 2025; 247:105383. [PMID: 39706473 DOI: 10.1016/j.biosystems.2024.105383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 12/23/2024]
Affiliation(s)
- A V Melkikh
- Ural Federal University, Yekaterinburg, Russia.
| |
Collapse
|
2
|
Rosslenbroich B, Kümmell S, Bembé B. Agency as an Inherent Property of Living Organisms. BIOLOGICAL THEORY 2024; 19:224-236. [PMID: 39703813 PMCID: PMC11652585 DOI: 10.1007/s13752-024-00471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/01/2024] [Indexed: 12/21/2024]
Abstract
A central characteristic of living organisms is their agency, that is, their intrinsic activity, both in terms of their basic life processes and their behavior in the environment. This aspect is currently a subject of debate and this article provides an overview of some of the relevant publications on this topic. We develop the argument that agency is immanent in living organisms. There is no life without agency. Even the basic life processes are an intrinsic activity, which we call the organismic level of agency. In addition to this we describe several further levels. These capture different qualities that occur or transform during evolution. In addition to the organismic level, we propose an ontogenetic level, a level of directed agency, directed agency with extended flexibility, and a level that includes the capacities to follow preconceived goals. A further property of organisms is their autonomy. It has been shown that the capacity for autonomy changed during evolution. Here we propose that the two organismic properties autonomy and agency are closely related. Enhanced physiological and behavioral autonomy extends the scope of self-generated, flexible actions and reactions. The increase in autonomy through the evolution of a widened scope of behavioral possibilities and versatility in organisms coincides with extended levels of agency. Especially the human organization, including the sophisticated brain, is the basis for an extended level of agency referring to the capacities to follow preconceived goals. However, it is important for the understanding of the phenomenon of agency not only to assume this latter form, but also to look at the different levels of agency.
Collapse
Affiliation(s)
- Bernd Rosslenbroich
- Institute of Evolutionary Biology and Morphology Centre for Biomedical Education and Research, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
- Alanus University of Arts and Social Sciences, Alfter, Germany
| | - Susanna Kümmell
- Institute of Evolutionary Biology and Morphology Centre for Biomedical Education and Research, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
| | - Benjamin Bembé
- Institute of Evolutionary Biology and Morphology Centre for Biomedical Education and Research, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany
- Alanus University of Arts and Social Sciences, Alfter, Germany
| |
Collapse
|
3
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Biology in the 21st century: Natural selection is cognitive selection. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 190:170-184. [PMID: 38740143 DOI: 10.1016/j.pbiomolbio.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Natural selection has a formal definition as the natural process that results in the survival and reproductive success of individuals or groups best adjusted to their environment, leading to the perpetuation of those genetic qualities best suited to that organism's environmental niche. Within conventional Neo-Darwinism, the largest source of those variations that can be selected is presumed to be secondary to random genetic mutations. As these arise, natural selection sustains adaptive traits in the context of a 'struggle for existence'. Consequently, in the 20th century, natural selection was generally portrayed as the primary evolutionary driver. The 21st century offers a comprehensive alternative to Neo-Darwinian dogma within Cognition-Based Evolution. The substantial differences between these respective evolutionary frameworks have been most recently articulated in a revision of Crick's Central Dogma, a former centerpiece of Neo-Darwinism. The argument is now advanced that the concept of natural selection should also be comprehensively reappraised. Cognitive selection is presented as a more precise term better suited to 21st century biology. Since cognition began with life's origin, natural selection represents cognitive selection.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
4
|
Gontier N. Situating physiology within evolutionary theory. J Physiol 2024; 602:2401-2415. [PMID: 37755322 DOI: 10.1113/jp284410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Traditionally defined as the science of the living, or as the field that beyond anatomical structure and bodily form studies functional organization and behaviour, physiology has long been excluded from evolutionary research. The main reason for this exclusion is that physiology has a presential and futuristic outlook on life, while evolutionary theory is traditionally defined as the study of natural history. In this paper, I re-evaluate these classic science divisions and situate physiology within the history of the evolutionary sciences, as well as within debates on the Extended Evolutionary Synthesis and the need for a Third Way of Evolution. I then briefly point out how evolutionary physiology in particular contributes to research on function, causation, teleonomy, agency and cognition.
Collapse
Affiliation(s)
- Nathalie Gontier
- Applied Evolutionary Epistemology Lab & Centro de Filosofia das Ciências, Departamento de História e Filosofia das Ciências, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
5
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Why death and aging ? All memories are imperfect. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:21-35. [PMID: 38316274 DOI: 10.1016/j.pbiomolbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Recent papers have emphasized the primary role of cellular information management in biological and evolutionary development. In this framework, intelligent cells collectively measure environmental cues to improve informational validity to support natural cellular engineering as collaborative decision-making and problem-solving in confrontation with environmental stresses. These collective actions are crucially dependent on cell-based memories as acquired patterns of response to environmental stressors. Notably, in a cellular self-referential framework, all biological information is ambiguous. This conditional requirement imposes a previously unexplored derivative. All cellular memories are imperfect. From this atypical background, a novel theory of aging and death is proposed. Since cellular decision-making is memory-dependent and biology is a continuous natural learning system, the accumulation of previously acquired imperfect memories eventually overwhelms the flexibility cells require to react adroitly to contemporaneous stresses to support continued cellular homeorhetic balance. The result is a gradual breakdown of the critical ability to efficiently measure environmental information and effect cell-cell communication. This age-dependent accretion governs senescence, ultimately ending in death as an organism-wide failure of cellular networking. This approach to aging and death is compatible with all prior theories. Each earlier approach illuminates different pertinent cellular signatures of this ongoing, obliged, living process.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences, College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
6
|
Richardson K. Misguided model of human behavior: Comment on C. H. Burt: "Challenging the utility of polygenic scores for social science…". Behav Brain Sci 2023; 46:e225. [PMID: 37695003 DOI: 10.1017/s0140525x22002333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
This commentary emphasizes two problem areas mentioned by Burt. First, that within-family designs do not eradicate stratification confounds. Second, that the linear/additive model of genetic causes of form and variation is not supported by recent progress in molecular biology. It concludes with an appeal for a (biologically and psychologically) more realistic model of such causes.
Collapse
|
7
|
Melkikh AV. Mutations, sex, and genetic diversity: New arguments for partially directed evolution. Biosystems 2023; 229:104928. [PMID: 37172758 DOI: 10.1016/j.biosystems.2023.104928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
A review of the theories of the existence of sexes, genetic diversity, and the distribution of mutations among organisms shows that all these concepts are not a product of random evolution and cannot be explained within the framework of Darwinism. Most mutations are the result of the genome acting on itself. This is an organized process that is implemented very differently in different species, in different places in the genome. Because of the fact that it is not random, this process must be directed and regulated, albeit with complex and not fully understood laws. This means that an additional reason must be included in order to model such mutations during evolution. The assumption of directionality must not only be explicitly included in evolutionary theory but must also occupy a central place in it. In this study an updated model of partially directed evolution is constructed, which is capable of qualitatively explaining the indicated features of evolution. Experiments are described that can confirm or disprove the proposed model.
Collapse
|
8
|
Mistriotis A. Mathematical and physical considerations indicating that the cell genome is a read-write memory. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2023; 178:50-56. [PMID: 36736433 DOI: 10.1016/j.pbiomolbio.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/15/2023] [Accepted: 01/30/2023] [Indexed: 02/03/2023]
Abstract
The molecular mechanisms that govern biological evolution have not been fully elucidated so far. Recent studies indicate that regulatory proteins, acting as decision-making complex devices, can accelerate or retard the evolution of cells. Such biochemically controlled evolution may be considered as an optimization process of logical nature aimed at developing fitter species that can better survive in a specific environment. Therefore, we may assume that new genetic information can be stored in the cell memory (i.e., genome) by a sophisticated biomolecular process that resembles writing in computer memory. Such a hypothesis is theoretically supported by a recent work showing that logic is a necessary component of life, so living systems process information in the same way as computers. The current study summarizes existing evidence showing that cells can intentionally modify their stored data by biochemical processes resembling stochastic algorithms to avoid environmental stress and increase their chances of survival. Furthermore, the mathematical and physical considerations that render a read-write memory a necessary component of biological systems are presented.
Collapse
Affiliation(s)
- Antonis Mistriotis
- Agricultural University of Athens, Dept. of Natural Resources and Agricultural Engineering, Iera Odos 75, Athens, Greece.
| |
Collapse
|
9
|
Igamberdiev AU. Overcoming the limits of natural computation in biological evolution toward the maximization of system efficiency. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
The goal-directedness of biological evolution is realized via the anticipatory achievement of the final state of the system that corresponds to the condition of its perfection in self-maintenance and in adaptability. In the course of individual development, a biological system maximizes its power via synergistic effects and becomes able to perform external work most efficiently. In this state, defined as stasis, robust self-maintaining configurations act as attractors resistant to external and internal perturbations. This corresponds to the local energy–time constraints that most efficiently fit the integral optimization of the whole system. In evolution, major evolutionary transitions that establish new states of stasis are achieved via codepoiesis, a process in which the undecided statements of existing coding systems form the basis for the evolutionary unfolding of the system by assigning new values to them. The genetic fixation of this macroevolutionary process leads to new programmes of individual development representing the process of natural computation. The phenomenon of complexification in evolution represents a metasystem transition that results in maximization of a system’s power and in the ability to increase external work performed by the system.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland , St. John’s, NL, A1C 5S7 , Canada
| |
Collapse
|
10
|
Complexification of eukaryote phenotype: Adaptive immuno-cognitive systems as unique Gödelian block chain distributed ledger. Biosystems 2022; 220:104718. [PMID: 35803502 DOI: 10.1016/j.biosystems.2022.104718] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 12/26/2022]
Abstract
The digitization of inheritable information in the genome has been called the 'algorithmic take-over of biology'. The McClintock discovery that viral software based transposable elements that conduct cut-paste (transposon) and copy-paste (retrotransposon) operations are needed for genomic evolvability underscores the truism that only software can change software and also that viral hacking by internal and external bio-malware is the Achilles heel of genomic digital systems. There was a paradigm shift in genomic information processing with the Adaptive Immune System (AIS) 500 mya followed by the Mirror Neuron System (MNS), latterly mostly in primate brains, which reaches its apogee in human social cognition. The AIS and MNS involve distinctive Gödelian features of self-reference (Self-Ref) and offline virtual self-representation (Self-Rep) for complex self-other interaction with prodigious open-ended capacity for anticipative malware detection and novelty production within a unique blockchain distributed ledger (BCDL). The role of self-referential information processing, often considered to be central to the sentient self with origins in the immune system 'Thymic self', is shown to be part of the Gödel logic behind a generator-selector framework at a molecular level, which exerts stringent selection criteria to maintain genomic BCDL. The latter manifests digital and decentralized record keeping where no internal or external bio-malware can compromise the immutability of the life's building blocks and no novel blocks can be added that is not consistent with extant blocks. This is demonstrated with regard to somatic hypermutation with novel anti-body production in the face of external non-self antigen attacks.
Collapse
|
11
|
Abstract
According to the current scientific paradigm, what we call ‘life’, ‘mind’, and ‘consciousness’ are considered epiphenomenal occurrences, or emergent properties or functions of matter and energy. Science does not associate these with an inherent and distinct existence beyond a materialistic/energetic conception. ‘Life’ is a word pointing at cellular and multicellular processes forming organisms capable of specific functions and skills. ‘Mind’ is a cognitive ability emerging from a matrix of complex interactions of neuronal processes, while ‘consciousness’ is an even more elusive concept, deemed a subjective epiphenomenon of brain activity. Historically, however, this has not always been the case, even in the scientific and academic context. Several prominent figures took vitalism seriously, while some schools of Western philosophical idealism and Eastern traditions promoted conceptions in which reality is reducible to mind or consciousness rather than matter. We will argue that current biological sciences did not falsify these alternative paradigms and that some forms of vitalism could be linked to some forms of idealism if we posit life and cognition as two distinct aspects of consciousness preeminent over matter. However, we will not argue in favor of vitalistic and idealistic conceptions. Rather, contrary to a physicalist doctrine, these were and remain coherent worldviews and cannot be ruled out by modern science.
Collapse
|
12
|
Shapiro JA. What we have learned about evolutionary genome change in the past 7 decades. Biosystems 2022; 215-216:104669. [DOI: 10.1016/j.biosystems.2022.104669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022]
|
13
|
|
14
|
|
15
|
Miller WB, Enguita FJ, Leitão AL. Non-Random Genome Editing and Natural Cellular Engineering in Cognition-Based Evolution. Cells 2021; 10:1125. [PMID: 34066959 PMCID: PMC8148535 DOI: 10.3390/cells10051125] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 12/16/2022] Open
Abstract
Neo-Darwinism presumes that biological variation is a product of random genetic replication errors and natural selection. Cognition-Based Evolution (CBE) asserts a comprehensive alternative approach to phenotypic variation and the generation of biological novelty. In CBE, evolutionary variation is the product of natural cellular engineering that permits purposive genetic adjustments as cellular problem-solving. CBE upholds that the cornerstone of biology is the intelligent measuring cell. Since all biological information that is available to cells is ambiguous, multicellularity arises from the cellular requirement to maximize the validity of available environmental information. This is best accomplished through collective measurement purposed towards maintaining and optimizing individual cellular states of homeorhesis as dynamic flux that sustains cellular equipoise. The collective action of the multicellular measurement and assessment of information and its collaborative communication is natural cellular engineering. Its yield is linked cellular ecologies and mutualized niche constructions that comprise biofilms and holobionts. In this context, biological variation is the product of collective differential assessment of ambiguous environmental cues by networking intelligent cells. Such concerted action is enabled by non-random natural genomic editing in response to epigenetic impacts and environmental stresses. Random genetic activity can be either constrained or deployed as a 'harnessing of stochasticity'. Therefore, genes are cellular tools. Selection filters cellular solutions to environmental stresses to assure continuous cellular-organismal-environmental complementarity. Since all multicellular eukaryotes are holobionts as vast assemblages of participants of each of the three cellular domains (Prokaryota, Archaea, Eukaryota) and the virome, multicellular variation is necessarily a product of co-engineering among them.
Collapse
Affiliation(s)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal;
| | - Ana Lúcia Leitão
- MEtRICs, Department of Sciences and Technology of Biomass, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal;
| |
Collapse
|
16
|
What prevents mainstream evolutionists teaching the whole truth about how genomes evolve? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 165:140-152. [PMID: 33933502 DOI: 10.1016/j.pbiomolbio.2021.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/31/2021] [Accepted: 04/26/2021] [Indexed: 01/24/2023]
Abstract
The common belief that the neo-Darwinian Modern Synthesis (MS) was buttressed by the discoveries of molecular biology is incorrect. On the contrary those discoveries have undermined the MS. This article discusses the many processes revealed by molecular studies and genome sequencing that contribute to evolution but nonetheless lie beyond the strict confines of the MS formulated in the 1940s. The core assumptions of the MS that molecular studies have discredited include the idea that DNA is intrinsically a faithful self-replicator, the one-way transfer of heritable information from nucleic acids to other cell molecules, the myth of "selfish DNA", and the existence of an impenetrable Weismann Barrier separating somatic and germ line cells. Processes fundamental to modern evolutionary theory include symbiogenesis, biosphere interactions between distant taxa (including viruses), horizontal DNA transfers, natural genetic engineering, organismal stress responses that activate intrinsic genome change operators, and macroevolution by genome restructuring (distinct from the gradual accumulation of local microevolutionary changes in the MS). These 21st Century concepts treat the evolving genome as a highly formatted and integrated Read-Write (RW) database rather than a Read-Only Memory (ROM) collection of independent gene units that change by random copying errors. Most of the discoverers of these macroevolutionary processes have been ignored in mainstream textbooks and popularizations of evolutionary biology, as we document in some detail. Ironically, we show that the active view of evolution that emerges from genomics and molecular biology is much closer to the 19th century ideas of both Darwin and Lamarck. The capacity of cells to activate evolutionary genome change under stress can account for some of the most negative clinical results in oncology, especially the sudden appearance of treatment-resistant and more aggressive tumors following therapies intended to eradicate all cancer cells. Knowing that extreme stress can be a trigger for punctuated macroevolutionary change suggests that less lethal therapies may result in longer survival times.
Collapse
|
17
|
Genomic Intelligence as Über Bio-Cybersecurity: The Gödel Sentence in Immuno-Cognitive Systems. ENTROPY 2021; 23:e23040405. [PMID: 33805411 PMCID: PMC8065710 DOI: 10.3390/e23040405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 12/27/2022]
Abstract
This paper gives formal foundations and evidence from gene science in the post Barbara McClintock era that the Gödel Sentence, far from being an esoteric construction in mathematical logic, is ubiquitous in genomic intelligence that evolved with multi-cellular life. Conditions uniquely found in the Adaptive Immune System (AIS) and Mirror Neuron System (MNS), termed the genomic immuno-cognitive system, coincide with three building blocks in computation theory of Gödel, Turing and Post (G-T-P). (i) Biotic elements have unique digital identifiers with gene codes executing 3D self-assembly for morphology and regulation of the organism using the recursive operation of Self-Ref (Self-Reference) with the other being a self-referential projection of self. (ii) A parallel offline simulation meta/mirror environment in 1–1 relation to online machine executions of self-codes gives G-T-P Self-Rep (Self-Representation). (iii) This permits a digital biotic entity to self-report that it is under attack by a biotic malware or non-self antigen in the format of the Gödel sentence, resulting in the “smarts” for contextual novelty production. The proposed unitary G-T-P recursive machinery in AIS and in MNS for social cognition yields a new explanation that the Interferon Gamma factor, known for friend-foe identification in AIS, is also integral to social behaviors. New G-T-P bio-informatics of AIS and novel anti-body production is given with interesting testable implications for COVID-19 pathology.
Collapse
|
18
|
Abstract
Since its appearance, Evolutionary Developmental Biology (EvoDevo) has been called an emerging research program, a new paradigm, a new interdisciplinary field, or even a revolution. Behind these formulas, there is the awareness that something is changing in biology. EvoDevo is characterized by a variety of accounts and by an expanding theoretical framework. From an epistemological point of view, what is the relationship between EvoDevo and previous biological tradition? Is EvoDevo the carrier of a new message about how to conceive evolution and development? Furthermore, is it necessary to rethink the way we look at both of these processes? EvoDevo represents the attempt to synthesize two logics, that of evolution and that of development, and the way we conceive one affects the other. This synthesis is far from being fulfilled, but an adequate theory of development may represent a further step towards this achievement. In this article, an epistemological analysis of EvoDevo is presented, with particular attention paid to the relations to the Extended Evolutionary Synthesis (EES) and the Standard Evolutionary Synthesis (SET).
Collapse
|
19
|
Corning PA. Beyond the modern synthesis: A framework for a more inclusive biological synthesis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2020; 153:5-12. [PMID: 32068003 DOI: 10.1016/j.pbiomolbio.2020.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 02/04/2020] [Indexed: 12/25/2022]
Abstract
Many theorists in recent years have been calling for evolutionary biology to move beyond the Modern Synthesis - the paradigm that has long provided the theoretical backbone for the discipline. Terms like "postmodern synthesis," "integrative synthesis," and "extended evolutionary synthesis" have been invoked by various critics in connection with the many recent developments that pose deep challenges - even contradictions - to the traditional model and underscore the need for an update, or a makeover. However, none of these critics, to this author's knowledge, has to date offered an explicit alternative that could provide a unifying theoretical paradigm for our vastly increased knowledge about living systems and the history of life on Earth (but see Noble 2015, 2017). This paper briefly summarizes the case against the Modern Synthesis and its many amendments over the years, and a new paradigm is proposed, called an "Inclusive Biological Synthesis," which, it is argued, can provide a more general framework for the biological sciences. The focus of this framework is the fundamental nature of life as a contingent dynamic process - an always at-risk "survival enterprise." The ongoing, inescapable challenge of earning a living in a given environmental context - biological survival and reproduction - presents an existential problem to which all biological phenomena can be related and comprehended. They and their "parts" can be analyzed in relation to ethologist Niko Tinbergen's four key questions. Some basic properties and guiding assumptions related to this alternative paradigm are also identified.
Collapse
Affiliation(s)
- Peter A Corning
- Institute for the Study of Complex Systems, 900 University Street, D-X, Seattle, WA, 98101, USA.
| |
Collapse
|
20
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. Early detection of cancer using circulating tumor DNA: biological, physiological and analytical considerations. Crit Rev Clin Lab Sci 2019:1-17. [PMID: 31865831 DOI: 10.1080/10408363.2019.1700902] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early diagnosis of cancer improves the efficacy of curative therapies. However, due to the difficulties involved in distinguishing between small early-stage tumors and normal biological variation, early detection of cancer is an extremely challenging task and there are currently no clinically validated biomarkers for a pan-cancer screening test. It is thus of particular significance that increasing evidence indicates the potential of circulating tumor DNA (ctDNA) molecules, which are fragmented segments of DNA shed from tumor cells into adjacent body fluids and the circulatory system, to serve as molecular markers for early cancer detection and thereby allow early intervention and improvement of therapeutic and survival outcomes. This is possible because ctDNA molecules bear cancer-specific fragmentation patterns, nucleosome depletion motifs, and genetic and epigenetic alterations, as distinct from plasma DNA originating from non-cancerous tissues/cells. Compared to traditional biomarkers, ctDNA analysis therefore presents the distinctive advantage of detecting tumor-specific alterations. However, based on a thorough survey of the literature, theoretical and empirical evidence suggests that current ctDNA analysis strategies, which are mainly based on DNA mutation detection, do not demonstrate the necessary diagnostic sensitivity and specificity that is required for broad clinical implementation in a screening context. Therefore, in this review we explain the biological, physiological, and analytical challenges toward the development of clinically meaningful ctDNA tests. In addition, we explore some approaches that can be implemented in order to increase the sensitivity and specificity of ctDNA assays.
Collapse
Affiliation(s)
- Abel Jacobus Bronkhorst
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Vida Ungerer
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Munich, Germany
| |
Collapse
|
21
|
|
22
|
Ariza-Mateos A, Briones C, Perales C, Domingo E, Gómez J. The archaeology of coding RNA. Ann N Y Acad Sci 2019; 1447:119-134. [PMID: 31237363 DOI: 10.1111/nyas.14173] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/18/2019] [Accepted: 05/29/2019] [Indexed: 12/16/2022]
Abstract
Different theories concerning the origin of RNA (and, in particular, mRNA) point to the concatenation and expansion of proto-tRNA-like structures. Different biochemical and biophysical tools have been used to search for ancient-like RNA elements with a specific structure in genomic viral RNAs, including that of the hepatitis C virus, as well as in cellular mRNA populations, in particular those of human hepatocytes. We define this method as "archaeological," and it has been designed to discover evolutionary patterns through a nonphylogenetic and nonrepresentational strategy. tRNA-like elements were found in structurally or functionally relevant positions both in viral RNA and in one of the liver mRNAs examined, the antagonist interferon-alpha subtype 5 (IFNA5) mRNA. Additionally, tRNA-like elements are highly represented within the hepatic mRNA population, which suggests that they could have participated in the formation of coding RNAs in the distant past. Expanding on this finding, we have observed a recurring dsRNA-like motif next to the tRNA-like elements in both viral RNAs and IFNA5 mRNA. This suggested that the concatenation of these RNA motifs was an activity present in the RNA pools that might have been relevant in the RNA world. The extensive alteration of sequences that likely triggered the transition from the predecessors of coding RNAs to the first fully functional mRNAs (which was not the case in the stepwise construction of noncoding rRNAs) hinders the phylogeny-based identification of RNA elements (both sequences and structures) that might have been active before the advent of protein synthesis. Therefore, our RNA archaeological method is presented as a way to better understand the structural/functional versatility of a variety of RNA elements, which might represent "the losers" in the process of RNA evolution as they had to adapt to the selective pressures favoring the coding capacity of the progressively longer mRNAs.
Collapse
Affiliation(s)
- Ascensión Ariza-Mateos
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain.,Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain
| | - Carlos Briones
- Department of Molecular Evolution, Centro de Astrobiología (CSIC-INTA), Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.,Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Campus de Cantoblanco, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Gómez
- Laboratory of RNA Archaeology, Instituto de Parasitología y Biomedicina "López-Neyra" (CSIC), Granada, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
23
|
Bronkhorst AJ, Ungerer V, Holdenrieder S. The emerging role of cell-free DNA as a molecular marker for cancer management. BIOMOLECULAR DETECTION AND QUANTIFICATION 2019; 17:100087. [PMID: 30923679 PMCID: PMC6425120 DOI: 10.1016/j.bdq.2019.100087] [Citation(s) in RCA: 373] [Impact Index Per Article: 62.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/26/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
An increasing number of studies demonstrate the potential use of cell-free DNA (cfDNA) as a surrogate marker for multiple indications in cancer, including diagnosis, prognosis, and monitoring. However, harnessing the full potential of cfDNA requires (i) the optimization and standardization of preanalytical steps, (ii) refinement of current analysis strategies, and, perhaps most importantly, (iii) significant improvements in our understanding of its origin, physical properties, and dynamics in circulation. The latter knowledge is crucial for interpreting the associations between changes in the baseline characteristics of cfDNA and the clinical manifestations of cancer. In this review we explore recent advancements and highlight the current gaps in our knowledge concerning each point of contact between cfDNA analysis and the different stages of cancer management.
Collapse
Affiliation(s)
| | | | - Stefan Holdenrieder
- Institute for Laboratory Medicine, German Heart Centre, Technical University Munich, Lazarettstraße. 36, D-80636, Munich, Germany
| |
Collapse
|
24
|
Igamberdiev AU. Hyper-restorative non-equilibrium state as a driving force of biological morphogenesis. Biosystems 2018; 173:104-113. [DOI: 10.1016/j.biosystems.2018.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
|
25
|
López-Marín LM, Rivera AL, Fernández F, Loske AM. Shock wave-induced permeabilization of mammalian cells. Phys Life Rev 2018; 26-27:1-38. [PMID: 29685859 DOI: 10.1016/j.plrev.2018.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/12/2018] [Accepted: 02/26/2018] [Indexed: 12/18/2022]
Abstract
Controlled permeabilization of mammalian cell membranes is fundamental to develop gene and cell therapies based on macromolecular cargo delivery, a process that emerged against an increasing number of health afflictions, including genetic disorders, cancer and infections. Viral vectors have been successfully used for macromolecular delivery; however, they may have unpredictable side effects and have been limited to life-threatening cases. Thus, several chemical and physical methods have been explored to introduce drugs, vaccines, and nucleic acids into cells. One of the most appealing physical methods to deliver genes into cells is shock wave-induced poration. High-speed microjets of fluid, emitted due to the collapse of microbubbles after shock wave passage, represent the most significant mechanism that contributes to cell membrane poration by this technique. Herein, progress in shock wave-induced permeabilization of mammalian cells is presented. After covering the main concepts related to molecular strategies whose applications depend on safer drug delivery methods, the physics behind shock wave phenomena is described. Insights into the use of shock waves for cell membrane permeation are discussed, along with an overview of the two major biomedical applications thereof-i.e., genetic modification and anti-cancer shock wave-assisted chemotherapy. The aim of this review is to summarize 30 years of data showing underwater shock waves as a safe, noninvasive method for macromolecular delivery into mammalian cells, encouraging the development of further research, which is still required before the introduction of this promising tool into clinical practice.
Collapse
Affiliation(s)
- Luz M López-Marín
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico.
| | - Ana Leonor Rivera
- Instituto de Ciencias Nucleares & Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico.
| | - Francisco Fernández
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico.
| | - Achim M Loske
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, 76230 Querétaro, Qro., Mexico.
| |
Collapse
|
26
|
Li L, Zhao Y, Yu R, Chen T, Chu X. Novel Sensitive Fluorometric Determination of Exonuclease I Using Polydopamine Nanospheres. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1368530] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Li Li
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yanyan Zhao
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Ruqin Yu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Tingting Chen
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xia Chu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
27
|
Shapiro JA. Living Organisms Author Their Read-Write Genomes in Evolution. BIOLOGY 2017; 6:E42. [PMID: 29211049 PMCID: PMC5745447 DOI: 10.3390/biology6040042] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/17/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
Evolutionary variations generating phenotypic adaptations and novel taxa resulted from complex cellular activities altering genome content and expression: (i) Symbiogenetic cell mergers producing the mitochondrion-bearing ancestor of eukaryotes and chloroplast-bearing ancestors of photosynthetic eukaryotes; (ii) interspecific hybridizations and genome doublings generating new species and adaptive radiations of higher plants and animals; and, (iii) interspecific horizontal DNA transfer encoding virtually all of the cellular functions between organisms and their viruses in all domains of life. Consequently, assuming that evolutionary processes occur in isolated genomes of individual species has become an unrealistic abstraction. Adaptive variations also involved natural genetic engineering of mobile DNA elements to rewire regulatory networks. In the most highly evolved organisms, biological complexity scales with "non-coding" DNA content more closely than with protein-coding capacity. Coincidentally, we have learned how so-called "non-coding" RNAs that are rich in repetitive mobile DNA sequences are key regulators of complex phenotypes. Both biotic and abiotic ecological challenges serve as triggers for episodes of elevated genome change. The intersections of cell activities, biosphere interactions, horizontal DNA transfers, and non-random Read-Write genome modifications by natural genetic engineering provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
28
|
Melkikh AV, Khrennikov A. Molecular recognition of the environment and mechanisms of the origin of species in quantum-like modeling of evolution. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:61-79. [DOI: 10.1016/j.pbiomolbio.2017.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/15/2017] [Accepted: 04/26/2017] [Indexed: 01/25/2023]
|
29
|
Abstract
Many of the most important evolutionary variations that generated phenotypic adaptations and originated novel taxa resulted from complex cellular activities affecting genome content and expression. These activities included (i) the symbiogenetic cell merger that produced the mitochondrion-bearing ancestor of all extant eukaryotes, (ii) symbiogenetic cell mergers that produced chloroplast-bearing ancestors of photosynthetic eukaryotes, and (iii) interspecific hybridizations and genome doublings that generated new species and adaptive radiations of higher plants and animals. Adaptive variations also involved horizontal DNA transfers and natural genetic engineering by mobile DNA elements to rewire regulatory networks, such as those essential to viviparous reproduction in mammals. In the most highly evolved multicellular organisms, biological complexity scales with 'non-coding' DNA content rather than with protein-coding capacity in the genome. Coincidentally, 'non-coding' RNAs rich in repetitive mobile DNA sequences function as key regulators of complex adaptive phenotypes, such as stem cell pluripotency. The intersections of cell fusion activities, horizontal DNA transfers and natural genetic engineering of Read-Write genomes provide a rich molecular and biological foundation for understanding how ecological disruptions can stimulate productive, often abrupt, evolutionary transformations.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
30
|
Miller WB, Torday JS. A systematic approach to cancer: evolution beyond selection. Clin Transl Med 2017; 6:2. [PMID: 28050778 PMCID: PMC5209328 DOI: 10.1186/s40169-016-0131-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer is typically scrutinized as a pathological process characterized by chromosomal aberrations and clonal expansion subject to stochastic Darwinian selection within adaptive cellular ecosystems. Cognition based evolution is suggested as an alternative approach to cancer development and progression in which neoplastic cells of differing karyotypes and cellular lineages are assessed as self-referential agencies with purposive participation within tissue microenvironments. As distinct self-aware entities, neoplastic cells occupy unique participant/observer status within tissue ecologies. In consequence, neoplastic proliferation by clonal lineages is enhanced by the advantaged utilization of ecological resources through flexible re-connection with progenitor evolutionary stages.
Collapse
Affiliation(s)
| | - John S Torday
- Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| |
Collapse
|
31
|
Aucamp J, Bronkhorst AJ, Badenhorst CPS, Pretorius PJ. A historical and evolutionary perspective on the biological significance of circulating DNA and extracellular vesicles. Cell Mol Life Sci 2016; 73:4355-4381. [PMID: 27652382 PMCID: PMC11108302 DOI: 10.1007/s00018-016-2370-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/20/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The discovery of quantitative and qualitative differences of the circulating DNA (cirDNA) between healthy and diseased individuals inclined researchers to investigate these molecules as potential biomarkers for non-invasive diagnosis and prognosis of various pathologies. However, except for some prenatal tests, cirDNA analyses have not been readily translated to clinical practice due to a lack of knowledge regarding its composition, function, and biological and evolutionary origins. We believe that, to fully grasp the nature of cirDNA and the extracellular vesicles (EVs) and protein complexes with which it is associated, it is necessary to probe the early and badly neglected work that contributed to the discovery and development of these concepts. Accordingly, this review consists of a schematic summary of the major events that developed and integrated the concepts of heredity, genetic information, cirDNA, EVs, and protein complexes. CirDNA enters target cells and provokes a myriad of gene regulatory effects associated with the messaging functions of various natures, disease progression, somatic genome variation, and transgenerational inheritance. This challenges the traditional views on each of the former topics. All of these discoveries can be traced directly back to the iconic works of Darwin, Lamarck, and their followers. The history of cirDNA that has been revisited here is rich in information that should be considered in clinical practice, when designing new experiments, and should be very useful for generating an empirically up-to-date view of cirDNA and EVs. Furthermore, we hope that it will invite many flights of speculation and stimulate further inquiry into its biological and evolutionary origins.
Collapse
Affiliation(s)
- Janine Aucamp
- Centre for Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, 2520, South Africa.
| | - Abel J Bronkhorst
- Centre for Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, 2520, South Africa
| | - Christoffel P S Badenhorst
- Department of Biotechnology and Enzyme Catalysis, Institute of Biochemistry, Greifswald University, Felix-Hausdorff-Str. 4, 17487, Greifswald, Germany
| | - Piet J Pretorius
- Centre for Human Metabolomics, Biochemistry Division, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
32
|
Shapiro JA. Exploring the read-write genome: mobile DNA and mammalian adaptation. Crit Rev Biochem Mol Biol 2016; 52:1-17. [DOI: 10.1080/10409238.2016.1226748] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- James A. Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Shapiro JA. Nothing in Evolution Makes Sense Except in the Light of Genomics: Read-Write Genome Evolution as an Active Biological Process. BIOLOGY 2016; 5:E27. [PMID: 27338490 PMCID: PMC4929541 DOI: 10.3390/biology5020027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 01/15/2023]
Abstract
The 21st century genomics-based analysis of evolutionary variation reveals a number of novel features impossible to predict when Dobzhansky and other evolutionary biologists formulated the neo-Darwinian Modern Synthesis in the middle of the last century. These include three distinct realms of cell evolution; symbiogenetic fusions forming eukaryotic cells with multiple genome compartments; horizontal organelle, virus and DNA transfers; functional organization of proteins as systems of interacting domains subject to rapid evolution by exon shuffling and exonization; distributed genome networks integrated by mobile repetitive regulatory signals; and regulation of multicellular development by non-coding lncRNAs containing repetitive sequence components. Rather than single gene traits, all phenotypes involve coordinated activity by multiple interacting cell molecules. Genomes contain abundant and functional repetitive components in addition to the unique coding sequences envisaged in the early days of molecular biology. Combinatorial coding, plus the biochemical abilities cells possess to rearrange DNA molecules, constitute a powerful toolbox for adaptive genome rewriting. That is, cells possess "Read-Write Genomes" they alter by numerous biochemical processes capable of rapidly restructuring cellular DNA molecules. Rather than viewing genome evolution as a series of accidental modifications, we can now study it as a complex biological process of active self-modification.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCIS W123B, 979 E. 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Igamberdiev AU, Shklovskiy-Kordi NE. Computational power and generative capacity of genetic systems. Biosystems 2016; 142-143:1-8. [DOI: 10.1016/j.biosystems.2016.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 01/01/2023]
|
35
|
Koonin EV, Wolf YI. Just how Lamarckian is CRISPR-Cas immunity: the continuum of evolvability mechanisms. Biol Direct 2016; 11:9. [PMID: 26912144 PMCID: PMC4765028 DOI: 10.1186/s13062-016-0111-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/16/2016] [Indexed: 12/22/2022] Open
Abstract
The CRISPR-Cas system of prokaryotic adaptive immunity displays features of a mechanism for directional, Lamarckian evolution. Indeed, this system modifies a specific locus in a bacterial or archaeal genome by inserting a piece of foreign DNA into a CRISPR array which results in acquired, heritable resistance to the cognate selfish element. A key element of the Lamarckian scheme is the specificity and directionality of the mutational process whereby an environmental cue causes only mutations that provide specific adaptations to the original challenge. In the case of adaptive immunity, the specificity of mutations is equivalent to self-nonself discrimination. Recent studies on the CRISPR mechanism have shown that the levels of discrimination can substantially differ such that in some CRISPR-Cas variants incorporation of DNA is random whereas discrimination occurs by selection of cells that carry cognate inserts. In other systems, a higher level of specificity appears to be achieved via specialized mechanisms. These findings emphasize the continuity between random and directed mutations and the critical importance of evolved mechanisms that govern the mutational process.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, MD, 20894, USA.
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institute of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
36
|
Davies PC, Agus DB. Stochasticity and determinism in cancer creation and progression. CONVERGENT SCIENCE PHYSICAL ONCOLOGY 2016; 1. [PMID: 29170717 DOI: 10.1088/2057-1739/1/2/026003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Paul C Davies
- Beyond Center for Fundamental Concepts in Science, Arizona State University, Tempe, AZ 85287-1504
| | - David B Agus
- Center for Applied Molecular Medicine, University of Southern California, Beverly Hills, CA 90211
| |
Collapse
|
37
|
Shapiro JA. The basic concept of the read-write genome: Mini-review on cell-mediated DNA modification. Biosystems 2015; 140:35-7. [PMID: 26571358 DOI: 10.1016/j.biosystems.2015.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 12/28/2022]
Abstract
The RW genome is a cell-modifiable DNA database encoding RNA and protein sequences. The data files are formatted by repetitive motifs for controlled replication, transmission, expression and repair. Cells have the biochemical natural genetic engineering (NGE) tools needed to make all types of changes to genome DNA. Mobile DNA elements serve as plug-in cassettes that can modify or reformat coding data. Cells regulate and target NGE activities by several well-documented molecular mechanisms. Sequence databases show NGE has operated repeatedly in evolutionary history (e.g., domain swapping in proteins, network rewiring), while experimental studies and cancer cells provide real time examples of NGE action. Experimental tests are feasible to determine whether NGE activities operate in a demonstrably adaptive manner.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, United States.
| |
Collapse
|
38
|
Pilpel Y, Rechavi O. The Lamarckian chicken and the Darwinian egg. Biol Direct 2015; 10:34. [PMID: 26126811 PMCID: PMC4486432 DOI: 10.1186/s13062-015-0062-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 06/22/2015] [Indexed: 11/10/2022] Open
Abstract
"Which came first, the Chicken or the Egg?" We suggest this question is not a paradox. The Modern Synthesis envisions speciation through genetic changes in germ cells via random mutations, an "Egg first" scenario, but perhaps epigenetic inheritance mechanisms can transmit adaptive changes initiated in the soma ("Chicken first").
Collapse
Affiliation(s)
- Yitzhak Pilpel
- Department of Molecular genetics, Weizmann Institute of Science, Rehovot, 76100, Israel.
| | - Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences & Sagol School, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
39
|
Abstract
Poised at a critical turning point in the history of genetics, recent work (e.g. in genomics, epigenetics, genomic plasticity) obliges us to critically reexamine many of our most basic concepts. For example, I argue that genomic research supports a radical transformation in our understanding of the genome--a shift from an earlier conception of that entity as an effectively static collection of active genes to that of a dynamic and reactive system dedicated to the context specific regulation of protein-coding sequences.
Collapse
Affiliation(s)
- Evelyn Fox Keller
- MIT, Program in Science, Technology, and Society, Cambridge, MA 02139, USA
| |
Collapse
|
40
|
Abstract
Manfred Eigen extended Erwin Schroedinger's concept of "life is physics and chemistry" through the introduction of information theory and cybernetic systems theory into "life is physics and chemistry and information." Based on this assumption, Eigen developed the concepts of quasispecies and hypercycles, which have been dominant in molecular biology and virology ever since. He insisted that the genetic code is not just used metaphorically: it represents a real natural language. However, the basics of scientific knowledge changed dramatically within the second half of the 20th century. Unfortunately, Eigen ignored the results of the philosophy of science discourse on essential features of natural languages and codes: a natural language or code emerges from populations of living agents that communicate. This contribution will look at some of the highlights of this historical development and the results relevant for biological theories about life.
Collapse
|
41
|
Neuman Y. Personality from a cognitive-biological perspective. Phys Life Rev 2014; 11:650-86. [DOI: 10.1016/j.plrev.2014.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
|
42
|
Witzany G. RNA sociology: group behavioral motifs of RNA consortia. Life (Basel) 2014; 4:800-18. [PMID: 25426799 PMCID: PMC4284468 DOI: 10.3390/life4040800] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/11/2014] [Accepted: 11/12/2014] [Indexed: 02/07/2023] Open
Abstract
RNA sociology investigates the behavioral motifs of RNA consortia from the social science perspective. Besides the self-folding of RNAs into single stem loop structures, group building of such stem loops results in a variety of essential agents that are highly active in regulatory processes in cellular and non-cellular life. RNA stem loop self-folding and group building do not depend solely on sequence syntax; more important are their contextual (functional) needs. Also, evolutionary processes seem to occur through RNA stem loop consortia that may act as a complement. This means the whole entity functions only if all participating parts are coordinated, although the complementary building parts originally evolved for different functions. If complementary groups, such as rRNAs and tRNAs, are placed together in selective pressure contexts, new evolutionary features may emerge. Evolution initiated by competent agents in natural genome editing clearly contrasts with statistical error replication narratives.
Collapse
Affiliation(s)
- Guenther Witzany
- Telos-Philosophische Praxis, Vogelsangstraße 18c, 5111-Buermoos, Austria.
| |
Collapse
|
43
|
Escobedo FA. Engineering entropy in soft matter: the bad, the ugly and the good. SOFT MATTER 2014; 10:8388-8400. [PMID: 25164392 DOI: 10.1039/c4sm01646g] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The role of entropic interactions, often subtle and sometimes crucial, on the structure and properties of soft matter has a well-recognized place in the classic and modern scientific literature. However, the lessons learned from many of those studies do not always form part of the standard arsenal of strategies that are taught or used for de novo studies relevant to the engineering of new materials. Fortunately, a growing number of examples exist where entropic effects have been designed a priori to achieve a desired or new outcome. This tutorial review describes some recent such examples, selected to illustrate the potential benefits of a more pro-active approach to harnessing the often overlooked power of entropy.
Collapse
Affiliation(s)
- Fernando A Escobedo
- School of Chemical & Biomolecular Engineering, Cornell University, Ithaca, NY 14953, USA.
| |
Collapse
|
44
|
|
45
|
Ho MW. Horizontal transfer of GM DNA - why is almost no one looking? Open letter to Kaare Nielsen in his capacity as a member of the European Food Safety Authority GMO panel. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2014; 25:25919. [PMID: 25317115 PMCID: PMC4176668 DOI: 10.3402/mehd.v25.25919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
A culture of denial over the horizontal spread of genetically modified nucleic acids prevails in the face of direct evidence that it has occurred widely when appropriate methods and molecular probes are used for detection.
Collapse
Affiliation(s)
- Mae-Wan Ho
- Institute of Science in Society, London, UK
| |
Collapse
|
46
|
Igamberdiev AU. Time rescaling and pattern formation in biological evolution. Biosystems 2014; 123:19-26. [DOI: 10.1016/j.biosystems.2014.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/14/2014] [Accepted: 03/20/2014] [Indexed: 01/15/2023]
|
47
|
Zhang Q, Bos J, Tarnopolskiy G, Sturm JC, Kim H, Pourmand N, Austin RH. You cannot tell a book by looking at the cover: Cryptic complexity in bacterial evolution. BIOMICROFLUIDICS 2014; 8:052004. [PMID: 25332728 PMCID: PMC4189396 DOI: 10.1063/1.4894410] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/20/2014] [Indexed: 06/04/2023]
Abstract
Do genetically closely related organisms under identical, but strong selection pressure converge to a common resistant genotype or will they diverge to different genomic solutions? This question gets at the heart of how rough is the fitness landscape in the local vicinity of two closely related strains under stress. We chose a Growth Advantage in Stationary Phase (GASP) E scherichia coli strain to address this question because the GASP strain has very similar fitness to the wild-type (WT) strain in the absence of metabolic stress but in the presence of metabolic stress continues to divide and does not enter into stationary phase. We find that under strong antibiotic selection pressure by the fluoroquinolone antibiotic ciprofloxacin in a complex ecology that the GASP strain rapidly evolves in under 20 h missense mutation in gyrA only 2 amino acids removed from the WT strain indicating a convergent solution, yet does not evolve the other 3 mutations of the WT strain. Further the GASP strain evolves a prophage e14 excision which completely inhibits biofilm formation in the mutant strain, revealing the hidden complexity of E. coli evolution to antibiotics as a function of selection pressure. We conclude that there is a cryptic roughness to fitness landscapes in the absence of stress.
Collapse
Affiliation(s)
- Qiucen Zhang
- Department of Physics, University of Illinois , Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Julia Bos
- Department of Physics, Princeton University , Princeton, New Jersey 08544, USA
| | | | - James C Sturm
- Department of Electrical Engineering, Princeton University , Princeton, New Jersey 08544, USA
| | - Hyunsung Kim
- Genome Sequencing Center, University of California , Santa Cruz, California 95064, USA
| | - Nader Pourmand
- Genome Sequencing Center, University of California , Santa Cruz, California 95064, USA
| | - Robert H Austin
- Department of Physics, Princeton University , Princeton, New Jersey 08544, USA
| |
Collapse
|
48
|
Witzany G. Pragmatic turn in biology: From biological molecules to genetic content operators. World J Biol Chem 2014; 5:279-285. [PMID: 25225596 PMCID: PMC4160522 DOI: 10.4331/wjbc.v5.i3.279] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/12/2014] [Accepted: 05/19/2014] [Indexed: 02/05/2023] Open
Abstract
Erwin Schrödinger‘s question “What is life?” received the answer for decades of “physics + chemistry”. The concepts of Alain Turing and John von Neumann introduced a third term: “information”. This led to the understanding of nucleic acid sequences as a natural code. Manfred Eigen adapted the concept of Hammings “sequence space”. Similar to Hilbert space, in which every ontological entity could be defined by an unequivocal point in a mathematical axiomatic system, in the abstract ”sequence space” concept each point represents a unique syntactic structure and the value of their separation represents their dissimilarity. In this concept molecular features of the genetic code evolve by means of self-organisation of matter. Biological selection determines the fittest types among varieties of replication errors of quasi-species. The quasi-species concept dominated evolution theory for many decades. In contrast to this, recent empirical data on the evolution of DNA and its forerunners, the RNA-world and viruses indicate cooperative agent-based interactions. Group behaviour of quasi-species consortia constitute de novo and arrange available genetic content for adaptational purposes within real-life contexts that determine epigenetic markings. This review focuses on some fundamental changes in biology, discarding its traditional status as a subdiscipline of physics and chemistry.
Collapse
|
49
|
Abstract
Discoveries in cytogenetics, molecular biology, and genomics have revealed that genome change is an active cell-mediated physiological process. This is distinctly at variance with the pre-DNA assumption that genetic changes arise accidentally and sporadically. The discovery that DNA changes arise as the result of regulated cell biochemistry means that the genome is best modelled as a read-write (RW) data storage system rather than a read-only memory (ROM). The evidence behind this change in thinking and a consideration of some of its implications are the subjects of this article. Specific points include the following: cells protect themselves from accidental genome change with proofreading and DNA damage repair systems; localized point mutations result from the action of specialized trans-lesion mutator DNA polymerases; cells can join broken chromosomes and generate genome rearrangements by non-homologous end-joining (NHEJ) processes in specialized subnuclear repair centres; cells have a broad variety of natural genetic engineering (NGE) functions for transporting, diversifying and reorganizing DNA sequences in ways that generate many classes of genomic novelties; natural genetic engineering functions are regulated and subject to activation by a range of challenging life history events; cells can target the action of natural genetic engineering functions to particular genome locations by a range of well-established molecular interactions, including protein binding with regulatory factors and linkage to transcription; and genome changes in cancer can usefully be considered as consequences of the loss of homeostatic control over natural genetic engineering functions.
Collapse
Affiliation(s)
- James A Shapiro
- Department of Biochemistry and Molecular Biology, University of Chicago, GCISW123B, 979 E. 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
50
|
Grilli J, Romano M, Bassetti F, Cosentino Lagomarsino M. Cross-species gene-family fluctuations reveal the dynamics of horizontal transfers. Nucleic Acids Res 2014; 42:6850-60. [PMID: 24829449 PMCID: PMC4066789 DOI: 10.1093/nar/gku378] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that abundance fluctuations are related to the rate of horizontal transfers. This is rationalized by a minimal theoretical model, which predicts this link. The families that are not captured by the model show abundance profiles that are markedly peaked around a mean value, possibly because of specific abundance selection. Based on these results, we define an abundance variability index that captures a family's evolutionary behavior (and thus some of its relevant functional properties) purely based on its cross-species abundance fluctuations. Analysis and model, combined, show a quantitative link between cross-species family abundance statistics and horizontal transfer dynamics, which can be used to analyze genome ‘flux’. Groups of families with different values of the abundance variability index correspond to genome sub-parts having different plasticity in terms of the level of horizontal exchange allowed by natural selection.
Collapse
Affiliation(s)
- Jacopo Grilli
- Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, Via Marzolo 8, I-35131 Padova, Italy
| | - Mariacristina Romano
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria, 16, 20133 Milano, Italy
| | - Federico Bassetti
- Università di Pavia, Dipartimento di Matematica, via Ferrata 1, 27100 Pavia, Italy
| | - Marco Cosentino Lagomarsino
- CNRS, UMR 7238, Paris, France Sorbonne Universités, UPMC Université Paris 06, UMR 7238 Computational and Quantitative Biology, Genomic Physics Group, 15 rue de l'École de Médecine, Paris, France
| |
Collapse
|