1
|
Kok HP, Crezee J. Predicted SAR/temperature changes induced by phase-amplitude steering are minimally affected by uncertainties in tissue properties: a basis for robust on-line adaptive hyperthermia treatment planning. Int J Hyperthermia 2025; 42:2483433. [PMID: 40159146 DOI: 10.1080/02656736.2025.2483433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 03/18/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Reliability of absolute specific absorption rate (SAR)/temperature levels predicted by treatment planning is strongly affected by tissue parameter uncertainties. Therefore, regular re-optimization to suppress hot spots can accidentally induce new hot spots elsewhere. Adaptive planning methods to avoid this problem re-optimize with respect to the current predicted 3D-distribution. This strategy is robust if reliability of predicted SAR/temperature changes (i.e., increases/decreases) after phase-amplitude adjustments is minimally affected by parameter uncertainties; this work evaluated this robustness. METHODS We validated the basic concept in an inhomogeneous phantom, followed by a patient model. Uncertainties in electrical conductivity, permittivity and perfusion were mimicked by simulations using 100 random parameter samples from normal distributions. Reliability of predicted SAR/temperature increase/decrease after phase-amplitude adjustments was evaluated. Next, correlations between measured and simulated SAR and SAR changes were determined for phase settings evaluated at the treatment start for a treatment series. Finally, practical use in an adaptive workflow was illustrated. RESULTS Local SAR/temperature increases/decreases after phase-amplitude adjustments can be predicted accurately. For the phantom, the measured 28.5% SAR decrease was predicted accurately(28.5 ± 0.7%). In the patient model, predicted SAR/temperature changes were typically accurate within a few percent. For the treatment series, correlations between measured and simulated (relative) SAR changes were much better(R2=0.70-0.82) than for absolute SAR levels(R2=0.29). Predictions of steering effects during treatment corresponded qualitatively with measurements/observations. CONCLUSION Predictions of SAR/temperature increases/decreases induced by phase-amplitude steering are hardly affected by tissue parameter uncertainties. On-line adaptive planning based on predicted changes is thus robust to effectively support clinical steering strategies.
Collapse
Affiliation(s)
- H P Kok
- Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, the Netherlands
| | - J Crezee
- Radiation Oncology, Amsterdam UMC Location University of Amsterdam, Amsterdam, the Netherlands
- Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Xu M, van de Wiel MA, Martinovičová D, Huseinovic A, van Beusechem VW, Stalpers LJ, Oei AL, Steenbergen RD, Snoek BC. High-throughput 3D spheroid screens identify microRNA sensitizers for improved thermoradiotherapy in locally advanced cancers. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102500. [PMID: 40206659 PMCID: PMC11979520 DOI: 10.1016/j.omtn.2025.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 02/28/2025] [Indexed: 04/11/2025]
Abstract
Chemoradiotherapy is the standard of care for many locally advanced cancers, including cervical and head and neck cancers, but many patients cannot tolerate chemotherapy. Clinical trials have shown that radiotherapy combined with hyperthermia (thermoradiotherapy) may be equally effective, yet it yields a suboptimal overall survival of patients, emphasizing the need for improvement. MicroRNAs (miRNAs), short non-coding RNA sequences, are often dysregulated in cancer and exhibit significant potential as radiosensitizers by targeting genes associated with the DNA damage response. In this study, high-throughput miRNA screening of four cervical cancer cell lines identified 55 miRNAs with significant sensitizing potential, with 18 validated across 10 additional cancer cell lines (6 cervical and 4 head and neck). Functional studies of 6 miRNAs, including miR-16, miR-27a, miR-181c, miR-221, miR-224, and miR-1293, showed that they reduced DNA damage repair by downregulating ATM, DNA-PKcs, Ku70/80, and RAD51. Additionally, differential expression of miR-27a, miR-221, and miR-224 in treatment-sensitive versus treatment-resistant patients indicated their predictive biomarker potential for treatment response of cervical cancer patients. Conclusively, this study has identified 18 promising miRNAs for the development of sensitizers for thermoradiotherapy and may provide potential biomarkers for predicting treatment response in locally advanced cancers.
Collapse
Affiliation(s)
- MengFei Xu
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Mark A. van de Wiel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Epidemiology and Data Science, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Dominika Martinovičová
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Angelina Huseinovic
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Victor W. van Beusechem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Amsterdam Infection and Immunity Institute, Cancer Immunology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Lukas J.A. Stalpers
- Amsterdam UMC, University of Amsterdam, Radiation Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Arlene L. Oei
- Cancer Center Amsterdam, Cancer Biology and Immunology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Radiation Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Renske D.M. Steenbergen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Pathology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
| | - Barbara C. Snoek
- Cancer Center Amsterdam, Cancer Biology and Immunology, De Boelelaan 1117, 1081 HV Amsterdam, the Netherlands
- Amsterdam UMC, University of Amsterdam, Radiation Oncology, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
3
|
Xie D, Yan X, Shang W, Ren H, Wen W, Tang BZ, Su H. Organic Radiosensitizer with Aggregation-Induced Emission Characteristics for Tumor Ablation through Synergistic Apoptosis and Immunogenic Cell Death. ACS NANO 2025; 19:14972-14986. [PMID: 40201936 DOI: 10.1021/acsnano.5c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Inspired by the clinical application of thermotherapy to promote the efficacy of radiotherapy, this study demonstrates the multimodal diagnostic application of pure organic nanoparticles in the combined treatment of tumors through imaging and photothermal properties. The nanoparticles developed in this study demonstrated unique properties and multiple functionalities, including excellent photostability and thermostability, strong fluorescence emission in the near-infrared-II (NIR-II) region, extremely high photothermal conversion efficiency, good biocompatibility, significant radiosensitizing properties, and effective tumor site accumulation. In vitro and in vivo evaluations demonstrated that these nanoparticles are ideal candidates for synergistic photothermal radiotherapy guided by NIR-II fluorescence, NIR-I photoacoustic, and photothermal trimodal imaging. They act as radiosensitizers by alleviating the hypoxic tumor microenvironment, modulating the cell cycle, and inducing apoptosis and immunogenic cell death during radiotherapy, which may provide a potential approach for the clinical treatment of tumors.
Collapse
Affiliation(s)
- Dalu Xie
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xueke Yan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wenzhao Shang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Hao Ren
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Wei Wen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, Guangdong 518172, P.R. China
| | - Huifang Su
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
4
|
Berclaz LM, Burkhard-Meier A, Lechner A, Völkl M, Güler SE, Abdel-Rahman S, Mansoorian S, Kunz WG, Knösel T, Canis M, von Bergwelt-Baildon M, Issels RD, Di Gioia D, Lindner LH. Durable response to nivolumab in combination with regional hyperthermia in a patient with PD-L1-negative metastatic head and neck squamous cell carcinoma. Cancer Immunol Immunother 2025; 74:174. [PMID: 40244424 PMCID: PMC12006646 DOI: 10.1007/s00262-025-04029-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
We report a long-lasting response to the immune checkpoint inhibitor nivolumab in combination with regional hyperthermia (RHT) in a patient with recurrent metastatic Head and Neck Squamous Cell Carcinoma (HNSCC) and negative programmed death ligand 1 (PD-L1) expression. Treatment was well tolerated with no local side effects. Tumor-related symptoms in the orbital and masticator area gradually decreased under treatment with nivolumab and RHT. Over the course of treatment, magnetic resonance imaging (MRI) showed a local tumor control in the heated tumor areas, while metastatic lesions developed in areas outside of the RHT field. This is the first case report demonstrating the feasibility and clinical potential of the addition of RHT in this patient collective with poor outcomes and low response rates to immune checkpoint inhibitors. RHT might be an additional tool to activate an immunogenic milieu responsive to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Luc M Berclaz
- Department of Internal Medicine III, University Hospital, LMU Munich, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
| | - Anton Burkhard-Meier
- Department of Internal Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Axel Lechner
- Deparment of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany
| | - Michael Völkl
- Department of Internal Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Sinan E Güler
- Department of Internal Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Sultan Abdel-Rahman
- Department of Internal Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Sina Mansoorian
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Wolfgang G Kunz
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | | | - Martin Canis
- Deparment of Otorhinolaryngology, University Hospital, LMU Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- Department of Internal Medicine III, University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Rolf D Issels
- Department of Internal Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Dorit Di Gioia
- Department of Internal Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Lars H Lindner
- Department of Internal Medicine III, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
5
|
Wang Y, Xun X, Luan WY, Zhang Z, Xu ZX, Lin SX, Miao YD. Hyperthermia combined with opioid therapy: Enhancing cancer pain management and reducing surgical stress in gastrointestinal cancer patients. World J Gastrointest Surg 2025; 17:101060. [PMID: 40162416 PMCID: PMC11948118 DOI: 10.4240/wjgs.v17.i3.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/17/2025] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
In this article, we evaluate the findings of the study by Qian et al, which explores the efficacy of combining hyperthermia with opioid therapy for enhanced cancer pain management in patients with middle and late-stage gastrointestinal tumors. The study undertakes a retrospective analysis comparing traditional opioid therapy to an integrated approach of hyperthermia and opioids across 70 patients, highlighting significant benefits in pain control, reduction of opioid dosage, and minimization of adverse reactions. In our article, we not only discuss these findings but also emphasize the broader implications for clinical practice, particularly in enhancing patient outcomes through innovative pain management strategies. We advocate for further research to establish more robust data supporting this approach and to explore the mechanistic insights that enable these benefits. This discussion reflects on the potential paradigm shift in managing debilitating cancer-related pain, urging a reevaluation of current practices to incorporate these findings effectively.
Collapse
Affiliation(s)
- Yue Wang
- Cancer Center, People’s Hospital of Yuxi City, Yuxi 653100, Yunnan Province, China
| | - Xin Xun
- Department of Oncology, 920th Hospital of People’s Liberation Army Joint Logistics Support Force, Kunming 650118, Yunnan Province, China
| | - Wen-Yu Luan
- Department of Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The Second Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Zheng Zhang
- Department of Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The Second Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Zhen-Xi Xu
- Department of Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The Second Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Si-Xiang Lin
- Department of Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The Second Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| | - Yan-Dong Miao
- Department of Cancer Center, Yantai Affiliated Hospital of Binzhou Medical University, The Second Medical College of Binzhou Medical University, Yantai 264100, Shandong Province, China
| |
Collapse
|
6
|
Abreu MM, Chocron AF, Smadja DM. From cold to hot: mechanisms of hyperthermia in modulating tumor immunology for enhanced immunotherapy. Front Immunol 2025; 16:1487296. [PMID: 40092992 PMCID: PMC11906415 DOI: 10.3389/fimmu.2025.1487296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/03/2025] [Indexed: 03/19/2025] Open
Abstract
The emergence of immunotherapies has revolutionized cancer treatment by leveraging the immune system to target malignancies, offering new hope where traditional therapies often fall short. Within this context, hyperthermia (HT) has re-emerged as a promising adjunctive treatment, capable of enhancing the effectiveness of radiotherapy, chemotherapy, and immunotherapy. HT influences both the innate and adaptive immune systems, enhancing the activity of immune cells such as neutrophils, NK cells, and dendritic cells, while also modulating the tumor microenvironment (TME) to promote immunogenic cell death (ICD) and reduce immunosuppressive conditions. These effects contribute to the transformation of immunologically "cold" tumors into "hot" tumors, making them more susceptible to immune-mediated destruction. Furthermore, HT can amplify the efficacy of immune checkpoint inhibitors (ICIs) by improving immune cell infiltration, inducing damage-associated molecular pattern (DAMP) release, and enhancing antigen presentation. Preclinical and clinical studies support the combination of HT with ICIs, demonstrating improved outcomes in otherwise resistant tumors. However, the full therapeutic potential of the different technologies allowing to apply HT remains to be fully understood, and further research is needed to optimize treatment protocols, explore the differential impacts of local versus whole-body hyperthermia, and identify biomarkers for patient stratification. This review underscores the multifaceted role of HT in immunity and its potential to significantly enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- M. Marc Abreu
- Medicine Department, BTT Medical Institute, Aventura, FL, United States
- BTT Engineering Department, BTT Medical Institute, Aventura, FL, United States
| | - Alberto F. Chocron
- Medicine Department, BTT Medical Institute, Aventura, FL, United States
- Research Service, Miami Veteran Administration Medical Center, Miami, FL, United States
| | - David M. Smadja
- Department of Hematology, AP-HP, Georges Pompidou European Hospital, Paris, France
- Université Paris Cité, INSERM, Paris Cardiovascular Research Center, Paris, France
| |
Collapse
|
7
|
Kok HP, Crezee J. Validation of the implementation of phased-array heating systems in Plan2Heat. Strahlenther Onkol 2025; 201:135-150. [PMID: 39143400 PMCID: PMC11754364 DOI: 10.1007/s00066-024-02264-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/28/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Hyperthermia treatment planning can be supportive to ensure treatment quality, provided reliable prediction of the heating characteristics (i.e., focus size and effects of phase-amplitude and frequency steering) of the device concerned is possible. This study validates the predictions made by the treatment planning system Plan2Heat for various clinically used phased-array systems. METHODS The evaluated heating systems were AMC-2, AMC-4/ALBA-4D (Med-Logix srl, Rome, Italy), BSD Sigma-30, and Sigma-60 (Pyrexar Medical, Salt Lake City, UT, USA). Plan2Heat was used for specific absorption rate (SAR) simulations in phantoms representing measurement set-ups reported in the literature. SAR profiles from published measurement data based on E‑field or temperature rise were used to compare the device-specific heating characteristics predicted by Plan2Heat. RESULTS Plan2Heat is able to predict the correct location and size of the SAR focus, as determined by phase-amplitude settings and operating frequency. Measured effects of phase-amplitude steering on focus shifts (i.e., local SAR minima or maxima) were also correctly reflected in treatment planning predictions. Deviations between measurements and simulations were typically < 10-20%, which is within the range of experimental uncertainty for such phased-array measurements. CONCLUSION Plan2Heat is capable of adequately predicting the heating characteristics of the AMC‑2, AMC-4/ALBA-4D, BSD Sigma-30, and Sigma-60 phased-array systems routinely used in clinical hyperthermia.
Collapse
Affiliation(s)
- H P Kok
- Amsterdam UMC, University of Amsterdam, Dept. Radiation Oncology, Cancer Center Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Treatment and quality of life, Cancer biology and immunology, Amsterdam, The Netherlands.
| | - J Crezee
- Amsterdam UMC, University of Amsterdam, Dept. Radiation Oncology, Cancer Center Amsterdam, Meibergdreef 9, 1105, AZ Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Cancer biology and immunology, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Zhang Y, Qiu K, Ren J, Zhao Y, Cheng P. Roles of human papillomavirus in cancers: oncogenic mechanisms and clinical use. Signal Transduct Target Ther 2025; 10:44. [PMID: 39856040 PMCID: PMC11760352 DOI: 10.1038/s41392-024-02083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/19/2024] [Accepted: 11/24/2024] [Indexed: 01/27/2025] Open
Abstract
Human papillomaviruses, particularly high-risk human papillomaviruses, have been universally considered to be associated with the oncogenesis and progression of various cancers. The genome of human papillomaviruses is circular, double-stranded DNA that encodes early and late proteins. Each of the proteins is of crucial significance in infecting the epithelium of host cells persistently and supporting viral genome integrating into host cells. Notably, E6 and E7 proteins, classified as oncoproteins, trigger the incidence of cancers by fostering cell proliferation, hindering apoptosis, evading immune surveillance, promoting cell invasion, and disrupting the balance of cellular metabolism. Therefore, targeting human papillomaviruses and decoding molecular mechanisms by which human papillomaviruses drive carcinogenesis are of great necessity to better treat human papillomaviruses-related cancers. Human papillomaviruses have been applied clinically to different facets of human papillomavirus-related cancers, including prevention, screening, diagnosis, treatment, and prognosis. Several types of prophylactic vaccines have been publicly utilized worldwide and have greatly decreased the occurrence of human papillomavirus-related cancers, which have benefited numerous people. Although various therapeutic vaccines have been developed and tested clinically, none of them have been officially approved to date. Enhancing the efficacy of vaccines and searching for innovative technologies targeting human papillomaviruses remain critical challenges that warrant continuous research and attention in the future.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ke Qiu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jianjun Ren
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Yu Zhao
- Department of Otolaryngology-Head & Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ping Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
9
|
Firuzalizadeh M, Gaffoglio R, Giordanengo G, Righero M, Zucchi M, Musacchio Adorisio G, Bellone A, Vallan A, Perrone G, Vecchi G. Joint Optimization of Antenna System Matching and Specific Absorption Rate Focusing in Microwave Hyperthermia Cancer Treatment. Cancers (Basel) 2025; 17:386. [PMID: 39941755 PMCID: PMC11816380 DOI: 10.3390/cancers17030386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/16/2025] Open
Abstract
OBJECTIVE Microwave hyperthermia is a clinically proven cancer treatment used in combination with conventional therapies to enhance the overall treatment outcome. It consists in selectively increasing the temperature of tumor cells to 40-44 °C by means of electromagnetic fields that are externally generated and coupled to the patient body via antenna applicators. The primary goal is to shape the power deposition (specific absorption rate, SAR) with focusing on the tumor region, and minimizing the risk of hotspots in the surrounding healthy tissues. METHODS For non-superficial tumors, phased-array antennas are used to focus the energy on the tumor. Finding patient-specific optimal antenna feeding coefficients represents an essential step to ensure an effective and safe administration of the heating. In this article, we present a way to optimize the array power transfer effectiveness (impedance matching) that does not deteriorate the spatial power deposition performance. A global optimization approach is adopted, using a cost function properly tailored to incorporate the active reflection coefficients of the array and the Hotspot-to-Target SAR Quotient (HTQ)-the latter being the standard in hyperthermia applications. RESULTS The effectiveness of the technique is demonstrated in a scenario relevant to the treatment of tumors in the neck region. The results show that our method significantly improves antenna matching without compromising the HTQ, achieving values within the recommended limits. The performance of the proposed approach is also experimentally tested with full heating in a corresponding phantom. CONCLUSIONS This study introduces an optimization approach that enhances phased-array antenna performance for hyperthermia treatments without affecting spatial power deposition.
Collapse
Affiliation(s)
- Maryam Firuzalizadeh
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| | - Rossella Gaffoglio
- Advanced Computing, Photonics & Electromagnetics (CPE) Area, Fondazione LINKS, 10138 Turin, Italy; (R.G.); (G.G.); (M.R.); (G.M.A.)
| | - Giorgio Giordanengo
- Advanced Computing, Photonics & Electromagnetics (CPE) Area, Fondazione LINKS, 10138 Turin, Italy; (R.G.); (G.G.); (M.R.); (G.M.A.)
| | - Marco Righero
- Advanced Computing, Photonics & Electromagnetics (CPE) Area, Fondazione LINKS, 10138 Turin, Italy; (R.G.); (G.G.); (M.R.); (G.M.A.)
| | - Marcello Zucchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| | - Giuseppe Musacchio Adorisio
- Advanced Computing, Photonics & Electromagnetics (CPE) Area, Fondazione LINKS, 10138 Turin, Italy; (R.G.); (G.G.); (M.R.); (G.M.A.)
| | - Aurora Bellone
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| | - Alberto Vallan
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| | - Guido Perrone
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| | - Giuseppe Vecchi
- Department of Electronics and Telecommunications, Politecnico di Torino, 10129 Turin, Italy; (M.F.); (M.Z.); (A.B.); (A.V.); (G.P.)
| |
Collapse
|
10
|
Groen JA, Herrera TD, Crezee J, Kok HP. Robust stochastic optimisation strategies for locoregional hyperthermia treatment planning using polynomial chaos expansion. Phys Med Biol 2025; 70:025024. [PMID: 39761652 DOI: 10.1088/1361-6560/ada685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Objective.Conventional temperature optimization in hyperthermia treatment planning aims to maximize tumour temperature (e.g.T90; the temperature reached in at least 90% of the tumour) while enforcing hard constraints on normal tissue temperature (max(Ttissue) ⩽45 °C). This method generally incorrectly assumes that tissue/perfusion properties are known, typically relying on average values from the literature. To enhance the reliability of temperature optimization in clinical applications, we developed new robust optimization strategies to reduce the impact of tissue/perfusion property uncertainties.Approach.Within the software package Plan2Heat, temperature calculations during optimization apply efficient superposition of precomputed distributions, represented by a temperature matrix (T-matrix). We extended this method using stochastic polynomial chaos expansion models to compute an averageT-matrix (Tavg) and a covariance matrixCto account for uncertainties in tissue/perfusion properties. Three new strategies were implemented usingTavgandCduring optimization: (1)Tavg90 maximization, hard constraint on max(Ttissue), (2)Tavg90 maximization, hard constraint on max(Ttissue) variation, and (3) combinedTavg90 maximization and variation minimization, hard constraint on max(Ttissue). Conventional and new optimization strategies were tested in a cervical cancer patient. 100 test cases were generated, randomly sampling tissue-property probability distributions. TumourT90 and hot spots (max(Ttissue) >45 °C) were evaluated for each sample.Main Results.Conventional optimization had 28 samples without hot spots, with a medianT90 of 39.7 °C. For strategies (1), (2) and (3), the number of samples without hot spots was increased to 33, 41 and 36, respectively. MedianT90 was reduced lightly, by ∼0.1 °C-0.3 °C, for strategies (1-3). Tissue volumes exceeding 45 °C and variation in max(Ttissue) were less for the novel strategies.Significance.Optimization strategies that account for tissue-property uncertainties demonstrated fewer, and reduced in volume, normal tissue hot spots, with only a marginal reduction in tumourT90. This implies a potential clinical utility in reducing the need for, or the impact of, device setting adjustments during hyperthermia treatment.
Collapse
Affiliation(s)
- Jort A Groen
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Timoteo D Herrera
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Johannes Crezee
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - H Petra Kok
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Overgaard J, Dahl O, Arcangeli G. ESHO 2-85. Hyperthermia as an adjuvant to radiation therapy in the treatment of advanced neck nodes: A randomized multicenter study by the European Society for Hyperthermic Oncology. Acta Oncol 2024; 63:943-949. [PMID: 39665330 DOI: 10.2340/1651-226x.2024.41035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/22/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND AND PURPOSE European Society for Hyperthermic Oncology (ESHO) 2-85 is a multicenter randomized trial investigating hyperthermia (HT) as an adjuvant to radiotherapy (RT) in treatment of locally advanced neck nodes. The trial never fulfilled recruitment and was stopped prematurely, and has not previously been published. PATIENTS AND METHODS Between January 1987 and February 1993, 64 evaluable neck nodes in 54 patients were included. Tumors were stratified according to institution and nodal size and randomly assigned to receive RT alone (2 Gy/fx, 5 fx/wk) to a total dose of 60-70 Gy, including boost, or the same RT followed once weekly by HT (aimed for 43°C for 60 min). The primary endpoint was persistent complete response (local control). RESULTS AND INTERPRETATION Sixty-four tumors in 54 patients were evaluable, with a median observation of 17 months. Thirty-four tumors were randomized to RT alone and 30 to RT+HT. Compliance with RT was good. HT was associated with moderate to severe pain and discomfort in 38% of the treatments. In 57% of the heated patients at least one treatment achieved the target temperature. HT did not significantly increase radiation morbidity. The complete response rate was 53% in the RT versus 80% in the RT+HT group, and 3-year persistent local control rate was 32% for RT alone versus 53% for RT+HT; HR: 0.48 [0.23-0.98]. The ESHO 2-85 study demonstrated that addition of a weekly HT treatment to RT of advanced neck nodes significantly enhanced the persistent tumor control. The results substantiate the potential clinical benefit of hyperthermic oncology.
Collapse
Affiliation(s)
- Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark.
| | - Olav Dahl
- Department of Oncology and Medical Physics, Haukeland University Hospital, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | |
Collapse
|
12
|
De Lazzari M, Carrapiço-Seabra C, Marder D, van Rhoon GC, Curto S, Dobšíček Trefná H. Toward enhanced quality assurance guidelines for deep hyperthermia devices: a multi-institution study. Int J Hyperthermia 2024; 41:2436005. [PMID: 39658024 DOI: 10.1080/02656736.2024.2436005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024] Open
Abstract
INTRODUCTION Hyperthermia efficacy depends on the temperatures achieved in the target area. Therefore, hyperthermia systems must deliver both controlled and conformal heating. This study presents a comprehensive multi-institutional quality assurance (QA) evaluation of deep hyperthermia devices. METHODS Six European institutions equipped with BSD- Sigma 60 and Sigma Eye deep hyperthermia applicators participated in the study. Up to six measurements per applicator were performed in each institution. The thermal distribution in cylindrical homogeneous phantoms after 10 minutes of heating with a total power delivered of 1000 watts was assessed using the applicator's integrated mapping thermometry system. Evaluated quality parameters included temperature increase, focus location, and focus symmetry. RESULTS A total of 54 measurements were conducted, with 43 included in the analysis. All applicators, except one, achieved a temperature increase of 6 °C in 10 minutes. Central heating capabilities were demonstrated, with mean deviations from the intended location of -1.4 ± 1.6 cm for Sigma 60 and 1.5 ± 1.4 cm for Sigma Eye. Symmetry evaluations showed differences in radial temperature profiles of 6.2 ± 4.5 % for the Sigma 60 and 5.9 ± 4.4 % for the Sigma Eye. We propose minimum acceptable values for each quality parameter based on these results. CONCLUSION The measurements were reproducible with acceptable values for the various quality parameters. Potential deviations might be attributed to inaccuracies in the mapping thermometry system rather than the heating system. The presented protocol and practical recommendations should be applied for future QA measurements in deep hyperthermia.
Collapse
Affiliation(s)
- Mattia De Lazzari
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Carolina Carrapiço-Seabra
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Dietmar Marder
- Center for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Radiation Science and Technology, Delft University of Technology, Faculty of Applied Sciences, Delft, The Netherlands
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Hana Dobšíček Trefná
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
13
|
Zhu W, Pan S, Zhang J, Xu J, Zhang R, Zhang Y, Fu Z, Wang Y, Hu C, Xu Z. The role of hyperthermia in the treatment of tumor. Crit Rev Oncol Hematol 2024; 204:104541. [PMID: 39461607 DOI: 10.1016/j.critrevonc.2024.104541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/19/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024] Open
Abstract
Despite recent advancements in the diagnosis and treatment options for cancer, it remains one of the most serious threats to health. Hyperthermia (HT) has emerged as a highly promising area of research due to its safety and cost-effectiveness. Currently, based on temperature, HT can be categorized into thermal ablation and mild hyperthermia. Thermal ablation involves raising the temperature within the tumor to over 60°C, resulting in direct necrosis in the central region of the tumor. In contrast, mild hyperthermia operates at relatively lower temperatures, typically in the range of 41-45°C, to induce damage to tumor cells. Furthermore, HT also serves as an immune adjuvant strategy in radiotherapy, chemotherapy, and immunotherapy, enhancing the effectiveness of radiotherapy, increasing the uptake of chemotherapy drugs, and reprogramming the tumor microenvironment through the induction of immunogenic cell death, thereby promoting the recruitment of endogenous immune cells. This article reviews the current status and development of hyperthermia, outlines potential mechanisms by which hyperthermia inhibits tumors, describes clinical trial attempts combining hyperthermia with radiotherapy, chemotherapy, and immunotherapy, and discusses the relationship between nanoparticles and hyperthermia.
Collapse
Affiliation(s)
- Weiwei Zhu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Siwei Pan
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Jiaqing Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jingli Xu
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Ruolan Zhang
- Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, China; Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yanqiang Zhang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Zhenjie Fu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Yuqi Wang
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China
| | - Can Hu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| | - Zhiyuan Xu
- Department of Gastric surgery, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institutes of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China; Zhejiang Provincial Research Center for Upper Gastrointestinal Tract Cancer, Zhejiang Cancer Hospital, Hangzhou 310022, China.
| |
Collapse
|
14
|
Minnaar CA, Szigeti GP, Szasz A. The Synergy of Thermal and Non-Thermal Effects in Hyperthermic Oncology. Cancers (Basel) 2024; 16:3908. [PMID: 39682096 DOI: 10.3390/cancers16233908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Modulated electro-hyperthermia (mEHT) is unique due to its combination of thermal and non-thermal effects. METHOD This report summarizes the literature on the effects of mEHT observed in vitro and in vivo. RESULTS The thermal and electrical heterogeneity of tissues allows the radiofrequency signal to selectively target malignant tissue. The applied modulation appears to activate various apoptotic pathways, predominantly leading to immunogenic cell death (ICD). ICD promotes the release of damage-associated molecular patterns, potentially producing tumour-specific antigen-presenting cells. This abscopal-type effect may target distant metastases while treating the primary tumour locally. This immune memory effect is like vaccination mechanisms. CONCLUSIONS The application of mEHT has the potential to expand from local to systemic disease, enabling the simultaneous treatment of micro- and macro-metastases.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Gyula Peter Szigeti
- John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
- MedTech Innovation and Education Center, University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| | - Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
15
|
Van Dieren L, Quisenaerts T, Licata M, Beddok A, Lellouch AG, Ysebaert D, Saldien V, Peeters M, Gorbaslieva I. Combined Radiotherapy and Hyperthermia: A Systematic Review of Immunological Synergies for Amplifying Radiation-Induced Abscopal Effects. Cancers (Basel) 2024; 16:3656. [PMID: 39518094 PMCID: PMC11545184 DOI: 10.3390/cancers16213656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION The abscopal effect is a systemic immune response characterized by metastases regression at sites distant from the irradiated lesion. This systematic review aims to explore the immunological mechanisms of action underlying the abscopal effect and to investigate how hyperthermia (HT) can increase the chances of radiotherapy (RT) triggering systemic anti-tumor immune responses. METHODS This review is created in accordance with the PRISMA guidelines. RESULTS AND CONCLUSION HT and RT have both complementary and synergistic immunological effects. Both methods trigger danger signal release, promoting cytokine and chemokine secretion, which increases T-cell infiltration and facilitates cell death. Both treatments upregulate extracellular tumor HSP70, which could amplify DAMP recognition by macrophages and DCs, leading to stronger tumor antigen presentation and CTL-mediated immune responses. Additionally, the combined increase in cell adhesion molecules (VCAM-1, ICAM-1, E-selectin, L-selectin) could enhance leukocyte adhesion to tumors, improving lymphocyte trafficking and boosting systemic anti-tumor effects. Lastly, HT causes vasodilation and improves blood flow, which might exacerbate those distant effects. We suggest the combination of local radiotherapy with fever-range whole-body hyperthermia to optimally enhance the chances of triggering the abscopal effect mediated by the immune system.
Collapse
Affiliation(s)
- Loïc Van Dieren
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Tom Quisenaerts
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | | | - Arnaud Beddok
- Institut Godinot, Radiation Oncology Department, 85054 Reims, France
- GCMI, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Alexandre G. Lellouch
- Vascularized Composite Allotransplantation Laboratory, Center for Transplantation Sciences, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Dirk Ysebaert
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Vera Saldien
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Marc Peeters
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| | - Ivana Gorbaslieva
- Faculty of Medicine and Health Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- Department of Hepatobiliary, Transplantation and Endocrine Surgery, University Hospital of Antwerp, 2650 Edegem, Belgium
| |
Collapse
|
16
|
Muratoglu R, Gerster D, Nadobny J, Hansch A, Krahl P, Veltsista PD, Beck M, Zips D, Ghadjar P. Comparisons of computer simulations and experimental data for capacitive hyperthermia using different split-phantoms. Int J Hyperthermia 2024; 41:2416999. [PMID: 39428108 DOI: 10.1080/02656736.2024.2416999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
INTRODUCTION Several positive clinical trials have demonstrated that capacitive hyperthermia (CHT) improves the effectiveness of radiation therapy for the treatment of various cancer entities. However, the ability of CHT to induce significant heating throughout the body is under debate. OBJECTIVES To perform a pilot study involving comparisons of computer simulations and experimental data using different split-phantoms to validate hyperthermia treatment modeling for pre-planning for a clinical CHT system and to investigate the feasibility of split-phantom measurements in capacitive hyperthermia. MATERIALS AND METHODS The CHT system EHY-2030 (Oncotherm, Budapest, Hungary) was used. The system provides two electrode sizes, but only the smaller electrode, indicated as D200 electrode, was investigated in this pilot study. Horizontally and vertically splittable, different multi-slice phantoms with dielectric material properties simulating muscle and electrically low conductive fat were produced and heated. During the heating procedure, temperature-time curves were measured, and thermal images were captured. Specific absorption rate values were derived from the temperature rise (TR) values. Concomitantly, computer field simulations utilizing a detailed CAD-based model of the CHT system were performed using the simulation platform Sim4Life and compared with measurements. RESULTS For the investigated electrode D200 the system power of 75 W was applied, which is half of the maximum power of 150 W and lies in the range of usual values for this electrode applied in patient treatments in our clinic. For 75 W, a heating of 3.6 °C in 6 min in a depth of 1 cm in an agar-based, muscle tissue-equivalent phantom was achieved. The addition of a 1 cm thick, synthetic, low dielectric fat layer reduced the TR up until a depth of 8.5 cm by on average around 38% (from 8.5 cm onwards the absolute local TR is similar, deviations are ≤0.1 °C). In terms of point-to-point absolute SAR comparison (without any normalization), up to a depth of 11 cm in the phantoms central vertical plot, the simulation differs from the measured TR points by on average 25% (ranging from 7% to 36%) for the homogeneous phantom and by on average 43% (ranging from 26% to 60%) for the inhomogeneous phantom. CONCLUSION Computer simulations and experimental data were compared for the CHT system EHY-2030 using the D200 electrode, applying a thermal imaging technique for different vertically splittable phantoms. This pilot study data can be used as a guidance regarding the expected heating for this commonly used electrode size but also to further elucidate the significance of non-thermal anticancer effects. Further studies are needed for different sizes and geometries of electrodes and phantoms.
Collapse
Affiliation(s)
- Rami Muratoglu
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Dominik Gerster
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Jacek Nadobny
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Alexander Hansch
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paul Krahl
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Paraskevi Danai Veltsista
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Marcus Beck
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Daniel Zips
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
17
|
Fang K, Zhang H, Kong Q, Ma Y, Xiong T, Qin T, Li S, Zhu X. Recent Progress in Photothermal, Photodynamic and Sonodynamic Cancer Therapy: Through the cGAS-STING Pathway to Efficacy-Enhancing Strategies. Molecules 2024; 29:3704. [PMID: 39125107 PMCID: PMC11314065 DOI: 10.3390/molecules29153704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Photothermal, photodynamic and sonodynamic cancer therapies offer opportunities for precise tumor ablation and reduce side effects. The cyclic guanylate adenylate synthase-stimulator of interferon genes (cGAS-STING) pathway has been considered a potential target to stimulate the immune system in patients and achieve a sustained immune response. Combining photothermal, photodynamic and sonodynamic therapies with cGAS-STING agonists represents a newly developed cancer treatment demonstrating noticeable innovation in its impact on the immune system. Recent reviews have concentrated on diverse materials and their function in cancer therapy. In this review, we focus on the molecular mechanism of photothermal, photodynamic and sonodynamic cancer therapies and the connected role of cGAS-STING agonists in treating cancer.
Collapse
Affiliation(s)
- Kelan Fang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Huiling Zhang
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- Department of Medicine and Pharmacy, Shizhen College of Guizhou University of Traditional Chinese Medicine, Guiyang 550000, China
| | - Qinghong Kong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Yunli Ma
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
| | - Tianchan Xiong
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Tengyao Qin
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Sanhua Li
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| | - Xinting Zhu
- Guizhou Provincial College-Based Key Lab for Tumor Prevention and Treatment with Distinctive Medicines, Zunyi Medical University, Zunyi 563000, China
- College of Basic Medicine, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
18
|
Smadja DM. Hyperthermia for Targeting Cancer and Cancer Stem Cells: Insights from Novel Cellular and Clinical Approaches. Stem Cell Rev Rep 2024; 20:1532-1539. [PMID: 38795304 DOI: 10.1007/s12015-024-10736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 05/27/2024]
Abstract
The Cellular Heat Shock Response and in particular heat shock protein activation are vital stress reactions observed in both healthy and cancer cells. Hyperthermia (HT) has been proposed for several years as an advancing non-invasive cancer therapy. It selectively targets cancer cells through mechanisms influenced by temperature and temperature variations. This article delves into the impact of HT on cancer cells, especially cancer stem cells (CSCs), essential contributors to cancer recurrence and metastasis. HT has shown promise in eliminating CSCs, sensitizing them to conventional treatments and modulating the tumor microenvironment. The exploration extends to mesenchymal stem cells (MSCs), which exhibit both pro-tumorigenic and anti-tumorigenic effects. HT's potential in recruiting therapeutic MSCs for targeted delivery of antitumoral agents is also discussed. Furthermore, the article introduces Brain Thermodynamics-guided Hyperthermia (BTGH) technology, a breakthrough in temperature control and modulation of heat transfer under different conditions. This non-invasive method leverages the brain-eyelid thermal tunnel (BTT) to monitor and regulate internal brain temperature. BTGH technology, with its precision and noninvasive continuous monitoring capabilities, is under clinical investigation for applications in neurological disorders and cancer. The innovative three-phase approach involves whole-body HT, targeted brain HT, and organ-specific HT. In conclusion, the exploration of localized or whole-body HT offers promising avenues for cancer, psychiatric and neurological diseases. The ongoing clinical investigations and potential applications underscore the significance of understanding and harnessing heat's responses to enhance human health.
Collapse
Affiliation(s)
- David M Smadja
- Paris Cité University, INSERM, Innovative Therapies in Hemostasis, Paris, F-75006, France.
- Hematology Department, AP-HP, Georges Pompidou European Hospital, 20 rue Leblanc, Paris, F-75015, France.
| |
Collapse
|
19
|
Ödén J, Eriksson K, Pavoni B, Crezee H, Kok HP. A Novel Framework for Thermoradiotherapy Treatment Planning. Int J Radiat Oncol Biol Phys 2024; 119:1530-1544. [PMID: 38387812 DOI: 10.1016/j.ijrobp.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024]
Abstract
PURPOSE Thermoradiotherapy combines radiation therapy with hyperthermia to increase therapeutic effectiveness. Currently, both modalities are optimized separately and in state-of-the-art research the enhanced therapeutic effect is evaluated using equivalent radiation dose in 2-Gy fractions (EQD2). This study proposes a novel thermoradiotherapy treatment planning framework with voxelwise EQD2 radiation therapy optimizing including thermal radiosensitization and direct thermal cytotoxicity. METHODS AND MATERIALS To demonstrate proof-of-concept of the planning framework, 3 strategies consisting of 20 radiation therapy fractions were planned for 4 prostate cancer cases with substantially different temperature distributions: (1) Conventional radiation therapy plan of 60 Gy combined with 4 hyperthermia sessions (RT60 + HT), (2) standalone uniform dose escalation to 68 Gy without hyperthermia (RT68), and (3) uniform target EQD2 that maximizes the tumor control probability (TCP) accounting for voxelwise thermal effects of 4 hyperthermia sessions without increasing normal tissue doses (RTHT + HT). Assessment included dose, EQD2, TCP, and rectal normal tissue complication probability (NTCP), alongside robustness analyses for TCP and NTCP against parameter uncertainties. RESULTS The estimated TCP of around 76% for RT60 without hyperthermia was increased to an average of 85.9% (range, 81.3%-90.5%) for RT60 + HT, 92.5% (92.4%-92.5%) for RT68, and 94.4% (91.7%-96.6%) for RTHT + HT. The corresponding averaged rectal NTCPs were 8.7% (7.9%-10.0%), 14.9% (13.8%-17.1%), and 8.4% (7.5%-9.7%), respectively. RT68 and RTHT + HT exhibited slightly enhanced TCP robustness against parameter uncertainties compared with RT60 + HT, and RT68 presented higher and less robust rectal NTCP values compared with the other planning strategies. CONCLUSIONS This study introduces an innovative thermoradiotherapy planning approach, integrating thermal effects into EQD2-based radiation therapy optimization. Results demonstrate an ability to achieve enhanced and uniform target EQD2 and TCP across various temperature distributions without elevating normal tissue EQD2 or NTCP compared with conventional methods. Although promising for improving clinical outcomes, realizable enhancements depend on accurate tumor- and tissue-specific data and precise quantification of hyperthermic effects, which are seamlessly integrable in the planning framework as they emerge.
Collapse
Affiliation(s)
- Jakob Ödén
- RaySearch Laboratories AB, Stockholm, Sweden.
| | | | | | - Hans Crezee
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands; Cancer Center Amsterdam, Treatment and Quality of Life, Cancer Biology and Immunology, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Xu Z, Piao X, Wang M, Pichardo S, Cheng B. Microbubble-enhanced transcranial MR-guided focused ultrasound brain hyperthermia: heating mechanism investigation using finite element method. ULTRASONICS SONOCHEMISTRY 2024; 107:106889. [PMID: 38702233 PMCID: PMC11214346 DOI: 10.1016/j.ultsonch.2024.106889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Recently, our group developed a synergistic brain drug delivery method to achieve simultaneous transcranial hyperthermia and localized blood-brain barrier opening via MR-guided focused ultrasound (MRgFUS). In a rodent model, we demonstrated that the ultrasound power required for transcranial MRgFUS hyperthermia was significantly reduced by injecting microbubbles (MBs). However, the specific mechanisms underlying the power reduction caused by MBs remain unclear. The present study aims to elucidate the mechanisms of MB-enhanced transcranial MRgFUS hyperthermia through numerical studies using the finite element method. The microbubble acoustic emission (MAE) and the viscous dissipation (VD) were hypothesized to be the specific mechanisms. Acoustic wave propagation was used to model the FUS propagation in the brain tissue, and a bubble dynamics equation for describing the dynamics of MBs with small shell thickness was used to model the MB oscillation under FUS exposures. A modified bioheat transfer equation was used to model the temperature in the rodent brain with different heat sources. A theoretical model was used to estimate the bubble shell's surface tension, elasticity, and viscosity losses. The simulation reveals that MAE and VD caused a 40.5% and 52.3% additional temperature rise, respectively. Compared with FUS only, MBs caused a 64.0% temperature increase, which is consistent with our previous animal experiments. Our investigation showed that MAE and VD are the main mechanisms of MB-enhanced transcranial MRgFUS hyperthermia.
Collapse
Affiliation(s)
- Zhouyang Xu
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Xiangkun Piao
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Mingyu Wang
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China
| | - Samuel Pichardo
- Department of Radiology, University of Calgary, Calgary, Canada; Department of Clinical Neurosciences, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Bingbing Cheng
- Translational Research in Ultrasound Theranostics Laboratory, School of Biomedical Engineering, ShanghaiTech University, Shanghai, China; State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
21
|
Kok HP, Herrera TD, Crezee J. Biological treatment evaluation in thermoradiotherapy: application in cervical cancer patients. Strahlenther Onkol 2024; 200:512-522. [PMID: 38177701 PMCID: PMC11111588 DOI: 10.1007/s00066-023-02185-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Hyperthermia treatment quality is usually evaluated by thermal (dose) parameters, though hyperthermic radiosensitization effects are also influenced by the time interval between the two modalities. This work applies biological modelling for clinical treatment evaluation of cervical cancer patients treated with radiotherapy plus hyperthermia by calculating the equivalent radiation dose (EQDRT, i.e., the dose needed for the same effect with radiation alone). Subsequent analyses evaluate the impact of logistics. METHODS Biological treatment evaluation was performed for 58 patients treated with 23-28 fractions of 1.8-2 Gy plus 4-5 weekly hyperthermia sessions. Measured temperatures (T50) and recorded time intervals between the radiotherapy and hyperthermia sessions were used to calculate the EQDRT using an extended linear quadratic (LQ) model with hyperthermic LQ parameters based on extensive experimental data. Next, the impact of a 30-min time interval (optimized logistics) as well as a 4‑h time interval (suboptimal logistics) was evaluated. RESULTS Median average measured T50 and recorded time intervals were 41.2 °C (range 39.7-42.5 °C) and 79 min (range 34-125 min), respectively, resulting in a median total dose enhancement (D50) of 5.5 Gy (interquartile range [IQR] 4.0-6.6 Gy). For 30-min time intervals, the enhancement would increase by ~30% to 7.1 Gy (IQR 5.5-8.1 Gy; p < 0.001). In case of 4‑h time intervals, an ~ 40% decrease in dose enhancement could be expected: 3.2 Gy (IQR 2.3-3.8 Gy; p < 0.001). Normal tissue enhancement was negligible (< 0.3 Gy), even for short time intervals. CONCLUSION Biological treatment evaluation is a useful addition to standard thermal (dose) evaluation of hyperthermia treatments. Optimizing logistics to shorten time intervals seems worthwhile to improve treatment efficacy.
Collapse
Affiliation(s)
- H P Kok
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - T D Herrera
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - J Crezee
- Dept. Radiation Oncology, Amsterdam UMC location University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Treatment and quality of life, Cancer biology and immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Sherief HH, Zaky MF, Abbas MF, Mahrous SA. Mathematical modeling of heat transfer in tissues with skin tumor during thermotherapy. PLoS One 2024; 19:e0298256. [PMID: 38753701 PMCID: PMC11098337 DOI: 10.1371/journal.pone.0298256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 05/18/2024] Open
Abstract
The study of thermal therapy to tumors and the response of living cells to this therapy used to treat tumor is very important due to the complexity of heat transfer in biological tissues. In the past few years, there has been a growing interest among clinicians, mathematicians, and engineers regarding the use of computational and mathematical methods to simulate biological systems. Numerous medical proceedings also employ mathematical modeling and engineering techniques as a means to guarantee their safety and evaluate the associated risks effectively. This manuscript provides an analytical solution used for the first time to study the mechanism of biological thermal response during heat therapy on spheroidal skin tumor. The proposed method used a generalized thermoelasticity model with one relaxation time. The influence of relaxation times on the responses of diseased and healthy tissues is studied and interpreted graphically. Also, the impact of different laser irradiance on the thermal profile of the malignant tumor cells over a period of 2 minutes is interpreted graphically. To investigate the transfer of heat within biological tissues during the thermal therapy, the Laplace transform and inverse Laplace transform methods were applied. A comparison of the present generalized thermoelasticity model and different models based on Pennes bioheat transfer PBT shows that our proposed model yields more realistic and accurate predictions. The current model can be used to explain various therapeutic methods.
Collapse
Affiliation(s)
- Hany H. Sherief
- Department of Mathematics, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed F. Zaky
- Institute of Basic and Applied Science, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mohamed F. Abbas
- Institute of Basic and Applied Science, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Samar A. Mahrous
- Institute of Basic and Applied Science, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| |
Collapse
|
23
|
Castelo-Grande T, Augusto PA, Gomes L, Lopes ARC, Araújo JP, Barbosa D. Economic and Accessible Portable Homemade Magnetic Hyperthermia System: Influence of the Shape, Characteristics and Type of Nanoparticles in Its Effectiveness. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2279. [PMID: 38793346 PMCID: PMC11123042 DOI: 10.3390/ma17102279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Currently, one of the main causes of death in the world is cancer; therefore, it is urgent to obtain a precocious diagnosis, as well as boost research and development of new potential treatments, which should be more efficient and much less invasive for the patient. Magnetic hyperthermia (MH) is an emerging cancer therapy using nanoparticles, which has proved to be effective when combined with chemotherapy, radiotherapy and/or surgery, or even by itself, depending on the type and location of the tumor's cells. This article presents the results obtained by using a previously developed economic homemade hyperthermia device with different types of magnetite nanoparticles, with sizes ranging between 12 ± 5 and 36 ± 11 nm and presenting different shapes (spherical and cubic particles). These magnetic nanoparticles (MNPs) were synthesized by three different methods (co-precipitation, solvothermal and hydrothermal processes), with their final form being naked, or possessing different kinds of covering layers (polyethylene glycol (PEG) or citric acid (CA)). The parameters used to characterize the heating by magnetic hyperthermia, namely the Specific Absorption Rate (SAR) and the intrinsic loss power (ILP), have been obtained by two different methods. Among other results, these experiments allowed for the determination of which synthesized MNPs showed the best performance concerning hyperthermia. From the results, it may be concluded that, as expected, the shape of MNPs is an important factor, as well as the time that the MNPs can remain suspended in solution (which is directly related to the concentration and covering layer of the MNPs). The MNPs that gave the best results in terms of the SAR were the cubic particles covered with PEG, while in terms of total heating the spherical particles covered with citric acid proved to be better.
Collapse
Affiliation(s)
- Teresa Castelo-Grande
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.R.C.L.); (D.B.)
| | - Paulo A. Augusto
- Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca (GIR Citómica), 37001 Salamanca, Spain;
- CEADIR—Centro de Estudios Ambientales y Dinamización Rural, Universidad de Salamanca, 37008 Salamanca, Spain
| | - Lobinho Gomes
- Faculdade de Ciências Naturais, Engenharias e Tecnologias, Universidade Lusófona do Porto, 4000-098 Porto, Portugal
| | - Ana Rita Castro Lopes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.R.C.L.); (D.B.)
| | - João Pedro Araújo
- IFIMUP—Institute of Physics for Advanced Materials, Nanotechnology and Photonics, Physics Department, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Domingos Barbosa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (A.R.C.L.); (D.B.)
| |
Collapse
|
24
|
Groen JA, Crezee J, van Laarhoven HWM, Coolen BF, Strijkers GJ, Bijlsma MF, Kok HP. Robust, planning-based targeted locoregional tumour heating in small animals. Phys Med Biol 2024; 69:085017. [PMID: 38471172 DOI: 10.1088/1361-6560/ad3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Objective.To improve hyperthermia in clinical practice, pre-clinical hyperthermia research is essential to investigate hyperthermia effects and assess novel treatment strategies. Translating pre-clinical hyperthermia findings into clinically viable protocols requires laboratory animal treatment techniques similar to clinical hyperthermia techniques. The ALBA micro8 electromagnetic heating system (Med-logix SRL, Rome, Italy) has recently been developed to provide the targeted locoregional tumour heating currently lacking for pre-clinical research. This study evaluates the heat focusing properties of this device and its ability to induce robust locoregional tumour heating under realistic physiological conditions using simulations.Approach.Simulations were performed using the Plan2Heat treatment planning package (Amsterdam UMC, the Netherlands). First, the specific absorption rate (SAR) focus was characterised using a homogeneous phantom. Hereafter, a digital mouse model was used for the characterisation of heating robustness in a mouse. Device settings were optimised for treatment of a pancreas tumour and tested for varying circumstances. The impact of uncertainties in tissue property and perfusion values was evaluated using polynomial chaos expansion. Treatment quality and robustness were evaluated based on SAR and temperature distributions.Main results.The SAR distributions within the phantom are well-focused and can be adjusted to target any specific location. The focus size (full-width half-maximum) is a spheroid with diameters 9 mm (radially) and 20 mm (axially). The mouse model simulations show strong robustness against respiratory motion and intestine and stomach filling (∆T90≤0.14°C).Mouse positioning errors in the cranial-caudal direction lead to∆T90≤0.23°C. Uncertainties in tissue property and perfusion values were found to impact the treatment plan up to 0.56 °C (SD), with a variation onT90of 0.32 °C (1 SD).Significance.Our work shows that the pre-clinical phased-array system can provide adequate and robust locoregional heating of deep-seated target regions in mice. Using our software, robust treatment plans can be generated for pre-clinical hyperthermia research.
Collapse
Affiliation(s)
- Jort A Groen
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Johannes Crezee
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, The Netherlands
| | - Bram F Coolen
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Gustav J Strijkers
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Amsterdam, The Netherlands
| | - Maarten F Bijlsma
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and biomarkers, Amsterdam, the Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - H Petra Kok
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Mingo Barba S, Ademaj A, Marder D, Riesterer O, Lattuada M, Füchslin RM, Petri-Fink A, Scheidegger S. Theoretical evaluation of the impact of diverse treatment conditions by calculation of the tumor control probability (TCP) of simulated cervical cancer Hyperthermia-Radiotherapy (HT-RT) treatments in-silico. Int J Hyperthermia 2024; 41:2320852. [PMID: 38465653 DOI: 10.1080/02656736.2024.2320852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/12/2024] Open
Abstract
INTRODUCTION Hyperthermia (HT) induces various cellular biological processes, such as repair impairment and direct HT cell killing. In this context, in-silico biophysical models that translate deviations in the treatment conditions into clinical outcome variations may be used to study the extent of such processes and their influence on combined hyperthermia plus radiotherapy (HT + RT) treatments under varying conditions. METHODS An extended linear-quadratic model calibrated for SiHa and HeLa cell lines (cervical cancer) was used to theoretically study the impact of varying HT treatment conditions on radiosensitization and direct HT cell killing effect. Simulated patients were generated to compute the Tumor Control Probability (TCP) under different HT conditions (number of HT sessions, temperature and time interval), which were randomly selected within margins based on reported patient data. RESULTS Under the studied conditions, model-based simulations suggested a treatment improvement with a total CEM43 thermal dose of approximately 10 min. Additionally, for a given thermal dose, TCP increased with the number of HT sessions. Furthermore, in the simulations, we showed that the TCP dependence on the temperature/time interval is more correlated with the mean value than with the minimum/maximum value and that comparing the treatment outcome with the mean temperature can be an excellent strategy for studying the time interval effect. CONCLUSION The use of thermoradiobiological models allows us to theoretically study the impact of varying thermal conditions on HT + RT treatment outcomes. This approach can be used to optimize HT treatments, design clinical trials, and interpret patient data.
Collapse
Affiliation(s)
- Sergio Mingo Barba
- School of Engineering, Zürich University of Applied Sciences (ZHAW), Winterthur, Switzerland
- Chemistry Department, University of Fribourg, Fribourg, Switzerland
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Adela Ademaj
- Center for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
- Doctoral Clinical Science Program, Medical Faculty, University of Zurich, Zürich, Switzerland
| | - Dietmar Marder
- Center for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Oliver Riesterer
- Center for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Marco Lattuada
- Chemistry Department, University of Fribourg, Fribourg, Switzerland
| | - Rudolf M Füchslin
- School of Engineering, Zürich University of Applied Sciences (ZHAW), Winterthur, Switzerland
- European Centre for Living Technology, Venice, Italy
| | - Alke Petri-Fink
- Chemistry Department, University of Fribourg, Fribourg, Switzerland
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
| | - Stephan Scheidegger
- School of Engineering, Zürich University of Applied Sciences (ZHAW), Winterthur, Switzerland
| |
Collapse
|
26
|
Mei X, Kok HP, Rodermond HM, van Bochove GGW, Snoek BC, van Leeuwen CM, Franken NAP, Ten Hagen TLM, Crezee J, Vermeulen L, Stalpers LJA, Oei AL. Radiosensitization by Hyperthermia Critically Depends on the Time Interval. Int J Radiat Oncol Biol Phys 2024; 118:817-828. [PMID: 37820768 DOI: 10.1016/j.ijrobp.2023.09.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Hyperthermia is a potent sensitizer of radiation therapy that improves both tumor control and survival in women with locally advanced cervical cancer (LACC). The optimal sequence and interval between hyperthermia and radiation therapy are still under debate. METHODS AND MATERIALS We investigated the interval and sequence in vitro in cervical cancer cell lines, patient-derived organoids, and SiHa cervical cancer hind leg xenografts in athymic nude mice and compared the results with retrospective results from 58 women with LACC treated with thermoradiotherapy. RESULTS All 3 approaches confirmed that shortening the interval between hyperthermia and radiation therapy enhanced hyperthermic radiosensitization by 2 to 8 times more DNA double-strand breaks and apoptosis and 10 to 100 times lower cell survival, delayed tumor growth in mice, and increased the 5-year survival rate of women with LACC from 22% (interval ≥80 minutes) to 54% (interval <80 minutes). In vitro and in vivo results showed that the sequence of hyperthermia and radiation therapy did not affect the outcome. CONCLUSIONS Shortening the interval between hyperthermia and radiation therapy significantly improves treatment outcomes. The sequence of hyperthermia and radiation therapy (before or after) does not seem to matter.
Collapse
Affiliation(s)
- Xionge Mei
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - H Petra Kok
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Hans M Rodermond
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Gregor G W van Bochove
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Barbara C Snoek
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Caspar M van Leeuwen
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Nicolaas A P Franken
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Timo L M Ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Johannes Crezee
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Louis Vermeulen
- Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands; Oncode Institute, Amsterdam, The Netherlands
| | - Lukas J A Stalpers
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Arlene L Oei
- Department of Radiation Oncology, University of Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands; Center for Experimental and Molecular Medicine (CEMM), Laboratory for Experimental Oncology and Radiobiology (LEXOR), Amsterdam, The Netherlands; Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Servayge J, Olthof EP, Mom CH, van der Aa MA, Wenzel HHB, van der Velden J, Nout RA, Boere IA, van Doorn HC, van Beekhuizen HJ. Survival of Women with Advanced Stage Cervical Cancer: Neo-Adjuvant Chemotherapy Followed by Radiotherapy and Hyperthermia versus Chemoradiotherapy. Cancers (Basel) 2024; 16:635. [PMID: 38339386 PMCID: PMC10854526 DOI: 10.3390/cancers16030635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
AIM To investigate and compare overall survival (OS), disease-free survival (DFS) and toxicity of women who underwent either chemoradiotherapy with or without prior lymph node debulking or upfront chemotherapy followed by radiotherapy and hyperthermia (triple therapy) for locally advanced cervical cancer (LACC) to identify a potential role for triple therapy. METHODS Women with histologically proven LACC and with International Federation of Gynecology and Obstetrics (FIGO) 2009 stage IB2 and IIA2 to IVA were included. Cox regression analyses were used for calculating hazard ratios and to adjust for confounding variables. A multivariable logistic regression analysis was used to examine the influence of covariates on toxicity. RESULTS A total of 370 patients were included of whom 58% (n = 213) received chemoradiotherapy (CRT), 18% (n = 66) received node-debulking followed by chemoradiotherapy (LND-CRT) and 25% (n = 91) received triple therapy (TT). Five-year OS was comparable between the three treatment groups, with 53% (95% confidence interval 46-59%) in the CRT group, 45% (33-56%) in the LND-CRT group and 53% (40-64%) in the TT group (p = 0.472). In the adjusted analysis, 5-year OS and DFS were comparable between the three treatment groups. No chemotherapy-related differences in toxicity were observed. CONCLUSION This study suggests that the toxicity and survival of TT is similar to CRT or LND-CRT.
Collapse
Affiliation(s)
- Jonathan Servayge
- Department of Gynecologic Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Ester P. Olthof
- Department of Gynecologic Oncology, Amsterdam University Medical Centre, Centre for Gynecologic Oncology Amsterdam (CGOA), 1066 CX Amsterdam, The Netherlands
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), 3501 DB Utrecht, The Netherlands
| | - Constantijne H. Mom
- Department of Gynecologic Oncology, Amsterdam University Medical Centre, Centre for Gynecologic Oncology Amsterdam (CGOA), 1066 CX Amsterdam, The Netherlands
| | - Maaike A. van der Aa
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), 3501 DB Utrecht, The Netherlands
| | - Hans H. B. Wenzel
- Department of Research and Development, Netherlands Comprehensive Cancer Organisation (IKNL), 3501 DB Utrecht, The Netherlands
| | - Jacobus van der Velden
- Department of Gynecologic Oncology, Amsterdam University Medical Centre, Centre for Gynecologic Oncology Amsterdam (CGOA), 1066 CX Amsterdam, The Netherlands
| | - Remi A. Nout
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Ingrid A. Boere
- Department of Medical Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Helena C. van Doorn
- Department of Gynecologic Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, 3000 CA Rotterdam, The Netherlands
| | - Heleen J. van Beekhuizen
- Department of Gynecologic Oncology, Erasmus MC Cancer Institute, University Medical Centre Rotterdam, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
28
|
Abdin ZU, Shah SAA, Cho Y, Yoo H. MATLAB-based innovative 3D finite element method simulator for optimized real-time hyperthermia analysis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107976. [PMID: 38096709 DOI: 10.1016/j.cmpb.2023.107976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND AND OBJECTIVE Owing to the significant role of hyperthermia in enhancing the efficacy of chemotherapy or radiotherapy for treating malignant tissues, this study introduces a real-time hyperthermia simulator (RTHS) based on the three-dimensional finite element method (FEM) developed using the MATLAB App Designer. METHODS The simulator consisted of operator-defined homogeneous and heterogeneous phantom models surrounded by an annular phased array (APA) of eight dipole antennas designed at 915 MHz. Electromagnetic and thermal analyses were conducted using the RTHS. To locally raise the target temperature according to the tumor's location, a convex optimization algorithm (COA) was employed to excite the antennas using optimal values of the phases to maximize the electric field at the tumor and amplitudes to achieve the required temperature at the target position. The performance of the proposed RTHS was validated by comparing it with similar hyperthermia setups in the FEM-based COMSOL software and finite-difference time-domain (FDTD)-based Sim4Life software. RESULTS The simulation results obtained using the RTHS were consistent, both for the homogeneous and heterogeneous models, with those obtained using commercially available tools, demonstrating the reliability of the proposed hyperthermia simulator. The effectiveness of the simulator was illustrated for target positions in five different regions for both homogeneous and heterogeneous phantom models. In addition, the RTHS was cost-effective and consumed less computational time than the available software. The proposed method achieved 94% and 96% accuracy for element sizes of λ/26 and λ/36, respectively, for the homogeneous model. For the heterogeneous model, the method demonstrated 93% and 95% accuracy for element sizes of λ/26 and λ/36, respectively. The accuracy can be further improved by using a more refined mesh at the cost of a higher computational time. CONCLUSIONS The proposed hyperthermia simulator demonstrated reliability, cost-effectiveness, and reduced computational time compared to commercial software, making it a potential tool for optimizing hyperthermia treatment.
Collapse
Affiliation(s)
- Zain Ul Abdin
- Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Syed Ahson Ali Shah
- Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Youngdae Cho
- Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hyoungsuk Yoo
- Department of Biomedical Engineering and Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
29
|
Tewari AB, Saini A, Sharma D. Extirpating the cancer stem cell hydra: Differentiation therapy and Hyperthermia therapy for targeting the cancer stem cell hierarchy. Clin Exp Med 2023; 23:3125-3145. [PMID: 37093450 DOI: 10.1007/s10238-023-01066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023]
Abstract
Ever since the discovery of cancer stem cells (CSCs), they have progressively attracted more attention as a therapeutic target. Like the mythical hydra, this subpopulation of cells seems to contribute to cancer immortality, spawning more cells each time that some components of the cancer cell hierarchy are destroyed. Traditional modalities focusing on cancer treatment have emphasized apoptosis as a route to eliminate the tumor burden. A major problem is that cancer cells are often in varying degrees of dedifferentiation contributing to what is known as the CSCs hierarchy and cells which are known to be resistant to conventional therapy. Differentiation therapy is an experimental therapeutic modality aimed at the conversion of malignant phenotype to a more benign one. Hyperthermia therapy (HT) is a modality exploiting the changes induced in cells by the application of heat produced to aid in cancer therapy. While differentiation therapy has been successfully employed in the treatment of acute myeloid leukemia, it has not been hugely successful for other cancer types. Mounting evidence suggests that hyperthermia therapy may greatly augment the effects of differentiation therapy while simultaneously overcoming many of the hard-to-treat facets of recurrent tumors. This review summarizes the progress made so far in integrating hyperthermia therapy with existing modules of differentiation therapy. The focus is on studies related to the successful application of both hyperthermia and differentiation therapy when used alone or in conjunction for hard-to-treat cancer cell niche with emphasis on combined approaches to target the CSCs hierarchy.
Collapse
Affiliation(s)
- Amit B Tewari
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Anamika Saini
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
30
|
Carrapiço-Seabra C, De Lazzari M, Ameziane A, van Rhoon GC, Dobšícek Trefná H, Curto S. Application of the ESHO-QA guidelines for determining the performance of the LCA superficial hyperthermia heating system. Int J Hyperthermia 2023; 40:2272578. [PMID: 37879635 DOI: 10.1080/02656736.2023.2272578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023] Open
Abstract
PURPOSE This study aimed to assess the quality of the lucite cone applicator (LCA), the standard applicator for superficial hyperthermia at the Erasmus MC Cancer Institute, using the most recent quality assurance guidelines, thus verifying their feasibility. MATERIALS AND METHODS The assessment was conducted on each of the six LCAs available for clinical treatments. The temperature distribution was evaluated using an infrared camera across different layers of a fat-muscle mimicking phantom. The maximum temperature increase, thermal effective penetration depth (TEPD), and thermal effective field size (TEFS) were used as quality metrics. The experimental results were validated through comparison with simulated results, using a canonical phantom model and a realistic phantom model segmented from CT imaging. RESULTS A maximum temperature increase above 6 °C at 2 cm depth in the fat-muscle phantom for all the experiments was found. A mean negative difference between simulated and experimental data was of 1.3 °C when using the canonical phantom model. This value decreased to a mean negative difference of 0.4 °C when using the realistic model. Simulated and measured TEPD showed good agreement for both in silico scenarios, while discrepancies were present for TEFS. CONCLUSIONS The LCAs passed all QA guidelines requirements for superficial hyperthermia delivery when used singularly or in an array configuration. A further characterization of parameters such as antenna efficiency and heat transfer coefficients would be beneficial for translating experimental results to simulated values. Implementing the QA guidelines was time-consuming and demanding, requiring careful preparation and correct setup of antenna elements.
Collapse
Affiliation(s)
- Carolina Carrapiço-Seabra
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Mattia De Lazzari
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abdelali Ameziane
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Radiation Science and Technology, Faculty of Applied Sciences, Delft University of Technology, Delft, the Netherlands
| | - Hana Dobšícek Trefná
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Sergio Curto
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
31
|
Groen JA, Crezee J, van Laarhoven HWM, Bijlsma MF, Kok HP. Quantification of tissue property and perfusion uncertainties in hyperthermia treatment planning: Multianalysis using polynomial chaos expansion. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2023; 240:107675. [PMID: 37339535 DOI: 10.1016/j.cmpb.2023.107675] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/26/2023] [Accepted: 06/08/2023] [Indexed: 06/22/2023]
Abstract
INTRODUCTION Hyperthermia treatment planning (HTP) tools can guide treatment delivery, particularly with locoregional radiative phased array systems. Uncertainties in tissue and perfusion property values presently lead to quantitative inaccuracy of HTP, leading to sub-optimal treatment. Assessment of these uncertainties would allow for better judgement of the reliability of treatment plans and improve their value for treatment guidance. However, systematically investigating the impact of all uncertainties on treatment plans is a complex, high-dimensional problem and too computationally expensive for traditional Monte Carlo approaches. This study aims to systematically quantify the treatment-plan impact of tissue property uncertainties by investigating their individual contribution to, and combined impact on predicted temperature distributions. METHODS A novel Polynomial Chaos Expansion (PCE)-based HTP uncertainty quantification was developed and applied for locoregional hyperthermia of modelled tumours in the pancreatic head, prostate, rectum, and cervix. Patient models were based on the Duke and Ella digital human models. Using Plan2Heat, treatment plans were created to optimise tumour temperature (represented by T90) for treatment using the Alba4D system. For all 25-34 modelled tissues, the impact of tissue property uncertainties was analysed individually i.e., electrical and thermal conductivity, permittivity, density, specific heat capacity and perfusion. Next, combined analyses were performed on the top 30 uncertainties with the largest impact. RESULTS Uncertainties in thermal conductivity and heat capacity were found to have negligible impact on the predicted temperature ( < 1 × 10-10 °C), density and permittivity uncertainties had a small impact (< 0.3 °C). Uncertainties in electrical conductivity and perfusion can lead to large variations in predicted temperature. However, variations in muscle properties result in the largest impact at locations that could limit treatment quality, with a standard deviation up to almost 6 °C (pancreas) and 3.5 °C (prostate) for perfusion and electrical conductivity, respectively. The combined influence of all significant uncertainties leads to large variations with a standard deviation up to 9.0, 3.6, 3.7 and 4.1 °C for the pancreatic, prostate, rectal and cervical cases, respectively. CONCLUSION Uncertainties in tissue and perfusion property values can have a large impact on predicted temperatures from hyperthermia treatment planning. PCE-based analysis helps to identify all major uncertainties, their impact and judge the reliability of treatment plans.
Collapse
Affiliation(s)
- Jort A Groen
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands.
| | - Johannes Crezee
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory for Experimental Oncology and Radiobiology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Imaging and biomarkers, Amsterdam, the Netherlands; Oncode Institute, Amsterdam, the Netherlands
| | - H Petra Kok
- Amsterdam UMC location University of Amsterdam, Radiation Oncology, Meibergdreef 9, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer biology and immunology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Treatment and quality of life, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Imashiro C, Jin Y, Hayama M, Yamada TG, Funahashi A, Sakaguchi K, Umezu S, Komotori J. Titanium Culture Vessel Presenting Temperature Gradation for the Thermotolerance Estimation of Cells. CYBORG AND BIONIC SYSTEMS 2023; 4:0049. [PMID: 37554432 PMCID: PMC10405790 DOI: 10.34133/cbsystems.0049] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/19/2023] [Indexed: 08/10/2023] Open
Abstract
Hyperthermia can be induced to exploit the thermal intolerance of cancer cells, which is worse than that of normal cells, as a potential noninvasive cancer treatment. To develop an effective hyperthermia treatment, thermal cytotoxicity of cells should be comprehensively investigated. However, to conduct such investigations, the culture temperature must be accurately regulated. We previously reported a culture system in which the culture temperature could be accurately regulated by employing metallic culture vessels. However, appropriate temperature conditions for hyperthermia depend on the cell species. Consequently, several experiments need to be conducted, which is a bottleneck of inducing hyperthermia. Hence, we developed a cell culture system with temperature gradation on a metallic culture surface. Michigan Cancer Foundation-7 cells and normal human dermal fibroblasts were used as cancer and normal cell models, respectively. Normal cells showed stronger thermal tolerance; this was because the novel system immediately exhibited a temperature gradation. Thus, the developed culture system can be used to investigate the optimum thermal conditions for effective hyperthermia treatment. Furthermore, as the reactions of cultured cells can be effectively assessed with the present results, further research involving the thermal stimulation of cells is possible.
Collapse
Affiliation(s)
- Chikahiro Imashiro
- Graduate School of Engineering,
The University of Tokyo, Tokyo 113-0033, Japan
- Department of Mechanical Engineering,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Yangyan Jin
- School of Integrated Design Engineering, Graduate School of Science and Technology,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Motoaki Hayama
- School of Integrated Design Engineering, Graduate School of Science and Technology,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Takahiro G. Yamada
- Department of Biosciences and Informatics,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Akira Funahashi
- Department of Biosciences and Informatics,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| | - Katsuhisa Sakaguchi
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering,
Waseda University, TWIns, Tokyo 162-8480, Japan
| | - Shinjiro Umezu
- Department of Integrative Bioscience and Biomedical Engineering, Graduate School of Advanced Science and Engineering,
Waseda University, TWIns, Tokyo 162-8480, Japan
- Department of Modern Mechanical Engineering,
Waseda University, Tokyo 169-8555, Japan
| | - Jun Komotori
- Department of Mechanical Engineering,
Keio University, Yokohama, Kanagawa 223-0061, Japan
| |
Collapse
|
33
|
Yildiz G, Farhat I, Farrugia L, Bonello J, Zarb-Adami K, Sammut CV, Yilmaz T, Akduman I. Comparison of Microwave Hyperthermia Applicator Designs with Fora Dipole and Connected Array. SENSORS (BASEL, SWITZERLAND) 2023; 23:6592. [PMID: 37514884 PMCID: PMC10383607 DOI: 10.3390/s23146592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/03/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
In microwave hyperthermia tumor therapy, electromagnetic waves focus energy on the tumor to elevate the temperature above its normal levels with minimal injury to the surrounding healthy tissue. Microwave hyperthermia applicator design is important for the effectiveness of the therapy and the feasibility of real-time application. In this study, the potential of using fractal octagonal ring antenna elements as a dipole antenna array and as a connected array at 2.45 GHz for breast tumor hyperthermia application was investigated. Microwave hyperthermia treatment models consisting of different fractal octagonal ring antenna array designs and a breast phantom are simulated in COMSOL Multiphysics to obtain the field distributions. The antenna excitation phases and magnitudes are optimized using the global particle swarm algorithm to selectively increase the specific absorption rate at the target region while minimizing hot spots in other regions within the breast. Specific absorption rate distributions, obtained inside the phantom, are analyzed for each proposed microwave hyperthermia applicator design. The dipole fractal octagonal ring antenna arrays are comparatively assessed for three different designs: circular, linear, and Cross-array. The 16-antenna dipole array performance was superior for all three 1-layer applicator designs, and no distinct difference was found between 16-antenna circular, linear, or cross arrays. Two-layer dipole arrays have better performance in the deep-tissue targets than one-layer arrays. The performance of the connected array with a higher number of layers exceeds the performance of the dipole arrays in the superficial regions, while they are comparable for deep regions of the breast. The 1-layer 12-antenna circular FORA dipole array feasibility as a microwave hyperthermia applicator was experimentally shown.
Collapse
Affiliation(s)
- Gulsah Yildiz
- Department of Electronics and Communication Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Iman Farhat
- Department of Physics, University of Malta, MSD 2080 Msida, Malta
| | - Lourdes Farrugia
- Department of Physics, University of Malta, MSD 2080 Msida, Malta
| | - Julian Bonello
- Department of Physics, University of Malta, MSD 2080 Msida, Malta
| | | | - Charles V Sammut
- Department of Physics, University of Malta, MSD 2080 Msida, Malta
| | - Tuba Yilmaz
- Department of Electronics and Communication Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
- Mitos Medical Technologies, 34467 Istanbul, Turkey
| | - Ibrahim Akduman
- Department of Electronics and Communication Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
- Mitos Medical Technologies, 34467 Istanbul, Turkey
| |
Collapse
|
34
|
Srivastava N, Usmani SS, Subbarayan R, Saini R, Pandey PK. Hypoxia: syndicating triple negative breast cancer against various therapeutic regimens. Front Oncol 2023; 13:1199105. [PMID: 37492478 PMCID: PMC10363988 DOI: 10.3389/fonc.2023.1199105] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/05/2023] [Indexed: 07/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the deadliest subtypes of breast cancer (BC) for its high aggressiveness, heterogeneity, and hypoxic nature. Based on biological and clinical observations the TNBC related mortality is very high worldwide. Emerging studies have clearly demonstrated that hypoxia regulates the critical metabolic, developmental, and survival pathways in TNBC, which include glycolysis and angiogenesis. Alterations to these pathways accelerate the cancer stem cells (CSCs) enrichment and immune escape, which further lead to tumor invasion, migration, and metastasis. Beside this, hypoxia also manipulates the epigenetic plasticity and DNA damage response (DDR) to syndicate TNBC survival and its progression. Hypoxia fundamentally creates the low oxygen condition responsible for the alteration in Hypoxia-Inducible Factor-1alpha (HIF-1α) signaling within the tumor microenvironment, allowing tumors to survive and making them resistant to various therapies. Therefore, there is an urgent need for society to establish target-based therapies that overcome the resistance and limitations of the current treatment plan for TNBC. In this review article, we have thoroughly discussed the plausible significance of HIF-1α as a target in various therapeutic regimens such as chemotherapy, radiotherapy, immunotherapy, anti-angiogenic therapy, adjuvant therapy photodynamic therapy, adoptive cell therapy, combination therapies, antibody drug conjugates and cancer vaccines. Further, we also reviewed here the intrinsic mechanism and existing issues in targeting HIF-1α while improvising the current therapeutic strategies. This review highlights and discusses the future perspectives and the major alternatives to overcome TNBC resistance by targeting hypoxia-induced signaling.
Collapse
Affiliation(s)
- Nityanand Srivastava
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Salman Sadullah Usmani
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rajasekaran Subbarayan
- Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY, United States
- Research, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Educations, Chennai, India
| | - Rashmi Saini
- Department of Zoology, Gargi College, University of Delhi, New Delhi, India
| | - Pranav Kumar Pandey
- Dr. R.P. Centre for Opthalmic Sciences, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
35
|
Real World Analysis of Quality of Life and Toxicity in Cancer Patients Treated with Hyperthermia Combined with Radio(chemo)therapy. Cancers (Basel) 2023; 15:cancers15041241. [PMID: 36831583 PMCID: PMC9954584 DOI: 10.3390/cancers15041241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023] Open
Abstract
Hyperthermia (HT) in combination with radio(chemo)therapy (RCT) is a well-established cancer treatment strategy. This report analyses the quality of life (QoL), toxicity and survival outcomes in patients with different tumor entities who received HT in combination with RCT. The primary endpoint of this study was the assessment of QoL scale items 3 and 12 months after treatment in patients who were treated with palliative intent and curative intent, respectively. The secondary endpoints of this study were acute toxicities, 1-year overall survival (OS), and local progression-free survival (LPFS). Patients treated with curative intent experienced significant improvement in emotional functioning (EF), social functioning (SF), financial difficulties (FI) and insomnia (SL) 12 months after treatment. Patients had significantly improved FI and pain (PA) three months after palliative treatment. Acute toxicity of grade 3 or more was 26% during treatment and 4% after three months. The 1-year OS rates were 90% (95% CI: 79-96%) and 44% (95% CI: 31-59%) for patients treated with curative and palliative RCT combined with HT, respectively. Moreover, the 1-year LPFS rates were 94% (95% CI: 84-98%) for patients treated with curative intent and 64% (95% CI: 50-77%) for palliative patients. In summary, combined RCT and HT stabilized or improved QoL scale items for both curative and palliative indications.
Collapse
|
36
|
Combined Hyperthermia and Re-Irradiation in Non-Breast Cancer Patients: A Systematic Review. Cancers (Basel) 2023; 15:cancers15030742. [PMID: 36765699 PMCID: PMC9913630 DOI: 10.3390/cancers15030742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
PURPOSE This systematic literature review summarizes clinical studies and trials involving combined non-ablative hyperthermia and re-irradiation in locoregionally recurrent cancer except breast cancer. METHODS One database and one registry, MEDLINE and clinicaltrials.gov, respectively, were searched for studies on combined non-ablative hyperthermia and re-irradiation in non-breast cancer patients. Extracted study characteristics included treatment modalities and re-irradiation dose concepts. Outcomes of interest were tumor response, survival measures, toxicity data and palliation. Within-study bias assessment included the identification of conflict of interest (COI). The final search was performed on 29 August 2022. RESULTS Twenty-three articles were included in the final analysis, reporting on 603 patients with eight major tumor types. Twelve articles (52%) were retrospective studies. Only one randomized trial was identified. No COI statement was declared in 11 studies. Four of the remaining twelve studies exhibited significant COI. Low study and patient numbers, high heterogeneity in treatment modalities and endpoints, as well as significant within- and across-study bias impeded the synthesis of results. CONCLUSION Outside of locoregionally recurrent breast cancer, the role of combined moderate hyperthermia and re-irradiation can so far not be established. This review underscores the necessity for more clinical trials to generate higher levels of clinical evidence for combined re-irradiation and hyperthermia.
Collapse
|
37
|
Chia BSH, Ho SZ, Tan HQ, Chua MLK, Tuan JKL. A Review of the Current Clinical Evidence for Loco-Regional Moderate Hyperthermia in the Adjunct Management of Cancers. Cancers (Basel) 2023; 15:cancers15020346. [PMID: 36672300 PMCID: PMC9856725 DOI: 10.3390/cancers15020346] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Regional hyperthermia therapy (RHT) is a treatment that applies moderate heat to tumours in an attempt to potentiate the effects of oncological treatments and improve responses. Although it has been used for many years, the mechanisms of action are not fully understood. Heterogenous practices, poor quality assurance, conflicting clinical evidence and lack of familiarity have hindered its use. Despite this, several centres recognise its potential and have adopted it in their standard treatment protocols. In recent times, significant technical improvements have been made and there is an increasing pool of evidence that could revolutionise its use. Our narrative review aims to summarise the recently published prospective trial evidence and present the clinical effects of RHT when added to standard cancer treatments. In total, 31 studies with higher-quality evidence across various subsites are discussed herein. Although not all of these studies are level 1 evidence, benefits of moderate RHT in improving local tumour control, survival outcomes and quality of life scores were observed across the different cancer subsites with minimal increase in toxicities. This paper may serve as a reference when considering this technique for specific indications.
Collapse
Affiliation(s)
- Brendan Seng Hup Chia
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
- Correspondence:
| | - Shaun Zhirui Ho
- Department of Radiation Oncology, 585 North Bridge Rd, Level 10 Raffles Specialist Centre, Singapore 188770, Singapore
| | - Hong Qi Tan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Melvin Lee Kiang Chua
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| | - Jeffrey Kit Loong Tuan
- Division of Radiation Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610, Singapore
| |
Collapse
|
38
|
Ott OJ, Gaipl US, Lamrani A, Fietkau R. The Emerging Evidence Supporting Integration of Deep Regional Hyperthermia With Chemoradiation in Bladder Cancer. Semin Radiat Oncol 2023; 33:82-90. [PMID: 36517198 DOI: 10.1016/j.semradonc.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
For decades, the antineoplastic potential of hyperthermia alone or in combination with radiotherapy and/or chemotherapy has been subject of intensive preclinical and clinical research in various tumor entities. The clinical evidence on the beneficial effects of additional hyperthermia in combination with intravesical Mitomycin C for superficial non-muscle-invasive bladder cancer as well as for deep regional microwave hyperthermia techniques applied during an external beam radiotherapy or chemoradiation treatment for more advanced tumors are summarized. In some series, deep regional hyperthermia in combination with an initial transurethral resection and Cisplatin-based chemoradiation increased the 5-year overall survival rates up to 20%. The presented data justifies a fresh irrespective chance for mild regional hyperthermia in the context of new progressive prospective trials on multimodality treatment for bladder preservation.
Collapse
Affiliation(s)
- Oliver J Ott
- Universitätsklinikum Erlangen, Department of Radiation Oncology, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany.
| | - Udo S Gaipl
- Universitätsklinikum Erlangen, Department of Radiation Oncology, Erlangen, Germany; Universitätsklinikum Erlangen, Department of Radiation Oncology, Translational Radiobiology, Erlangen, Germany
| | - Allison Lamrani
- Universitätsklinikum Erlangen, Department of Radiation Oncology, Erlangen, Germany
| | - Rainer Fietkau
- Universitätsklinikum Erlangen, Department of Radiation Oncology, Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Erlangen, Germany
| |
Collapse
|
39
|
Bakker A, Zweije R, Kok HP, Stalpers LJA, Westerveld GH, Hinnen KA, van Tienhoven G, Kolff MW, Crezee H. Comparison of the clinical performance of a hybrid Alba 4D and the AMC-4 locoregional hyperthermia systems. Int J Hyperthermia 2022; 39:1408-1414. [DOI: 10.1080/02656736.2022.2140841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Akke Bakker
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Remko Zweije
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - H. Petra Kok
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Lukas J. A. Stalpers
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - G. Henrike Westerveld
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiation Oncology, Erasmus MC, Rotterdam, The Netherlands
| | - Karel A. Hinnen
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Geertjan van Tienhoven
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - M. Willemijn Kolff
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
40
|
VilasBoas-Ribeiro I, Franckena M, van Rhoon GC, Hernández-Tamames JA, Paulides MM. Using MRI to measure position and anatomy changes and assess their impact on the accuracy of hyperthermia treatment planning for cervical cancer. Int J Hyperthermia 2022; 40:2151648. [PMID: 36535922 DOI: 10.1080/02656736.2022.2151648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PURPOSE We studied the differences between planning and treatment position, their impact on the accuracy of hyperthermia treatment planning (HTP) predictions, and the relevance of including true treatment anatomy and position in HTP based on magnetic resonance (MR) images. MATERIALS AND METHODS All volunteers were scanned with an MR-compatible hyperthermia device, including a filled waterbolus, to replicate the treatment setup. In the planning setup, the volunteers were scanned without the device to reproduce the imaging in the current HTP. First, we used rigid registration to investigate the patient position displacements between the planning and treatment setup. Second, we performed HTP for the planning anatomy at both positions and the treatment mimicking anatomy to study the effects of positioning and anatomy on the quality of the simulated hyperthermia treatment. Treatment quality was evaluated using SAR-based parameters. RESULTS We found an average displacement of 2 cm between planning and treatment positions. These displacements caused average absolute differences of ∼12% for TC25 and 10.4%-15.9% in THQ. Furthermore, we found that including the accurate treatment position and anatomy in treatment planning led to an improvement of 2% in TC25 and 4.6%-10.6% in THQ. CONCLUSIONS This study showed that precise patient position and anatomy are relevant since these affect the accuracy of HTP predictions. The major part of improved accuracy is related to implementing the correct position of the patient in the applicator. Hence, our study shows a clear incentive to accurately match the patient position in HTP with the actual treatment.
Collapse
Affiliation(s)
- Iva VilasBoas-Ribeiro
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Martine Franckena
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Gerard C van Rhoon
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Applied Radiation and Isotopes, Reactor Institute Delft, Delft University of Technology, Delft, The Netherlands
| | - Juan A Hernández-Tamames
- Department of Radiology and Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Margarethus M Paulides
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Care and Cure research lab (EM-4C&C) of the Electromagnetics Group, Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
41
|
Khurshed M, Prades-Sagarra E, Saleh S, Sminia P, Wilmink JW, Molenaar RJ, Crezee H, van Noorden CJF. Hyperthermia as a Potential Cornerstone of Effective Multimodality Treatment with Radiotherapy, Cisplatin and PARP Inhibitor in IDH1-Mutated Cancer Cells. Cancers (Basel) 2022; 14:cancers14246228. [PMID: 36551714 PMCID: PMC9777513 DOI: 10.3390/cancers14246228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Mutations in the isocitrate dehydrogenase 1 (IDH1MUT) gene occur in various types of malignancies, including ~60% of chondrosarcomas, ~30% of intrahepatic cholangiocarcinomas and >80% of low-grade gliomas. IDH1MUT are causal in the development and progression of these types of cancer due to neomorphic production of the oncometabolite D-2-hydroxyglutarate (D-2HG). Intracellular accumulation of D-2HG has been implicated in suppressing homologous recombination and renders IDH1MUT cancer cells sensitive to DNA-repair-inhibiting agents, such as poly-(adenosine 5′-diphosphate−ribose) polymerase inhibitors (PARPi). Hyperthermia increases the efficacy of DNA-damaging therapies such as radiotherapy and platinum-based chemotherapy, mainly by inhibition of DNA repair. In the current study, we investigated the additional effects of hyperthermia (42 °C for 1 h) in the treatment of IDH1MUT HCT116 colon cancer cells and hyperthermia1080 chondrosarcoma cancer cells in combination with radiation, cisplatin and/or a PARPi on clonogenic cell survival, cell cycle distribution and the induction and repair of DNA double-strand breaks. We found that hyperthermia in combination with radiation or cisplatin induces an increase in double-strand breaks and cell death, up to 10-fold in IDH1MUT cancer cells compared to IDH1 wild-type cells. This vulnerability was abolished by the IDH1MUT inhibitor AGI-5198 and was further increased by the PARPi. In conclusion, our study shows that IDH1MUT cancer cells are sensitized to hyperthermia in combination with irradiation or cisplatin and a PARPi. Therefore, hyperthermia may be an efficacious sensitizer to cytotoxic therapies in tumors where the clinical application of hyperthermia is feasible, such as IDH1MUT chondrosarcoma of the extremities.
Collapse
Affiliation(s)
- Mohammed Khurshed
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Correspondence:
| | - Elia Prades-Sagarra
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Sarah Saleh
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Peter Sminia
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Johanna W. Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Remco J. Molenaar
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
| | - Hans Crezee
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Cornelis J. F. van Noorden
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, 1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Radiofrequency Electromagnetic Fields Cause Non-Temperature-Induced Physical and Biological Effects in Cancer Cells. Cancers (Basel) 2022; 14:cancers14215349. [PMID: 36358768 PMCID: PMC9655505 DOI: 10.3390/cancers14215349] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/12/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary Radiofrequency electromagnetic fields are used for tumor heating as adjunct therapy, but it appears that sufficient temperatures can sometimes not be reached. We therefore aimed to study potential non-temperature-induced anticancer effects when adding amplitude modulation to the radiofrequency waves. We could demonstrate in a colorectal cancer model that radiofrequency electromagnetic fields do have anticancer effects when not being induced by increased temperature that can be further increased by amplitude modulation. Therefore, this treatment could potentially serve as a more effective tumor therapy. Abstract Non-temperature-induced effects of radiofrequency electromagnetic fields (RF) have been controversial for decades. Here, we established measurement techniques to prove their existence by investigating energy deposition in tumor cells under RF exposure and upon adding amplitude modulation (AM) (AMRF). Using a preclinical device LabEHY-200 with a novel in vitro applicator, we analyzed the power deposition and system parameters for five human colorectal cancer cell lines and measured the apoptosis rates in vitro and tumor growth inhibition in vivo in comparison to water bath heating. We showed enhanced anticancer effects of RF and AMRF in vitro and in vivo and verified the non-temperature-induced origin of the effects. Furthermore, apoptotic enhancement by AM was correlated with cell membrane stiffness. Our findings not only provide a strategy to significantly enhance non-temperature-induced anticancer cell effects in vitro and in vivo but also provide a perspective for a potentially more effective tumor therapy.
Collapse
|
43
|
Wang L, Zhan G, Maimaitiyiming Y, Su Y, Lin S, Liu J, Su K, Lin J, Shen S, He W, Wang F, Chen J, Sun S, Xue Y, Gu J, Chen X, Zhang J, Zhang L, Wang Q, Chang KJ, Chiou SH, Björklund M, Naranmandura H, Cheng X, Hsu CH. m6A modification confers thermal vulnerability to HPV E7 oncotranscripts via reverse regulation of its reader protein IGF2BP1 upon heat stress. Cell Rep 2022; 41:111546. [DOI: 10.1016/j.celrep.2022.111546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 07/20/2022] [Accepted: 09/29/2022] [Indexed: 11/03/2022] Open
|
44
|
Avoiding Pitfalls in Thermal Dose Effect Relationship Studies: A Review and Guide Forward. Cancers (Basel) 2022; 14:cancers14194795. [PMID: 36230717 PMCID: PMC9562191 DOI: 10.3390/cancers14194795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
The challenge to explain the diffuse and unconclusive message reported by hyperthermia studies investigating the thermal dose parameter is still to be unravelled. In the present review, we investigated a wide range of technical and clinical parameters characterising hyperthermia treatment to better understand and improve the probability of detecting a thermal dose effect relationship in clinical studies. We performed a systematic literature review to obtain hyperthermia clinical studies investigating the associations of temperature and thermal dose parameters with treatment outcome or acute toxicity. Different hyperthermia characteristics were retrieved, and their influence on temperature and thermal dose parameters was assessed. In the literature, we found forty-eight articles investigating thermal dose effect relationships. These comprised a total of 4107 patients with different tumour pathologies. The association between thermal dose and treatment outcome was the investigated endpoint in 90% of the articles, while the correlation between thermal dose and toxicity was investigated in 50% of the articles. Significant associations between temperature-related parameters and treatment outcome were reported in 63% of the studies, while those between temperature-related parameters and toxicity were reported in 15% of the studies. One clear difficulty for advancement is that studies often omitted fundamental information regarding the clinical treatment, and among the different characteristics investigated, thermometry details were seldom and divergently reported. To overcome this, we propose a clear definition of the terms and characteristics that should be reported in clinical hyperthermia treatments. A consistent report of data will allow their use to further continue the quest for thermal dose effect relationships.
Collapse
|
45
|
Fletcher T, Thompson AJ, Ashrafian H, Darzi A. The measurement and modification of hypoxia in colorectal cancer: overlooked but not forgotten. Gastroenterol Rep (Oxf) 2022; 10:goac042. [PMID: 36032656 PMCID: PMC9406947 DOI: 10.1093/gastro/goac042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Tumour hypoxia is the inevitable consequence of a tumour's rapid growth and disorganized, inefficient vasculature. The compensatory mechanisms employed by tumours, and indeed the absence of oxygen itself, hinder the ability of all treatment modalities. The clinical consequence is poorer overall survival, disease-free survival, and locoregional control. Recognizing this, clinicians have been attenuating the effect of hypoxia, primarily with hypoxic modification or with hypoxia-activated pro-drugs, and notable success has been demonstrated. However, in the case of colorectal cancer (CRC), there is a general paucity of knowledge and evidence surrounding the measurement and modification of hypoxia, and this is possibly due to the comparative inaccessibility of such tumours. We specifically review the role of hypoxia in CRC and focus on the current evidence for the existence of hypoxia in CRC, the majority of which originates from indirect positron emission topography imaging with hypoxia selective radiotracers; the evidence correlating CRC hypoxia with poorer oncological outcome, which is largely based on the measurement of hypoxia inducible factor in correlation with clinical outcome; the evidence of hypoxic modification in CRC, of which no direct evidence exists, but is reflected in a number of indirect markers; the prognostic and monitoring implications of accurate CRC hypoxia quantification and its potential in the field of precision oncology; and the present and future imaging tools and technologies being developed for the measurement of CRC hypoxia, including the use of blood-oxygen-level-dependent magnetic resonance imaging and diffuse reflectance spectroscopy.
Collapse
Affiliation(s)
- Teddy Fletcher
- Department of Surgery and Cancer, Queen Elizabeth the Queen Mother Wing, St Mary’s Hospital, Imperial College London, London, UK
| | - Alex J Thompson
- The Hamlyn Centre, Institute of Global Health Innovation, Imperial College London, London, UK
| | - Hutan Ashrafian
- Department of Surgery and Cancer, Queen Elizabeth the Queen Mother Wing, St Mary’s Hospital, Imperial College London, London, UK
| | - Ara Darzi
- Department of Surgery and Cancer, Queen Elizabeth the Queen Mother Wing, St Mary’s Hospital, Imperial College London, London, UK
| |
Collapse
|
46
|
Riesterer O, Ademaj A, Puric E, Eberle B, Beck M, Gomez S, Marder D, Oberacker E, Rogers S, Hälg RA, Kern T, Schwenne S, Stein J, Stutz E, Timm O, Zschaeck S, Weyland MS, Veltsista PD, Wyler S, Wust P, Scheidegger S, Bodis S, Ghadjar P. Tetramodal therapy with transurethral resection followed by chemoradiation in combination with hyperthermia for muscle-invasive bladder cancer: early results of a multicenter phase IIB study. Int J Hyperthermia 2022; 39:1078-1087. [PMID: 35993234 DOI: 10.1080/02656736.2022.2109763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
BACKGROUND Transurethral resection of bladder tumor (TUR-BT) followed by chemoradiation (CRT) is a valid treatment option for patients with muscle-invasive bladder cancer (MIBC). This study aimed to investigate the efficacy of a tetramodal approach with additional regional hyperthermia (RHT). METHODS Patients with stages T2-4 MIBC were recruited at two institutions. Treatment consisted of TUR-BT followed by radiotherapy at doses of 57-58.2 Gy with concurrent weekly platinum-based chemotherapy and weekly deep RHT (41-43 °C, 60 min) within two hours of radiotherapy. The primary endpoint was a complete response six weeks after the end of treatment. Further endpoints were cystectomy-free rate, progression-free survival (PFS), local recurrence-free survival (LRFS), overall survival (OS) and toxicity. Quality of life (QoL) was assessed at follow-up using the EORTC-QLQ-C30 and QLQ-BM30 questionnaires. Due to slow accrual, an interim analysis was performed after the first stage of the two-stage design. RESULTS Altogether 27 patients were included in the first stage, of these 21 patients with a median age of 73 years were assessable. The complete response rate of evaluable patients six weeks after therapy was 93%. The 2-year cystectomy-free rate, PFS, LRFS and OS rates were 95%, 76%, 81% and 86%, respectively. Tetramodal treatment was well tolerated with acute and late G3-4 toxicities of 10% and 13%, respectively, and a tendency to improve symptom-related quality of life (QoL) one year after therapy. CONCLUSION Tetramodal therapy of T2-T4 MIBC is promising with excellent local response, moderate toxicity and good QoL. This study deserves continuation into the second stage.
Collapse
Affiliation(s)
- Oliver Riesterer
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Adela Ademaj
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland.,Doctoral Clinical Science Program, Medical Faculty, University of Zürich, Zurich, Switzerland
| | - Emsad Puric
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Brigitte Eberle
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Marcus Beck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Silvia Gomez
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Dietmar Marder
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Eva Oberacker
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Susanne Rogers
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Roger A Hälg
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland.,Institute of Physics, Science Faculty, University of Zurich, Zurich, Switzerland
| | - Thomas Kern
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Sonja Schwenne
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Jürgen Stein
- Department of Urology, Bundeswehrkrankenhaus Berlin, Berlin, Germany
| | - Emanuel Stutz
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland.,Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Olaf Timm
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Sebastian Zschaeck
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mathias S Weyland
- ZHAW School of Engineering, Zurich University of Applied Science, Zurich, Switzerland
| | - Paraskevi D Veltsista
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephen Wyler
- Department of Urology, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Peter Wust
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stephan Scheidegger
- ZHAW School of Engineering, Zurich University of Applied Science, Zurich, Switzerland
| | - Stephan Bodis
- Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland.,Department of Radiation Oncology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Pirus Ghadjar
- Department of Radiation Oncology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
47
|
Li J, Gao Y, Liu S, Cai J, Zhang Q, Li K, Liu Z, Shi M, Wang J, Cui H. Aptamer-functionalized Quercetin Thermosensitive Liposomes for Targeting Drug Delivery and Antitumor Therapy. Biomed Mater 2022; 17. [PMID: 36001994 DOI: 10.1088/1748-605x/ac8c75] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
Chemo-thermotherapy, as a promising cancer combination therapy strategy, has attracted widespread attention. In this study, a novel aptamer functionalized thermosensitive liposome encapsulating hydrophobic drug quercetin was fabricated as an efficient drug delivery system. This aptamer-functionalized quercetin thermosensitive liposomes (AQTSL) combined the merits of high-loading yield, sustained drug release, long-term circulation in the body of PEGylated liposomes, passive targeting provided by 100-200 nm nanoparticles, active targeting and improved internalization effects offered by AS1411 aptamer, and temperature-responsive of quercetin release. In addition, AQTSL tail vein injection combined with 42℃ water bath heating on tumor site (AQTSL+42℃)treatment inhibited the tumor growth significantly compared with the normal saline administration (p<0.01), and the inhibition rate reached 75%. Furthermore, AQTSL+42℃ treatment also slowed down the tumor growth significantly compared with QTSL combined with 42℃ administration (p<0.05), confirming that AS1411 decoration on QTSL increased the active targeting and internalization effects of the drug delivery system, and AS1411 aptamer itself might also contribute to the tumor inhibition. These data indicate that AQTSL is a potential carrier candidate for different hydrophobic drugs and tumor targeting delivery, and this kind of targeted drug delivery system combined with temperature responsive drug release mode is expected to achieve an ideal tumor therapy effect.
Collapse
Affiliation(s)
- Jian Li
- Yanshan University, No.438,Hebei Street, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Yanting Gao
- Yanshan University, No.438, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Shihe Liu
- Yanshan University, No.438,Hebei Street, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Jiahui Cai
- Yanshan University, No.438, Hebei Street, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Qing Zhang
- Yanshan University, No.438, Hebei Street, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Kun Li
- Yanshan University, No. 438, Hebei Street, Qinhuangdao, Hebei Province, 066000, CHINA
| | - Zhiwei Liu
- Yanshan University, No. 438, West Section of Hebei Street, Qinhuangdao, Hebei, 066004, CHINA
| | - Ming Shi
- Yanshan University, No.438, Hebei Street, Qinhuangdao, Hebei Province, 066004, CHINA
| | - Jidong Wang
- Yanshan University, No. 438, Hebei Street, Qinhuangdao, 066000, CHINA
| | - Hongxia Cui
- Yanshan University, No. 438, Hebei Street, Qinhuangdao, Hebei Province, 066004, CHINA
| |
Collapse
|
48
|
Interaction of Radiotherapy and Hyperthermia with the Immune System: a Brief Current Overview. CURRENT STEM CELL REPORTS 2022. [DOI: 10.1007/s40778-022-00215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Purpose of Review
This review focuses on the opposing effects on the immune system of radiotherapy (RT) and the consequences for combined cancer treatment strategies of RT with immunotherapies, including hyperthermia (HT). How RT and HT might affect cancer stem cell populations is also briefly outlined in this context.
Recent Findings
RT is one of the crucial standard cancer therapies. Most patients with solid tumors receive RT for curative and palliative purposes in the course of their disease. RT achieves a local tumor control by inducing DNA damage which can lead to tumor cell death. In recent years, it has become evident that RT does not only have local effects, but also systemic effects which involves induction of anti-tumor immunity and possible alteration of the immunosuppressive properties of the tumor microenvironment. Though, often RT alone is not able to induce potent anti-tumor immune responses since the effects of RT on the immune system can be both immunostimulatory and immunosuppressive.
Summary
RT with additional therapies such as HT and immune checkpoint inhibitors (ICI) are promising approaches to induce anti-tumor immunity effectively. HT is not only a potent sensitizer for RT, but it might also improve the efficacy of RT and certain chemotherapeutic agents (CT) by additionally sensitizing resistant cancer stem cells (CSCs).
Graphical abstract
Collapse
|
49
|
Vergnaud F, Kesse X, Jacobs A, Perton F, Begin-Colin S, Mertz D, Descamps S, Vichery C, Nedelec JM. Magnetic bioactive glass nano-heterostructures: a deeper insight into magnetic hyperthermia properties in the scope of bone cancer treatment. Biomater Sci 2022; 10:3993-4007. [PMID: 35723414 DOI: 10.1039/d2bm00319h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Primary bone cancers commonly involve surgery to remove the malignant tumor, complemented with a postoperative treatment to prevent cancer resurgence. Studies on magnetic hyperthermia, used as a single treatment or in synergy with chemo- or radiotherapy, have shown remarkable success in the past few decades. Multifunctional biomaterials with bone healing ability coupled with hyperthermia property could thus be of great interest to repair critical bone defects resulting from tumor resection. For this purpose, we designed superparamagnetic and bioactive nanoparticles (NPs) based on iron oxide cores (γ-Fe2O3) encapsulated in a bioactive glass (SiO2-CaO) shell. Nanometric heterostructures (122 ± 12 nm) were obtained through a two-step process: co-precipitation of 16 nm sized iron oxide NPs, followed by the growth of a bioactive glass shell via a modified Stöber method. Their bioactivity was confirmed by hydroxyapatite growth in simulated body fluid, and cytotoxicity assays showed they induced no significant death of human mesenchymal stem cells after 7 days. Calorimetric measurements were carried out under a wide range of alternating magnetic field amplitudes and frequencies, considering clinically relevant parameters, and some were made in viscous medium (agar) to mimic the implantation conditions. The experimental specific loss power was predictable with respect to the Linear Response Theory, and showed a maximal value of 767 ± 77 W gFe-1 (769 kHz, 23.9 kA m-1 in water). An interesting value of 166 ± 24 W gFe-1 was obtained under clinically relevant conditions (157 kHz, 23.9 kA m-1) for the heterostructures immobilized in agar. The good biocompatibility, bioactivity and heating ability suggest that these γ-Fe2O3@SiO2-CaO NPs are a promising biomaterial to be used as it is or included in a scaffold to heal bone defects resulting from bone tumor resection.
Collapse
Affiliation(s)
- Florestan Vergnaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France.
| | - Xavier Kesse
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France.
| | - Aurélie Jacobs
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France.
| | - Francis Perton
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, Strasbourg 67034 Cedex 2, France
| | - Sylvie Begin-Colin
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, Strasbourg 67034 Cedex 2, France
| | - Damien Mertz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR-7504 CNRS-Université de Strasbourg, Strasbourg 67034 Cedex 2, France
| | - Stéphane Descamps
- Université Clermont Auvergne, Clermont Auvergne INP, CHU de Clermont-Ferrand, CNRS, ICCF, F-63000 Clermont-Ferrand, France
| | - Charlotte Vichery
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France.
| | - Jean-Marie Nedelec
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, ICCF, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
50
|
Abstract
Gold nanoparticle (AuNPs)-mediated photothermal therapy (PTT) has attracted increasing attention both in laboratory research and clinical applications. Due to its easily-tuned properties of irradiation light and inside-out hyperthermia ability, it has demonstrated clear advantages in cancer therapy over conventional thermal ablation. Despite this great advancement, the therapeutic efficacy of AuNPs mediated PTT in tumor treatment remains compromised by several obstacles, including low photothermal conversion efficiency, tissue penetration limitation of excitation light, and inherent non-specificity. In view of the rapid development of AuNPs mediated PTT, we present an in-depth review of major breakthroughs in the advanced development of gold nanomaterials for PTT, with emphasis on those from 2010 to date. In particular, the current state of knowledge for AuNPs based photothermal agents within a paradigm of key structure-optical property relationships is presented in order to provide guidance for the design of novel AuNP based photothermal agents to meet necessary functional requirements in specific applications. Furthermore, potential challenges and future development of AuNP mediated PTT are also elucidated for clinical translation. It is expected that AuNP mediated PTT will soon constitute a markedly promising avenue in the treatment of cancer.
Collapse
|