1
|
Cao X, Zhang Y, Wu H, Da H, Xiao Q, Shi H. Decoding depression: How DLPFC and SMA mediate stress perception's role in mental health? J Affect Disord 2025; 379:323-331. [PMID: 40086480 DOI: 10.1016/j.jad.2025.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Depression is a common mental disorder that significantly impacts global well-being. Although stress is a major contributor to depression, not all stress leads to depressive outcomes due to differences in stress perception. Understanding the neural mechanisms of stress perception may help identify biomarkers for targeted interventions to alleviate stress-related depression. METHODS This study included 113 participants. Each participant completed a Verbal Fluency Task (VFT) while undergoing functional near-infrared spectroscopy (fNIRS) to monitor brain activity. Oxyhemoglobin (Oxy-Hb) concentration data were analyzed using Matlab, and PROCESS v4.1 to examine neural mechanisms connecting stress perception and depression. RESULTS Correlation analysis showed a significant negative association between depression severity and Oxy-Hb concentration in several brain regions, including the bilateral dorsolateral prefrontal cortex (DLPFC), bilateral Broca's area (BA), right frontal pole (FP), and right orbitofrontal cortex (OFC). Mediation and moderation analyses revealed that the bilateral DLPFC serves as a key mediator in the relationship between stress perception and depression, with the supplementary motor area (SMA) acts as a moderator. Functional differentiation was observed, with the left DLPFC and left SMA influencing the effect of nervous on depression, and the right DLPFC and right SMA influencing the effect of uncontrolled on depression. CONCLUSION The bilateral DLPFC and SMA play critical roles in mediating and moderating stress perception's impact on depression, suggesting these regions as potential targets for interventions in stress-related depressive disorders.
Collapse
Affiliation(s)
- Xiaochen Cao
- School of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yan Zhang
- School of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Huifen Wu
- School of Education, Hubei Engineering University, Xiaogan 432000, China
| | - Hui Da
- School of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qiang Xiao
- Department of Neurology, Hospital of Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Shi
- The Department of Cardio-Psychiatry Liaison Consultation, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China.
| |
Collapse
|
2
|
Senko D, Efimova O, Osetrova M, Anikanov N, Boyko M, Sharaev M, Morozova A, Zorkina Y, Kislov M, Kostyuk G, Stekolshchikova E, Khaitovich P. White matter lipidome alterations in the schizophrenia brain. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:123. [PMID: 39725684 DOI: 10.1038/s41537-024-00542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
Numerous brain imaging studies have reported white matter alterations in schizophrenia, but the lipidome analysis of the corresponding tissue remains incomplete. In this study, we investigated the lipidome composition of six subcortical white matter regions corresponding to major axonal tracks in both control subjects and schizophrenia patients. All six regions exhibited a consistent pattern of quantitative lipidome alterations in schizophrenia, involving myelin-forming and mitochondria associated lipid classes. While alteration levels of myelin-forming lipids, particularly sphingolipids, aligned with the extent of the myelin changes reported in structural brain imaging studies, a significant decrease of mitochondria in the white matter, indicated by the lipidome alterations, was not previously investigated. To verify this effect, we performed lipidome analysis in a larger set of individuals and in the mitochondria-enriched membrane fraction, as well as directly quantified mitochondrial content. Our results suggest a substantial reduction of the mitochondrial quotient accompanied by the imbalance in myelin lipids in schizophrenia white matter.
Collapse
Affiliation(s)
- Dmitry Senko
- Skolkovo Institute of Science and Technology, Moscow, Russia.
| | - Olga Efimova
- Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maria Osetrova
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
| | | | - Maria Boyko
- Skolkovo Institute of Science and Technology, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Maksim Sharaev
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- BIMAI-lab, Sharjah, UAE
| | - Anna Morozova
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Yana Zorkina
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Serbsky National Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
| | - Maksim Kislov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | - Georgiy Kostyuk
- Mental Health Clinic No.1 Named After N. A. Alexeev of Moscow Healthcare Department, Moscow, Russia
- Lomonosov Moscow State University, Moscow, Russia
| | | | | |
Collapse
|
3
|
Vidal JP, Rachita K, Servais A, Péran P, Pariente J, Bonneville F, Albucher JF, Danet L, Barbeau EJ. Exploring the impact of the interthalamic adhesion on human cognition: insights from healthy subjects and thalamic stroke patients. J Neurol 2024; 271:5985-5996. [PMID: 39017701 PMCID: PMC11377548 DOI: 10.1007/s00415-024-12566-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/18/2024]
Abstract
The interthalamic adhesion (IA) is a structure that connects the median borders of both thalami. Its anatomical variants and functions remain poorly studied. The main objective of this study was to explore the role of the IA on cognition. 42 healthy subjects and 40 patients with chronic isolated thalamic strokes underwent a neuroimaging and a neuropsychological assessment. The presence, absence, or lesion of the IA and its anatomical variants were evaluated. 76% of participants had an IA, with a higher prevalence among women (92%) than men (61%). The presence or absence of an IA did not affect the neuropsychological performance of healthy subjects nor did the type of IA variant. Across all the tests and when compared to healthy subjects using a Bayesian rmANOVA, patients exhibiting more cognitive impairments were those without an IA (n = 10, BF10 = 10,648), while those with an IA were more preserved (n = 18, BF10 = 157). More specifically, patients without an IA performed more poorly in verbal memory or the Stroop task versus healthy subjects. This was not explained by age, laterality of the infarct, volume or localization of the lesion. Patients with a lesioned IA (n = 12) presented a similar trend to patients without an IA, which could however be explained by a greater volume of lesions. The IA does not appear to play a major role in cognition in healthy subjects, but could play a compensatory role in patients with thalamic lesions.
Collapse
Affiliation(s)
- Julie P Vidal
- CerCo (Brain and Cognition Research Center), CNRS, Paul Sabatier University, Toulouse, France.
- ToNiC (Toulouse NeuroImaging Center), INSERM, Paul Sabatier University, Toulouse, France.
| | - Kévin Rachita
- Neurology Department, Purpan Hospital, Toulouse University Hospital Center, Toulouse, France
| | - Anaïs Servais
- CerCo (Brain and Cognition Research Center), CNRS, Paul Sabatier University, Toulouse, France
| | - Patrice Péran
- ToNiC (Toulouse NeuroImaging Center), INSERM, Paul Sabatier University, Toulouse, France
| | - Jérémie Pariente
- ToNiC (Toulouse NeuroImaging Center), INSERM, Paul Sabatier University, Toulouse, France
- Neurology Department, Purpan Hospital, Toulouse University Hospital Center, Toulouse, France
| | - Fabrice Bonneville
- ToNiC (Toulouse NeuroImaging Center), INSERM, Paul Sabatier University, Toulouse, France
- Neurology Department, Purpan Hospital, Toulouse University Hospital Center, Toulouse, France
| | - Jean-François Albucher
- ToNiC (Toulouse NeuroImaging Center), INSERM, Paul Sabatier University, Toulouse, France
- Neurology Department, Purpan Hospital, Toulouse University Hospital Center, Toulouse, France
| | - Lola Danet
- ToNiC (Toulouse NeuroImaging Center), INSERM, Paul Sabatier University, Toulouse, France
- Neurology Department, Purpan Hospital, Toulouse University Hospital Center, Toulouse, France
| | - Emmanuel J Barbeau
- CerCo (Brain and Cognition Research Center), CNRS, Paul Sabatier University, Toulouse, France
| |
Collapse
|
4
|
Sadeghinezhad J, Ebrahimi M, Lehi MH. Volumetric study on sheep brain using stereology technique. Anat Histol Embryol 2024; 53:e13072. [PMID: 38859689 DOI: 10.1111/ahe.13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/12/2024]
Abstract
Three-dimensional morphometric data better show the structural and functional characteristics of the brain. The objective of this study was to estimate the volume of the cerebral structures of the sheep using design-based stereology. The brains of five sheep were used, fixed in formalin 10% and embedded in agar 6%. An average of 10-12 slab was obtained from each brain. All slabs were stained using Mulligan's method and photographs were recorded. The volume of the brain and its structures were estimated using the Cavalieri's estimator and the point counting system. The total volume was 70604.8 ± 132.45 mm3. The volume fractions of the grey and white matters were calculated as 42.55 ± 0.21% and 24.23 ± 0.51% of the whole brain, respectively. The fractional volume of the caudate nucleus and claustrum were estimated at 2.39 ± 0.08% and at 1.008 ± 0.057% of total brain volume. The volumes of corpus callosum, internal capsule and external capsule were 1.24 ± 0.053%, 3.63 ± 0.22% and 0.698 ± 0.049% of total cerebral volume, respectively. These data could help improve the veterinary comparative neuroanatomy knowledge and development of experimental studies in the field.
Collapse
Affiliation(s)
- Javad Sadeghinezhad
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohamad Ebrahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehdi Heydari Lehi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
5
|
Wang X, Yin Y, Wang X, Xu G, Tian J, Ma X. White matter microstructural alterations in patients with anti-N-methyl-D-aspartate receptor encephalitis: A tract-based spatial statistics study. Mult Scler Relat Disord 2024; 84:105500. [PMID: 38368748 DOI: 10.1016/j.msard.2024.105500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND Cognitive impairment is common in patients with anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis; however, neural mechanisms underlying this impairment remain unclear. Diffusion tensor imaging (DTI) is a potential method for studying the condition of white matter fibers in patients with anti-NMDAR encephalitis, allowing for an analysis of the neuroimaging mechanisms of cognitive impairment in conjunction with cognitive scales. This study aimed to explore white matter microstructural alterations and their correlation with cognitive function in patients with anti-NMDAR encephalitis. METHODS DTI data were collected from 22 patients with anti-NMDAR encephalitis (aged 29.00(19.75, 39.50) years; 12 males, 10 females) and 20 healthy controls (HCs) (aged 24.50(21.25, 32.00); 12 males, 8 females) matched for age, sex, and educational level. Changes in the white matter microstructure were analyzed using tract-based spatial statistics. Pearson correlation analysis was used to explore the correlation between white matter integrity and neuropsychological scores. RESULTS Compared with HCs, patients with anti-NMDAR encephalitis showed decreased fractional anisotropy and increased mean diffusivity values in extensive white matter regions, which were associated with disease severity, memory, and executive and visuospatial functions. CONCLUSION Widespread impairment of the structural integrity of the white matter in the brain is significantly associated with cognitive dysfunction in patients with anti-NMDAR encephalitis, providing neuroimaging evidence for studying the underlying mechanisms.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China
| | - Yi Yin
- Department of Medical imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Xinzhi Wang
- Department of Medical imaging, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Guang Xu
- Department of Neurology, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou, PR China
| | - Junzhang Tian
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China; The Second School of Clinical Medicine, Southern Medial University, Guangzhou, PR China
| | - Xiaofen Ma
- Department of Nuclear Medicine, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Guangzhou 510317, PR China; The Second School of Clinical Medicine, Southern Medial University, Guangzhou, PR China.
| |
Collapse
|
6
|
Liu Y, Jia Y, Sun H, Sun L, Wang Y, Xu Q, He Y, Chang X, Guo D, Shi M, Chen GC, Zheng J, Zhu Z. Genetic analyses identify brain imaging-derived phenotypes associated with the risk of intracerebral hemorrhage. Cereb Cortex 2024; 34:bhad518. [PMID: 38185989 DOI: 10.1093/cercor/bhad518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Previous observational studies have reported associations between brain imaging-derived phenotypes (IDPs) and intracerebral hemorrhage (ICH), but the causality between them remains uncertain. We aimed to investigate the potential causal relationship between IDPs and ICH by a two-sample Mendelian randomization (MR) study. We selected genetic instruments for 363 IDPs from a genome-wide association study (GWASs) based on the UK Biobank (n = 33,224). Summary-level data on ICH was derived from a European-descent GWAS with 1,545 cases and 1,481 controls. Inverse variance weighted MR method was applied in the main analysis to investigate the associations between IDPs and ICH. Reverse MR analyses were performed for significant IDPs to examine the reverse causation for the identified associations. Among the 363 IDPs, isotropic or free water volume fraction (ISOVF) in the anterior limb of the left internal capsule was identified to be associated with the risk of ICH (OR per 1-SD increase, 4.62 [95% CI, 2.18-9.81], P = 6.63 × 10-5). In addition, the reverse MR analysis indicated that ICH had no effect on ISOVF in the anterior limb of the left internal capsule (beta, 0.010 [95% CI, -0.010-0.030], P = 0.33). MR-Egger regression analysis showed no directional pleiotropy for the association between ISOVF and ICH, and sensitivity analyses with different MR models further confirmed these findings. ISOVF in the anterior limb of the left internal capsule might be a potential causal mediator of ICH, which may provide predictive guidance for the prevention of ICH. Further studies are warranted to replicate our findings and clarify the underlying mechanisms.
Collapse
Affiliation(s)
- Yi Liu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, 199 Renai Road, Industrial Park District, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yiming Jia
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, 199 Renai Road, Industrial Park District, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Hongyan Sun
- Department of Medical Imaging, 11 Guangqian Road, Xiangcheng District, The Affiliated Guangji Hospital of Soochow University, Suzhou, China
| | - Lulu Sun
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, 199 Renai Road, Industrial Park District, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yinan Wang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, 199 Renai Road, Industrial Park District, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Qingyun Xu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, 199 Renai Road, Industrial Park District, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Yu He
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, 199 Renai Road, Industrial Park District, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Xinyue Chang
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, 199 Renai Road, Industrial Park District, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Daoxia Guo
- School of Nursing, 333 Ganjiang East Road, Gusu District, Suzhou Medical College of Soochow University, Suzhou, China
| | - Mengyao Shi
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, 199 Renai Road, Industrial Park District, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| | - Guo-Chong Chen
- Department of Nutrition and Food Hygiene, School of Public Health, 199 Renai Road, Industrial Park District, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jin Zheng
- Department of Neurology, Minhang Hospital, 170 Xinsong Road, Xinzhuang Town, Minhang District, Fudan University, Shanghai, China
| | - Zhengbao Zhu
- Department of Epidemiology, School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, MOE Key Laboratory of Geriatric Diseases and Immunology, 199 Renai Road, Industrial Park District, Suzhou Medical College of Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
7
|
Escelsior A, Inuggi A, Amadeo MB, Engel-Yeger B, Trabucco A, Esposito D, Campus C, Bovio A, Comparini S, Pereira da Silva B, Serafini G, Gori M, Amore M. Sensation seeking correlates with increased white matter integrity of structures associated with visuospatial processing in healthy adults. Front Neurosci 2023; 17:1267700. [PMID: 37954876 PMCID: PMC10637364 DOI: 10.3389/fnins.2023.1267700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction The ability to process sensory information is an essential adaptive function, and hyper- or hypo-sensitive maladaptive profiles of responses to environmental stimuli generate sensory processing disorders linked to cognitive, affective, and behavioral alterations. Consequently, assessing sensory processing profiles might help research the vulnerability and resilience to mental disorders. The research on neuroradiological correlates of the sensory processing profiles is mainly limited to the young-age population or neurodevelopmental disorders. So, this study aims to examine the structural MRI correlates of sensory profiles in a sample of typically developed adults. Methods We investigated structural cortical thickness (CT) and white matter integrity, through Diffusion Tensor Imaging (DTI), correlates of Adolescent/Adult Sensory Profile (AASP) questionnaire subscales in 57 typical developing subjects (34F; mean age: 32.7 ± 9.3). Results We found significant results only for the sensation seeking (STS) subscale. Positive and negative correlations emerged with fractional anisotropy (FA) and radial diffusivity (RD) in anterior thalamic radiation, optic radiation, superior longitudinal fasciculus, corpus callosum, and the cingulum bundle. No correlation between sensation seeking and whole brain cortical thickness was found. Discussion Overall, our results suggest a positive correlation between sensation seeking and higher white matter structural integrity in those tracts mainly involved in visuospatial processing but no correlation with gray matter structure. The enhanced structural integrity associated with sensation seeking may reflect a neurobiological substrate linked to active research of sensory stimuli and resilience to major psychiatric disorders like schizophrenia, bipolar disorder, and depression.
Collapse
Affiliation(s)
- Andrea Escelsior
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Alberto Inuggi
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Maria Bianca Amadeo
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Batya Engel-Yeger
- Faculty of Social Welfare and Health Sciences, Department of Occupational Therapy, University of Haifa, Haifa, Israel
| | - Alice Trabucco
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Davide Esposito
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Claudio Campus
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Anna Bovio
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Sara Comparini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Beatriz Pereira da Silva
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Gianluca Serafini
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Monica Gori
- U-VIP Unit for Visually Impaired People, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Mario Amore
- Section of Psychiatry, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
8
|
Takahashi T, Sasabayashi D, Takayanagi Y, Kobayashi H, Torigoe M, Sakamoto K, Yuasa Y, Tsujii N, Noguchi K, Suzuki M. Birth season and gross brain morphology associated with early neurodevelopment in schizophrenia spectrum patients and healthy subjects. Psychiatry Res Neuroimaging 2023; 335:111714. [PMID: 37690160 DOI: 10.1016/j.pscychresns.2023.111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/20/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
This MRI study examined the effects of birth seasons on gross brain characteristics, such as the prevalence/size of midline brain structures (cavum septi pellucidi and adhesio interthalamica), orbitofrontal surface morphology, and insular gross anatomy, in 135 patients with schizophrenia, 47 with schizotypal disorder, and 88 healthy controls. Birth seasons only affected the insular anatomy. Summer-born subjects (N = 110) were characterized by more developed left insular gyri than winter-born subjects; however, this effect had no diagnostic specificity. The present results do not support birth seasons affecting the neurodevelopmental pathology of schizophrenia spectrum.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Arisawabashi Hospital, Toyama, Japan
| | - Haruko Kobayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Misako Torigoe
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kazumi Sakamoto
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yusuke Yuasa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Noa Tsujii
- Department of Child Mental Health and Development, Toyama University Hospital, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
9
|
Takahashi T, Sasabayashi D, Takayanagi Y, Furuichi A, Kobayashi H, Yuasa Y, Noguchi K, Suzuki M. Gross anatomical variations of the insular cortex in first-episode schizophrenia. Schizophr Res 2023; 260:23-29. [PMID: 37549494 DOI: 10.1016/j.schres.2023.07.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 06/08/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies have revealed gray matter reductions in the insular cortex of schizophrenia patients. Despite large inter-individual anatomical variations in the insular gyri of human brains, the gross anatomical features of the insular cortex and their relationships with clinical characteristics remain largely unknown in schizophrenia. METHODS The present MRI study investigated variations in the insular gross anatomy (i.e., the development and split patterns of each gyrus and gyrus numbers) and their relationships with clinical variables and insular gray matter volumes in 66 patients with first-episode schizophrenia (FE-Sz) and 66 age- and sex-matched healthy controls. RESULTS The FE-Sz group had a significantly larger number of insular gyri bilaterally with well-developed accessory, middle short, and posterior long insular gyri than the control group, and this was associated with a younger onset age and severe positive symptoms. The split patterns of major insular gyri did not significantly differ between the groups. The FE-Sz group was also characterized by a smaller gray matter volume in the insular cortex than the control group; however, this was not associated with the insular gross anatomy or clinical characteristics. CONCLUSION As the insular gyral organization reflects brain development during mid to late gestation, the gross anatomical features of the insular cortex in schizophrenia, which were independent of gray matter volumes, may be used as early neurodevelopmental abnormality markers for the illness.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Arisawabashi Hospital, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruko Kobayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yusuke Yuasa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
10
|
Kamali A, Milosavljevic S, Gandhi A, Lano KR, Shobeiri P, Sherbaf FG, Sair HI, Riascos RF, Hasan KM. The Cortico-Limbo-Thalamo-Cortical Circuits: An Update to the Original Papez Circuit of the Human Limbic System. Brain Topogr 2023; 36:371-389. [PMID: 37148369 PMCID: PMC10164017 DOI: 10.1007/s10548-023-00955-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 03/06/2023] [Indexed: 05/08/2023]
Abstract
The Papez circuit, first proposed by James Papez in 1937, is a circuit believed to control memory and emotions, composed of the cingulate cortex, entorhinal cortex, parahippocampal gyrus, hippocampus, hypothalamus, and thalamus. Pursuant to James Papez, Paul Yakovlev and Paul MacLean incorporated the prefrontal/orbitofrontal cortex, septum, amygdalae, and anterior temporal lobes into the limbic system. Over the past few years, diffusion-weighted tractography techniques revealed additional limbic fiber connectivity, which incorporates multiple circuits to the already known complex limbic network. In the current review, we aimed to comprehensively summarize the anatomy of the limbic system and elaborate on the anatomical connectivity of the limbic circuits based on the published literature as an update to the original Papez circuit.
Collapse
Affiliation(s)
- Arash Kamali
- Department of Diagnostic and Interventional Radiology, Neuroradiology Section, University of Texas at Houston, 6431 Fannin St, Houston, TX, 77030, USA.
| | | | - Anusha Gandhi
- Baylor College of Medicine Medical School, Houston, TX, USA
| | - Kinsey R Lano
- McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Parnian Shobeiri
- Faculty of Medicine, Tehran University Medical School, Tehran, Iran
| | - Farzaneh Ghazi Sherbaf
- Department of Radiology and Radiological Science, Division of Neuroradiology, The Russell H. Morgan, Johns Hopkins University, Baltimore, MD, USA
| | - Haris I Sair
- Department of Radiology and Radiological Science, Division of Neuroradiology, The Russell H. Morgan, Johns Hopkins University, Baltimore, MD, USA
| | - Roy F Riascos
- Department of Diagnostic and Interventional Radiology, Neuroradiology Section, University of Texas at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| | - Khader M Hasan
- Department of Diagnostic and Interventional Radiology, Neuroradiology Section, University of Texas at Houston, 6431 Fannin St, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Cai J, Xie M, Zhao L, Li X, Liang S, Deng W, Guo W, Ma X, Sham PC, Wang Q, Li T. White matter changes and its relationship with clinical symptom in medication-naive first-episode early onset schizophrenia. Asian J Psychiatr 2023; 82:103482. [PMID: 36709613 DOI: 10.1016/j.ajp.2023.103482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Previous studies have highlighted the role of white matter (WM) alterations as biomarkers of the disease state and prognosis of schizophrenia. However, less is known about WM abnormalities in the rarely occurring adolescent early onset schizophrenia (EOS). In this study, T1-weighted and diffusion-weighted images were collected in 56 medication-naive first-episode participants with EOS and 43 healthy controls (HCs). Using Tract-based Spatial Statistics, we calculate case-control differences in scalar diffusion measures, i.e. fractional anisotropy (FA) and mean diffusivity (MD), and investigated their association with clinical feature in participants with EOS. Compared with HCs, decreased MD was found in EOS group most notably in the inferior longitudinal fasciculus, anterior thalamic radiation, inferior fronto-occipital fasciculus and corticospinal tract in the right hemisphere. No significant difference was found in FA between these two groups. The FA values of the forceps minor and the right superior longitudinal fasciculus were suggested to be related to the severity of clinical symptom in participants with EOS. These results provide clues about the neural basis of schizophrenia and a potential biomarker for clinical studies.
Collapse
Affiliation(s)
- Jia Cai
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Min Xie
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Liansheng Zhao
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaojing Li
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Sugai Liang
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Deng
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wanjun Guo
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xiaohong Ma
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Pak C Sham
- Department of Psychiatry, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Centre for PanorOmic Sciences, The University of Hong Kong, Hong Kong, China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Qiang Wang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China.
| | - Tao Li
- Department of Neurobiology, Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Science and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Cui Y, Li C, Liu B, Sui J, Song M, Chen J, Chen Y, Guo H, Li P, Lu L, Lv L, Ning Y, Wan P, Wang H, Wang H, Wu H, Yan H, Yan J, Yang Y, Zhang H, Zhang D, Jiang T. Consistent brain structural abnormalities and multisite individualised classification of schizophrenia using deep neural networks. Br J Psychiatry 2022; 221:732-739. [PMID: 35144702 DOI: 10.1192/bjp.2022.22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Previous analyses of grey and white matter volumes have reported that schizophrenia is associated with structural changes. Deep learning is a data-driven approach that can capture highly compact hierarchical non-linear relationships among high-dimensional features, and therefore can facilitate the development of clinical tools for making a more accurate and earlier diagnosis of schizophrenia. AIMS To identify consistent grey matter abnormalities in patients with schizophrenia, 662 people with schizophrenia and 613 healthy controls were recruited from eight centres across China, and the data from these independent sites were used to validate deep-learning classifiers. METHOD We used a prospective image-based meta-analysis of whole-brain voxel-based morphometry. We also automatically differentiated patients with schizophrenia from healthy controls using combined grey matter, white matter and cerebrospinal fluid volumetric features, incorporated a deep neural network approach on an individual basis, and tested the generalisability of the classification models using independent validation sites. RESULTS We found that statistically reliable schizophrenia-related grey matter abnormalities primarily occurred in regions that included the superior temporal gyrus extending to the temporal pole, insular cortex, orbital and middle frontal cortices, middle cingulum and thalamus. Evaluated using leave-one-site-out cross-validation, the performance of the classification of schizophrenia achieved by our findings from eight independent research sites were: accuracy, 77.19-85.74%; sensitivity, 75.31-89.29% and area under the receiver operating characteristic curve, 0.797-0.909. CONCLUSIONS These results suggest that, by using deep-learning techniques, multidimensional neuroanatomical changes in schizophrenia are capable of robustly discriminating patients with schizophrenia from healthy controls, findings which could facilitate clinical diagnosis and treatment in schizophrenia.
Collapse
Affiliation(s)
- Yue Cui
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, China, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China and University of Chinese Academy of Sciences, China
| | - Chao Li
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, China, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China and University of Chinese Academy of Sciences, China
| | - Bing Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China and Chinese Institute for Brain Research, China
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, China
| | - Ming Song
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, China, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China and University of Chinese Academy of Sciences, China
| | - Jun Chen
- Department of Radiology, Renmin Hospital of Wuhan University, China
| | - Yunchun Chen
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, China
| | - Hua Guo
- Zhumadian Psychiatric Hospital, China
| | - Peng Li
- Peking University Sixth Hospital/Institute of Mental Health, China and Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Lin Lu
- Peking University Sixth Hospital/Institute of Mental Health, China, Key Laboratory of Mental Health, Ministry of Health (Peking University), China and Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, China
| | - Luxian Lv
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China and Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China
| | - Yuping Ning
- Guangzhou Brain Hospital, Guangzhou Hui-Ai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, China
| | - Ping Wan
- Zhumadian Psychiatric Hospital, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, China
| | - Huiling Wang
- Department of Psychiatry, Renmin Hospital of Wuhan University, China
| | - Huawang Wu
- Guangzhou Brain Hospital, Guangzhou Hui-Ai Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, China
| | - Hao Yan
- Peking University Sixth Hospital/Institute of Mental Health, China and Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Jun Yan
- Peking University Sixth Hospital/Institute of Mental Health, China and Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Yongfeng Yang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China, Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China and CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, China
| | - Hongxing Zhang
- Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University, China, Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China and Department of Psychology, Xinxiang Medical University, China
| | - Dai Zhang
- Peking University Sixth Hospital/Institute of Mental Health, China, Key Laboratory of Mental Health, Ministry of Health (Peking University), China and Center for Life Sciences/PKU-IDG/McGovern Institute for Brain Research, Peking University, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, China, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, China and University of Chinese Academy of Sciences, China, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, China; Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, China and Queensland Brain Institute, University of Queensland, Australia
| |
Collapse
|
13
|
Shaked D, Katzel LI, Davatzikos C, Gullapalli RP, Seliger SL, Erus G, Evans MK, Zonderman AB, Waldstein SR. White matter integrity as a mediator between socioeconomic status and executive function. Front Hum Neurosci 2022; 16:1021857. [PMID: 36466616 PMCID: PMC9716285 DOI: 10.3389/fnhum.2022.1021857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/04/2022] [Indexed: 11/03/2023] Open
Abstract
Introduction Lower socioeconomic status (SES) is associated with poorer executive function, but the neural mechanisms of this association remain unclear. As healthy brain communication is essential to our cognitive abilities, white matter integrity may be key to understanding socioeconomic disparities. Methods Participants were 201 African American and White adults (ages 33-72) from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) SCAN study. Diffusion tensor imaging was used to estimate regional fractional anisotropy as a measure of white matter integrity. Adjusting for age, analyses examined if integrity of the anterior limb of the internal capsule (ALIC), external capsule (EC), superior longitudinal fasciculus (SLF), and cingulum mediated SES-executive function relations. Results Lower SES was related to poorer cognitive performance and white matter integrity. Lower Trails B performance was related to poorer integrity of the ALIC, EC, and SLF, and lower Stroop performance was associated with poorer integrity of the ALIC and EC. ALIC mediated the SES-Trails B relation, and EC mediated the SES-Trails B and SES-Stroop relations. Sensitivity analyses revealed that (1) adjustment for race rendered the EC mediations non-significant, (2) when using poverty status and continuous education as predictors, results were largely the same, (3) at least some of the study's findings may generalize to processing speed, (4) mediations are not age-dependent in our sample, and (5) more research is needed to understand the role of cardiovascular risk factors in these models. Discussion Findings demonstrate that poorer white matter integrity helps explain SES disparities in executive function and highlight the need for further clarification of the biopsychosocial mechanisms of the SES-cognition association.
Collapse
Affiliation(s)
- Danielle Shaked
- Department of Psychology, University of Maryland, Baltimore County, Baltimore, MD, United States
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, Baltimore, MD, United States
- Department of Psychology, VA Boston Health Care System, Boston, MA, United States
| | - Leslie I. Katzel
- Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rao P. Gullapalli
- Department of Diagnostic Radiology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Stephen L. Seliger
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States
- Division of Nephrology, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Guray Erus
- Artificial Intelligence in Biomedical Imaging Laboratory (AIBIL), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Michele K. Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, Baltimore, MD, United States
| | - Alan B. Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging Intramural Research Program, Baltimore, MD, United States
| | - Shari R. Waldstein
- Department of Psychology, University of Maryland, Baltimore County, Baltimore, MD, United States
- Division of Gerontology, Geriatrics, and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Geriatric Research Education and Clinical Center, Baltimore VA Medical Center, Baltimore, MD, United States
| |
Collapse
|
14
|
Vouga Ribeiro N, Tavares V, Bramon E, Toulopoulou T, Valli I, Shergill S, Murray R, Prata D. Effects of psychosis-associated genetic markers on brain volumetry: a systematic review of replicated findings and an independent validation. Psychol Med 2022; 52:1-16. [PMID: 36168994 PMCID: PMC9811278 DOI: 10.1017/s0033291722002896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 08/13/2022] [Accepted: 08/24/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Given psychotic illnesses' high heritability and associations with brain structure, numerous neuroimaging-genetics findings have been reported in the last two decades. However, few findings have been replicated. In the present independent sample we aimed to replicate any psychosis-implicated SNPs (single nucleotide polymorphisms), which had previously shown at least two main effects on brain volume. METHODS A systematic review for SNPs showing a replicated effect on brain volume yielded 25 studies implicating seven SNPs in five genes. Their effect was then tested in 113 subjects with either schizophrenia, bipolar disorder, 'at risk mental state' or healthy state, for whole-brain and region-of-interest (ROI) associations with grey and white matter volume changes, using voxel-based morphometry. RESULTS We found FWER-corrected (Family-wise error rate) (i.e. statistically significant) associations of: (1) CACNA1C-rs769087-A with larger bilateral hippocampus and thalamus white matter, across the whole brain; and (2) CACNA1C-rs769087-A with larger superior frontal gyrus, as ROI. Higher replication concordance with existing literature was found, in decreasing order, for: (1) CACNA1C-rs769087-A, with larger dorsolateral-prefrontal/superior frontal gyrus and hippocampi (both with anatomical and directional concordance); (2) ZNF804A-rs11681373-A, with smaller angular gyrus grey matter and rectus gyri white matter (both with anatomical and directional concordance); and (3) BDNF-rs6265-T with superior frontal and middle cingulate gyri volume change (with anatomical and allelic concordance). CONCLUSIONS Most literature findings were not herein replicated. Nevertheless, high degree/likelihood of replication was found for two genome-wide association studies- and one candidate-implicated SNPs, supporting their involvement in psychosis and brain structure.
Collapse
Affiliation(s)
- Nuno Vouga Ribeiro
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Vânia Tavares
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Timothea Toulopoulou
- Department of Psychology & National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Centre (ASBAM), Bilkent University, Ankara, Turkey
| | - Isabel Valli
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Sukhi Shergill
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Robin Murray
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’ College London, London, UK
| | - Diana Prata
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
15
|
Takahashi T, Wood SJ, Yung AR, Nelson B, Lin A, Yuen HP, Phillips LJ, Suzuki M, McGorry PD, Velakoulis D, Pantelis C. Pineal morphology of the clinical high-risk state for psychosis and different psychotic disorders. Schizophr Res 2022; 244:1-7. [PMID: 35487129 DOI: 10.1016/j.schres.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pineal volume reductions have been reported in schizophrenia and clinical high-risk states for the development of psychosis, supporting the role of melatonin dysregulation in the pathophysiology of psychosis. However, it remains unclear whether pineal volume is associated with the later onset of psychosis in individuals at clinical high-risk (CHR) of psychosis or if pineal atrophy is specific to schizophrenia among different psychotic disorders. METHODS This magnetic resonance imaging study examined the volume of and cyst prevalence in the pineal gland in 135 individuals at CHR of psychosis [52 (38.5%) subsequently developed psychosis], 162 with first-episode psychosis (FEP), 89 with chronic schizophrenia, and 87 healthy controls. The potential contribution of the pineal morphology to clinical characteristics was also examined in the CHR and FEP groups. RESULTS Pineal volumes did not differ significantly between the CHR, FEP, and chronic schizophrenia groups, but were significantly smaller than that in healthy controls. However, pineal volumes were not associated with the later onset of psychosis in the CHR group or FEP sub-diagnosis (i.e., schizophrenia, schizophreniform disorder, affective psychosis, and other psychoses). No significant differences were observed in the prevalence of pineal cysts between the groups, and it also did not correlate with clinical characteristics in the CHR and FEP groups. CONCLUSION These results suggest that pineal atrophy is a general vulnerability marker of psychosis, while pineal cysts do not appear to contribute to the pathophysiology of psychosis.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Stephen J Wood
- Orygen, Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia; School of Psychology, University of Birmingham, Birmingham, UK
| | - Alison R Yung
- Orygen, Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia; Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Geelong, Australia; School of Health Sciences, University of Manchester, Manchester, UK
| | - Barnaby Nelson
- Orygen, Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Ashleigh Lin
- Telethon Kids Institute, The University of Western Australia, Perth, Australia
| | | | - Lisa J Phillips
- Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Patrick D McGorry
- Orygen, Melbourne, Australia; Centre for Youth Mental Health, The University of Melbourne, Melbourne, Australia
| | - Dennis Velakoulis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia; Neuropsychiatry, Royal Melbourne Hospital, Melbourne Health, Melbourne, Australia
| | - Christos Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia; North Western Mental Health, Western Hospital Sunshine, St. Albans, Victoria, Australia
| |
Collapse
|
16
|
Structural Asymmetries in Normal Brain Anatomy: A Brief Overview. Ann Anat 2022; 241:151894. [DOI: 10.1016/j.aanat.2022.151894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/19/2022]
|
17
|
Takahashi T, Sasabayashi D, Takayanagi Y, Furuichi A, Kido M, Nakamura M, Pham TV, Kobayashi H, Noguchi K, Suzuki M. Altered Heschl's gyrus duplication pattern in first-episode schizophrenia. Schizophr Res 2021; 237:174-181. [PMID: 34536751 DOI: 10.1016/j.schres.2021.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 07/21/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Reduced gray matter volumes in the superior temporal gyrus and its subregions, such as Heschl's gyrus (HG) and the planum temporale (PT), have been reported in schizophrenia (Sz). However, it remains unclear whether patients exhibit an altered sulcogyral pattern on the superior temporal plane. METHODS This magnetic resonance imaging study examined the distribution of HG duplication patterns [i.e., single HG, common stem duplication (CSD), or complete posterior duplication (CPD)] and their relationships with clinical variables and gray matter volumes in the HG and PT of 64 first-episode (FE) patients with Sz and 64 healthy controls. RESULTS The prevalence of duplicated HG patterns was significantly higher and gray matter volumes in the HG and PT of both hemispheres were smaller in FESz patients than in healthy controls. The right CPD pattern in the FESz group was associated with less severe positive symptoms. In the FESz and control groups, CSD and CPD patterns correlated with larger volumes in the HG and PT, respectively. CONCLUSION The present results revealed an altered HG duplication pattern at the earliest phase of Sz, which may reflect early neurodevelopmental anomalies. However, reduced HG and PT volumes in the FESz were not explained by this sulcogyral pattern only, supporting the complex superior temporal pathology of Sz.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan.
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Arisawabashi Hospital, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tien Viet Pham
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Haruko Kobayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
18
|
Zhao G, Lau WKW, Wang C, Yan H, Zhang C, Lin K, Qiu S, Huang R, Zhang R. A Comparative Multimodal Meta-analysis of Anisotropy and Volume Abnormalities in White Matter in People Suffering From Bipolar Disorder or Schizophrenia. Schizophr Bull 2021; 48:69-79. [PMID: 34374427 PMCID: PMC8781378 DOI: 10.1093/schbul/sbab093] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) share some similarities in terms of genetic-risk genes and abnormalities of gray-matter structure in the brain, but white matter (WM) abnormalities have not been studied in depth. We undertook a comparative multimodal meta-analysis to identify common and disorder-specific abnormalities in WM structure between SZ and BD. Anisotropic effect size-signed differential mapping software was used to conduct a comparative meta-analysis of 68 diffusion tensor imaging (DTI) and 34 voxel-based morphometry (VBM) studies comparing fractional anisotropy (FA) and white matter volume (WMV), respectively, between patients with SZ (DTI: N = 1543; VBM: N = 1068) and BD (DTI: N = 983; VBM: N = 518) and healthy controls (HCs). The bilateral corpus callosum (extending to the anterior and superior corona radiata) showed shared decreased WMV and FA in SZ and BD. Compared with BD patients, SZ patients showed remarkable disorder-specific WM abnormalities: decreased FA and increased WMV in the left cingulum, and increased FA plus decreased WMV in the right anterior limb of the internal capsule. SZ patients showed more extensive alterations in WM than BD cases, which may be the pathophysiological basis for the clinical continuity of both disorders. The disorder-specific regions in the left cingulum and right anterior limb of the internal capsule provided novel insights into both disorders. Our study adds value to further understanding of the pathophysiology, classification, and differential diagnosis of SZ and BD.
Collapse
Affiliation(s)
- Guorui Zhao
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Way K W Lau
- Department of Special Education and Counselling, The Education University of Hong Kong, Hong Kong, China
| | - Chanyu Wang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Haifeng Yan
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Chichen Zhang
- School of Management, Southern Medical University, Guangzhou, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shijun Qiu
- Department of Radiology, The First Affiliated Hospital of Guangzhou Chinese traditional Medical University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ruibin Zhang
- Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China,Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China,To whom correspondence should be addressed; Laboratory of Cognitive Control and Brain Healthy, Department of Psychology, School of Public Health, Southern Medical University, tel/fax:020-62789234, e-mail:
| |
Collapse
|
19
|
Gao Y, Li M, Huang AS, Anderson AW, Ding Z, Heckers SH, Woodward ND, Gore JC. Lower functional connectivity of white matter during rest and working memory tasks is associated with cognitive impairments in schizophrenia. Schizophr Res 2021; 233:101-110. [PMID: 34215467 PMCID: PMC8442250 DOI: 10.1016/j.schres.2021.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND Schizophrenia can be understood as a disturbance of functional connections within brain networks. However, functional alterations that involve white matter (WM) specifically, or their cognitive correlates, have seldomly been investigated, especially during tasks. METHODS Resting state and task fMRI images were acquired on 84 patients and 67 controls. Functional connectivities (FC) between 46 WM bundles and 82 cortical regions were compared between the groups under two conditions (i.e., resting state and during working memory retention period). The FC density of each WM bundle was then compared between groups. Associations of FC with cognitive scores were evaluated. RESULTS FC measures were lower in schizophrenia relative to controls for external capsule, cingulum (cingulate and hippocampus), uncinate fasciculus, as well as corpus callosum (genu and body) under the rest or the task condition, and were higher in the posterior corona radiata and posterior thalamic radiation during the task condition. FC for specific WM bundles was correlated with cognitive performance assessed by working memory and processing speed metrics. CONCLUSIONS The findings suggest that the functional abnormalities in patients' WM are heterogeneous, possibly reflecting several underlying mechanisms such as structural damage, functional compensation and excessive effort on task, and that WM FC disruption may contribute to the impairments of working memory and processing speed. This is the first report on WM FC abnormalities in schizophrenia relative to controls and their cognitive associates during both rest and task and highlights the need to consider WM functions as components of brain functional networks in schizophrenia.
Collapse
Affiliation(s)
- Yurui Gao
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Muwei Li
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Anna S Huang
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Zhaohua Ding
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Stephan H Heckers
- Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Neil D Woodward
- Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
20
|
Chen C, Wang X, Cao S, Zhang J, Wang Z, Pan W, Yang J, Tian Y, Qiu B, Wei Q, Wang K. Thalamocortical Functional Connectivity in Patients With White Matter Hyperintensities. Front Aging Neurosci 2021; 13:632237. [PMID: 33815090 PMCID: PMC8012554 DOI: 10.3389/fnagi.2021.632237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 02/23/2021] [Indexed: 01/14/2023] Open
Abstract
Background: White matter hyperintensities (WMH)s is a very common neuroradiological manifestation in the elderly and is an increased risk of dementia and cognitive decline. As we all know, the thalamocortical circuit plays an important part in cognition regulation. However, the role of this circuit in WMHs and its related cognitive deficits is still unclear. Method: Eighty WMH patients and 37 healthy controls (HCs) were enrolled in the current study. WMH patients were divided into a mild WMH group (n = 33) and moderate-severe WMH group (n = 47) according to Fazekas scores. Resting-state functional magnetic resonance imaging (rs-fMRI) data of all participants were collected for thalamocortical functional connectivity (FC) analysis. The analysis was performed in two steps. First, the whole cerebral cortex was divided into six regions of interest (ROIs), which were used as seeds to investigate the changes of FC with the thalamus. Then, the subregion of the thalamus generated in the previous step was used as the seed for FC analysis with the whole brain. Results: In the first step of FC analysis, it was found that precentral gyrus (PrCG)-interthalamic adhesion (ITA) FC values in moderate-severe WMH group were higher than those in HC and mild WMH groups. However, when compared with the HC group, the increase of PrCG-ITA FC values in mild WMH group was not statistically significant. In the second step of FC analysis, the ITA was set as the seed, and compared with the HC group, the results showed that the FC values of the ITA-medial frontal gyrus (MFG) in mild group and moderate-severe WMH groups were significantly increased. In addition, the FC values in moderate-severe group were significantly higher than those in mild group. Finally, it was also found that FC values (PrCG-ITA and ITA-MFG) were significantly correlated with neuropsychological test results for multiple cognitive functions such as memory, execution and attention in WMH patients. Conclusion: Abnormal thalamocortical FC was closely related with cognitive impairments in WMH patients.
Collapse
Affiliation(s)
- Chen Chen
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Xiaojing Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Shanshan Cao
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Jun Zhang
- Department of Neurology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhiqi Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Wen Pan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Jinying Yang
- Laboratory Center for Information Science and Technology of China, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Qiang Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- The College of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
21
|
Borghei A, Kapucu I, Dawe R, Kocak M, Sani S. Structural connectivity of the human massa intermedia: A probabilistic tractography study. Hum Brain Mapp 2021; 42:1794-1804. [PMID: 33471942 PMCID: PMC7978115 DOI: 10.1002/hbm.25329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 11/18/2020] [Accepted: 12/13/2020] [Indexed: 11/12/2022] Open
Abstract
The role of massa intermedia (MI) is poorly understood in humans. Recent studies suggest its presence may play a role in normal human neurocognitive function while prior studies have shown the absence of MI correlated with psychiatric disorders. There is growing evidence that MI is likely a midline white matter conduit, responsible for interhemispheric connectivity, similar to other midline commissures. MI presence was identified in an unrelated sample using the Human Connectome Project database. MI structural connectivity maps were created and gray matter target regions were identified using probabilistic tractography of the whole brain. Probabilistic tractography revealed an extensive network of connections between MI and limbic, frontal and temporal lobes as well as insula and pericalcarine cortices. Women compared to men had stronger connectivity via their MI. The presented results support the role of MI as a midline commissure with strong connectivity to the amygdala, hippocampus, and entorhinal cortex.
Collapse
Affiliation(s)
- Alireza Borghei
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| | - Irem Kapucu
- Rush Alzheimer's Disease Center, Johnston R Bowman Health Center, Chicago, Illinois, USA
| | - Robert Dawe
- Rush Alzheimer's Disease Center, Johnston R Bowman Health Center, Chicago, Illinois, USA
| | - Mehmet Kocak
- Department of Radiology, Rush University Medical Center, Chicago, Illinois, USA
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
22
|
Mithani K, Davison B, Meng Y, Lipsman N. The anterior limb of the internal capsule: Anatomy, function, and dysfunction. Behav Brain Res 2020; 387:112588. [PMID: 32179062 DOI: 10.1016/j.bbr.2020.112588] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/22/2019] [Accepted: 02/28/2020] [Indexed: 12/22/2022]
Abstract
The last two decades have seen a re-emergence of neurosurgery for severe, refractory psychiatric diseases, largely due to the advent of more precise and safe operative techniques. Nevertheless, the optimal targets for these surgeries remain a matter of debate, and are often grandfathered from experiences in the late 20th century. To better explore the rationale for one target in particular - the anterior limb of the internal capsule (ALIC) - we comprehensively reviewed all available literature on its role in the pathophysiology and treatment of mental illness. We first provide an overview of its functional anatomy, followed by a discussion on its role in several prevalent psychiatric diseases. Given its structural integration into the limbic system and involvement in a number of cognitive and emotional processes, the ALIC is a robust target for surgical treatment of refractory psychiatric diseases. The advent of novel neuroimaging techniques, coupled with image-guided therapeutics and neuromodulatory treatments, will continue to enable study on the ALIC in mental illness.
Collapse
Affiliation(s)
- Karim Mithani
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | | | - Ying Meng
- Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Nir Lipsman
- Sunnybrook Research Institute, Toronto, Ontario, Canada.
| |
Collapse
|
23
|
Takahashi T, Kido M, Sasabayashi D, Nakamura M, Furuichi A, Takayanagi Y, Noguchi K, Suzuki M. Gray Matter Changes in the Insular Cortex During the Course of the Schizophrenia Spectrum. Front Psychiatry 2020; 11:659. [PMID: 32754066 PMCID: PMC7366364 DOI: 10.3389/fpsyt.2020.00659] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/25/2020] [Indexed: 11/17/2022] Open
Abstract
Progressive gray matter reductions in the insular cortex have been reported in the early phases of schizophrenia (Sz); however, the trajectory of these reductions during the course of the illness currently remains unclear. Furthermore, it has not yet been established whether patients with schizotypal (SzTypal) features exhibit progressive changes in the insular cortex. This follow-up magnetic resonance imaging study examined volume changes in the short and long insular cortices (mean inter-scan interval = 2.6 years) of 23 first-episode (FE) and 17 chronic patients with Sz, 14 with SzTypal disorder, and 21 healthy controls. Baseline comparisons revealed smaller insular cortex volumes bilaterally in Sz patients (particularly in the chronic group) than in SzTypal patients and healthy controls. FESz patients showed significantly larger gray matter reductions in the insular cortex over time (left: -3.4%/year; right: -2.9%/year) than those in healthy controls (-0.1%/year for both hemispheres) without the effect of subregion or antipsychotic medication, whereas chronic Sz (left: -1.5%/year; right: -1.6%/year) and SzTypal (left: 0.5%/year; right: -0.6%/year) patients did not. Active atrophy of the right insular cortex during FE correlated with fewer improvements in positive symptoms in the Sz groups, while mild atrophy of the left insular cortex during the chronic phase was associated with the severity of negative symptoms in the follow-up period. The present results support dynamic volumetric changes in the insular cortex being specific to overt Sz among the spectrum disorders examined and their degree and role in symptomatology appear to differ across the illness stages.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Arisawabashi Hospital, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| |
Collapse
|
24
|
A longitudinal neurite and free water imaging study in patients with a schizophrenia spectrum disorder. Neuropsychopharmacology 2019; 44:1932-1939. [PMID: 31153156 PMCID: PMC6785103 DOI: 10.1038/s41386-019-0427-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 05/08/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
Abstract
Diffusion tensor imaging (DTI) studies show widespread white matter abnormalities in schizophrenia, but it is difficult to directly relate these parameters to biological processes. Neurite orientation dispersion and density imaging (NODDI) is geared toward biophysical characterization of white matter microstructure, but only few studies have leveraged this technique to study white matter alterations. We recruited 42 schizophrenia patients (30 antipsychotic-naïve and 12 currently untreated) and 42 matched controls in this prospective study. We assessed the orientation dispersion index (ODI) and extracellular free water (FW) using single-shell DTI data before and after a 6-week trial of risperidone. Longitudinal data were available for 27 patients. Voxelwise analyses showed significantly increased ODI in the posterior limb of the internal capsule in unmedicated patients (242 voxels; x = -24; y = 6; z = 6; p < 0.01; α < 0.04), but no alterations in FW. Whole brain measures did not reveal alterations in ODI but a 6.3% trend-level increase in FW in unmedicated SZ (t = -1.873; p = 0.07). Baseline ODI was negatively correlated with subsequent response to antipsychotic treatment (r = -0.38; p = 0.049). Here, we demonstrated altered fiber complexity in medication-naïve and unmedicated patients with a schizophrenia spectrum illness. Lesser whole brain fiber uniformity was predictive of poor response to treatment, suggesting this measure may be a clinically relevant biomarker. Interestingly, we found no significant changes in NODDI indices after short-term treatment with risperidone. Our data show that biophysical diffusion models have promise for the in vivo evaluation of brain microstructure in this devastating neuropsychiatric syndrome.
Collapse
|
25
|
Takahashi T, Nakamura M, Sasabayashi D, Nishikawa Y, Takayanagi Y, Nishiyama S, Higuchi Y, Furuichi A, Kido M, Noguchi K, Suzuki M. Reduced pineal gland volume across the stages of schizophrenia. Schizophr Res 2019; 206:163-170. [PMID: 30527931 DOI: 10.1016/j.schres.2018.11.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 11/18/2022]
Abstract
A few magnetic resonance imaging (MRI) studies reported reduced pineal gland volume in chronic schizophrenia (Sz), implicating the involvement of melatonin in the pathophysiology of the illness. However, it is not known whether this abnormality, if present, exists at the early illness stages and/or develops progressively over the course of the illness. This MRI study examined pineal gland volume in 64 patients with first-episode schizophrenia (FESz), 40 patients with chronic Sz, 22 individuals with at-risk mental state (ARMS), and 84 healthy controls. Longitudinal changes in pineal volume (mean inter-scan interval = 2.5 ± 0.7 years) were also examined in a subsample of 23 FESz, 16 chronic Sz, and 21 healthy subjects. In the cross-sectional comparison, the ARMS, FESz, and chronic Sz groups had significantly smaller pineal volume to the same degree as compared with healthy controls. A longitudinal comparison demonstrated that pineal volume did not change over time in any group. There was no association between pineal volume and clinical variables (e.g., symptom severity, medication) in the ARMS and Sz groups. The results suggest that a smaller pineal gland may be a static vulnerability marker of Sz, which probably reflects an early neurodevelopmental abnormality.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Shimako Nishiyama
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yuko Higuchi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
26
|
Kuo SS, Pogue-Geile MF. Variation in fourteen brain structure volumes in schizophrenia: A comprehensive meta-analysis of 246 studies. Neurosci Biobehav Rev 2019; 98:85-94. [PMID: 30615934 PMCID: PMC6401304 DOI: 10.1016/j.neubiorev.2018.12.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/21/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022]
Abstract
Despite hundreds of structural MRI studies documenting smaller brain volumes on average in schizophrenia compared to controls, little attention has been paid to group differences in the variability of brain volumes. Examination of variability may help interpret mean group differences in brain volumes and aid in better understanding the heterogeneity of schizophrenia. Variability in 246 MRI studies was meta-analyzed for 13 structures that have shown medium to large mean effect sizes (Cohen's d≥0.4): intracranial volume, total brain volume, lateral ventricles, third ventricle, total gray matter, frontal gray matter, prefrontal gray matter, temporal gray matter, superior temporal gyrus gray matter, planum temporale, hippocampus, fusiform gyrus, insula; and a control structure, caudate nucleus. No significant differences in variability in cortical/subcortical volumes were detected in schizophrenia relative to controls. In contrast, increased variability was found in schizophrenia compared to controls for intracranial and especially lateral and third ventricle volumes. These findings highlight the need for more attention to ventricles and detailed analyses of brain volume distributions to better elucidate the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Susan S Kuo
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| | - Michael F Pogue-Geile
- Department of Psychology, University of Pittsburgh, 4209 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA; Department of Psychology and Department of Psychiatry, University of Pittsburgh, 4207 Sennott Square, 210 South Bouquet St., Pittsburgh PA 15260, USA.
| |
Collapse
|
27
|
Functional Segmentation of the Anterior Limb of the Internal Capsule: Linking White Matter Abnormalities to Specific Connections. J Neurosci 2018; 38:2106-2117. [PMID: 29358360 DOI: 10.1523/jneurosci.2335-17.2017] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 12/11/2017] [Accepted: 12/18/2017] [Indexed: 01/21/2023] Open
Abstract
The anterior limb of the internal capsule (ALIC) carries thalamic and brainstem fibers from prefrontal cortical regions that are associated with different aspects of emotion, motivation, cognition processing, and decision-making. This large fiber bundle is abnormal in several psychiatric illnesses and a major target for deep brain stimulation. Yet, we have very little information about where specific prefrontal fibers travel within the bundle. Using a combination of tracing studies and diffusion MRI in male nonhuman primates, as well as diffusion MRI in male and female human subjects, we segmented the human ALIC into five regions based on the positions of axons from different cortical regions within the capsule. Fractional anisotropy (FA) abnormalities in patients with bipolar disorder were detected when FA was averaged in the ALIC segment that carries ventrolateral prefrontal cortical connections. Together, the results set the stage for linking abnormalities within the ALIC to specific connections and demonstrate the utility of applying connectivity profiles of large white matter bundles based on animal anatomic studies to human connections and associating disease abnormalities in those pathways with specific connections. The ability to functionally segment large white matter bundles into their components begins a new era of refining how we think about white matter organization and use that information in understanding abnormalities.SIGNIFICANCE STATEMENT The anterior limb of the internal capsule (ALIC) connects prefrontal cortex with the thalamus and brainstem and is abnormal in psychiatric illnesses. However, we know little about the location of specific prefrontal fibers within the bundle. Using a combination of animal tracing studies and diffusion MRI in animals and human subjects, we segmented the human ALIC into five regions based on the positions of axons from different cortical regions. We then demonstrated that differences in FA values between bipolar disorder patients and healthy control subjects were specific to a given segment. Together, the results set the stage for linking abnormalities within the ALIC to specific connections and for refining how we think about white matter organization in general.
Collapse
|
28
|
Kurachi M, Takahashi T, Sumiyoshi T, Uehara T, Suzuki M. Early Intervention and a Direction of Novel Therapeutics for the Improvement of Functional Outcomes in Schizophrenia: A Selective Review. Front Psychiatry 2018; 9:39. [PMID: 29515467 PMCID: PMC5826072 DOI: 10.3389/fpsyt.2018.00039] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A recent review reported that the median proportion of patients recovering from schizophrenia was 13.5% and that this did not change over time. Various factors including the duration of untreated psychosis, cognitive impairment, negative symptoms, and morphological changes in the brain influence the functional outcome of schizophrenia. The authors herein reviewed morphological changes in the brain of schizophrenia patients, effects of early intervention, and a direction of developing novel therapeutics to achieve significant improvement of the functional outcome. METHODS A selective review of the literature including studies from our department was performed. RESULTS Longitudinal structural neuroimaging studies on schizophrenia revealed that volume reductions in the peri-Sylvian regions (e.g., superior temporal gyrus and insula), which are related to positive psychotic symptoms, progress around the onset (critical stage) of schizophrenia, but become stable in the chronic stage. On the other hand, morphological changes in the fronto-thalamic regions and lateral ventricle, which are related to negative symptoms, neurocognitive dysfunction, and the functional outcome, progress during both the critical and chronic stages. These changes in the peri-Sylvian and fronto-thalamic regions may provide a pathophysiological basis for Crow's two-syndrome classification. Accumulated evidence from early intervention trials suggests that the transition risk from an at-risk mental state (ARMS) to psychosis is approximately 30%. Differences in the cognitive performance, event-related potentials (e.g., mismatch negativity), and brain morphology have been reported between ARMS subjects who later developed psychosis and those who did not. Whether early intervention for ARMS significantly improves the long-term recovery rate of schizophrenia patients remains unknown. With respect to the development of novel therapeutics, animal models of schizophrenia based on the N-methyl-d-aspartate receptor hypofunction hypothesis successfully mimicked behavioral changes associated with cognitive impairments characteristic of the disease. Furthermore, these animal models elicited histological changes in the brain similar to those observed in schizophrenia patients, i.e., decreased numbers of parvalbumin-positive interneurons and dendritic spines of pyramidal neurons in the frontal cortex. Some antioxidant compounds were found to ameliorate these behavioral and histological abnormalities. CONCLUSION Early intervention coupled with novel therapeutics may offer a promising approach for substantial improvement of the functional outcome of schizophrenia patients.
Collapse
Affiliation(s)
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, Graduate School of Medicine, University of Toyama, Toyama, Japan
| | - Tomiki Sumiyoshi
- Department of Clinical Epidemiology, Translational Medical Center, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takashi Uehara
- Department of Neuropsychiatry, Kanazawa Medical University, Kanazawa, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, Graduate School of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
29
|
Nanda P, Banks GP, Pathak YJ, Sheth SA. Connectivity-based parcellation of the anterior limb of the internal capsule. Hum Brain Mapp 2017; 38:6107-6117. [PMID: 28913860 PMCID: PMC6206867 DOI: 10.1002/hbm.23815] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 08/21/2017] [Accepted: 09/07/2017] [Indexed: 01/05/2023] Open
Abstract
The anterior limb of the internal capsule (ALIC) is an important locus of frontal-subcortical fiber tracts involved in cognitive and limbic feedback loops. However, the structural organization of its component fiber tracts remains unclear. Therefore, although the ALIC is a promising target for various neurosurgical procedures for psychiatric disorders, more precise understanding of its organization is required to optimize target localization. Using diffusion tensor imaging (DTI) collected on healthy subjects by the Human Connectome Project (HCP), we generated parcellations of the ALIC by dividing it according to structural connectivity to various frontal regions. We then compared individuals' parcellations to evaluate the ALIC's structural consistency. All 40 included subjects demonstrated a posterior-superior to anterior-inferior axis of tract organization in the ALIC. Nonetheless, subdivisions of the ALIC were found to vary substantially, as voxels in the average parcellation were accurately assigned for a mean of only 66.2% of subjects. There were, however, some loci of consistency, most notably in the region maximally connected to orbitofrontal cortex. These findings clarify the highly variable organization of the ALIC and may represent a tool for patient-specific targeting of neuromodulation. Hum Brain Mapp 38:6107-6117, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pranav Nanda
- Department of Neurological SurgeryColumbia University Medical CenterNew YorkNew York
| | - Garrett P. Banks
- Department of Neurological SurgeryColumbia University Medical CenterNew YorkNew York
| | - Yagna J. Pathak
- Department of Neurological SurgeryColumbia University Medical CenterNew YorkNew York
| | - Sameer A. Sheth
- Department of Neurological SurgeryColumbia University Medical CenterNew YorkNew York
| |
Collapse
|
30
|
Guadalupe T, Mathias SR, vanErp TGM, Whelan CD, Zwiers MP, Abe Y, Abramovic L, Agartz I, Andreassen OA, Arias-Vásquez A, Aribisala BS, Armstrong NJ, Arolt V, Artiges E, Ayesa-Arriola R, Baboyan VG, Banaschewski T, Barker G, Bastin ME, Baune BT, Blangero J, Bokde ALW, Boedhoe PSW, Bose A, Brem S, Brodaty H, Bromberg U, Brooks S, Büchel C, Buitelaar J, Calhoun VD, Cannon DM, Cattrell A, Cheng Y, Conrod PJ, Conzelmann A, Corvin A, Crespo-Facorro B, Crivello F, Dannlowski U, de Zubicaray GI, de Zwarte SMC, Deary IJ, Desrivières S, Doan NT, Donohoe G, Dørum ES, Ehrlich S, Espeseth T, Fernández G, Flor H, Fouche JP, Frouin V, Fukunaga M, Gallinat J, Garavan H, Gill M, Suarez AG, Gowland P, Grabe HJ, Grotegerd D, Gruber O, Hagenaars S, Hashimoto R, Hauser TU, Heinz A, Hibar DP, Hoekstra PJ, Hoogman M, Howells FM, Hu H, Hulshoff Pol HE, Huyser C, Ittermann B, Jahanshad N, Jönsson EG, Jurk S, Kahn RS, Kelly S, Kraemer B, Kugel H, Kwon JS, Lemaitre H, Lesch KP, Lochner C, Luciano M, Marquand AF, Martin NG, Martínez-Zalacaín I, Martinot JL, Mataix-Cols D, Mather K, McDonald C, McMahon KL, Medland SE, Menchón JM, Morris DW, Mothersill O, Maniega SM, Mwangi B, et alGuadalupe T, Mathias SR, vanErp TGM, Whelan CD, Zwiers MP, Abe Y, Abramovic L, Agartz I, Andreassen OA, Arias-Vásquez A, Aribisala BS, Armstrong NJ, Arolt V, Artiges E, Ayesa-Arriola R, Baboyan VG, Banaschewski T, Barker G, Bastin ME, Baune BT, Blangero J, Bokde ALW, Boedhoe PSW, Bose A, Brem S, Brodaty H, Bromberg U, Brooks S, Büchel C, Buitelaar J, Calhoun VD, Cannon DM, Cattrell A, Cheng Y, Conrod PJ, Conzelmann A, Corvin A, Crespo-Facorro B, Crivello F, Dannlowski U, de Zubicaray GI, de Zwarte SMC, Deary IJ, Desrivières S, Doan NT, Donohoe G, Dørum ES, Ehrlich S, Espeseth T, Fernández G, Flor H, Fouche JP, Frouin V, Fukunaga M, Gallinat J, Garavan H, Gill M, Suarez AG, Gowland P, Grabe HJ, Grotegerd D, Gruber O, Hagenaars S, Hashimoto R, Hauser TU, Heinz A, Hibar DP, Hoekstra PJ, Hoogman M, Howells FM, Hu H, Hulshoff Pol HE, Huyser C, Ittermann B, Jahanshad N, Jönsson EG, Jurk S, Kahn RS, Kelly S, Kraemer B, Kugel H, Kwon JS, Lemaitre H, Lesch KP, Lochner C, Luciano M, Marquand AF, Martin NG, Martínez-Zalacaín I, Martinot JL, Mataix-Cols D, Mather K, McDonald C, McMahon KL, Medland SE, Menchón JM, Morris DW, Mothersill O, Maniega SM, Mwangi B, Nakamae T, Nakao T, Narayanaswaamy JC, Nees F, Nordvik JE, Onnink AMH, Opel N, Ophoff R, Paillère Martinot ML, Papadopoulos Orfanos D, Pauli P, Paus T, Poustka L, Reddy JY, Renteria ME, Roiz-Santiáñez R, Roos A, Royle NA, Sachdev P, Sánchez-Juan P, Schmaal L, Schumann G, Shumskaya E, Smolka MN, Soares JC, Soriano-Mas C, Stein DJ, Strike LT, Toro R, Turner JA, Tzourio-Mazoyer N, Uhlmann A, Hernández MV, van den Heuvel OA, van der Meer D, van Haren NEM, Veltman DJ, Venkatasubramanian G, Vetter NC, Vuletic D, Walitza S, Walter H, Walton E, Wang Z, Wardlaw J, Wen W, Westlye LT, Whelan R, Wittfeld K, Wolfers T, Wright MJ, Xu J, Xu X, Yun JY, Zhao J, Franke B, Thompson PM, Glahn DC, Mazoyer B, Fisher SE, Francks C. Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex. Brain Imaging Behav 2017; 11:1497-1514. [PMID: 27738994 PMCID: PMC5540813 DOI: 10.1007/s11682-016-9629-z] [Show More Authors] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders.
Collapse
Affiliation(s)
- Tulio Guadalupe
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- International Max Planck Research School for Language Sciences, Nijmegen, The Netherlands
| | - Samuel R Mathias
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06519, USA
| | - Theo G M vanErp
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA, USA
| | - Christopher D Whelan
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
- Molecular and Cellular Therapeutics, The Royal College of Surgeons, Dublin 2, Ireland
| | - Marcel P Zwiers
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Yoshinari Abe
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Lucija Abramovic
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ingrid Agartz
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Research and Development, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm, Sweden
| | - Ole A Andreassen
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Alejandro Arias-Vásquez
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benjamin S Aribisala
- Department of Computer Science, Lagos State University, Lagos, Nigeria
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | - Nicola J Armstrong
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
- Mathematics and Statistics, Murdoch University, Murdoch, Australia
| | - Volker Arolt
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes -Sorbonne Paris Cité, Paris, France
| | - Rosa Ayesa-Arriola
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Vatche G Baboyan
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
| | - Gareth Barker
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mark E Bastin
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
| | - Bernhard T Baune
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - John Blangero
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX, USA
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neurosciences, Trinity College Dublin, Dublin, Ireland
| | - Premika S W Boedhoe
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands
| | - Anushree Bose
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Silvia Brem
- University Clinic for and Adolescent Psychiatry UCCAP, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Henry Brodaty
- Centre for Healthy Brain Ageing (CHeBA), & Dementia Collaborative Research Centre, School of Psychiatry, UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Uli Bromberg
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Samantha Brooks
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Jan Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry, Radboud university medical center, Nijmegen, The Netherlands
| | - Vince D Calhoun
- Departments of Electrical and Computer Engineering,Neurosciences, Computer Science, and Psychiatry, The University of New Mexico, Albuquerque, NM, USA
- The Mind Research Network, Albuquerque, NM, USA
| | - Dara M Cannon
- Centre for Neuroimaging, Cognition & Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Anna Cattrell
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Yuqi Cheng
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Patricia J Conrod
- Department of Psychiatry, Universite de Montreal, CHU Ste Justine Hospital, Montréal, Canada
- Department of Psychological Medicine and Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Annette Conzelmann
- Department of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Germany, Tübingen, Würzburg, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Aiden Corvin
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
| | - Benedicto Crespo-Facorro
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | | | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, University of Marburg, Marburg, Germany
| | - Greig I de Zubicaray
- Faculty of Health and Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane City, Australia
| | - Sonja M C de Zwarte
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
| | - Sylvane Desrivières
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Nhat Trung Doan
- NORMENT - KG Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Gary Donohoe
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition & Genomics Centre (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, SW4 794, Galway, Ireland
- Department of Psychiatry & trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Erlend S Dørum
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Department of Psychiatry, Massachusetts General Hospital, Boston, USA
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Thomas Espeseth
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT - KG Jebsen Centre, Department of Psychology, University of Oslo, Oslo, Norway
| | - Guillén Fernández
- Department of Cognitive Neuroscience, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Vincent Frouin
- Neurospin, Commissariat à l'Energie Atomique, CEA-Saclay Center, Paris, France
| | - Masaki Fukunaga
- Division of Cerebral Integration, National Institute for Physiological Sciences, Okazaki, Japan
| | - Jürgen Gallinat
- Department of Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf (UKE), Martinistrasse 52, 20246, Hamburg, Germany
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, 05405, USA
| | - Michael Gill
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Andrea Gonzalez Suarez
- Service of Neurology, University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Santander, Spain
- CIBERNED, Centro de Investigación Biomédica en red Enfermedades Neurodegenerativas, Madrid, Spain
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, UK
| | - Hans J Grabe
- Department of Psychiatry, University Medicine Greifswald, Greifswald, Germany
- Department of Psychiatry and Psychotherapy, HELIOS Hospital Stralsund, Stralsund, Germany
| | | | - Oliver Gruber
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, D-37075, Göttingen, Germany
| | - Saskia Hagenaars
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Ryota Hashimoto
- Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tobias U Hauser
- University Clinic for Child and Adolescent Psychiatry (UCCAP), University of Zurich, Zurich, Switzerland
- Wellcome Trust Centre for Neuroimaging, University College London, London, UK
- UCL Max Planck Centre for Computational Psychiatry and Ageing, University College London, London, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Derrek P Hibar
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - Pieter J Hoekstra
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martine Hoogman
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Fleur M Howells
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Hao Hu
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 Wan Ping Nan Road, Shanghai, 200030, China
| | | | - Chaim Huyser
- De Bascule, Academic Center for Child and Adolescent Psychiatry, Amsterdam, The Netherlands
- AMC, department of child and adolescent psychiatry, Amsterdam, The Netherlands
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Neda Jahanshad
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Erik G Jönsson
- Department of Clinical Neuroscience, Psychiatry Section, Karolinska Institutet, Stockholm, Sweden
- NORMENT, KG Jebsen Centre for Psychosis Research, Institute of Clinical Medicine. Psychiatry section, University of Oslo, Oslo, Norway
| | - Sarah Jurk
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Rene S Kahn
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Sinead Kelly
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Los Angeles, 90292, USA
| | - Bernd Kraemer
- Center for Translational Research in Systems Neuroscience and Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center, D-37075, Göttingen, Germany
| | - Harald Kugel
- Department of Clinical Radiology, University of Münster, Münster, Germany
| | - Jun Soo Kwon
- Department of Psychiatry & Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
- Department of Brain & Cognitive Sciences, College of Natural Science, Seoul National University, Seoul, Republic of Korea
| | - Herve Lemaitre
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes -Sorbonne Paris Cité, Paris, France
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Center of Mental Health, University of Würzburg, Würzburg, Germany
- Department of Translational Neuroscience, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Maastricht, The Netherlands
| | - Christine Lochner
- Department of Psychiatry, University of Stellenbosch and MRC Unit on Anxiety & Stress Disorders, Tygerberg, Cape Town, South Africa
| | - Michelle Luciano
- Centre for Cognitive Ageing and Cognitive Epidemiology, Psychology, University of Edinburgh, Edinburgh, UK
| | - Andre F Marquand
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, King's College London, London, UK
| | | | - Ignacio Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital - Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes - Sorbonne Paris Cité, and Maison de Solenn, Paris, France
- Maison de Solenn, Paris, France
| | - David Mataix-Cols
- Department of Clinical Neuroscience,Centre for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
| | - Karen Mather
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Colm McDonald
- Centre for Neuroimaging, Cognition & Genomics (NICOG), Clinical Neuroimaging Laboratory, NCBES Galway Neuroscience Centre, College of Medicine, Nursing and Health Sciences, National University of Ireland Galway, Galway, H91 TK33, Ireland
| | - Katie L McMahon
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
| | - Sarah E Medland
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - José M Menchón
- Department of Psychiatry, Bellvitge University Hospital - Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- CIBER Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Clinical Sciences, University of Barcelona, Barcelona, Spain
| | - Derek W Morris
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition & Genomics Centre (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, SW4 794, Galway, Ireland
| | - Omar Mothersill
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
- Cognitive Genetics and Cognitive Therapy Group, Neuroimaging, Cognition & Genomics Centre (NICOG), School of Psychology and Discipline of Biochemistry, National University of Ireland Galway, SW4 794, Galway, Ireland
| | - Susana Munoz Maniega
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Benson Mwangi
- UT Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, UT Houston Medical School, Houston, TX, USA
| | - Takashi Nakamae
- Department of Psychiatry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
- Department of Neural Computation for Decision-Making, ATR Brain Information Communication Research Laboratory Group, Kyoto, Japan
| | - Tomohiro Nakao
- Department of Neuropsychiatry, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | - Frauke Nees
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | - Jan E Nordvik
- Sunnaas Rehabilitation Hospital HT, Nesodden, Norway
| | - A Marten H Onnink
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Roel Ophoff
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
- Center for Neurobehavioral Genetics, University of California, Los Angeles, USA
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 "Neuroimaging & Psychiatry", University Paris Sud, University Paris Descartes -Sorbonne Paris Cité, Paris, France
- AP-HP, Department of Adolescent Psychopathology and Medicine, Maison de Solenn, Cochin Hospital, Paris, France
| | | | - Paul Pauli
- Department of Psychiatry and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Tomáš Paus
- Rotman Research Institute, Baycrest and Departments of Psychology and Psychiatry, University of Toronto, M6A 2E1, Toronto, ON, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Janardhan Yc Reddy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Roberto Roiz-Santiáñez
- Department of Psychiatry, University Hospital Marqués de Valdecilla, School of Medicine, University of Cantabria-IDIVAL, Santander, Spain
- CIBERSAM, Centro Investigación Biomédica en Red Salud Mental, Santander, Spain
| | - Annerine Roos
- Department of Psychiatry, University of Stellenbosch and MRC Unit on Anxiety & Stress Disorders, Tygerberg, Cape Town, South Africa
| | - Natalie A Royle
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Perminder Sachdev
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Pascual Sánchez-Juan
- Service of Neurology, University Hospital Marqués de Valdecilla (IDIVAL), University of Cantabria (UC), Santander, Spain
- CIBERNED, Centro de Investigación Biomédica en red Enfermedades Neurodegenerativas, Madrid, Spain
| | - Lianne Schmaal
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Gunter Schumann
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Elena Shumskaya
- Donders Centre for Cognitive Neuroimaging, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, 77054, USA
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital - Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Barcelona, Spain
- CIBER Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Barcelona, Spain
- Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Dan J Stein
- Department of Psychiatry, University of Cape Town and MRC Unit on Anxiety & Stress Disorders, Cape Town, South Africa
| | - Lachlan T Strike
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Roberto Toro
- Laboratory of Human Genetics and Cognitive Functions, Institut Pasteur, 75015, Paris, France
| | - Jessica A Turner
- The Mind Research Network, Albuquerque, NM, USA
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Department of Neuroscience, Georgia State University, Atlanta, GA, USA
| | | | - Anne Uhlmann
- Department of Psychiatry and Mental Health, University of Cape Town, Observatory, Cape Town, South Africa
| | - Maria Valdés Hernández
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Odile A van den Heuvel
- Department of Anatomy & Neurosciences, VU University Medical Center, Amsterdam, The Netherlands
- Neuroscience Campus Amsterdam, VU/VUMC, Amsterdam, The Netherlands
- Department of Psychiatry, VU University Medical Center, Amsterdam, The Netherlands
| | - Dennis van der Meer
- Department of Psychiatry, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Neeltje E M van Haren
- Brain Centre Rudolf Magnus, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dick J Veltman
- Department of Psychiatry, Neuroscience Campus Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | | | - Nora C Vetter
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Daniella Vuletic
- Department of Psychiatry, University of Cape Town, Cape Town, South Africa
| | - Susanne Walitza
- University Clinic for Child and Adolescent Psychiatry (UCCAP), University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité, Universitätsmedizin Berlin, Charitéplatz 1, Berlin, Germany
| | - Esther Walton
- Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, No. 600 Wan Ping Nan Road, Shanghai, 200030, China
| | - Joanna Wardlaw
- Brain Research Imaging Centre, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Scottish Imaging Network, A Platform for Scientific Excellence (SINAPSE) Collaboration, Department of Neuroimaging Sciences, University of Edinburgh, Edinburgh, UK
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Wei Wen
- Centre for Healthy Brain Ageing, School of Psychiatry, University of New South Wales (UNSW), Sydney, Australia
| | - Lars T Westlye
- NORMENT - KG Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Robert Whelan
- Department of Psychology, University College Dublin, Dublin, Ireland
| | - Katharina Wittfeld
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock, Greifswald, Germany
| | - Thomas Wolfers
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
| | - Margaret J Wright
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Jian Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea
| | - JingJing Zhao
- Cognitive Genetics and Therapy Group, School of Psychology & Discipline of Biochemistry, National University of Ireland Galway, Galway, SW4 794, Ireland
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Paul M Thompson
- Imaging Genetics Center, Institute for Neuroimaging & Informatics, Keck School of Medicine of the University of Southern California, Marina del Rey, CA, USA
| | - David C Glahn
- Department of Psychiatry, Yale University, New Haven, CT, 06511, USA
- Olin Neuropsychiatric Research Center, Hartford, CT, 06114, USA
| | - Bernard Mazoyer
- UMR5296 CNRS, CEA and University of Bordeaux, Bordeaux, France
| | - Simon E Fisher
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands
| | - Clyde Francks
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Raboud University, Nijmegen, The Netherlands.
| |
Collapse
|
31
|
Onay A, Eser HY, Ulaşoğlu-Yıldız Ç, Aslan S, Talı ET. A combined VBM and DTI study of schizophrenia: bilateral decreased insula volume and cerebral white matter disintegrity corresponding to subinsular white matter projections unlinked to clinical symptomatology. Diagn Interv Radiol 2017; 23:390-397. [PMID: 28870884 PMCID: PMC5602366 DOI: 10.5152/dir.2017.16519] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 01/18/2017] [Accepted: 04/07/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE Grey matter and white matter changes within the brain are well defined in schizophrenia. However, most studies focused on either grey matter changes or white matter integrity separately; only in limited number of studies these changes were interpreted in the same frame. In addition, the relationship of these findings with clinical variables is not clearly established. Here, we aimed to investigate the grey matter and white matter changes in schizophrenia patients and exhibit the relation of these imaging findings with clinical variables. METHODS A total of 20 schizophrenia patients and 16 matched healthy controls underwent magnetic resonance imaging to investigate the grey matter and white matter alterations that occur in schizophrenia patients using voxel-based morphometry (VBM) and whole brain voxel-wise analysis of diffusion tensor imaging (DTI) parameters with SPM8, respectively. While the preprocessing steps of VBM were performed with the default parameters of VBM8 toolbox, the preprocessing steps of DTI were carried out using FSL. Additionally, VBM results were correlated with clinical variables. RESULTS Bilateral insula showed decreased grey matter volume in schizophrenia patients compared with healthy controls (P < 0.01). The opposite contrast did not show a significant difference. Psychiatric scores, duration of illness, and age were not correlated with the decreased grey matter volume of insula in schizophrenia patients. DTI analysis revealed a significant increase in mean, radial, and axial diffusivity, mainly of the fibers of bilateral anterior thalamic radiation and superior longitudinal fasciculus with left predominance, which intersected with bilateral subinsular white matter (P < 0.05). CONCLUSION Our findings suggest that insula may be the main affected brain region in schizophrenia, which is also well supported by the literature. Our results were independent of disease duration and schizophrenia symptoms. White matter alterations were observed within bilateral anterior thalamic radiation and superior longitudinal fasciculus that intersects with subinsular white matter. Studies with larger sample sizes and more detailed clinical assessments are required to understand the function of insula in the neurobiology of schizophrenia.
Collapse
Affiliation(s)
| | | | - Çiğdem Ulaşoğlu-Yıldız
- From the Departments of Radiology (A.O. , ) and Psychiatry (H.Y.E.), Koç University School of Medicine, İstanbul, Turkey; Hulusi Behçet Life Sciences Research Center (Ç.U.Y.), İstanbul University İstanbul School of Medicine, İstanbul, Turkey; the Departments of Psychiatry (S.A.) and Radiology (E.T.T.), Gazi University School of Medicine, Ankara, Turkey
| | - Selçuk Aslan
- From the Departments of Radiology (A.O. , ) and Psychiatry (H.Y.E.), Koç University School of Medicine, İstanbul, Turkey; Hulusi Behçet Life Sciences Research Center (Ç.U.Y.), İstanbul University İstanbul School of Medicine, İstanbul, Turkey; the Departments of Psychiatry (S.A.) and Radiology (E.T.T.), Gazi University School of Medicine, Ankara, Turkey
| | - Erhan Turgut Talı
- From the Departments of Radiology (A.O. , ) and Psychiatry (H.Y.E.), Koç University School of Medicine, İstanbul, Turkey; Hulusi Behçet Life Sciences Research Center (Ç.U.Y.), İstanbul University İstanbul School of Medicine, İstanbul, Turkey; the Departments of Psychiatry (S.A.) and Radiology (E.T.T.), Gazi University School of Medicine, Ankara, Turkey
| |
Collapse
|
32
|
Takahashi T, Takayanagi Y, Nishikawa Y, Nakamura M, Komori Y, Furuichi A, Kido M, Sasabayashi D, Noguchi K, Suzuki M. Brain neurodevelopmental markers related to the deficit subtype of schizophrenia. Psychiatry Res Neuroimaging 2017; 266:10-18. [PMID: 28549318 DOI: 10.1016/j.pscychresns.2017.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/29/2017] [Accepted: 05/19/2017] [Indexed: 02/02/2023]
Abstract
Deficit schizophrenia is a homogeneous subtype characterized by a trait-like feature of primary and prominent negative symptoms, but the etiologic factors related to this specific subtype remain largely unknown. This magnetic resonance imaging study aimed to examine gross brain morphology that probably reflects early neurodevelopment in 38 patients with deficit schizophrenia, 37 patients with non-deficit schizophrenia, and 59 healthy controls. Potential brain neurodevelopmental markers investigated in this study were the adhesio interthalamica (AI), cavum septi pellucidi (CSP), and surface morphology (i.e., olfactory sulcus depth, sulcogyral pattern, and number of orbital sulci) of the orbitofrontal cortex (OFC). The subtype classification of schizophrenia patients was based on the score of Proxy for the Deficit Syndrome. The deficit schizophrenia group had a significantly shorter AI compared with the non-deficit group and controls. The deficit group, but not the non-deficit group, was also characterized by an altered distribution of the OFC sulcogyral pattern, as well as fewer posterior orbital sulcus compared with controls. Other neurodevelopmental markers did not differentiate the deficit and non-deficit subgroups. These results suggest that the deficit subtype of schizophrenia and its clinical manifestation may be at least partly related to prominent neurodevelopmental pathology.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Yuko Komori
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan
| |
Collapse
|
33
|
Bopp MHA, Zöllner R, Jansen A, Dietsche B, Krug A, Kircher TTJ. White matter integrity and symptom dimensions of schizophrenia: A diffusion tensor imaging study. Schizophr Res 2017; 184:59-68. [PMID: 28012640 DOI: 10.1016/j.schres.2016.11.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 11/27/2016] [Accepted: 11/28/2016] [Indexed: 01/15/2023]
Abstract
Impaired fiber bundle connectivity between brain regions is a key neuropathological finding in schizophrenia. Symptom dimensions in schizophrenia can be clustered into factor models. Single syndromes have been related to grey and white matter brain structure alterations. We associated all core syndromes of schizophrenia in a single patient group with changes in white matter integrity. Diffusion weighted images (3T MRI) and SAPS/SANS scores were measured in 26 male patients and 26 healthy controls. First, group differences in fractional anisotropy (FA) were calculated with TBSS. Second, core symptom dimensions of schizophrenia were correlated with FA within these altered tracts. We found differences between groups in nine white matter tracts. Hallucinations were positively correlated with FA in the left uncinate fasciculus and left corticospinal tract. Ego-disturbances (passivity phenomena) showed a positive correlation with FA in the right anterior thalamic radiation. Positive formal thought disorders (FTD) corresponded negatively with FA in the right cingulum bundle. Negative symptoms were positively associated with the right anterior thalamic radiation and negatively with the right ventral cingulum bundle. For the first time, we analyzed the whole range of psychopathological factors in one schizophrenia patient group. We could validate our novel results for positive FTD and passivity phenomena by replicating findings for hallucinations and negative symptoms. Only those brain circuits which are most vulnerable at a given time during neurodevelopment are affected by a particular pathological impact (genetic, environmental). This scenario could explain the predominance of particular psychopathological syndromes related to specific white matter anomalies.
Collapse
Affiliation(s)
- Miriam H A Bopp
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Department of Neurosurgery, University of Marburg, Baldingerstrasse, 35043 Marburg, Germany; International Clinical Research Center, St. Anne's University Hospital, Pekarska 53, 65691 Brno, Czech Republic.
| | - Rebecca Zöllner
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany; Core Facility Brain Imaging, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Bruno Dietsche
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| | - Tilo T J Kircher
- Department of Psychiatry and Psychotherapy, University of Marburg, Rudolf-Bultmann-Strasse 8, 35039 Marburg, Germany
| |
Collapse
|
34
|
Damle NR, Ikuta T, John M, Peters BD, DeRosse P, Malhotra AK, Szeszko PR. Relationship among interthalamic adhesion size, thalamic anatomy and neuropsychological functions in healthy volunteers. Brain Struct Funct 2016; 222:2183-2192. [PMID: 27866270 DOI: 10.1007/s00429-016-1334-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
Abstract
The interthalamic adhesion (ITA) is an understudied neuroanatomical structure that forms a bridge of tissue connecting the thalamus of each hemisphere across the midline whose functional significance remains largely unknown. The likelihood of ITA absence has been reported in some studies to be increased in males, but findings have been inconsistent. We used magnetic resonance imaging to investigate the size and absence of the ITA and their relationship to thalamic volume, putative indices of white matter integrity (fractional anisotropy and mean diffusivity) within the anterior thalamic radiation and neuropsychological functions in 233 (129 M/104 F) healthy volunteers (age range 8-68). To ensure high reliability in this study two operators independently rated the absence of the ITA and measured its size for all individuals. The ITA was absent in 4% of all individuals with no sex differences in its absence. Females had greater ITA size compared to males overall with both groups demonstrating nonlinear age-associated changes across the age range examined. ITA size among females correlated significantly with thalamus volume and lower mean diffusivity in the anterior thalamic radiation. Path modeling indicated that ITA size statistically mediated the relationship between age and attention among females. Our findings provide evidence for sex differences in ITA size across the lifespan, which are associated with the surrounding thalamic anatomy and neuropsychological functions.
Collapse
Affiliation(s)
| | - Toshikazu Ikuta
- Department of Communication Sciences and Disorders, School of Applied Sciences, University of Mississippi, Oxford, MS, USA
| | - Majnu John
- Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA.,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Department of Mathematics, Hofstra University, Hempstead, NY, USA
| | - Bart D Peters
- Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA.,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Pamela DeRosse
- Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA.,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Departments of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Anil K Malhotra
- Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA.,Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Manhasset, NY, USA.,Departments of Psychiatry and Molecular Medicine, Hofstra Northwell School of Medicine, Hempstead, NY, USA
| | - Philip R Szeszko
- James J. Peters Veterans Affairs Medical Center, Mental Health Care Center, 130 W Kingsbridge Rd, Bronx, NY, 10468, USA. .,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
35
|
Bai Z, Ma X, Tian J, Dong J, He J, Zhan W, Xu L, Xu Y, Jiang G. Brain Microstructural Abnormalities Are Related to Physiological Alterations in End-Stage Renal Disease. PLoS One 2016; 11:e0155902. [PMID: 27227649 PMCID: PMC4881995 DOI: 10.1371/journal.pone.0155902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/05/2016] [Indexed: 01/14/2023] Open
Abstract
PURPOSE To study whole-brain microstructural alterations in patients with end-stage renal disease (ESRD) and examine the relationship between brain microstructure and physiological indictors in the disease. MATERIALS AND METHODS Diffusion tensor imaging data were collected from 35 patients with ESRD (28 men, 18-61 years) and 40 age- and gender-matched healthy controls (HCs, 32 men, 22-58 years). A voxel-wise analysis was then used to identify microstructural alterations over the whole brain in the ESRD patients compared with the HCs. Multiple biochemical measures of renal metabolin, vascular risk factors, general cognitive ability and dialysis duration were correlated with microstructural integrity for the patients. RESULTS Compared to the HCs, the ESRD patients exhibited disrupted microstructural integrity in not only white matter (WM) but also gray matter (GM) regions, as characterized by decreased fractional anisotropy (FA) and increased mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD). Further correlation analyses revealed that the in MD, AD and RD values showed significantly positive correlations with the blood urea nitrogen in the left superior temporal gyrus and significantly negative correlations with the calcium levels in the left superior frontal gyrus (orbital part) in the patients. CONCLUSION Our findings suggest that ESRD is associated with widespread diffusion abnormalities in both WM and GM regions in the brain, and microstructural integrity of several GM regions are related to biochemical alterations in the disease.
Collapse
Affiliation(s)
- Zhigang Bai
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medial University, Guangzhou City, Guangdong province, PR China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong No. 2 Provincial People’s Hospital, Guangzhou City, Guangdong province, PR China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong No. 2 Provincial People’s Hospital, Guangzhou City, Guangdong province, PR China
| | - Jianwei Dong
- Department of Mathematics, Guangdong Pharmaceutical University, Guangzhou City, Guangdong province, PR China
| | - Jinlong He
- Image diagnostics division, the Affiliated Hospital of Inner Mongolia Medical University, Huhehaote City, Inner Mongolia Autonomous Region, PR China
| | - Wenfeng Zhan
- Department of Medical Imaging, Guangdong No. 2 Provincial People’s Hospital, Guangzhou City, Guangdong province, PR China
| | - Lijuan Xu
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, PR China
| | - Yikai Xu
- Department of Medical Imaging Center, Nanfang Hospital, Southern Medial University, Guangzhou City, Guangdong province, PR China
- * E-mail: (GJ); (YX)
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong No. 2 Provincial People’s Hospital, Guangzhou City, Guangdong province, PR China
- * E-mail: (GJ); (YX)
| |
Collapse
|
36
|
Karlsgodt KH. Diffusion Imaging of White Matter In Schizophrenia: Progress and Future Directions. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2016; 1:209-217. [PMID: 27453952 PMCID: PMC4955654 DOI: 10.1016/j.bpsc.2015.12.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diffusion tensor imaging (DTI) is a powerful tool for the in-vivo assessment of white matter microstructure. The application of DTI methodologies to the study of schizophrenia has supported and advanced the hypothesis of schizophrenia as a disorder of disrupted connectivity. In the context of impaired structural connectivity, the extended time frame of white matter development may offer unique opportunities for treatment that can capitalize on the neural flexibility that is still present in the period leading up to and after disease onset. Therefore, it is important to gain a clear understanding of white matter deficits and how they may emerge and change across the illness. However, while there is broad consistency in the findings of white matter deficits in patients with schizophrenia, there is also a great deal of variability in specific findings across studies. In this review, the aim is to move beyond summarizing case-control analyses, to consider the many factors that may impact DTI measures, to explain variability of findings, and to explore future directions for the field. The topics explored include ways to parse DTI patterns associated with different disease subtypes, ways in which novel and established treatments might interact with or enhance white matter, ways of dissociating developmental change from the disease process itself, and understanding the role of emerging analytic methodologies.
Collapse
Affiliation(s)
- Katherine H Karlsgodt
- Psychiatry Research Division, Zucker Hillside Hospital and Feinstein Institute for Medical Research; Department of Psychiatry, Hofstra NorthShore LIJ School of Medicine
| |
Collapse
|
37
|
Liu W, Mao Y, Wei D, Yang J, Du X, Xie P, Qiu J. Structural Asymmetry of Dorsolateral Prefrontal Cortex Correlates with Depressive Symptoms: Evidence from Healthy Individuals and Patients with Major Depressive Disorder. Neurosci Bull 2016; 32:217-26. [PMID: 27015663 DOI: 10.1007/s12264-016-0025-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
In this study, we investigated the role of structural asymmetry of the dorsolateral prefrontal cortex (DLPFC) in the continuum of depression from healthy individuals to patients. Structural magnetic resonance imaging was performed in 70 patients with major depressive disorder (MDD), 49 matched controls, and 349 healthy university students to calculate structural asymmetry indexes of the DLPFC. First-episode, treatment-naive MDD patients showed a relatively lower asymmetry index than healthy controls, and their asymmetry index was negatively correlated with the depressive symptoms. This abnormality was normalized by antidepressants in medicated MDD patients. Furthermore, the asymmetry index was negatively correlated with the depressive symptoms in university students; this was replicated at two time points in a subgroup of students, suggesting good test-retest reliability. Our findings are consistent with previous studies that support the imbalance hypothesis of MDD and suggest a potential structural basis underlying the functional asymmetry of the DLPFC in depression. In future, the structural index of the DLPFC may become a potential biomarker to evaluate individuals' risk for the onset of MDD.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China.,Department of Psychology, Southwest University, Chongqing, 400715, China
| | - Yu Mao
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China.,Department of Psychology, Southwest University, Chongqing, 400715, China
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China.,Department of Psychology, Southwest University, Chongqing, 400715, China
| | - Junyi Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China.,Department of Psychology, Southwest University, Chongqing, 400715, China
| | - Xue Du
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China.,Department of Psychology, Southwest University, Chongqing, 400715, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, 400016, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, 400016, China. .,Department of Neurology, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China.
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, 400715, China. .,Department of Psychology, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
38
|
Nishikawa Y, Takahashi T, Takayanagi Y, Furuichi A, Kido M, Nakamura M, Sasabayashi D, Noguchi K, Suzuki M. Orbitofrontal sulcogyral pattern and olfactory sulcus depth in the schizophrenia spectrum. Eur Arch Psychiatry Clin Neurosci 2016; 266:15-23. [PMID: 25757375 DOI: 10.1007/s00406-015-0587-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/19/2015] [Indexed: 11/24/2022]
Abstract
Morphological changes in the orbitofrontal cortex (OFC), such as an altered sulcogyral pattern of the 'H-shaped' orbital sulcus and a shallow olfactory sulcus, have been demonstrated in schizophrenia, possibly reflecting deviations in early neurodevelopment. However, it remains unclear whether patients with schizotypal features exhibit similar OFC changes. This magnetic resonance imaging study examined the OFC sulcogyral pattern (Types I, II, III, and IV) and olfactory sulcus morphology in 102 patients with schizophrenia, 47 patients with schizotypal disorder, and 84 healthy controls. The OFC sulcogyral pattern distribution between the groups was significantly different on the right hemisphere, with the schizophrenia patients showing a decrease in Type I (vs controls and schizotypal patients) and an increase in Type III (vs controls) expression. However, the schizotypal patients and controls did not differ in the OFC pattern. There were significant group differences in the olfactory sulcus depth bilaterally (schizophrenia patients < schizotypal patients < controls). Our findings suggest that schizotypal disorder, a milder form of schizophrenia spectrum disorders, partly shares the OFC changes (i.e., altered depth of the olfactory sulcus) with schizophrenia, possibly reflecting a common disease vulnerability. However, altered distribution of the OFC pattern specific to schizophrenia may at least partly reflect neurodevelopmental pathology related to a greater susceptibility to overt psychosis.
Collapse
Affiliation(s)
- Yumiko Nishikawa
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yoichiro Takayanagi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Atsushi Furuichi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Mikio Kido
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Mihoko Nakamura
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Daiki Sasabayashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kyo Noguchi
- Department of Radiology, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, 2630 Sugitani, Toyama, 930-0194, Japan
| |
Collapse
|
39
|
Zhu QY, Bi SW, Yao XT, Ni ZY, Li Y, Chen BY, Fan GG, Shang XL. Disruption of thalamic connectivity in Alzheimer's disease: a diffusion tensor imaging study. Metab Brain Dis 2015; 30:1295-308. [PMID: 26141074 DOI: 10.1007/s11011-015-9708-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/26/2015] [Indexed: 12/15/2022]
Abstract
The aim of this study was to evaluate the structural integrity of the thalamic connectivity of specific fiber tracts in different stages of Alzheimer's disease (AD) using diffusion tensor imaging (DTI). Thirty-five patients with AD and 22 normal control (NC) subjects were recruited. Based on Mini Mental State Examination score, the AD patients were divided into three subgroups for comparison with the NC group: mild (mi-AD, n = 14), moderate (mo-AD, n = 12), and severe (se-AD, n = 9) AD. The fornix (FX), anterior thalamic radiation (ATR), and posterior thalamic radiation (PTR) were selected to represent the thalamic connectivity with other brain regions. The fornix was divided into the column and body of the fornix (FX-1) and the bilateral fornix (crus)/stria terminalis (FX-2/ST) based on the atlas. Through the atlas-based analysis and fiber tracking method, we measured fractional anisotropy (FA), mean diffusivity (MD), and tract volume to reflect the microstructural and macrostructural changes of these fibers during AD progression. There were significant differences in the FA and MD of all fibers, except the right PTR, between the AD and NC subjects. Further subgroup analyses revealed that the mi-AD subgroup had decreased FA only in the FX-1 and increased MD in the FX-1 and bilateral ATR, the mo-AD subgroup showed declined FA and increased MD in the FX-1, bilateral FX-2/ST and ATR; the se-AD subgroup exhibited lower FA and higher MD values in all fibers except the right PTR. We also found reduced tract volume values in the FX and left ATR in the AD patients. Further subgroup analyses revealed that these differences only existed in the se-AD patients. Our DTI analyses indicate that the integrity of thalamic connectivity is progressively disrupted following cognitive decline in AD and that DTI parameters in the column and body of the fornix show promise as potential markers for the early diagnosis of AD and for monitoring disease progression.
Collapse
Affiliation(s)
- Qing-Yong Zhu
- Department of Neurology, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Neuroimaging studies have identified patterns of brain abnormalities in various stages of schizophrenia, but whether these abnormalities reflect primary factors associated with the causes of illness or secondary phenomena such as medications has been unclear. Recent work conducted within the prodromal risk paradigm suggests that progressive change in brain structure and function occurs around the time when clinically high-risk individuals transition into full-blown psychosis, effects that cannot be explained by exposure to medications or illness chronicity. This article reviews recent work bearing on the question of the timing of onset and course of brain changes, focusing on structural MRI, diffusion tensor imaging, and resting state connectivity MRI, in association with the onset and course of psychosis. We conclude with a consideration of potential mechanisms underlying progressive tissue changes during the prodromal phase of schizophrenia and implications for prevention.
Collapse
Affiliation(s)
- Yoonho Chung
- Deparment of Psychology, Yale University, New Haven CT
| | - Tyrone D. Cannon
- Deparment of Psychology, Yale University, New Haven CT
- Department of Psychiatry, Yale University, New Haven CT
| |
Collapse
|
41
|
Xiu Y, Kong XR, Zhang L, Qiu X, Gao Y, Huang CX, Chao FL, Wang SR, Tang Y. The myelinated fiber loss in the corpus callosum of mouse model of schizophrenia induced by MK-801. J Psychiatr Res 2015; 63:132-40. [PMID: 25748751 DOI: 10.1016/j.jpsychires.2015.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/21/2015] [Accepted: 02/06/2015] [Indexed: 10/23/2022]
Abstract
Previous magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) investigations have shown that the white matter volume and fractional anisotropy (FA) were decreased in schizophrenia (SZ), which indicated impaired white matter integrity in SZ. However, the mechanism underlying these abnormalities has been less studied. The current study was designed to investigate the possible reasons for white matter abnormalities in the mouse model of SZ induced by NMDA receptor antagonist using the unbiased stereological methods and transmission electron microscope technique. We found that the mice treated with MK-801 demonstrated a series of schizophrenia-like behaviors including hyperlocomotor activity and more anxiety. The myelinated fibers in the corpus callosum (CC) of the mice treated with MK-801 were impaired with splitting lamellae of myelin sheaths and segmental demyelination. The CC volume and the total length of the myelinated fibers in the CC of the mice treated with MK-801 were significantly decreased by 9.4% and 16.8% when compared to those of the mice treated with saline. We further found that the loss of the myelinated fibers length was mainly due to the marked loss of the myelinated nerve fibers with the diameter of 0.4-0.5 μm. These results indicated that the splitting myelin sheaths, demyelination and the loss of myelinated fibers with small diameter might provide one of the structural bases for impaired white matter integrity of CC in the mouse model of SZ. These results might also provide a baseline for further studies searching for the treatment of SZ through targeting white matter.
Collapse
Affiliation(s)
- Yun Xiu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016, PR China; Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xiang-ru Kong
- Department of Pediatric Surgical Oncology, Children's Hospital of Chongqing Medical University, Chongqing 400014, PR China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Xuan Qiu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yuan Gao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Department of Geriatrics, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, PR China
| | - Chun-xia Huang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China; Department of Physiology, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng-lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - San-rong Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
42
|
Zhou SY, Tong L, Song F, Hong XJ, Sun HF, Chang H, Xing HJ, Li ZY, Dong CB. Selective medial temporal volume reduction in the hippocampus of patients with idiopathic generalized tonic-clonic seizures. Epilepsy Res 2014; 110:39-48. [PMID: 25616454 DOI: 10.1016/j.eplepsyres.2014.11.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/12/2014] [Accepted: 11/16/2014] [Indexed: 11/08/2022]
Abstract
BACKGROUND Different subtypes of idiopathic generalized epilepsy may indicate different mechanisms and outcomes, suggesting that it is necessary to use a 'pure sample' of a single subtype. METHODS A volumetric study, in conjunction with cognition assessments, was performed in a pure sample of patients with idiopathic generalized tonic-clonic seizures (IGE-GTCS; 15 males and 15 females) matched with normal control subjects (15 males and 17 females). The volumetric measurements were focused on the hippocampus and its surrounding structures, including the amygdala, the parahippocampal gyrus, the entorhinal cortex and the perirhinal cortex. The Wechsler Adult Intelligence Scale-Revised in China was administered to assess cognitive status. RESULTS A volume reduction was found only in the hippocampus, with a more severe effect on the left side than the right side. The total number and frequency of seizures had significant negative correlations with multiple cognitive measures. Furthermore, the hippocampal volume reduction was significantly correlated with some aspects of cognitive impairment. CONCLUSION These findings suggest that compared with the other medial temporal structures, the hippocampus may be more vulnerable to the neuropathology of IGE-GTCS. The observation that cognitive deterioration was correlated with an increased frequency and total number of seizures highlights the critical importance of preventing seizures from recurrence.
Collapse
Affiliation(s)
- Shi-Yu Zhou
- Department of Psychology, Dalian Medical University, Dalian, China.
| | - Lin Tong
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, No. 222 of ZhongShan Road, 116011 Dalian, China; Department of Neurology, Yantai Municipal Hospital, Yantai, China.
| | - Fan Song
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, No. 222 of ZhongShan Road, 116011 Dalian, China.
| | - Xiao-Jun Hong
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, No. 222 of ZhongShan Road, 116011 Dalian, China.
| | - Hui-Fang Sun
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, No. 222 of ZhongShan Road, 116011 Dalian, China.
| | - Hong Chang
- Department of Neurology, The Third People's Hospital of Dalian, Dalian, China.
| | - Hui-Juan Xing
- Department of Neurology, The Third People's Hospital of Dalian, Dalian, China.
| | - Zhi-Yong Li
- Department of Radiology, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| | - Chun-Bo Dong
- Department of Neurology, First Affiliated Hospital of Dalian Medical University, No. 222 of ZhongShan Road, 116011 Dalian, China.
| |
Collapse
|
43
|
Zakszewski E, Adluru N, Tromp DPM, Kalin N, Alexander AL. A diffusion-tensor-based white matter atlas for rhesus macaques. PLoS One 2014; 9:e107398. [PMID: 25203614 PMCID: PMC4159318 DOI: 10.1371/journal.pone.0107398] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 08/11/2014] [Indexed: 01/20/2023] Open
Abstract
Atlases of key white matter (WM) structures in humans are widely available, and are very useful for region of interest (ROI)-based analyses of WM properties. There are histology-based atlases of cortical areas in the rhesus macaque, but none currently of specific WM structures. Since ROI-based analysis of WM pathways is also useful in studies using rhesus diffusion tensor imaging (DTI) data, we have here created an atlas based on a publicly available DTI-based template of young rhesus macaques. The atlas was constructed to mimic the structure of an existing human atlas that is widely used, making results translatable between species. Parcellations were carefully hand-drawn on a principle-direction color-coded fractional anisotropy image of the population template. The resulting atlas can be used as a reference to which registration of individual rhesus data can be performed for the purpose of white-matter parcellation. Alternatively, specific ROIs from the atlas may be warped into individual space to be used in ROI-based group analyses. This atlas will be made publicly available so that it may be used as a resource for DTI studies of rhesus macaques.
Collapse
Affiliation(s)
- Elizabeth Zakszewski
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- Department of Medical Physics, University of Wisconsin - Madison, Wisconsin Institutes for Medical Research, Madison, Wisconsin, United States of America
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
| | - Do P. M. Tromp
- Health Emotions Research Institute, University of Wisconsin - Madison, Health Emotions Research Institute Madison, Wisconsin, United States of America
| | - Ned Kalin
- Health Emotions Research Institute, University of Wisconsin - Madison, Health Emotions Research Institute Madison, Wisconsin, United States of America
- Department of Psychiatry, University of Wisconsin - Madison, Wisconsin Psychiatric Institute & Clinics, Madison, Wisconsin, United States of America
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin - Madison, Madison, Wisconsin, United States of America
- Department of Psychiatry, University of Wisconsin - Madison, Wisconsin Psychiatric Institute & Clinics, Madison, Wisconsin, United States of America
- Department of Medical Physics, University of Wisconsin - Madison, Wisconsin Institutes for Medical Research, Madison, Wisconsin, United States of America
| |
Collapse
|
44
|
Solís-Vivanco R, Mondragón-Maya A, León-Ortiz P, Rodríguez-Agudelo Y, Cadenhead KS, de la Fuente-Sandoval C. Mismatch Negativity reduction in the left cortical regions in first-episode psychosis and in individuals at ultra high-risk for psychosis. Schizophr Res 2014; 158:58-63. [PMID: 25064664 DOI: 10.1016/j.schres.2014.07.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/03/2014] [Accepted: 07/06/2014] [Indexed: 11/16/2022]
Abstract
Mismatch Negativity (MMN), an electrophysiological component that represents sensory memory processing, has been proposed as a potential vulnerability marker for psychosis. Some studies have reported a more evident MMN amplitude reduction in the left cortical regions in patients with schizophrenia. Little is known about this asymmetric pattern in patients in their first episode of psychosis (FEP) and individuals at ultra-high risk for psychosis (UHR). The aim of this study was to explore the scalp distribution of MMN in 20 FEP patients, 20 UHR subjects and 23 healthy controls. Both clinical groups were antipsychotic naïve. MMN was obtained during a passive auditory paradigm with duration deviant tones and analyzed from 15 frontocentral electrodes. There was a significant group effect in MMN amplitude (F=3.4, p=0.04), showing a decrement in both FEP and UHR compared to controls (FEP mean difference (MD)=-0.48, p=0.02; UHR MD=-0.44, p=0.04), and this amplitude decrement was more evident in the left middle regions for both clinical groups (p<0.01). In conclusion, we found a clear amplitude reduction of duration MMN in FEP patients and UHR individuals, especially in the left cortical regions. The observed pattern in both clinical samples supports the notion that MMN could be a vulnerability marker for psychosis. We propose to continue the study of this MMN laterality effect in future longitudinal studies.
Collapse
Affiliation(s)
- Rodolfo Solís-Vivanco
- Neuropsychology Department, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Insurgentes Sur 3877, Col. La Fama, Tlalpan, Mexico City C.P. 14269, Mexico.
| | - Alejandra Mondragón-Maya
- Neuropsychology Department, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Insurgentes Sur 3877, Col. La Fama, Tlalpan, Mexico City C.P. 14269, Mexico
| | | | - Yaneth Rodríguez-Agudelo
- Neuropsychology Department, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Insurgentes Sur 3877, Col. La Fama, Tlalpan, Mexico City C.P. 14269, Mexico
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, USA; San Diego Veterans Affairs Medical Center, 3350 La Jolla Village Drive, San Diego, CA, USA
| | | |
Collapse
|
45
|
Nickl-Jockschat T, Stöcker T, Krug A, Markov V, Huang R, Schneider F, Habel U, Eickhoff SB, Zerres K, Nöthen MM, Treutlein J, Rietschel M, Shah NJ, Kircher T. A Neuregulin-1 schizophrenia susceptibility variant causes perihippocampal fiber tract anomalies in healthy young subjects. Brain Behav 2014; 4:215-26. [PMID: 24683514 PMCID: PMC3967537 DOI: 10.1002/brb3.203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/05/2013] [Accepted: 11/24/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Changes in fiber tract architecture have gained attention as a potentially important aspect of schizophrenia neuropathology. Although the exact pathogenesis of these abnormalities yet remains to be elucidated, a genetic component is highly likely. Neuregulin-1 (NRG1) is one of the best-validated schizophrenia susceptibility genes. We here report the impact of the Neuregulin-1 rs35753505 variant on white matter structure in healthy young individuals with no family history of psychosis. METHODS We compared fractional anisotropy in 54 subjects that were either homozygous for the risk C allele carriers (n = 31) for rs35753505 or homozygous for the T allele (n = 23) using diffusion tensor imaging with 3T. Tract-Based Spatial Statistics (TBSS), a method especially developed for diffusion data analysis, was used to improve white matter registration and to focus the statistical analysis to major fiber tracts. RESULTS Statistical analysis showed that homozygous risk C allele carriers featured elevated fractional anisotropy (FA) in the right perihippocampal region and the white matter proximate to the left area 4p as well as the right hemisphere of the cerebellum. We found three clusters of reduced FA values in homozygous C allele carriers: in the left superior parietal region, the right prefrontal white matter and in the deep white matter of the left frontal lobe. CONCLUSION Our results highlight the importance of Neuregulin-1 for structural connectivity of the right medial temporal lobe. This finding is in line with well known neuropathological findings in this region in patients with schizophrenia.
Collapse
Affiliation(s)
- Thomas Nickl-Jockschat
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Correspondence Thomas Nickl-Jockschat, Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Pauwelsstrasse-30-, D-52074 Aachen, Germany. Tel: 0049-241/80-36413;, Fax: 0049-241/80-82401;, E-mail:
| | - Tony Stöcker
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Institute of Neurosciences and Medicine-4, Juelich Research CenterJuelich, Germany
| | - Axel Krug
- Department of Psychiatry and Psychotherapy, University of MarburgMarburg, Germany
| | - Valentin Markov
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
| | - Ruiwang Huang
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Institute of Neurosciences and Medicine-4, Juelich Research CenterJuelich, Germany
| | - Frank Schneider
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen UniversityAachen, Germany
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
| | - Simon B Eickhoff
- Institute of Clinical Neuroscience and Medical Psychology, Heinrich Heine UniversityDüsseldorf, Germany
- Department of Neuroscience und Medicine, INM-1, Research Center JülichJülich, Germany
| | - Klaus Zerres
- Institute of Human Genetics, RWTH Aachen UniversityAachen, Germany
| | - Markus M Nöthen
- Department of Genomics, Life and Brain Center, University of BonnBonn, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental HealthMannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental HealthMannheim, Germany
| | - Nadim Jon Shah
- Juelich Aachen Research Alliance – Translational Brain MedicineJuelich/Aachen, Germany
- Institute of Neurosciences and Medicine-4, Juelich Research CenterJuelich, Germany
- Department of Neurology, RWTH Aachen UniversityAachen, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, University of MarburgMarburg, Germany
| |
Collapse
|
46
|
Li H, Liang Y, Chen K, Li X, Shu N, Zhang Z, Wang Y. Different patterns of white matter disruption among amnestic mild cognitive impairment subtypes: relationship with neuropsychological performance. J Alzheimers Dis 2014; 36:365-76. [PMID: 23603396 DOI: 10.3233/jad-122023] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Amnestic mild cognitive impairment (aMCI) is recognized as the prodromal phase of Alzheimer's disease (AD). Evidence showed that patients with multiple-domain (MD) aMCI were at higher risk of converting to dementia and exhibited more severe gray matter atrophy than single-domain (SD) aMCI. The investigation of the microstructural abnormalities of white matter (WM) among different subtypes of aMCI and their relations with cognitive performances can help to understand the variations among aMCI subtypes and to construct potential imaging based biomarkers to monitor the progression of aMCI. Diffusion-weighted MRI data were acquired from 40 patients with aMCI (aMCI-SD: n = 19; aMCI-MD: n = 21) and 37 healthy controls (HC). Voxel-wise and atlas-based analyses of whole-brain WM were performed among three groups. The correlations between the altered diffusion metrics of the WM tracts and the neuropsychological scores in each subtype of aMCI were assessed. The aMCI-MD patients showed disrupted integrity in multiple WM tracts across the whole-brain when compared with HCs or with aMCI-SD. In contrast, only few WM regions with diffusion changes were found in aMCI-SD as compared to HCs and with less significance. For neuropsychological correlations, only aMCI-MD patients exhibited significant associations between disrupted WM connectivity (in the body of the corpus callosum and the right anterior internal capsules) and cognitive impairments (MMSE and Digit Symb-Coding scores), whereas no such correlations were found in aMCI-SD. These findings indicate that the degeneration extensively exists in WM tracts in aMCI-MD that precedes the development of AD, whereas underlying WM pathology in aMCI-SD is imperceptible. The results are consistent with the view that aMCI is not a uniform disease entity and presents heterogeneity in the clinical progression.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
47
|
Redpath HL, Lawrie SM, Sprooten E, Whalley HC, McIntosh AM, Hall J. Progress in imaging the effects of psychosis susceptibility gene variants. Expert Rev Neurother 2014; 13:37-47. [DOI: 10.1586/ern.12.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Benson RR, Gattu R, Cacace AT. Left hemisphere fractional anisotropy increase in noise-induced tinnitus: a diffusion tensor imaging (DTI) study of white matter tracts in the brain. Hear Res 2013; 309:8-16. [PMID: 24212050 DOI: 10.1016/j.heares.2013.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 10/17/2013] [Accepted: 10/22/2013] [Indexed: 11/17/2022]
Abstract
Diffusion tensor imaging (DTI) is a contemporary neuroimaging modality used to study connectivity patterns and microstructure of white matter tracts in the brain. The use of DTI in the study of tinnitus is a relatively unexplored methodology with no studies focusing specifically on tinnitus induced by noise exposure. In this investigation, participants were two groups of adults matched for etiology, age, and degree of peripheral hearing loss, but differed by the presence or absence (+/-) of tinnitus. It is assumed that matching individuals on the basis of peripheral hearing loss, allows for differentiating changes in white matter microstructure due to hearing loss from changes due to the effects of chronic tinnitus. Alterations in white matter tracts, using the fractional anisotropy (FA) metric, which measures directional diffusion of water, were quantified using tract-based spatial statistics (TBSS) with additional details provided by in vivo probabilistic tractography. Our results indicate that 10 voxel clusters differentiated the two groups, including 9 with higher FA in the group with tinnitus. A decrease in FA was found for a single cluster in the group with tinnitus. However, seven of the 9 clusters with higher FA were in left hemisphere thalamic, frontal, and parietal white matter. These foci were localized to the anterior thalamic radiations and the inferior and superior longitudinal fasciculi. The two right-sided clusters with increased FA were located in the inferior fronto-occipital fasciculus and superior longitudinal fasciculus. The only decrease in FA for the tinnitus-positive group was found in the superior longitudinal fasciculus of the left parietal lobe.
Collapse
Affiliation(s)
| | - Ramtilak Gattu
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anthony T Cacace
- Department of Communication Sciences & Disorders, Wayne State University, 207 Rackham, 60 Farnsworth, Detroit, MI 48202, USA.
| |
Collapse
|
49
|
Takahashi T, Nakamura K, Nishiyama S, Furuichi A, Ikeda E, Kido M, Nakamura Y, Kawasaki Y, Noguchi K, Seto H, Suzuki M. Increased pituitary volume in subjects at risk for psychosis and patients with first-episode schizophrenia. Psychiatry Clin Neurosci 2013; 67:540-8. [PMID: 24102999 DOI: 10.1111/pcn.12093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 03/21/2013] [Accepted: 03/28/2013] [Indexed: 11/29/2022]
Abstract
AIM Enlarged pituitary gland has been reported in schizophrenia, possibly reflecting hypothalamic-pituitary-adrenal hyperactivity. The aim of the present study was to examine whether individuals at risk of psychosis also have similar changes. METHODS Magnetic resonance imaging was used to examine the pituitary volume in 22 individuals with at-risk mental state (ARMS; 11 male, 11 female), 64 first-episode patients with schizophrenia (FESz; 37 male, 27 female), and 86 healthy controls. The control subjects were divided into age- and gender-matched controls for ARMS (11 male, 11 female) and FESz (37 male, 27 female). RESULTS Both the ARMS and FESz groups had a larger pituitary volume compared with matched controls, but no difference was found between the ARMS and FESz subjects. There was no association between the pituitary volume and clinical variables (symptommeasures at scanning, daily dosage or duration of antipsychotic medication) in either clinical group. The pituitary volume did not differ significantly between the ARMS individuals who later developed schizophrenia (n = 5) and those who did not (n = 17). The pituitary volume was larger in women than in men for all diagnostic groups. CONCLUSION The finding of increased pituitary volume in both ARMS and FESz subjects may reflect a common vulnerability to stress in early psychosis. Further work in a larger ARMS sample is required to examine the possible relationship between pituitary volume and emergence of psychosis.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama, Toyama, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Corporation, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Shen J, Kassir MA, Wu J, Zhang Q, Zhou S, Xuan SY, Li Q, Ye Y, Hu J. MR volumetric study of piriform-cortical amygdala and orbitofrontal cortices: the aging effect. PLoS One 2013; 8:e74526. [PMID: 24069317 PMCID: PMC3771930 DOI: 10.1371/journal.pone.0074526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 08/02/2013] [Indexed: 11/24/2022] Open
Abstract
Introduction The piriform cortex and cortical amygdala (PCA) and the orbitofrontal cortex (OFC) are considered olfactory-related brain regions. This study aims to elucidate the normal volumes of PCA and OFC of each age groups (20.0-70.0 year old), and whether the volumes of PCA and OFC decline with increasing age and diminishing olfactory function. Methods One hundred and eleven healthy right-handed participants (54 males, 57 females), age 20.0 to 70.0 years were recruited to join this study after excluding all the major causes of olfactory dysfunction. Volumetric measurements of PCA and OFC were performed using consecutive 1-mm thick coronal slices of high-resolution 3-D MRIs. A validated olfactory function test (Sniffin’ Sticks) assessed olfactory function, which measured odor threshold (THD), odor discrimination (DIS), and odor identification (ID) as well as their sum score (TDI). Results The volume of OFC decreased with age and significantly correlated with age-related declines in olfactory function. The volume of OFC showed significant age-group differences, particularly after 40 years old (p < 0.001), while olfactory function decreased significantly after 60 years old (p < 0.001). Similar age-related volumetric changes were not found for PCA (p = 0.772). Additionally, there was significant correlation between OFC and DIS on the Right Side (p = 0.028) and between OFC and TDI on both sides (p < 0.05). There was no similar correlation for PCA. Conclusions Aging can have a great impact on the volume of OFC and olfactory function while it has much smaller effect on the volume of PCA. The result could be useful to establish normal volumes of PCA and OFC of each age group to assess neurological disorders that affect olfactory function.
Collapse
Affiliation(s)
- Jing Shen
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Mohammad A. Kassir
- Department of Radiology, Wayne State University, Detroit, Michigan, United States of America
| | - Jianlin Wu
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
- * E-mail:
| | - Qing Zhang
- Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Shiyu Zhou
- Department of Mental Health, Dalian medical University, Dalian, China
| | - Stephanie Y. Xuan
- University of Toronto, Faculty of Arts & Science, Toronto, Ontario, Canada
| | - Qinghang Li
- Department of Neurological Surgery, Wayne State University, Detroit, Michigan, United States of America
| | - Yongquan Ye
- Department of Radiology, Wayne State University, Detroit, Michigan, United States of America
| | - Jiani Hu
- Department of Radiology, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|