1
|
Li S, Zhang D, Zhu R, Ma T, Liu M, Ma L, Wang Y. An intelligent system for precise management of coagulants in sludge conditioning: Inspired by the exploratory behavior in primates using senses. WATER RESEARCH 2025; 283:123842. [PMID: 40408987 DOI: 10.1016/j.watres.2025.123842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/25/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Coagulation conditioning is a key step for sludge dewatering, while the control of optimal coagulant dosing is still a challenge. This study proposes an intelligent system for the precise management of coagulants (IISPMC) in sludge conditioning. This system was assembled using an electrical impedance spectroscopy (EIS)-based sensor and a decision-making model to conduct the self-perception, decision-making, execution, and dosage optimization in sludge conditioning through a feedback-driven exploratory trial process, conceptually inspired by structured exploration behavior observed in primates. Using the optimal dosage obtained by the traditional manual jar test as the reference, the accuracy and repeatability of the IISPMC were investigated. The robustness under different perturbed conditions, reliability, and generalizability of the IISPMC were further assessed. Moreover, the long-term operational capability and the feasibility of the application in the scaled-up conditioning were also discussed. The results showed that the intelligent system achieved statistical median accuracy and repeatability of approximately 5 %, good reliability with a 5 g/kg resolution (R2 > 0.94 in validation tests) in determining the optimal coagulant dosage, and strong robustness under sludge conductivity and concentration perturbed conditions. In addition, the performance of the IISPMC was validated across different sludge sources, including activated sludge, dredged sediment, and algal sludge, as well as different coagulants, exhibiting solid generalizability. The system also demonstrated stable continuous operation over 40 batches, which is equivalent to the number of continuous operation batches of a small-sized treatment plant over approximately half a month. Furthermore, even after scaling up the conditioning tank, the IISPMC maintained stable performance. These findings highlight the potential of the IISPMC for practical applications in sludge conditioning.
Collapse
Affiliation(s)
- Shuxin Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Daxin Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| | - Rongxi Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Tengchong Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Meilin Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Luyao Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yili Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
2
|
Tan X, Zeng S, Chen Z, Lv M, Tang X, He X, Chen Y, Wan Y, Zhang J. Synergistic effect of organic matter-floc size-bound water and multifactorial quantitative model of optimal reagent demand in sewage sludge conditioning process prior to dewatering. WATER RESEARCH 2024; 251:121108. [PMID: 38244300 DOI: 10.1016/j.watres.2024.121108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024]
Abstract
The high amount of densely hydrated organic substance present in sewage sludge impedes its filterability, thus restricting sludge disposal. Although chemical conditioning can facilitate filtration, the diverse sludge properties complicate the quantitative control of conditioning process. Investigating how to accurately quantify the optimal reagent demand (ORD) based on the critical physicochemical properties of the target sludge is an effective way to address the current issue. This study focused on the sewage and stockpiled sludge with varying properties, and their ORD under different chemical conditioning. The results showed that organic content, floc size, and bound water synergistically influenced conditioning process. The quantitative models were established between their coupling indicators and ORD, with coupling indicators including the ratio of organic content to floc size, the ratio of flow viscosity to floc size, and the ratio of the product of organic content and bound water to floc size. The linear correlation of the coupling indicator with ORD was higher than that of the traditional single-factor indicator. Furthermore, the inherent filterability of the sludge was somewhat separate from the adjustability of its filtration. A "dual-system" impact model was proposed to characterized the conditioning and filtration processes. These results provide theoretical guidance for the quantitative regulation of conditioning and filtration processes of sludge with complex characteristics.
Collapse
Affiliation(s)
- Xun Tan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Sidong Zeng
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, PR China.
| | - Zhong Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Mingquan Lv
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xiaoya Tang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, PR China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, PR China
| | - Xingxing He
- State Key Laboratory of Hydro-science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yijun Chen
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Yong Wan
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Jingping Zhang
- Chongqing Yulanze Environmental Protection Technology Co, Chongqing, 408000, PR China
| |
Collapse
|
3
|
Zhang D, Wang Y, Wang J, Fan X, Zhang S, Liu M, Ma L. Rethinking the relationships between gel like structure and sludge dewaterability based on a binary gel like structure model: Implications for the online sensing of dewaterability. WATER RESEARCH 2024; 249:120971. [PMID: 38101042 DOI: 10.1016/j.watres.2023.120971] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/26/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
The digital transformation of sludge treatment processes requires online sensing of dewaterability. This topic has been attempted for many years based on macroscopic shear rheology. However, the relationship between rheological behavior and dewaterability remains noncommittal, and the reason is unclear. Herein, a binary gel-like structure model was proposed including the interactions network at the supra-flocs level and the gel-like structure at the flocs level. Multiple advanced techniques including optical tweezers were employed to precisely understand the binary gel-like structure and to classify the correlation mechanism between this gel-like structure, rheological behavior, and dewaterability. The analysis of sludge from eight wastewater treatment plants showed the binary gel-like structures at both supra-flocs and flocs levels have significant relationships with sludge dewaterability (p < 0.05). Further deconstruction of the sludge viscoelastic behavior illustrated that the gel-like structure at the supra-flocs level dominates the rheological behavior of sludge. Moreover, the direct description of the binary gel-like structure in four typical sludge treatment processes highlighted the importance of the flocs level's structure in determining the dewaterability. Overall, this study revealed that shear rheology may prefer to stress the interactions network at the supra-flocs level but mask the flocs level's structure, although the latter is important. This observation may provide a general guideline for the design of robust sensors for dewaterability.
Collapse
Affiliation(s)
- Daxin Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; School of Soil & Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yili Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Jingjing Wang
- Cell Biology Facility, Center of Biomedical Analysis, Tsinghua University, Beijing 100084, China
| | - Xiaoyang Fan
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Shuting Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Meilin Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Luyao Ma
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Correlations between the Composition of Liquid Fraction of Full-Scale Digestates and Process Conditions. ENERGIES 2021. [DOI: 10.3390/en14040971] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fast development of centralized agricultural biogas plants leads to high amounts of digestate production. The treatment and disposal of liquid fractions after on-site digestate solid–liquid separation remains problematic due to their high organic, nutrient and aromatic contents. This work aims to study the variability of the remaining compounds in the digestate liquid fractions in relation to substrate origin, process parameters and solid–liquid separation techniques. Twenty-nine digestates from full-scale codigestion biogas plants and one waste activated sludge (WAS) digestate were collected and characterized. This study highlighted the combined effect of the solid–liquid separation process and the anaerobic digestion feedstock on the characteristics of liquid fractions of digestates. Two major clusters were found: (1) liquid fractions from high efficiency separation process equipment (e.g., centrifuge and others with addition of coagulant, flocculent or polymer) and (2) liquid fractions from low efficiency separation processes (e.g., screw press, vibrating screen and rotary drum), in this latter case, the concentration of chemical oxygen demand (COD) was associated with the proportion of cow manure and energy crops at biogas plant input. Finally, SUVA254, an indicator for aromatic molecule content and the stabilization of organic matter, was associated with the hydraulic retention time (HRT).
Collapse
|
5
|
Peng W, Lü F, Hao L, Zhang H, Shao L, He P. Digestate management for high-solid anaerobic digestion of organic wastes: A review. BIORESOURCE TECHNOLOGY 2020; 297:122485. [PMID: 31810738 DOI: 10.1016/j.biortech.2019.122485] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Digestate management for anaerobic digestion (AD) is becoming a bottleneck of the sustainability of AD plants when the use of digestate for agricultural application is restricted due to nutrient surplus and low market acceptance. Digestate quality and treatment in high solid anaerobic digestion (HSAD) can be better than conventional low-solid system. The rheological behavior of digestate in high solid anaerobic digestion (HSAD) can have a great impact on the energy consumption of digestate management. After post-conditioning guided by rheological parameters, the solid digestate can be further treated based on the integrated solutions to enhance the energy efficiency or nutrients recovery. The environmental impacts for some core parts of those integrated systems were also evaluated in this study. This article presented a critical review of recent investigations of digestate management for HSAD, especially focusing on the rheology of HSAD digestate, integrated solutions and their environmental performances.
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Fan Lü
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liping Hao
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China
| | - Pinjing He
- State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
6
|
Stiles WAV, Styles D, Chapman SP, Esteves S, Bywater A, Melville L, Silkina A, Lupatsch I, Fuentes Grünewald C, Lovitt R, Chaloner T, Bull A, Morris C, Llewellyn CA. Using microalgae in the circular economy to valorise anaerobic digestate: challenges and opportunities. BIORESOURCE TECHNOLOGY 2018; 267:732-742. [PMID: 30076074 DOI: 10.1016/j.biortech.2018.07.100] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Managing organic waste streams is a major challenge for the agricultural industry. Anaerobic digestion (AD) of organicwastes is a preferred option in the waste management hierarchy, as this processcangenerate renewableenergy, reduce emissions from wastestorage, andproduce fertiliser material.However, Nitrate Vulnerable Zone legislation and seasonal restrictions can limit the use of digestate on agricultural land. In this paper we demonstrate the potential of cultivating microalgae on digestate as a feedstock, either directlyafter dilution, or indirectlyfromeffluent remaining after biofertiliser extraction. Resultant microalgal biomass can then be used to produce livestock feed, biofuel or for higher value bio-products. The approach could mitigate for possible regional excesses, and substitute conventional high-impactproducts with bio-resources, enhancing sustainability withinacircular economy. Recycling nutrients from digestate with algal technology is at an early stage. We present and discuss challenges and opportunities associated with developing this new technology.
Collapse
Affiliation(s)
- William A V Stiles
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, UK.
| | - David Styles
- School of Environment, Natural Resources & Geography, Bangor University, Bangor, UK
| | - Stephen P Chapman
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan Campus, Aberystwyth, UK
| | - Sandra Esteves
- Wales Centre of Excellence for Anaerobic Digestion, Sustainable Environment Research Centre, Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd, UK
| | - Angela Bywater
- University of Southampton, University Road, Southampton, UK
| | - Lynsey Melville
- Centre for Low Carbon Research, Faculty of Computing, Engineering and the Built Environment, Birmingham City University, City Centre Campus, Millennium Point, Birmingham, UK
| | - Alla Silkina
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - Ingrid Lupatsch
- AB Agri Ltd, 64 Innovation Way, Peterborough Business Park, Lynchwood, Peterborough, UK
| | | | - Robert Lovitt
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | | | - Andy Bull
- Severn Wye Energy Agency, Unit 15, Highnam Business Centre, Highnam, Gloucester, UK
| | - Chris Morris
- Fre-energy Ltd, Lodge Farm, Commonwood, Holt, Wrexham, UK
| | - Carole A Llewellyn
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| |
Collapse
|
7
|
Wang HF, Wang HJ, Hu H, Zeng RJ. Applying rheological analysis to understand the mechanism of polyacrylamide (PAM) conditioning for sewage sludge dewatering. RSC Adv 2017. [DOI: 10.1039/c7ra05202b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Physic-chemical behavior and rheological property of PAM conditioned sludge are explored. Rheological analysis could act as a useful indicator to reveal the mechanism of sludge dewatering.
Collapse
Affiliation(s)
- Hou-Feng Wang
- CAS Key Laboratory for Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- China
| | - Hua-Jie Wang
- CAS Key Laboratory for Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- China
| | - Hao Hu
- CAS Key Laboratory for Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- China
| | - Raymond J. Zeng
- CAS Key Laboratory for Urban Pollutant Conversion
- Department of Chemistry
- University of Science and Technology of China
- Hefei 230026
- China
| |
Collapse
|