1
|
Identification of FDA Approved Drugs with Antiviral Activity against SARS-CoV-2: A Tale from structure-based drug repurposing to host-cell mechanistic investigation. Biomed Pharmacother 2023; 162:114614. [PMID: 37068330 PMCID: PMC10043961 DOI: 10.1016/j.biopha.2023.114614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/20/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
The continuing heavy toll of the COVID-19 pandemic necessitates development of therapeutic options. We adopted structure-based drug repurposing to screen FDA-approved drugs for inhibitory effects against main protease enzyme (Mpro) substrate-binding pocket of SARS-CoV-2 for non-covalent and covalent binding. Top candidates were screened against infectious SARS-CoV-2 in a cell-based viral replication assay. Promising candidates included atovaquone, mebendazole, ouabain, dronedarone, and entacapone, although atovaquone and mebendazole were the only two candidates with IC50s that fall within their therapeutic plasma concentration. Additionally, we performed Mpro assays on the top hits, which demonstrated inhibition of Mpro by dronedarone (IC50 18 µM), mebendazole (IC50 19 µM) and entacapone (IC50 9 µM). Atovaquone showed only modest Mpro inhibition, and thus we explored other potential mechanisms. Although atovaquone is Dihydroorotate dehydrogenase (DHODH) inhibitor, we did not observe inhibition of DHODH at the respective SARS-CoV-2 IC50. Metabolomic profiling of atovaquone treated cells showed dysregulation of purine metabolism pathway metabolite, showing that ecto-5′-nucleotidase (NT5E) is downregulated by atovaquone at concentrations equivalent to its antiviral IC50. Atovaquone and mebendazole are promising candidates targeting SARS-CoV-2, however atovaquone did not significantly inhibit Mpro at therapeutically meaningful concentrations but may inhibit SARS-CoV-2 viral replication by targeting host purine metabolism.
Collapse
|
2
|
Yamamoto M, Ichinohe T, Watanabe A, Kobayashi A, Zhang R, Song J, Kawaguchi Y, Matsuda Z, Inoue JI. The Antimalarial Compound Atovaquone Inhibits Zika and Dengue Virus Infection by Blocking E Protein-Mediated Membrane Fusion. Viruses 2020; 12:v12121475. [PMID: 33371476 PMCID: PMC7767512 DOI: 10.3390/v12121475] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Flaviviruses bear class II fusion proteins as their envelope (E) proteins. Here, we describe the development of an in vitro quantitative mosquito-cell-based membrane-fusion assay for the E protein using dual split proteins (DSPs). The assay does not involve the use of live viruses and allows the analysis of a membrane-fusion step independent of other events in the viral lifecycle, such as endocytosis. The progress of membrane fusion can be monitored continuously by measuring the activities of Renilla luciferase derived from the reassociation of DSPs during cell fusion. We optimized the assay to screen an FDA-approved drug library for a potential membrane fusion inhibitor using the E protein of Zika virus. Screening results identified atovaquone, which was previously described as an antimalarial agent. Atovaquone potently blocked the in vitro Zika virus infection of mammalian cells with an IC90 of 2.1 µM. Furthermore, four distinct serotypes of dengue virus were also inhibited by atovaquone with IC90 values of 1.6–2.5 µM, which is a range below the average blood concentration of atovaquone after its oral administration in humans. These findings make atovaquone a likely candidate drug to treat illnesses caused by Zika as well as dengue viruses. Additionally, the DSP assay is useful to study the mechanism of membrane fusion in Flaviviruses.
Collapse
Affiliation(s)
- Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takeshi Ichinohe
- Division of Viral Infection, Department of Infectious Disease Control, International Research Center for Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Aya Watanabe
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ayako Kobayashi
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
| | - Rui Zhang
- Laboratory of Structural Virology and Immunology, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100864, China;
| | - Jiping Song
- China-Japan Joint Laboratory of Molecular Immunology & Microbiology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100864, China;
| | - Yasushi Kawaguchi
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
- Division of Molecular Virology, Department of Microbiology and Immunology, Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zene Matsuda
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
- Department of Microbiology and Infection, Kochi Medical School, Kochi University, Kochi 780-8072, Japan
- Correspondence: (Z.M.); (J.-i.I.); Tel.: +81-3-6409-2204 (Z.M.); +81-3-6409-2476 (J.-i.I.)
| | - Jun-ichiro Inoue
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan; (M.Y.); (A.W.); (A.K.); (Y.K.)
- Division of Cellular and Molecular Biology, Department of Cancer Biology, The Institute of Medical Science, The University of Tokyo, Tokyo 113-0033, Japan
- Senior Professor Office, The University of Tokyo, Tokyo 113-0033, Japan
- Correspondence: (Z.M.); (J.-i.I.); Tel.: +81-3-6409-2204 (Z.M.); +81-3-6409-2476 (J.-i.I.)
| |
Collapse
|
3
|
Atovaquone Inhibits Arbovirus Replication through the Depletion of Intracellular Nucleotides. J Virol 2019; 93:JVI.00389-19. [PMID: 30894466 DOI: 10.1128/jvi.00389-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Arthropod-borne viruses represent a significant public health threat worldwide, yet there are few antiviral therapies or prophylaxes targeting these pathogens. In particular, the development of novel antivirals for high-risk populations such as pregnant women is essential to prevent devastating disease such as that which was experienced with the recent outbreak of Zika virus (ZIKV) in the Americas. One potential avenue to identify new and pregnancy-acceptable antiviral compounds is to repurpose well-known and widely used FDA-approved drugs. In this study, we addressed the antiviral role of atovaquone, an FDA Pregnancy Category C drug and pyrimidine biosynthesis inhibitor used for the prevention and treatment of parasitic infections. We found that atovaquone was able to inhibit ZIKV and chikungunya virus virion production in human cells and that this antiviral effect occurred early during infection at the initial steps of viral RNA replication. Moreover, we were able to complement viral replication and virion production with the addition of exogenous pyrimidine nucleosides, indicating that atovaquone functions through the inhibition of the pyrimidine biosynthesis pathway to inhibit viral replication. Finally, using an ex vivo human placental tissue model, we found that atovaquone could limit ZIKV infection in a dose-dependent manner, providing evidence that atovaquone may function as an antiviral in humans. Taken together, these studies suggest that atovaquone could be a broad-spectrum antiviral drug and a potential attractive candidate for the prophylaxis or treatment of arbovirus infection in vulnerable populations, such as pregnant women and children.IMPORTANCE The ability to protect vulnerable populations such as pregnant women and children from Zika virus and other arbovirus infections is essential to preventing the devastating complications induced by these viruses. One class of antiviral therapies may lie in known pregnancy-acceptable drugs that have the potential to mitigate arbovirus infections and disease, yet this has not been explored in detail. In this study, we show that the common antiparasitic drug atovaquone inhibits arbovirus replication through intracellular nucleotide depletion and can impair ZIKV infection in an ex vivo human placental explant model. Our study provides a novel function for atovaquone and highlights that the rediscovery of pregnancy-acceptable drugs with potential antiviral effects can be the key to better addressing the immediate need for treating viral infections and preventing potential birth complications and future disease.
Collapse
|
4
|
Yeo AET, Christopherson RI. Comparative effects of cycloguanil and WR99210 in human leukaemia cells and intra-erythrocyticPlasmodium. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1998.11813297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
5
|
Seymour KK, Yeo AET, Rieckmann KH, Christopherson RI. dCTP levels are maintained inPlasmodium falciparumsubjected to pyrimidine deficiency or excess. ANNALS OF TROPICAL MEDICINE AND PARASITOLOGY 2016. [DOI: 10.1080/00034983.1997.11813178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Nixon MR, Saionz KW, Koo MS, Szymonifka MJ, Jung H, Roberts JP, Nandakumar M, Kumar A, Liao R, Rustad T, Sacchettini JC, Rhee KY, Freundlich JS, Sherman DR. Folate pathway disruption leads to critical disruption of methionine derivatives in Mycobacterium tuberculosis. ACTA ACUST UNITED AC 2014; 21:819-30. [PMID: 24954008 DOI: 10.1016/j.chembiol.2014.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/11/2014] [Accepted: 04/23/2014] [Indexed: 01/08/2023]
Abstract
In this study, we identified antifolates with potent, targeted activity against whole-cell Mycobacterium tuberculosis (MTB). Liquid chromatography-mass spectrometry analysis of antifolate-treated cultures revealed metabolic disruption, including decreased pools of methionine and S-adenosylmethionine. Transcriptomic analysis highlighted altered regulation of genes involved in the biosynthesis and utilization of these two compounds. Supplementation with amino acids or S-adenosylmethionine was sufficient to rescue cultures from antifolate treatment. Instead of the "thymineless death" that characterizes folate pathway inhibition in a wide variety of organisms, these data suggest that MTB is vulnerable to a critical disruption of the reactions centered around S-adenosylmethionione, the activated methyl cycle.
Collapse
Affiliation(s)
- Molly R Nixon
- Interdisciplinary Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195, USA; Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - Kurt W Saionz
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Mi-Sun Koo
- Department of Pharmacology and Physiology and Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Michael J Szymonifka
- Department of Pharmacology and Physiology and Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - Hunmin Jung
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Justin P Roberts
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Madhumita Nandakumar
- Departments of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Anuradha Kumar
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - Reiling Liao
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - Tige Rustad
- Seattle Biomedical Research Institute, Seattle, WA 98109, USA
| | - James C Sacchettini
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kyu Y Rhee
- Departments of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Joel S Freundlich
- Department of Pharmacology and Physiology and Medicine, Center for Emerging and Reemerging Pathogens, Rutgers University-New Jersey Medical School, Newark, NJ 07103, USA
| | - David R Sherman
- Interdisciplinary Program in Pathobiology, Department of Global Health, University of Washington, Seattle, WA 98195, USA; Seattle Biomedical Research Institute, Seattle, WA 98109, USA.
| |
Collapse
|
7
|
Bajsa J, Singh K, Nanayakkara D, Duke SO, Rimando AM, Evidente A, Tekwani BL. A survey of synthetic and natural phytotoxic compounds and phytoalexins as potential antimalarial compounds. Biol Pharm Bull 2007; 30:1740-4. [PMID: 17827731 DOI: 10.1248/bpb.30.1740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The apicomplexan parasites pathogens such as Plasmodium spp. possess an apicoplast, a plastid organelle similar to those of plants. The apicoplast has some essential plant-like metabolic pathways and processes, making these parasites susceptible to inhibitors of these functions. The main objective of this paper is to determine if phytotoxins with plastid target sites are more likely to be good antiplasmodial compounds than are those with other modes of action. The antiplasmodial activities of some compounds with established phytotoxic action were determined in vitro on a chloroquine (CQ) sensitive (D6, Sierra Leone) strain of Plasmodium falciparum. In this study, we provide in vitro activities of almost 50 such compounds, as well as a few phytoalexins against P. falciparum. Endothall, anisomycin, and cerulenin had sufficient antiplasmodial action to be considered as new lead antimalarial structures. Some derivatives of fusicoccin possessed markedly improved antiplasmodial action than the parent compound. Our results suggest that phytotoxins with plastid targets may not necessarily be better antiplasmodials than those that act at other molecular sites. The herbicides, phytotoxins and the phytoalexins reported here with significant antiplasmodial activity may be useful probes for identification of new antimalarial drug targets and may also be used as new lead structures for new antiplasmodial drug discovery.
Collapse
Affiliation(s)
- Joanna Bajsa
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, U.S.A.
| | | | | | | | | | | | | |
Collapse
|
8
|
Walker DJ, Meshnick SR. Drug resistance in Pneumocystis carinii: an emerging problem. Drug Resist Updat 2007; 1:201-4. [PMID: 17092806 DOI: 10.1016/s1368-7646(98)80040-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/1998] [Revised: 04/15/1998] [Accepted: 04/17/1998] [Indexed: 10/25/2022]
Abstract
Pneumocystis carinii pneumonia (PCP) is a frequent opportunistic infection in AIDS patients. Large numbers of HIV-infected individuals take prophylactic medications to prevent this illness. The development of drug resistance, while expected, cannot be monitored by classical means, since the organism cannot be cultivated in vitro. Two drug target genes, dihydropteroate synthase (DHPS) and cytochrome b, have been cloned and sequenced from human-derived P. carinii. Mutations leading to amino acid substitutions in the active sites of both proteins have been detected in patients receiving prophylaxis with sulfonamides and sulfones (DHPS inhibitors) and with atovaquone (cytochrome b inhibitor), suggesting that drug resistance may indeed be developing.
Collapse
Affiliation(s)
- D J Walker
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
9
|
Bell A. Antimalarial drug synergism and antagonism: mechanistic and clinical significance. FEMS Microbiol Lett 2005; 253:171-84. [PMID: 16243458 DOI: 10.1016/j.femsle.2005.09.035] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2005] [Revised: 09/22/2005] [Accepted: 09/22/2005] [Indexed: 11/18/2022] Open
Abstract
Interactions between antimicrobial agents provide clues as to their mechanisms of action and influence the combinations chosen for therapy of infectious diseases. In the treatment of malaria, combinations of drugs, in many cases acting synergistically, are increasingly important in view of the frequency of resistance to single agents. The study of antimalarial drug interactions is therefore of great significance to both treatment and research. It is therefore worrying that the analysis of drug-interaction data is often inadequate, leading in some cases to dubious conclusions about synergism or antagonism. Furthermore, making mechanistic deductions from drug-interaction data is not straightforward and of the many reported instances of antimalarial synergism or antagonism, few have been fully explained biochemically. This review discusses recent findings on antimalarial drug interactions and some pitfalls in their analysis and interpretation. The conclusions are likely to have relevance to other antimicrobial agents.
Collapse
Affiliation(s)
- Angus Bell
- Department of Microbiology, Moyne Institute of Preventive Medicine, University of Dublin--Trinity College, Dublin 2, Ireland.
| |
Collapse
|
10
|
Winstanley P, Olliaro P. Clinical trials of chemotherapy for falciparum malaria. Expert Opin Investig Drugs 2005; 7:261-71. [PMID: 15991958 DOI: 10.1517/13543784.7.2.261] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Plasmodium falciparum remains one of the World's most prevalent and devastating pathogens. Mainly for economic reasons, the parasite's ability to develop resistance to drugs has not been matched by the rate at which new compounds are developed. Even so, there are new drugs (or new combinations of old drugs) currently under investigation, or in the process of development (at the moment): Pyronaridine, a well-tolerated, synthetic drug that may have utility for multi-resistant falciparum malaria in many parts of the world; however,problems remain over the formulation of this drug (which is a major determinant of its bioavailability) and its eventual cost. Chlorproguanil-dapsone (lap dap) is being studied as a possible low-cost'successor' to pyrimethamine-sulfadoxine; the utility of chlorproguanil-dapsone as 'salvage' therapy for clinical cases of pyrimethamine-sulfadoxine failure has yet to be tested in clinical trials. Atovaquone-proguanil (malarone) has utility against multi-resistant parasites; however, it is likely to be expensive (but is currently being provided free-of-charge in certain areas of Africa). Artemether-benflumetol (coartemether) combines the advantages of artemether (a rapid reduction in parasite load) with a second drug that reduces the risk of recrudescence; the cost of this combination is unclear. Rectal artesunate is being studied as an intervention to reduce the proportion of children with falciparum malaria who deteriorate to severe disease; the formulation is appropriate for use in rural health centres.
Collapse
Affiliation(s)
- P Winstanley
- Department of Pharmacology and Therapeutics, University of Liverpool, L69 3GE, UK
| | | |
Collapse
|
11
|
Yeo AE, Edstein MD, Rieckmann KH. Antimalaria activity of the triple combination of proguanil, atovaquone and dapsone. Acta Trop 1997; 67:207-14. [PMID: 9241385 DOI: 10.1016/s0001-706x(97)00060-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The combination of proguanil and atovaquone has been shown to be more effective in curing drug-resistant infections of falciparum malaria than atovaquone or proguanil alone. Our current study sought to determine whether the antimalaria activity could be increased by adding dapsone. Plasma samples, obtained from individuals 4-72 h after proguanil-atovaquone administration, were 2-3 times more active against Plasmodium falciparum in vitro when dapsone was added to them. The enhanced activity of the combination of proguanil, atovaquone and dapsone is probably due to the combined activity of two synergistic combinations: proguanil-atovaquone and cycloguanil (metabolite of proguanil)-dapsone. These findings suggest that further studies are needed to evaluate the clinical value of the triple drug combination of proguanil, atovaquone and dapsone in the treatment of multi-drug resistant malaria.
Collapse
Affiliation(s)
- A E Yeo
- Australian Army Malaria Research Unit, Liverpool Military Area, NSW, Australia.
| | | | | |
Collapse
|