1
|
Lou S, Dai C, Wu Y, Wang L, Jin Y, Shen N, Lv W, Wu M, Xu X, Han J, Fan X. Betulonic acid: A review on its sources, biological activities, and molecular mechanisms. Eur J Pharmacol 2025; 998:177518. [PMID: 40107338 DOI: 10.1016/j.ejphar.2025.177518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Pentacyclic triterpenoids represent a significant class of phytochemicals, categorized into oleanane, ursane, friedelane, and lupane. Among these, betulonic acid stands out as a lupane-type pentacyclic triterpenoid found in numerous plants. Its diverse biological properties, including anti-tumor, anti-viral, anti-inflammatory, anti-bacterial, and hepato-protective effects, have been extensively documented. To further explore the therapeutic potential of betulonic acid and its derivatives, we provide a comprehensive review of their sources, biological activities, and molecular mechanisms. We aim for this synthesis of data to stimulate fresh perspectives on betulonic acid and its potential in drug discovery.
Collapse
Affiliation(s)
- Shengying Lou
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Chunyan Dai
- Department of Pathology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
| | - Yuhua Wu
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Lijiang Wang
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Yuancheng Jin
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Naitao Shen
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Wang Lv
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Miaolian Wu
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Xiaojun Xu
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| | - Jichun Han
- College of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, China.
| | - Xiangcheng Fan
- Department of Pathology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China; Center for Innovative Traditional Chinese Medicine Target and New Drug Research, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China.
| |
Collapse
|
2
|
Dangroo NA, Moussa Z, Alluhaibi MS, Alsimaree AA, Hawsawi MB, Alsantali RI, Singh J, Gupta N, S M B, Karunakar P, Mir JM, Rather MA, Ahmed SA. Novel C-3 and C-20 derived analogs of betulinic acid as potent cytotoxic agents: design, synthesis, in vitro and in silico studies. RSC Adv 2025; 15:15164-15177. [PMID: 40343306 PMCID: PMC12061048 DOI: 10.1039/d5ra01038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/29/2025] [Indexed: 05/11/2025] Open
Abstract
In this report, novel derivatives of betulinic acid were designed and synthesized by targeting the C-3-OH group and C-20 olefinic bond in an endeavour to develop potent antitumor agents. These analogs were screened for their anticancer activity against six different human cancer cell lines including breast cancer MCF-7, lung cancer A549, colon cancer HCT-116, leukemia MOLT-4, prostate carcinoma cell PC-3 and pancreatic cancer cell Miapaca-2 by MTT assay. Many derivatives displayed better cytotoxicity than the parent compound BA. More significantly compounds 9b, 9e, 10 and 11a were found to have more promising activity than BA. Compound 11a was the most potent analog with IC50 values of 7.15 (MCF-7), 8.0 (A549), 3.13 (HCT-116), 13.88 (MOLT-4), 8.0 (PC-3) and 6.96 (MiaPaCa-2) μM. In addition to experimental investigations, in silico aspects were evaluated for the parent compound, BA and 11a derivative based on its potential bioactive behaviour. The representative compounds were optimized structurally using density functional theory (DFT). GaussView 6.1 graphical interface associated GAUSSIAN 09 (Revision C.01) software package was used for the calculations under 6-311g(d,p)/B3LYP formalism using under a SMD model (water as solvent) for the parent compound BA and 11a to explain the respective bioactive behaviour. This was followed by molecular docking studies suggesting that compound 11a binds efficiently with all the three proteins with the docking score of -7.2 kcal mol-1 in the case of matrix metalloproteinase-2 (PDB ID: 1HOV) and poly[ADP-ribose] polymerase-1 (PDB ID: 1UK0) and -6.7 kcal mol-1 in the case of TRAF2 (PDB ID: 2X7F). Further, molecular dynamics studies between 11a and the three proteins were carried out using Desmond Maestro v11.3 to study protein-ligand interactions and protein stability.
Collapse
Affiliation(s)
- Nisar A Dangroo
- Department of Chemistry, Islamic University of Science and Technology Awantipora J & K 192122 India
| | - Ziad Moussa
- Department of Chemistry, College of Science, United Arab Emirates University P. O. Box 15551 Al Ain United Arab Emirates
| | - Mustafa S Alluhaibi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Abdulrahman A Alsimaree
- Department of Chemistry, College of Science and Humanities, Shaqra University Shaqra Saudi Arabia
| | - Mohammed B Hawsawi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
| | - Reem I Alsantali
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University P. O. Box 11099 Taif 21944 Saudi Arabia
| | | | - Nidhi Gupta
- MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana-Ambala Haryana 133207 India
| | - Basavarajaiah S M
- PG Department of Chemistry, Vijaya College R. V. Road Bengaluru 560 004 Karnataka India
| | - Prashantha Karunakar
- Department of Biotechnology, Dayananda Sagar College of Engineering (Affiliated to Visvesvaraya Technological University, Belagavi) Kumaraswamy Layout Bangalore 560111 Karnataka India
| | - J M Mir
- Department of Chemistry, Islamic University of Science and Technology Awantipora J & K 192122 India
| | - Manzoor A Rather
- Department of Chemistry, Islamic University of Science and Technology Awantipora J & K 192122 India
| | - Saleh A Ahmed
- Department of Chemistry, Faculty of Science, Umm Al-Qura University 21955 Makkah Saudi Arabia
- Department of Chemistry, Faculty of Science, Assiut University 71516 Assiut Egypt
| |
Collapse
|
3
|
Sahoo DR, Babu SK, Naik BB, Hota SS, Bhoi N, Sarkar B, Ali SKM, Naik PK. UPLC-QToF-MS/MS screening and characterization of Symphorema polyandrum Wight and in vitro assessment of its antioxidant, anticancer, and anti-inflammatory potential. 3 Biotech 2024; 14:298. [PMID: 39544488 PMCID: PMC11557855 DOI: 10.1007/s13205-024-04144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024] Open
Abstract
Symphorema polyandrum belongs to the Lamiaceae family and is locally known as Badichang or mahasindhu. In this study, we performed Soxhlet extraction to prepare methanolic and hydromethanolic extracts, followed by quantification of their total phenolic content and total flavonoid content. Qualitative analysis of both the extracts was conducted to determine the presence of different phytochemicals. In addition, we aimed to identify the important phytochemical constituents in the methanolic extracts of S. polyandrum (SPM) using ultra-performance liquid chromatography hyphenated with high-resolution mass spectrometry (UPLC-ESI-QTOF-MSE). Furthermore, this study investigated the antioxidant, anticancer and anti-inflammatory properties of SPM and its safety profile in the normal fibroblast cell line L929. A colony proliferation assay and a Griess assay were performed to evaluate the effects of SPM on colony formation and nitric oxide (NO) production. A total of 13 important phytochemicals were identified and reported. The methanolic extract of SPM demonstrated significant antioxidant activity. SPM also showed substantial antiproliferative activity on MDA-MB-231 triple-negative breast cancer cells, with an IC50 value of 45.53 ± 1.63 µg/ml, and also reduced the survival of these cancer cells by promoting nuclear fragmentation and condensation without causing harm to normal cells. SPM inhibits the colony formation and reduces the nitric oxide (NO) production. The anti-inflammatory potential of SPM was assessed utilizing the murine alveolar macrophages (J774.A.1) as an in vitro model, and SPM effectively lowered the levels of proinflammatory cytokines such as TNF-α and IL-6. These findings emphasized the antiproliferative potential of SPM to cancer cells, along with its anti-inflammatory, and antioxidant capabilities, indicating the therapeutic efficacy of this medicinal plant.
Collapse
Affiliation(s)
- Dibya Ranjan Sahoo
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768 019 India
| | - Swaraj Kumar Babu
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768 019 India
| | - Baishali Basundhara Naik
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768 019 India
| | - Sajna Sameekshya Hota
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768 019 India
| | - Namita Bhoi
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768 019 India
| | - Barun Sarkar
- Waters India Private Limited, Unit No. 902, 9th Floor, Merlin Infinite, DN 51, Sector-V, Salt Lake City, Kolkata, West Bengal 700091 India
| | - S. K. Mustaq Ali
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768 019 India
| | - Pradeep Kumar Naik
- Centre of Excellence in Natural Products and Therapeutics, Department of Biotechnology and Bioinformatics, Sambalpur University, Jyoti Vihar, Burla, Sambalpur, Odisha 768 019 India
| |
Collapse
|
4
|
Zhao X, Chinnathambi A, Alharbi SA, Natarajan N, Raman M. Nerolidol, Bioactive Compound Suppress Growth of HCT-116 Colorectal Cancer Cells Through Cell Cycle Arrest and Induction of Apoptosis. Appl Biochem Biotechnol 2024; 196:1365-1375. [PMID: 37395945 DOI: 10.1007/s12010-023-04612-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
Colon cancer is the most prevalent cancer and causes the highest cancer-associated mortality in both men and women globally. It has a high incidence and fatality rate, which places a significant burden on the healthcare system. The current work was performed to understand the beneficial roles of nerolidol on the viability and cytotoxic mechanisms in the colon cancer HCT-116 cells. The MTT cytotoxicity assay was done to investigate the effect of nerolidol at different doses (5-100 µM) on the HCT-116 cell viability. The impacts of nerolidol on ROS accumulation and apoptosis were investigated using DCFH-DA, DAPI, and dual staining assays, respectively. The flow cytometry analysis was performed to study the influence of nerolidol on the cell cycle arrest in the HCT-116 cells. The outcomes of the MTT assay demonstrated that nerolidol at different doses (5-100 µM) substantially inhibited the HCT-116 cell viability with an IC50 level of 25 µM. The treatment with nerolidol appreciably boosted the ROS level in the HCT-116 cells. The findings of DAPI and dual staining revealed higher apoptotic incidences in the nerolidol-exposed HCT-116 cells, which supports its ability to stimulate apoptosis. The flow cytometry analysis demonstrated the considerable inhibition in cell cycle at the G0/G1 phase in the nerolidol-exposed HCT-116 cells. Our research showed that nerolidol can inhibit the cell cycle, increase ROS accumulation, and activate apoptosis in HCT-116 cells. In light of this, it may prove to be a potent and salutary candidate to treat colon cancer.
Collapse
Affiliation(s)
- Xiaoqian Zhao
- Nuclear Medicine Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Nandakumar Natarajan
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX, 75708, USA
| | - Muthusamy Raman
- Department of Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, 600077, Tamil Nadu, India.
| |
Collapse
|
5
|
Kapoor S, Padwad YS. Phloretin induces G2/M arrest and apoptosis by suppressing the β-catenin signaling pathway in colorectal carcinoma cells. Apoptosis 2023; 28:810-829. [PMID: 36884140 DOI: 10.1007/s10495-023-01826-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
Colorectal carcinoma (CRC) is the third most prevalent cancer, causing a significant mortality worldwide. Present available therapies are surgery, chemotherapy including radiotherapy, and these are known to be associated with heavy side effects. Therefore, nutritional intervention in the form of natural polyphenols has been well recognised to prevent CRC. Phloretin, a known dihydrochalcone is present in apple, pear and strawberry. This has been proven to induce apoptosis in cancer cells and also exhibited anti-inflammatory activity, thus can be explored as a potential anticancer nutraceutical agent. This study demonstrated phloretin's significant in vitro anticancer activity against CRC. Phloretin suppressed cell proliferation, colony forming ability and cellular migration in human colorectal cancer HCT-116 and SW-480 cells. Results also revealed that phloretin generated reactive oxygen species (ROS) which provoked depolarization of mitochondrial membrane potential (MMP) and further contributed to cytotoxicity in colon cancer cells. Phloretin also modulated the cell cycle regulators including cyclins and cyclin-dependent kinases (CDKs) and halted cell cycle at G2/M phase. Moreover, it also induced apoptosis by regulating the expression of Bax and BCl-2. The Wnt/β-catenin signaling is inactivated by phloretin by targeting the downstream oncogenes namely CyclinD1, c-Myc and Survivin which are involved in the proliferation and apoptosis of colon cancer cells. In our study we showed that lithium chloride (LiCl) induced the expression of β-catenin and its target genes and the co-treatment of phloretin circumvent its effect and downregulated the Wnt/β-catenin signaling. In conclusion, our results strongly suggested that phloretin can be utilized as a nutraceutical anticancer agent for combating CRC.
Collapse
Affiliation(s)
- Smita Kapoor
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Himachal Pradesh, Palampur, 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Himachal Pradesh, Palampur, 176 061, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Shu Y, Li F, Han Y, Wang P, Gao F, Yan M, Liang M, Ma Q, Zhang Y, Ding X, Lei H. Design, synthesis and cytotoxic evaluation of novel betulonic acid-diazine derivatives as potential antitumor agents. Front Chem 2022; 10:969770. [PMID: 36147251 PMCID: PMC9486541 DOI: 10.3389/fchem.2022.969770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
With the purpose to improve antiproliferative activity, 26 new betulonic acid-diazine derivatives were designed and synthesized from betulinic acid. The anticancer activity of these semi-synthetic compounds was evaluated by MTT assay in both tumor cell lines and normal cell line. The results indicated that majority of new compounds exhibited improved antitumor activity compared with the parent compound betulonic acid. Compound BoA2C, in particular, had the most significant action with IC50 value of 3.39 μM against MCF-7 cells, while it showed lower cytotoxicity on MDCK cell line than cisplatin. Furthermore, we discovered that BoA2C strongly increased MCF-7 cell damage mostly by influencing arginine and fatty acid metabolism. In addition, the structure-activity relationships were briefly discussed. The results of this study suggested that the introduction of different diazines at C-28 could selectively inhibit different kinds of cancer cells and might be an effective way to synthesize potent anticancer lead compound from betulonic acid.
Collapse
Affiliation(s)
- Yisong Shu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Feifei Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yaotian Han
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Penglong Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Feng Gao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengmeng Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Miao Liang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, China
- *Correspondence: Qiang Ma, ; Yuzhong Zhang, ; Xia Ding, ; Haimin Lei ,
| | - Yuzhong Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qiang Ma, ; Yuzhong Zhang, ; Xia Ding, ; Haimin Lei ,
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qiang Ma, ; Yuzhong Zhang, ; Xia Ding, ; Haimin Lei ,
| | - Haimin Lei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Qiang Ma, ; Yuzhong Zhang, ; Xia Ding, ; Haimin Lei ,
| |
Collapse
|
7
|
Novel Triterpenic Acid—Benzotriazole Esters Act as Pro-Apoptotic Antimelanoma Agents. Int J Mol Sci 2022; 23:ijms23179992. [PMID: 36077389 PMCID: PMC9456456 DOI: 10.3390/ijms23179992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/15/2022] Open
Abstract
Pentacyclic triterpenes, such as betulinic, ursolic, and oleanolic acids are efficient and selective anticancer agents whose underlying mechanisms of action have been widely investigated. The introduction of N-bearing heterocycles (e.g., triazoles) into the structures of natural compounds (particularly pentacyclic triterpenes) has yielded semisynthetic derivatives with increased antiproliferative potential as opposed to unmodified starting compounds. In this work, we report the synthesis and biological assessment of benzotriazole esters of betulinic acid (BA), oleanolic acid (OA), and ursolic acid (UA) (compounds 1–3). The esters were obtained in moderate yields (28–42%). All three compounds showed dose-dependent reductions in cell viability against A375 melanoma cells and no cytotoxic effects against healthy human keratinocytes. The morphology analysis of treated cells showed characteristic apoptotic changes consisting of nuclear shrinkage, condensation, fragmentation, and cellular membrane disruption. rtPCR analysis reinforced the proapoptotic evidence, showing a reduction in anti-apoptotic Bcl-2 expression and upregulation of the pro-apoptotic Bax. High-resolution respirometry studies showed that all three compounds were able to significantly inhibit mitochondrial function. Molecular docking showed that compounds 1–3 showed an increase in binding affinity against Bcl-2 as opposed to BA, OA, and UA and similar binding patterns compared to known Bcl-2 inhibitors.
Collapse
|
8
|
Xinyi W, Shiqi X, Shishuo C, Yumin S, Jun W. 1,2,3-Triazole derivatives with anti-breast cancer potential. Curr Top Med Chem 2022; 22:1406-1425. [DOI: 10.2174/1568026622666220415225334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Breast cancer is one of the most prevalent malignant diseases and one of the main mortality causes among women across the world. Despite advances in chemotherapy, drug resistance remains major clinical concerns, creating an urgent need to explore novel anti-breast cancer drugs. 1,2,3-Triazole is a privileged moiety, and its derivatives could inhibit cancer cell proliferation, and induce the cell cycle arrest and apoptosis. Accordingly, 1,2,3-triazole derivatives possess profound activity against various cancers including breast cancer. This review summarizes the latest progresses related to the anti-breast cancer potential of 1,2,3-triazole derivatives, covering articles published from January 2017 to December 2021. The mechanisms of action and structure-activity relationships (SARs) are also discussed for further rational design of more effective candidates.
Collapse
Affiliation(s)
- Wu Xinyi
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Xia Shiqi
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Cheng Shishuo
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Shi Yumin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| | - Wang Jun
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, 437100, China
| |
Collapse
|
9
|
Lam BQ, Srivastava R, Morvant J, Shankar S, Srivastava RK. Association of Diabetes Mellitus and Alcohol Abuse with Cancer: Molecular Mechanisms and Clinical Significance. Cells 2021; 10:cells10113077. [PMID: 34831299 PMCID: PMC8620339 DOI: 10.3390/cells10113077] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/28/2021] [Accepted: 11/06/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes mellitus (DM), one of the metabolic diseases which is characterized by sustained hyperglycemia, is a life-threatening disease. The global prevalence of DM is on the rise, mainly in low- and middle-income countries. Diabetes is a major cause of blindness, heart attacks, kidney failure, stroke, and lower limb amputation. Type 2 diabetes mellitus (T2DM) is a form of diabetes that is characterized by high blood sugar and insulin resistance. T2DM can be prevented or delayed by a healthy diet, regular physical activity, maintaining normal body weight, and avoiding alcohol and tobacco use. Ethanol and its metabolites can cause differentiation defects in stem cells and promote inflammatory injury and carcinogenesis in several tissues. Recent studies have suggested that diabetes can be treated, and its consequences can be avoided or delayed with proper management. DM has a greater risk for several cancers, such as breast, colorectal, endometrial, pancreatic, gallbladder, renal, and liver cancer. The incidence of cancer is significantly higher in patients with DM than in those without DM. In addition to DM, alcohol abuse is also a risk factor for many cancers. We present a review of the recent studies investigating the association of both DM and alcohol abuse with cancer incidence.
Collapse
Affiliation(s)
- Bao Q. Lam
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
| | - Rashmi Srivastava
- Department of Pharmacology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA;
| | - Jason Morvant
- Department of Surgery, Ochsner Health System, 120 Ochsner Boulevard, Gretna, LA 70056, USA;
- A.B. Freeman School of Business, Tulane University, New Orleans, LA 70118, USA
| | - Sharmila Shankar
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- John W. Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA 70112, USA
- Southeast Louisiana Veterans Health Care System, New Orleans, LA 70119, USA
| | - Rakesh K. Srivastava
- Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (B.Q.L.); (S.S.)
- A.B. Freeman School of Business, Tulane University, New Orleans, LA 70118, USA
- Department of Genetics, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- Correspondence:
| |
Collapse
|
10
|
Zhong Y, Liang N, Liu Y, Cheng MS. Recent progress on betulinic acid and its derivatives as antitumor agents: a mini review. Chin J Nat Med 2021; 19:641-647. [PMID: 34561074 DOI: 10.1016/s1875-5364(21)60097-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 01/01/2023]
Abstract
Natural products are one of the important sources for the discovery of new drugs. Betulinic acid (BA), a pentacyclic triterpenoid widely distributed in the plant kingdom, exhibits powerful biological effects, including antitumor activity against various types of cancer cells. A considerable number of BA derivatives have been designed and prepared to remove their disadvantages, such as poor water solubility and low bioavailability. This review summarizes the current studies of the structural diversity of antitumor BA derivatives within the last five years, which provides prospects for further research on the structural modification of betulinic acid.
Collapse
Affiliation(s)
- Ye Zhong
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Nan Liang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
11
|
Liang T, Sun X, Li W, Hou G, Gao F. 1,2,3-Triazole-Containing Compounds as Anti-Lung Cancer Agents: Current Developments, Mechanisms of Action, and Structure-Activity Relationship. Front Pharmacol 2021; 12:661173. [PMID: 34177578 PMCID: PMC8226129 DOI: 10.3389/fphar.2021.661173] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is the most common malignancy and leads to around one-quarter of all cancer deaths. Great advances have been achieved in the treatment of lung cancer with novel anticancer agents and improved technology. However, morbidity and mortality rates remain extremely high, calling for an urgent need to develop novel anti-lung cancer agents. 1,2,3-Triazole could be readily interact with diverse enzymes and receptors in organisms through weak interaction. 1,2,3-Triazole can not only be acted as a linker to tether different pharmacophores but also serve as a pharmacophore. This review aims to summarize the recent advances in 1,2,3-triazole-containing compounds with anti-lung cancer potential, and their structure-activity relationship (SAR) together with mechanisms of action is also discussed to pave the way for the further rational development of novel anti-lung cancer candidates.
Collapse
Affiliation(s)
- Ting Liang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangyang Sun
- Department of Interventional Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wenhong Li
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Guihua Hou
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Biomedical Isotope Research Center, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
12
|
Grymel M, Pastuch-Gawołek G, Lalik A, Zawojak M, Boczek S, Krawczyk M, Erfurt K. Glycoconjugation of Betulin Derivatives Using Copper-Catalyzed 1,3-Dipolar Azido-Alkyne Cycloaddition Reaction and a Preliminary Assay of Cytotoxicity of the Obtained Compounds. Molecules 2020; 25:molecules25246019. [PMID: 33353244 PMCID: PMC7766341 DOI: 10.3390/molecules25246019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023] Open
Abstract
Pentacyclic lupane-type triterpenoids, such as betulin and its synthetic derivatives, display a broad spectrum of biological activity. However, one of the major drawbacks of these compounds as potential therapeutic agents is their high hydrophobicity and low bioavailability. On the other hand, the presence of easily transformable functional groups in the parent structure makes betulin have a high synthetic potential and the ability to form different derivatives. In this context, research on the synthesis of new betulin derivatives as conjugates of naturally occurring triterpenoid with a monosaccharide via a linker containing a heteroaromatic 1,2,3-triazole ring was presented. It has been shown that copper-catalyzed 1,3-dipolar azide-alkyne cycloaddition reaction (CuAAC) provides an easy and effective way to synthesize new molecular hybrids based on natural products. The chemical structures of the obtained betulin glycoconjugates were confirmed by spectroscopic analysis. Cytotoxicity of the obtained compounds was evaluated on a human breast adenocarcinoma cell line (MCF-7) and colorectal carcinoma cell line (HCT 116). The obtained results show that despite the fact that the obtained betulin glycoconjugates do not show interesting antitumor activity, the idea of adding a sugar unit to the betulin backbone may, after some modifications, turn out to be correct and allow for the targeted transport of betulin glycoconjugates into the tumor cells.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
- Correspondence: ; Tel.: +48-032-237-1873
| | - Gabriela Pastuch-Gawołek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Anna Lalik
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland
| | - Mateusz Zawojak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
| | - Seweryn Boczek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
| | - Monika Krawczyk
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland; (G.P.-G.); (M.Z.); (S.B.); (M.K.)
- Biotechnology Center, Silesian University of Technology, B. Krzywoustego 8, 44-100 Gliwice, Poland;
| | - Karol Erfurt
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, B. Krzywoustego 4, 44-100 Gliwice, Poland;
| |
Collapse
|
13
|
Li M, Zhang FX, Wei ZC, Li ZT, Zhang GX, Li HJ. Systematically characterization of in vivo substances of Ziziphi Spinosae Semen in rats by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry analysis. J Pharm Biomed Anal 2020; 193:113756. [PMID: 33217708 DOI: 10.1016/j.jpba.2020.113756] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/28/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023]
Abstract
Ziziphi Spinosae Semen (ZSS), the seeds of Ziziphus jujuba var. spinosa, is widely used in China or other Asian countries for the treatment of insomnia and palpitation. In our previous work, chemical constituents in ZSS were profiled by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UHPLC/Q-TOF MS). Notably, characterization of substances in vivo was of great importance to reveal the therapy basis or mechanism in further work. Till now, there were few reports about in vivo substances' investigation of ZSS. In the present study, an integrated strategy contained represented compounds and diagnostic ions extraction was applied to characterize metabolism feature of ZSS in rats based on UHPLC/Q-TOF MS method. First, the metabolic information of four compounds (spinosin, isovitexin, jujuboside B, betulinic acid) featuring three representative chemical structures (flavonoids, saponins, terpenes) in ZSS was conducted, and their metabolism features were summarized, especially for flavonoid C-glycosides. Second, the absorbed compounds and representative compounds-related metabolites were quickly screened out; during this time, the diagnostic ions were sorted out. Last, with the help of diagnostic ions and summarized metabolic reactions, other metabolites were characterized. As a result, a total of 151 xenobiotics (58 prototypes and 93 metabolites) were identified or tentatively characterized in rats after ingestion of ZSS. Among them, 16 substances were presented in plasma, 114 in urine, 51 in bile, and 120 in feces, respectively. Hydrogenation, hydrolysis, and glucuronidation were the major metabolic reactions of ZSS in rats. The present study provided meaningful data for further pharmacological mechanism research or pharmacokinetics evaluation of ZSS.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China; Institute of Traditional Chinese Medicine Emergency Research, Emergency and Trauma College, Hainan Medical University, Haikou 571199, China
| | - Feng-Xiang Zhang
- Department of Gynaecology and Obstetrics, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhuo-Chun Wei
- Department of Pharmacy, The Dongguan Affiliated Hospital of Medical College of Jinan University, Marina Bay Central Hospital of Dongguan City (Also Called The Fifth People's Hospital of Dongguan), Guandong 523900, China
| | - Zi-Ting Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Guo-Xun Zhang
- The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China
| | - Hai-Jun Li
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, China; Institute of Traditional Chinese Medicine Emergency Research, Emergency and Trauma College, Hainan Medical University, Haikou 571199, China.
| |
Collapse
|
14
|
Popov SA, Semenova MD, Baev DS, Frolova TS, Shestopalov MA, Wang C, Qi Z, Shults EE, Turks M. Synthesis and cytotoxicity of hybrids of 1,3,4- or 1,2,5-oxadiazoles tethered from ursane and lupane core with 1,2,3-triazole. Steroids 2020; 162:108698. [PMID: 32687846 DOI: 10.1016/j.steroids.2020.108698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/05/2020] [Accepted: 07/11/2020] [Indexed: 12/21/2022]
Abstract
Ursane and lupane type (1-((5-aryl-1,3,4-oxadiazol-2-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl and (1-((4-methyl-2-oxido-1,2,5-oxadiazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl hybrids were prepared by 1,3-cycloaddition reactions of azole-derived azides with alkyne esters connected to positions C-3 and C-28 of triterpene core and tested for cytotoxicity. Hybrid compounds of 1,3,4-oxadiazoles attached at positions 3- and 28- of triterpenoid frame via triazole spacer and combinations of 1,2,5-oxadiazole or 1,3,4-oxadiazole, tethered with succinate linker and 1,2,3-triazole at the position 3- of the ursane backbone, were inactive in relation to all the cancer cells tested. Eventually, combinations of furoxan fragment and 1,2,3-triazole linked to C-28 position of triterpene backbone demonstrated marked cytotoxic activity towards MCF-7 and HepG2 cells. The most active ester of ursolic acid with (1-((4-methyl-2-oxido-1,2,5-oxadiazol-3-yl)methyl)-1H-1,2,3-triazol-4-yl)methyl substituent and 3-O-acetyl group was superior in activity and selectivity over doxorubicin and ursolic acid on MCF-7 cells. The length of the carbon spacer group may be of crucial importance for cytotoxicity. The introduction of the additional ester linker between the C-28 of triterpenoid and triazole or changing triazole spacer between furoxan moiety and triterpenoid core resulted in activity decrease against all the tested cells. In accordance with molecular modeling results, the activity of new derivatives may be explained in terms of the interaction of the new hybrid molecules and Mdm2 binding sites.
Collapse
Affiliation(s)
- Sergey A Popov
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia.
| | - Marya D Semenova
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Dmitry S Baev
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Tatiana S Frolova
- The Federal Research Center Institute of Cytology and Genetics, Acad. Lavrentyev Ave., 10, 630090 Novosibirsk, Russia; Novosibirsk State University, Pirogova Street, 2, 630090 Novosibirsk, Russia
| | - Michael A Shestopalov
- Nikolaev Institute of Inorganic Chemistry SB RAS, Acad. Lavrentiev ave., 3, 630090 Novosibirsk, Russia
| | - Chengzhang Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Zhiwen Qi
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Elvira E Shults
- Novosibirsk Institute of Organic Chemistry, Acad. Lavrentyev ave. 9, Novosibirsk 630090, Russia
| | - Māris Turks
- Institute of Technology of Organic Chemistry, Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga LV-1048, Latvia
| |
Collapse
|
15
|
Li S, Li XY, Zhang TJ, Zhu J, Xue WH, Qian XH, Meng FH. Design, synthesis and biological evaluation of erythrina derivatives bearing a 1,2,3-triazole moiety as PARP-1 inhibitors. Bioorg Chem 2020; 96:103575. [DOI: 10.1016/j.bioorg.2020.103575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/15/2022]
|
16
|
Abednejad A, Ghaee A, Nourmohammadi J, Mehrizi AA. Hyaluronic acid/ carboxylated Zeolitic Imidazolate Framework film with improved mechanical and antibacterial properties. Carbohydr Polym 2019; 222:115033. [DOI: 10.1016/j.carbpol.2019.115033] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 04/30/2019] [Accepted: 06/26/2019] [Indexed: 01/03/2023]
|
17
|
Xu Z, Zhao SJ, Liu Y. 1,2,3-Triazole-containing hybrids as potential anticancer agents: Current developments, action mechanisms and structure-activity relationships. Eur J Med Chem 2019; 183:111700. [PMID: 31546197 DOI: 10.1016/j.ejmech.2019.111700] [Citation(s) in RCA: 295] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/08/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
Abstract
Anticancer agents are critical for the cancer treatment, but side effects and the drug resistance associated with the currently used anticancer agents create an urgent need to explore novel drugs with low side effects and high efficacy. 1,2,3-Triazole is privileged building block in the discovery of new anticancer agents, and some of its derivatives have already been applied in clinics or under clinical trials for fighting against cancers. Hybrid molecules occupy an important position in cancer control, and hybridization of 1,2,3-triazole framework with other anticancer pharmacophores may provide valuable therapeutic intervention for the treatment of cancer, especially drug-resistant cancer. This review emphasizes the recent advances in 1,2,3-triazole-containing hybrids with anticancer potential, covering articles published between 2015 and 2019, and the structure-activity relationships, together with mechanisms of action are also discussed.
Collapse
Affiliation(s)
- Zhi Xu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, PR China.
| | - Shi-Jia Zhao
- Wuhan University of Science and Technology, Wuhan, PR China
| | - Yi Liu
- Wuhan University of Science and Technology, Wuhan, PR China.
| |
Collapse
|
18
|
Grymel M, Zawojak M, Adamek J. Triphenylphosphonium Analogues of Betulin and Betulinic Acid with Biological Activity: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2019; 82:1719-1730. [PMID: 31141361 DOI: 10.1021/acs.jnatprod.8b00830] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Naturally occurring pentacyclic lupane triterpenoids such as betulin (1) or betulinic acid (2) and their synthetic derivatives display a broad spectrum of biological activities and, therefore, have been the subject of great interest. However, the use of these compounds as potential therapeutic agents is limited by their low bioavailability, high hydrophobicity, and insufficient intracellular accumulation. In this context, research on modifications of the parent structures that will improve their pharmacokinetic properties is particularly important. In the past few years, methods of synthesis as well as cytotoxic and antiparasitic properties of a series of lupane triterpenoids modified by introducing one or two triphenylphosphonium moieties at the C-2, C-3, C-28, or C-30 positions by carbon-carbon or ester bonds have been described. The presence of triphenylphosphonium groups affects not only physical properties but also the mechanism of action of a potential drug. This review summarizes published findings on synthetic methods and biological properties of the triphenylphosphonium derivatives of betulin and betulinic acid.
Collapse
Affiliation(s)
- Mirosława Grymel
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
- Biotechnology Center of Silesian University of Technology , 44-100 Gliwice , Poland
| | - Mateusz Zawojak
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
| | - Jakub Adamek
- Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology , Silesian University of Technology , 44-100 Gliwice , Poland
- Biotechnology Center of Silesian University of Technology , 44-100 Gliwice , Poland
| |
Collapse
|
19
|
Lu GQ, Li XY, Mohamed O K, Wang D, Meng FH. Design, synthesis and biological evaluation of novel uracil derivatives bearing 1, 2, 3-triazole moiety as thymidylate synthase (TS) inhibitors and as potential antitumor drugs. Eur J Med Chem 2019; 171:282-296. [DOI: 10.1016/j.ejmech.2019.03.047] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
|
20
|
Synthesis and Antiproliferative Activity of Novel Heterocyclic Glycyrrhetinic Acid Derivatives. Molecules 2019; 24:molecules24040766. [PMID: 30791593 PMCID: PMC6412232 DOI: 10.3390/molecules24040766] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/05/2019] [Accepted: 02/15/2019] [Indexed: 01/18/2023] Open
Abstract
A new series of glycyrrhetinic acid derivatives has been synthesized via the introduction of different heterocyclic rings conjugated with an α,β-unsaturated ketone in its ring A. These new compounds were screened for their antiproliferative activity in a panel of nine human cancer cell lines. Compound 10 was the most active derivative, with an IC50 of 1.1 µM on Jurkat cells, which is 96-fold more potent than that of glycyrrhetinic acid, and was 4-fold more selective toward that cancer cell line. Further biological studies performed in Jurkat cells showed that compound 10 is a potent inducer of apoptosis that activates both the intrinsic and extrinsic pathways.
Collapse
|
21
|
Csuk R, Deigner HP. The potential of click reactions for the synthesis of bioactive triterpenes. Bioorg Med Chem Lett 2019; 29:949-958. [PMID: 30799214 DOI: 10.1016/j.bmcl.2019.02.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/17/2019] [Accepted: 02/18/2019] [Indexed: 01/03/2023]
Abstract
Click reactions between alkynes and azides using the privileged scaffold of triterpenes have been of interest for biological chemistry. Many publications deal with the synthesis of novel bioactive molecules; these conjugates have also been used for bioanalytical and diagnostic purposes. As a result, conjugates of better physicochemical properties were obtained; even compounds of improved solubility in water and physiological fluids were made through the introduction of a triazol residue. "Hybrid-structures", i.e. molecules consisting of two independently bioactive subunits linked by a triazole residue were higher bioactive than their parent compounds but not as active as expected, and with a few exceptions the ultimate breakthrough has not yet been achieved. Only in the synthesis of compounds with anti-leishmanial activity some new and promising lead structures were found. As a consequence, triazole modified triterpenes seem to hold their greatest future prospect rather as diagnostic reagents and molecular probes than as drugs.
Collapse
Affiliation(s)
- René Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Hans-Peter Deigner
- Furtwangen University, Medical and Life Sciences Faculty, Jakob-Kienzle Str. 17, D-78054 Villingen-Schwenningen, Germany
| |
Collapse
|
22
|
Sousa JLC, Freire CSR, Silvestre AJD, Silva AMS. Recent Developments in the Functionalization of Betulinic Acid and Its Natural Analogues: A Route to New Bioactive Compounds. Molecules 2019; 24:molecules24020355. [PMID: 30669472 PMCID: PMC6359067 DOI: 10.3390/molecules24020355] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/22/2022] Open
Abstract
Betulinic acid (BA) and its natural analogues betulin (BN), betulonic (BoA), and 23-hydroxybetulinic (HBA) acids are lupane-type pentacyclic triterpenoids. They are present in many plants and display important biological activities. This review focuses on the chemical transformations used to functionalize BA/BN/BoA/HBA in order to obtain new derivatives with improved biological activity, covering the period since 2013 to 2018. It is divided by the main chemical transformations reported in the literature, including amination, esterification, alkylation, sulfonation, copper(I)-catalyzed alkyne-azide cycloaddition, palladium-catalyzed cross-coupling, hydroxylation, and aldol condensation reactions. In addition, the synthesis of heterocycle-fused BA/HBA derivatives and polymer‒BA conjugates are also addressed. The new derivatives are mainly used as antitumor agents, but there are other biological applications such as antimalarial activity, drug delivery, bioimaging, among others.
Collapse
Affiliation(s)
- Joana L C Sousa
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Carmen S R Freire
- CICECO, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | - Artur M S Silva
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
23
|
Zhang WD, Jin MM, Jiang HH, Yang JX, Wang Q, Du YF, Cao L, Xu HJ. Study on the metabolites of betulinic acid in vivo and in vitro by ultra high performance liquid chromatography with time-of-flight mass spectrometry. J Sep Sci 2018; 42:628-635. [PMID: 30427118 DOI: 10.1002/jssc.201800960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/06/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022]
Abstract
Betulinic acid is a triterpenoid organic acid with remarkable antitumor properties and is naturally present in many fruits, condiments and traditional Chinese medicines. Currently, a strategy was developed for the identification of metabolites following the in vivo and in vitro biotransformation of Betulinic acid with rat intestinal bacteria utilizing ultra high performance liquid chromatography with time-of-flight mass spectrometry with polymeric solid-phase extraction. As a result, 46 metabolites were structurally characterized. The results demonstrated that Betulinic acid is universally metabolized in vivo and in vitro, and Betulinic acid could undergo general metabolic reactions, including oxidation, methylation, desaturation, loss of O and loss of CH2 . Additionally, the main metabolic pathways in vivo and in vitro were determined by calculating the relative content of each metabolite. This is the first study of Betulinic acid metabolism in vivo, whose results provide novel and useful data for better understanding of the safety and efficacy of Betulinic acid.
Collapse
Affiliation(s)
- Wen-Dan Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Miao-Miao Jin
- Department of Pharmacy, Kailuan General Hospital, Tangshan, P. R. China
| | - Hong-Hong Jiang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Jian-Xi Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Qiao Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Ying-Feng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Liang Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| | - Hui-Jun Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, P. R. China
| |
Collapse
|
24
|
Structure and Anti-HIV Activity of Betulinic Acid Analogues. Curr Med Sci 2018; 38:387-397. [PMID: 30074203 DOI: 10.1007/s11596-018-1891-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/13/2017] [Indexed: 10/28/2022]
Abstract
Firstly discovered in 1980s, human immunodeficiency virus (HIV) continues to affect more and more people. However, there is no effective drug available for the therapy of HIV infection. Betulinic acid existing in various medicinal herbs and fruits exhibits multiple biological effects, especially its outstanding anti-HIV activity, which has drawn the attentions of many pharmacists. Among the derivatives of betulinic acid, some compounds exhibited inhibitory activities at the nanomolar concentration, and have entered phase II clinical trials. This paper summarizes the current investigations on the anti-HIV activity of betulinic acid analogues, and provides valuable data for subsequent researches.
Collapse
|
25
|
Gupta N, Qayum A, Raina A, Shankar R, Gairola S, Singh S, Sangwan PL. Synthesis and biological evaluation of novel bavachinin analogs as anticancer agents. Eur J Med Chem 2018; 145:511-523. [PMID: 29335212 DOI: 10.1016/j.ejmech.2018.01.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 12/10/2017] [Accepted: 01/03/2018] [Indexed: 12/21/2022]
Abstract
A library of 28 analogs of bavachinin including aliphatic and aromatic ethers, epoxide, chalcone, oxime, semicarbazide, oxime ether and triazole derivatives have been synthesized and evaluated for cytotoxicity against four different human cancer cell lines. Bio-evaluation studies exhibited better cytotoxic profile for many analogs compare to bavachinin. Best results were observed for a 1,2,3-triazole analog (17i) with IC50 values 7.72, 16.08, 7.13 and 11.67 μM against lung (A549), prostate (PC-3), colon (HCT-116) and breast (MCF-7) cancer cell lines respectively. This analog showed three and four fold improvement in cytotoxicity against HCT-116 and A549 cell lines than parent molecule (1). Structure activity relationship (SAR) study for all synthesized analogs was carried out. Further, mechanistic study of the lead molecule (17i) revealed that it inhibits colony formation and in vitro migration of human colon cancer cells (HCT-116). Also, it induced the morphological changes and mediated the apoptotic cell death of HCT-116 cells with perturbance in mitochondrial membrane potential (MMP) and PARP cleavage.
Collapse
Affiliation(s)
- Nidhi Gupta
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Arem Qayum
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu, India
| | - Arun Raina
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu, India
| | - Ravi Shankar
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu, India
| | - Sumeet Gairola
- Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu, India; Plant Science Division, CSIR-Indian Institute of Integrative Medicine Jammu, 180001, India
| | - Shashank Singh
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu, India
| | - Payare L Sangwan
- Bioorganic Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IIIM Campus, Jammu, India.
| |
Collapse
|