1
|
Shao X, Volk L. PICK1 links KIBRA and AMPA receptor subunit GluA2 in coiled-coil-driven supramolecular complexes. J Biol Chem 2025; 301:108397. [PMID: 40074086 PMCID: PMC12136796 DOI: 10.1016/j.jbc.2025.108397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
The human memory-associated protein KIBRA regulates synaptic plasticity and trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors, and is implicated in multiple neuropsychiatric and cognitive disorders. How KIBRA forms complexes with and regulates AMPA receptors remains unclear. Here, we show that KIBRA does not interact directly with the AMPA receptor subunit GluA2, but that protein interacting with C kinase 1 (PICK1), a key regulator of AMPA receptor trafficking, can serve as a bridge between KIBRA and GluA2. In contrast, KIBRA can form a complex with GluA1 independent of PICK1. We identified structural determinants of KIBRA-PICK1-AMPAR complexes by investigating interactions and cellular expression patterns of different combinations of KIBRA and PICK1 domain mutants. We find that the PICK1 BAR domain, a coiled-coil structure, is sufficient for interaction with KIBRA, whereas mutation of the PICK1 BAR domain disrupts KIBRA-PICK1-GluA2 complex formation. In addition, KIBRA recruits PICK1 into large supramolecular complexes, a process which requires KIBRA coiled-coil domains. These findings reveal molecular mechanisms by which KIBRA can organize key synaptic signaling complexes.
Collapse
Affiliation(s)
- Xin Shao
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Lenora Volk
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas, USA; Neuroscience Graduate Program, UT Southwestern Medical Center, Dallas, Texas, USA; Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas, USA; Peter O'Donnell Jr Brain Institute Investigator, UT Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
2
|
Reinders NR, van der Spek SJF, Klaassen RV, Koymans KJ, MacGillavry HD, Smit AB, Kessels HW. Amyloid-β-Driven Synaptic Deficits Are Mediated by Synaptic Removal of GluA3-Containing AMPA Receptors. J Neurosci 2025; 45:e0393242024. [PMID: 39779375 PMCID: PMC11867010 DOI: 10.1523/jneurosci.0393-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
The detrimental effects of oligomeric amyloid-β (Aβ) on synapses are considered the leading cause for cognitive deficits in Alzheimer's disease. However, through which mechanism Aβ oligomers impair synaptic structure and function remains unknown. Here, we used electrophysiology and amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) imaging on mouse and rat neurons to demonstrate that GluA3 expression in neurons lacking GluA3 is sufficient to resensitize their synapses to the damaging effects of Aβ, indicating that GluA3-containing AMPARs at synapses are necessary and sufficient for Aβ to induce synaptic deficits. We found that Aβ oligomers trigger the endocytosis of GluA3 and promote its translocation toward endolysosomal compartments for degradation. Mechanistically, these Aβ-driven effects critically depend on the PDZ-binding motif of GluA3. A single point mutation in the GluA3 PDZ-binding motif prevented Aβ-driven effects and rendered synapses fully resistant to the effects of Aβ. Correspondingly, proteomics on synaptosome fractions from APP/PS1-transgenic mice revealed a selective reduction of GluA3 at an early age. These findings support a model where the endocytosis and lysosomal degradation of GluA3-containing AMPARs are a critical early step in the cascade of events through which Aβ accumulation causes a loss of synapses.
Collapse
Affiliation(s)
- Niels R Reinders
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands
- Swammerdam Institute of Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Sophie J F van der Spek
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Remco V Klaassen
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Karin J Koymans
- Swammerdam Institute of Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| | - Harold D MacGillavry
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - August B Smit
- Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, The Netherlands
| | - Helmut W Kessels
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands
- Swammerdam Institute of Life Sciences, Amsterdam Neuroscience, University of Amsterdam, Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
3
|
Chen KH, Yang J, Liu B, Jiang C, Koylass N, Zhang Z, Sun S, Huganir R, Qiu Z. Loss of the proton-activated chloride channel in neurons impairs AMPA receptor endocytosis and LTD via endosomal hyper-acidification. Cell Rep 2025; 44:115302. [PMID: 39946237 PMCID: PMC11938102 DOI: 10.1016/j.celrep.2025.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/16/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025] Open
Abstract
Hippocampal long-term potentiation (LTP) and long-term depression (LTD) are forms of synaptic plasticity, thought to be the molecular basis of learning and memory, dependent on dynamic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) trafficking. Alteration of endosomal pH negatively affects synaptic transmission and neural development, but it is unclear how pH is involved in AMPAR trafficking. We show that the proton-activated chloride (PAC) channel localizes to early and recycling endosomes in neurons and prevents endosome hyper-acidification. Loss of PAC reduces AMPAR endocytosis during chemical LTD in primary neurons, while basal trafficking and LTP are unaffected. Pyramidal neuron-specific PAC knockout mice have impaired hippocampal LTD, but not LTP, and perform poorly in the Morris water maze reversal test, exhibiting impaired behavioral adaptation. We conclude that proper maintenance of endosomal pH by PAC in neurons is important during LTD to regulate AMPAR trafficking in a manner critical for animal physiology and behavior.
Collapse
Affiliation(s)
- Kevin H Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Junhua Yang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Bian Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chaohua Jiang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Nicholas Koylass
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhe Zhang
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Richard Huganir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Zhaozhu Qiu
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
4
|
Samsom JN, Xu M, Ávila A, Daskalakis AA, Dai JH, Gao X, Georgiou J, Collingridge GL, Liu F, Wong AHC. Protein interacting with C-kinase 1 (PICK1) regulates synaptic function and reversal learning in a mouse model for schizophrenia. Neuropsychopharmacology 2025:10.1038/s41386-025-02072-9. [PMID: 39987275 DOI: 10.1038/s41386-025-02072-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/31/2025] [Accepted: 02/12/2025] [Indexed: 02/24/2025]
Abstract
Protein interacting with C-kinase 1 (PICK1) is important for synaptic plasticity through directing transport of glutamate receptors and other proteins. PICK1 gene variants have been associated with schizophrenia. To examine the role of PICK1 in schizophrenia-related behaviors, mice with a mutation in the PICK1 lipid-interacting BAR domain were characterized. Male Pick1-S262T mice had disrupted AMPA receptor (AMPAR) subunit GluA1 and GluA2 protein expression in the hippocampus and prefrontal cortex (PFC). Young adult, but not juvenile (P21), Pick1-S262T mice showed decreased hippocampal synaptic transmission and deficits in long-term depression (LTD). Mutant males also had deficits in reversal learning in the Morris water maze (MWM). These observations suggest that the Pick1-S262T mutation affects AMPAR trafficking, disrupting synaptic transmission and plasticity, as well as cognitive flexibility, a core neuropsychological deficit in schizophrenia. This work suggests possible mechanisms by which a known schizophrenia susceptibility gene could contribute to clinical features of the disorder.
Collapse
Affiliation(s)
- James N Samsom
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - MengYi Xu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ariel Ávila
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Faculty of Medicine, Universidad Católica de la Santísima Concepción, Concepción, Bío Bío, Chile
| | - Anastasios A Daskalakis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Jia Hong Dai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Xing Gao
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - John Georgiou
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Graham L Collingridge
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, Canada.
| | - Albert H C Wong
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
5
|
Guo WT, Li WX, Liu YC, Zhao YB, Xu L, Zhou QX. Time-Dependent Transcriptional Dynamics of Contextual Fear Memory Retrieval Reveals the Function of Dipeptidyl Peptidase 9 in Reconsolidation. Neurosci Bull 2025; 41:16-32. [PMID: 39621238 PMCID: PMC11748732 DOI: 10.1007/s12264-024-01324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/26/2024] [Indexed: 01/19/2025] Open
Abstract
Numerous studies on the formation and consolidation of memory have shown that memory processes are characterized by phase-dependent and dynamic regulation. Memory retrieval, as the only representation of memory content and an active form of memory processing that induces memory reconsolidation, has attracted increasing attention in recent years. Although the molecular mechanisms specific to memory retrieval-induced reconsolidation have been gradually revealed, an understanding of the time-dependent regulatory mechanisms of this process is still lacking. In this study, we applied a transcriptome analysis of memory retrieval at different time points in the recent memory stage. Differential expression analysis and Short Time-series Expression Miner (STEM) depicting temporal gene expression patterns indicated that most differential gene expression occurred at 48 h, and the STEM cluster showing the greatest transcriptional upregulation at 48 h demonstrated the most significant difference. We then screened the differentially-expressed genes associated with that met the expression patterns of those cluster-identified genes that have been reported to be involved in learning and memory processes in addition to dipeptidyl peptidase 9 (DPP9). Further quantitative polymerase chain reaction verification and pharmacological intervention suggested that DPP9 is involved in 48-h fear memory retrieval and viral vector-mediated overexpression of DPP9 countered the 48-h retrieval-induced attenuation of fear memory. Taken together, our findings suggest that temporal gene expression patterns are induced by recent memory retrieval and provide hitherto undocumented evidence of the role of DPP9 in the retrieval-induced reconsolidation of fear memory.
Collapse
Affiliation(s)
- Wen-Ting Guo
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Wen-Xing Li
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yu-Chen Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Ya-Bo Zhao
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Lin Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.
- CAS Centre for Excellence in Brain Science and Intelligent Technology, Shanghai, 200031, China.
| | - Qi-Xin Zhou
- Key Laboratory of Animal Models and Human Disease Mechanisms, Laboratory of Learning and Memory, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, 650223, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China.
| |
Collapse
|
6
|
Aruna K, Pal S, Khanna A, Bhattacharyya S. Postsynaptic Density Proteins and Their Role in the Trafficking of Group I Metabotropic Glutamate Receptors. J Membr Biol 2024; 257:257-268. [PMID: 39369356 DOI: 10.1007/s00232-024-00326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/07/2024]
Abstract
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system that regulates multiple different forms of synaptic plasticity, including learning and memory. Glutamate transduces its signal by activating ionotropic glutamate receptors and metabotropic glutamate receptors (mGluRs). Group I mGluRs belong to the G protein-coupled receptor (GPCR) family. Regulation of cell surface expression and trafficking of the glutamate receptors represents an important mechanism that assures proper transmission of information at the synapses. There is growing evidence implicating dysregulated glutamate receptor trafficking in the pathophysiology of several neuropsychiatric disorders. The postsynaptic density (PSD) region consists of many specialized proteins which are assembled beneath the postsynaptic membrane of dendritic spines. Many of these proteins interact with group I mGluRs and have essential roles in group I mGluR-mediated synaptic function and plasticity. This review provides up-to-date information on the molecular determinants regulating cell surface expression and trafficking of group I mGluRs and discusses the role of few of these PSD proteins in these processes. As substantial evidences link mGluR dysfunction and maladaptive functioning of many PSD proteins to the pathophysiology of various neuropsychiatric disorders, understanding the role of the PSD proteins in group I mGluR trafficking may provide opportunities for the development of novel therapeutics in multiple neuropsychiatric disorders.
Collapse
Affiliation(s)
- K Aruna
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India
| | - Subhajit Pal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India
| | - Ankita Khanna
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India
| | - Samarjit Bhattacharyya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, Punjab, 140306, India.
| |
Collapse
|
7
|
Lai JHC, Tsogka M, Xia J. Sodium arsenite induces aggresome formation by promoting PICK1 BAR domain homodimer formation. Mol Biol Cell 2024; 35:ar128. [PMID: 39083353 PMCID: PMC11481693 DOI: 10.1091/mbc.e24-05-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
The aggresome is a perinuclear structure that sequesters misfolded proteins. It is implicated in various neurodegenerative diseases. The perinuclear structure enriched with protein interacting with C kinase 1 (PICK1) was found to be inducible by cellular stressors, colocalizing with microtubule-organizing center markers and ubiquitin, hence classifying it as an aggresome. Sodium arsenite but not arsenate was found to potently induce aggresome formation through an integrated stress response-independent pathway. In HEK293T cells, under arsenite stress, PICK1 localization to the aggresome was prioritized, and formation of PICK1 homodimers was favored. Additionally, PICK1 could enhance protein entry into aggresomes. This study shows that arsenite can induce the formation of both RNA stress granules and aggresomes at the same time, and that PICK1 shows conditional localization to aggresomes, suggesting a possible involvement of PICK1 in neurodegenerative diseases.
Collapse
Affiliation(s)
- John Ho Chun Lai
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, United Kingdom
| | - Marianthi Tsogka
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jun Xia
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- The Brain and Intelligence Research Institute, and Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, China
| |
Collapse
|
8
|
Ji L, Meng Z, Dong X, Wang Q, Jiang Y, Zhang J, Hu D, Guo S, Zhou W, Song W. ICA1 affects APP processing through the PICK1-PKCα signaling pathway. CNS Neurosci Ther 2024; 30:e14754. [PMID: 38884369 PMCID: PMC11181291 DOI: 10.1111/cns.14754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 06/18/2024] Open
Abstract
AIMS Islet cell autoantigen 1 (ICA1) is involved in autoimmune diseases and may affect synaptic plasticity as a neurotransmitter. Databases related to Alzheimer's disease (AD) have shown decreased ICA1 expression in patients with AD. However, the role of ICA1 in AD remains unclear. Here, we report that ICA1 expression is decreased in the brains of patients with AD and an AD mouse model. RESULTS The ICA1 increased the expression of amyloid precursor protein (APP), disintegrin and metalloprotease 10 (ADAM10), and disintegrin and metalloprotease 17 (ADAM17), but did not affect protein half-life or mRNA levels. Transcriptome sequencing analysis showed that ICA1 regulates the G protein-coupled receptor signaling pathway. The overexpression of ICA1 increased PKCα protein levels and phosphorylation. CONCLUSION Our results demonstrated that ICA1 shifts APP processing to non-amyloid pathways by regulating the PICK1-PKCα signaling pathway. Thus, this study suggests that ICA1 is a novel target for the treatment of AD.
Collapse
Affiliation(s)
- Liangye Ji
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - ZiJun Meng
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Xiangjun Dong
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Qunxian Wang
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Yanshuang Jiang
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Jie Zhang
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Dongjie Hu
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Shipeng Guo
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Weihui Zhou
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
| | - Weihong Song
- Department of Pediatric Research Institute Children's Hospital of Chongqing Medical UniversityNational Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical UniversityChongqingChina
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang ProvinceWenzhou Medical UniversityWenzhouChina
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)WenzhouChina
| |
Collapse
|
9
|
Bondarenko V, Chen Q, Tillman TS, Xu Y, Tang P. Unconventional PDZ Recognition Revealed in α7 nAChR-PICK1 Complexes. ACS Chem Neurosci 2024; 15:2070-2079. [PMID: 38691676 PMCID: PMC11099923 DOI: 10.1021/acschemneuro.4c00138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 05/03/2024] Open
Abstract
PDZ domains are modular domains that conventionally bind to C terminal or internal motifs of target proteins to control cellular functions through the regulation of protein complex assemblies. Almost all reported structures of PDZ-target protein complexes rely on fragments or peptides as target proteins. No intact target protein complexed with PDZ was structurally characterized. In this study, we used NMR spectroscopy and other biochemistry and biophysics tools to uncover insights into structural coupling between the PDZ domain of protein interacting with C-kinase 1 (PICK1) and α7 nicotinic acetylcholine receptors (α7 nAChR). Notably, the intracellular domains of both α7 nAChR and PICK1 PDZ exhibit a high degree of plasticity in their coupling. Specifically, the MA helix of α7 nAChR interacts with residues lining the canonical binding site of the PICK1 PDZ, while flexible loops also engage in protein-protein interactions. Both hydrophobic and electrostatic interactions mediate the coupling. Overall, the resulting structure of the α7 nAChR-PICK1 complex reveals an unconventional PDZ binding mode, significantly expanding the repertoire of functionally important PDZ interactions.
Collapse
Affiliation(s)
- Vasyl Bondarenko
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Qiang Chen
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Tommy S. Tillman
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yan Xu
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Structural Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Physics and Astronomy, University of
Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Pei Tang
- Depatment
of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department
of Computational and Systems Biology, University
of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
10
|
Aydogan Avşar P, Akkuş M. ZO-1 Serum Levels as a Potential Biomarker for Psychotic Disorder. Clin Neuropharmacol 2024; 47:67-71. [PMID: 38743599 DOI: 10.1097/wnf.0000000000000590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
OBJECTIVE There are limited studies in the literature on the relationship between intestinal and blood-brain barrier permeability and the etiology of schizophrenia. We hypothesized that the difference in serum ZO-1 levels in patients with schizophrenia may affect the severity of the disease. The aim of this study was to investigate the role of changes in serum ZO-1 concentrations in the etiopathogenesis of patients with schizophrenia. METHODS A total of 46 patients, 34 with schizophrenia, 12 with a first psychotic attack, and 37 healthy controls, were included in the study. Symptom severity was determined by applying the Positive and Negative Syndrome Scale and the Clinical Global Impression-Severity Scale. Serum ZO-1 levels were measured from venous blood samples. RESULTS Serum ZO-1 levels were higher in patients with psychotic disorder compared to healthy controls. There was no statistically significant difference between the groups in the first psychotic attack group and the schizophrenia patients. There was a statistically significant positive correlation between serum ZO-1 levels and Positive and Negative Syndrome Scale positive symptom score. CONCLUSIONS These findings regarding ZO-1 levels suggest that dysregulation of the blood-brain barrier in psychotic disorder may play a role in the etiology of the disorder.
Collapse
Affiliation(s)
- Pinar Aydogan Avşar
- Department of Child and Adolescent Psychiatry, Alanya Alaaddin Keykubat University Training and Research Hospital, Alanya, Turkey
| | - Merve Akkuş
- Department of Psychiatry, Kütahya Health Sciences University, Evliya Celebi Education and Research Hospital, Kütahya, Turkey
| |
Collapse
|
11
|
Shao X, Volk L. PICK1 links KIBRA and AMPA receptors in coiled-coil-driven supramolecular complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584494. [PMID: 38558978 PMCID: PMC10980033 DOI: 10.1101/2024.03.12.584494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The human memory-associated protein KIBRA regulates synaptic plasticity and trafficking of AMPA-type glutamate receptors, and is implicated in multiple neuropsychiatric and cognitive disorders. How KIBRA forms complexes with and regulates AMPA receptors remains unclear. Here, we show that KIBRA does not interact directly with the AMPA receptor subunit GluA2, but that PICK1, a key regulator of AMPA receptor trafficking, can serve as a bridge between KIBRA and GluA2. We identified structural determinants of KIBRA-PICK1-AMPAR complexes by investigating interactions and cellular expression patterns of different combinations of KIBRA and PICK1 domain mutants. We find that the PICK1 BAR domain, a coiled-coil structure, is sufficient for interaction with KIBRA, whereas mutation of the BAR domain disrupts KIBRA-PICK1-GluA2 complex formation. In addition, KIBRA recruits PICK1 into large supramolecular complexes, a process which requires KIBRA coiled-coil domains. These findings reveal molecular mechanisms by which KIBRA can organize key synaptic signaling complexes.
Collapse
|
12
|
Liu F, Zhang YH, Zhang YY, Lin J, Liu YJ, Li YL, Fang ZH, Liao HL, Wang H, Shen JF. Phosphorylation of the AMPARs regulated by protein kinase C (PKC) and protein interacting with C-kinase 1 (PICK1) contribute to orofacial neuropathic pain. Brain Res 2023; 1820:148578. [PMID: 37709161 DOI: 10.1016/j.brainres.2023.148578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The α-amino-3-hydroxy-5-methylisoxazole-4-isoxazolepropionic acid receptor (AMPAR) has been recognized to play a vital role in the development of neuropathic pain. Recent studies have indicated that protein kinase C (PKC) and protein interacting with C-kinase 1 (PICK1) are involved in the phosphorylation of AMPARs. However, whether PKC and PICK1 were involved in the AMPAR phosphorylation in the trigeminal ganglion (TG) to participate in orofacial neuropathic pain remains enigmatic. A behavioral test was utilized to evaluate the head withdrawal threshold (HWT) after chronic constriction injury of the infraorbital nerve (CCI-ION). The distribution and expression of GluA1, GluA2, PKC, and PICK1 were examined in the trigeminal ganglion (TG) by immunofluorescence, real-time reverse transcription-quantitative polymerase chain reaction, immunoblotting, and co-immunoprecipitation. Intra-ganglionic injections of drugs were performed to investigate the regulation mechanism. The present study demonstrated that CCI-ION-induced mechanical allodynia was maintained over at least 21 days. GluA1 and GluA2 were mainly expressed in the neurons. Trigeminal nerve injury potentiated the phosphorylation of GluA1, GluA2, and PKC in the TG, which was prevented by inhibiting PKC with chelerythrine chloride. Additionally, PICK1 colocalized and interacted with GluA2 in the TG. Following blocking PICK1 with FSC-231, the phosphorylation of GluA2 decreased. Finally, inhibition of PKC and PICK1 both alleviated mechanical allodynia in the whisker pad of CCI-ION mice. In conclusion, activation of PKC and PICK1 contribute to orofacial allodynia by regulating AMPAR phosphorylation in the TG of male mice, which provides potential therapeutic targets for alleviating orofacial neuropathic pain.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu-Han Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan-Yan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ya-Jing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue-Ling Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhong-Han Fang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hong-Lin Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hang Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie-Fei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
13
|
Foster VS, Saez N, King GF, Rank MM. Acute inhibition of acid sensing ion channel 1a after spinal cord injury selectively affects excitatory synaptic transmission, but not intrinsic membrane properties, in deep dorsal horn interneurons. PLoS One 2023; 18:e0289053. [PMID: 37939057 PMCID: PMC10631665 DOI: 10.1371/journal.pone.0289053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/10/2023] [Indexed: 11/10/2023] Open
Abstract
Following a spinal cord injury (SCI), secondary damage mechanisms are triggered that cause inflammation and cell death. A key component of this secondary damage is a reduction in local blood flow that initiates a well-characterised ischemic cascade. Downstream hypoxia and acidosis activate acid sensing ion channel 1a (ASIC1a) to trigger cell death. We recently showed that administration of a potent venom-derived inhibitor of ASIC1a, Hi1a, leads to tissue sparing and improved functional recovery when delivered up to 8 h after ischemic stroke. Here, we use whole-cell patch-clamp electrophysiology in a spinal cord slice preparation to assess the effect of acute ASIC1a inhibition, via a single dose of Hi1a, on intrinsic membrane properties and excitatory synaptic transmission long-term after a spinal cord hemisection injury. We focus on a population of interneurons (INs) in the deep dorsal horn (DDH) that play a key role in relaying sensory information to downstream motoneurons. DDH INs in mice treated with Hi1a 1 h after a spinal cord hemisection showed no change in active or passive intrinsic membrane properties measured 4 weeks after SCI. DDH INs, however, exhibit significant changes in the kinetics of spontaneous excitatory postsynaptic currents after a single dose of Hi1a, when compared to naive animals (unlike SCI mice). Our data suggest that acute ASIC1a inhibition exerts selective effects on excitatory synaptic transmission in DDH INs after SCI via specific ligand-gated receptor channels, and has no effect on other voltage-activated channels long-term after SCI.
Collapse
Affiliation(s)
- Victoria S. Foster
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- St George’s, University of London, Medical School, London, England
| | - Natalie Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Glenn F. King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Michelle M. Rank
- Department of Anatomy and Physiology, School of Biomedical Science, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
14
|
Ramsakha N, Ojha P, Pal S, Routh S, Citri A, Bhattacharyya S. A vital role for PICK1 in the differential regulation of metabotropic glutamate receptor internalization and synaptic AMPA receptor endocytosis. J Biol Chem 2023:104837. [PMID: 37209824 DOI: 10.1016/j.jbc.2023.104837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 04/19/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Group I metabotropic glutamate receptors (mGluRs) play important roles in many neuronal processes and are believed to be involved in synaptic plasticity underlying the encoding of experience, including classic paradigms of learning and memory. These receptors have also been implicated in various neurodevelopmental disorders, such as Fragile X syndrome and autism. Internalization and recycling of these receptors in the neuron are important mechanisms to regulate the activity of the receptor and control the precise spatio-temporal localization of these receptors. Applying a "molecular replacement" approach in hippocampal neurons derived from mice, we demonstrate a critical role for protein interacting with C kinase 1 (PICK1) in regulating the agonist-induced internalization of mGluR1. We show that PICK1 specifically regulates the internalization of mGluR1 but it does not play any role in the internalization of the other member of group I mGluR family, mGluR5. Various regions of PICK1 viz., the N-terminal acidic motif, PDZ domain and BAR domain play important roles in the agonist-mediated internalization of mGluR1. Finally, we demonstrate that PICK1-mediated internalization of mGluR1 is critical for the resensitization of the receptor. Upon knockdown of endogenous PICK1, mGluR1s stayed on the cell membrane as inactive receptors, incapable of triggering the MAP-kinase signaling. They also could not induce AMPAR endocytosis, a cellular correlate for mGluR-dependent synaptic plasticity. Thus, this study unravels a novel role for PICK1 in the agonist-mediated internalization of mGluR1 and mGluR1-mediated AMPAR endocytosis that might contribute to the function of mGluR1 in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Namrata Ramsakha
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, PO: 140306, Punjab, India
| | - Prachi Ojha
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, PO: 140306, Punjab, India
| | - Subhajit Pal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, PO: 140306, Punjab, India
| | - Sanjeev Routh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, PO: 140306, Punjab, India
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel 91904; Institute of Life Sciences, The Hebrew University of Jerusalem; Edmond J. Safra Campus, Givat Ram, Jerusalem, Israel 91904; Program in Child and Brain Development, Canadian Institute for Advanced Research; MaRS Centre, West Tower, 661 University Ave, Suite 505, Toronto, Ontario, Canada M5G 1M1
| | - Samarjit Bhattacharyya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector - 81, SAS Nagar, PO: 140306, Punjab, India.
| |
Collapse
|
15
|
Chiu SL, Chen CM, Huganir RL. ICA69 regulates activity-dependent synaptic strengthening and learning and memory. Front Mol Neurosci 2023; 16:1171432. [PMID: 37251649 PMCID: PMC10213502 DOI: 10.3389/fnmol.2023.1171432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/13/2023] [Indexed: 05/31/2023] Open
Abstract
Long-term potentiation (LTP) is one of the major cellular mechanisms for learning and memory. Activity-dependent increases in surface AMPA receptors (AMPARs) are important for enhanced synaptic efficacy during LTP. Here, we report a novel function of a secretory trafficking protein, ICA69, in AMPAR trafficking, synaptic plasticity, and animal cognition. ICA69 is first identified as a diabetes-associated protein well characterized for its function in the biogenesis of secretory vesicles and trafficking of insulin from ER, Golgi to post-Golgi in pancreatic beta cells. In the brain, ICA69 is found in the AMPAR protein complex through its interaction with PICK1, which binds directly to GluA2 or GluA3 AMPAR subunits. Here, we showed that ICA69 regulates PICK1's distribution in neurons and stability in the mouse hippocampus, which in turn can impact AMPAR function in the brain. Biochemical analysis of postsynaptic density (PSD) proteins from hippocampi of mice lacking ICA69 (Ica1 knockout) and their wild-type littermates revealed comparable AMPAR protein levels. Electrophysiological recording and morphological analysis of CA1 pyramidal neurons from Ica1 knockout also showed normal AMPAR-mediated currents and dendrite architecture, indicating that ICA69 does not regulate synaptic AMPAR function and neuron morphology at the basal state. However, genetic deletion of ICA69 in mice selectively impairs NMDA receptor (NMDAR)-dependent LTP but not LTD at Schaffer collateral to CA1 synapses, which correlates with behavioral deficits in tests of spatial and associative learning and memory. Together, we identified a critical and selective role of ICA69 in LTP, linking ICA69-mediated synaptic strengthening to hippocampus-dependent learning and memory.
Collapse
Affiliation(s)
- Shu-Ling Chiu
- Institute of Cellular and Organismic Biology and Neuroscience Program of Academia Sinica (NPAS), Academia Sinica, Taipei, Taiwan
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chih-Ming Chen
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard L. Huganir
- Solomon H. Snyder Department of Neuroscience and Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Stepan J, Heinz DE, Dethloff F, Bajaj T, Zellner A, Hafner K, Wiechmann S, Mackert S, Mecdad Y, Rabenstein M, Ebert T, Martinelli S, Häusl AS, Pöhlmann ML, Hermann A, Ma X, Pavenstädt H, Schmidt MV, Philipsen A, Turck CW, Deussing JM, Kuster B, Wehr MC, Stein V, Kremerskothen J, Wotjak CT, Gassen NC. Hippo-released WWC1 facilitates AMPA receptor regulatory complexes for hippocampal learning. Cell Rep 2022; 41:111766. [PMID: 36476872 DOI: 10.1016/j.celrep.2022.111766] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/23/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
Learning and memory rely on changes in postsynaptic glutamergic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type receptor (AMPAR) number, spatial organization, and function. The Hippo pathway component WW and C2 domain-containing protein 1 (WWC1) regulates AMPAR surface expression and impacts on memory performance. However, synaptic binding partners of WWC1 and its hierarchical position in AMPAR complexes are largely unclear. Using cell-surface proteomics in hippocampal tissue of Wwc1-deficient mice and by generating a hippocampus-specific interactome, we show that WWC1 is a major regulatory platform in AMPAR signaling networks. Under basal conditions, the Hippo pathway members WWC1 and large tumor-suppressor kinase (LATS) are associated, which might prevent WWC1 effects on synaptic proteins. Reduction of WWC1/LATS binding through a point mutation at WWC1 elevates the abundance of WWC1 in AMPAR complexes and improves hippocampal-dependent learning and memory. Thus, uncoupling of WWC1 from the Hippo pathway to AMPAR-regulatory complexes provides an innovative strategy to enhance synaptic transmission.
Collapse
Affiliation(s)
- Jens Stepan
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; Department of Obstetrics and Gynecology, Paracelsus Medical University, 5020 Salzburg, Austria.
| | - Daniel E Heinz
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Frederik Dethloff
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Thomas Bajaj
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Andreas Zellner
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Kathrin Hafner
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Svenja Wiechmann
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany; German Cancer Consortium (DKTK), 80336 Munich, Germany; German Cancer Center (DKFZ), 69120 Heidelberg, Germany
| | - Sarah Mackert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Yara Mecdad
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Michael Rabenstein
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Tim Ebert
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany; Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Silvia Martinelli
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alexander S Häusl
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Maximilian L Pöhlmann
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Anke Hermann
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Xiao Ma
- Research Group Signal Transduction, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Hermann Pavenstädt
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Mathias V Schmidt
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alexandra Philipsen
- Clinic for Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany
| | - Chris W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Jan M Deussing
- Research Group Molecular Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany; German Cancer Consortium (DKTK), 80336 Munich, Germany; German Cancer Center (DKFZ), 69120 Heidelberg, Germany; Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, 85354 Freising, Germany
| | - Michael C Wehr
- Research Group Signal Transduction, Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 80336 Munich, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, 53115 Bonn, Germany
| | - Joachim Kremerskothen
- Department of Medicine D, Division of General Internal Medicine, Nephrology, and Rheumatology, University Hospital Münster, 48149 Münster, Germany
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Central Nervous System Diseases Research, Boehringer-Ingelheim Pharma GmbH & Co KG, 88400 Biberach, Germany.
| | - Nils C Gassen
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University Hospital Bonn, 53127 Bonn, Germany.
| |
Collapse
|
17
|
van der Spek SJF, Pandya NJ, Koopmans F, Paliukhovich I, van der Schors RC, Otten M, Smit AB, Li KW. Expression and Interaction Proteomics of GluA1- and GluA3-Subunit-Containing AMPARs Reveal Distinct Protein Composition. Cells 2022; 11:cells11223648. [PMID: 36429079 PMCID: PMC9688267 DOI: 10.3390/cells11223648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/27/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The AMPA glutamate receptor (AMPAR) is the major type of synaptic excitatory ionotropic receptor in the brain. AMPARs have four different subunits, GluA1-4 (each encoded by different genes, Gria1, Gria2, Gria3 and Gria4), that can form distinct tetrameric assemblies. The most abundant AMPAR subtypes in the hippocampus are GluA1/2 and GluA2/3 heterotetramers. Each subtype contributes differentially to mechanisms of synaptic plasticity, which may be in part caused by how these receptors are regulated by specific associated proteins. A broad range of AMPAR interacting proteins have been identified, including the well-studied transmembrane AMPA receptor regulatory proteins TARP-γ2 (also known as Stargazin) and TARP-γ8, Cornichon homolog 2 (CNIH-2) and many others. Several interactors were shown to affect biogenesis, AMPAR trafficking, and channel properties, alone or in distinct assemblies, and several revealed preferred binding to specific AMPAR subunits. To date, a systematic specific interactome analysis of the major GluA1/2 and GluA2/3 AMPAR subtypes separately is lacking. To reveal interactors belonging to specific AMPAR subcomplexes, we performed both expression and interaction proteomics on hippocampi of wildtype and Gria1- or Gria3 knock-out mice. Whereas GluA1/2 receptors co-purified TARP-γ8, synapse differentiation-induced protein 4 (SynDIG4, also known as Prrt1) and CNIH-2 with highest abundances, GluA2/3 receptors revealed strongest co-purification of CNIH-2, TARP-γ2, and Noelin1 (or Olfactomedin-1). Further analysis revealed that TARP-γ8-SynDIG4 interact directly and co-assemble into an AMPAR subcomplex especially at synaptic sites. Together, these data provide a framework for further functional analysis into AMPAR subtype specific pathways in health and disease.
Collapse
|
18
|
Wu QL, Gao Y, Li JT, Ma WY, Chen NH. The Role of AMPARs Composition and Trafficking in Synaptic Plasticity and Diseases. Cell Mol Neurobiol 2022; 42:2489-2504. [PMID: 34436728 PMCID: PMC11421597 DOI: 10.1007/s10571-021-01141-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
AMPA receptors are tetrameric ionic glutamate receptors, which mediate 90% fast excitatory synaptic transmission induced by excitatory glutamate in the mammalian central nervous system through the activation or inactivation of ion channels. The alternation of synaptic AMPA receptor number and subtype is thought to be one of the primary mechanisms that involve in synaptic plasticity regulation and affect the functions in learning, memory, and cognition. The increasing of surface AMPARs enhances synaptic strength during long-term potentiation, whereas the decreasing of AMPARs weakens synaptic strength during the long-term depression. It is closely related to the AMPA receptor as well as its subunits assembly, trafficking, and degradation. The dysfunction of any step in these precise regulatory processes is likely to induce the disorder of synaptic transmission and loss of neurons, or even cause neuropsychiatric diseases ultimately. Therefore, it is useful to understand how AMPARs regulate synaptic plasticity and its role in related neuropsychiatric diseases via comprehending architecture and trafficking of the receptors. Here, we reviewed the progress in structure, expression, trafficking, and relationship with synaptic plasticity of AMPA receptor, especially in anxiety, depression, neurodegenerative disorders, and cerebral ischemia.
Collapse
Affiliation(s)
- Qing-Lin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jun-Tong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Yu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
19
|
Stevens AO, Luo S, He Y. Three Binding Conformations of BIO124 in the Pocket of the PICK1 PDZ Domain. Cells 2022; 11:cells11152451. [PMID: 35954295 PMCID: PMC9368557 DOI: 10.3390/cells11152451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
The PDZ family has drawn attention as possible drug targets because of the domains’ wide ranges of function and highly conserved binding pockets. The PICK1 PDZ domain has been proposed as a possible drug target because the interactions between the PICK1 PDZ domain and the GluA2 subunit of the AMPA receptor have been shown to progress neurodegenerative diseases. BIO124 has been identified as a sub µM inhibitor of the PICK1–GluA2 interaction. Here, we use all-atom molecular dynamics simulations to reveal the atomic-level interaction pattern between the PICK1 PDZ domain and BIO124. Our simulations reveal three unique binding conformations of BIO124 in the PICK1 PDZ binding pocket, referred to here as state 0, state 1, and state 2. Each conformation is defined by a unique hydrogen bonding network and a unique pattern of hydrophobic interactions between BIO124 and the PICK1 PDZ domain. Interestingly, each conformation of BIO124 results in different dynamic changes to the PICK1 PDZ domain. Unlike states 1 and 2, state 0 induces dynamic coupling between BIO124 and the αA helix. Notably, this dynamic coupling with the αA helix is similar to what has been observed in other PDZ–ligand complexes. Our analysis indicates that the interactions formed between BIO124 and I35 may be the key to inducing dynamic coupling with the αA helix. Lastly, we suspect that the conformational shifts observed in our simulations may affect the stability and thus the overall effectiveness of BIO124. We propose that a physically larger inhibitor may be necessary to ensure sufficient interactions that permit stable binding between a drug and the PICK1 PDZ domain.
Collapse
Affiliation(s)
- Amy O. Stevens
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Samuel Luo
- Albuquerque Academy, Albuquerque, NM 87131, USA
| | - Yi He
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, NM 87131, USA
- Translational Informatics Division, Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
- Correspondence:
| |
Collapse
|
20
|
Postsynaptic signaling at glutamatergic synapses as therapeutic targets. Curr Opin Neurobiol 2022; 75:102585. [PMID: 35738196 DOI: 10.1016/j.conb.2022.102585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/29/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022]
Abstract
Dysregulation of glutamatergic synapses plays an important role in the pathogenesis of neurological diseases. In addition to mediating excitatory synaptic transmission, postsynaptic glutamate receptors interact with various membrane and intracellular proteins. They form structural and/or signaling synaptic protein complexes and thereby play diverse postsynaptic functions. Recently, several postsynaptic protein complexes have been associated with various neurological diseases and hence, have been characterized as important therapeutic targets. Moreover, novel small molecules and therapeutic peptides targeting and modulating the activities of these protein complexes have been discovered, some of which have advanced through preclinical translational research and/or clinical studies. This article describes the recent investigation of eight key protein complexes associated with the postsynaptic ionotropic and metabotropic glutamate receptors as therapeutic targets for central nervous system diseases.
Collapse
|
21
|
Sørensen AT, Rombach J, Gether U, Madsen KL. The Scaffold Protein PICK1 as a Target in Chronic Pain. Cells 2022; 11:1255. [PMID: 35455935 PMCID: PMC9031029 DOI: 10.3390/cells11081255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Well-tolerated and effective drugs for treating chronic pain conditions are urgently needed. Most chronic pain patients are not effectively relieved from their pain and suffer from debilitating drug side effects. This has not only drastic negative consequences for the patients' quality of life, but also constitute an enormous burden on society. It is therefore of great interest to explore new potent targets for effective pain treatment with fewer side effects and without addiction liability. A critical component of chronic pain conditions is central sensitization, which involves the reorganization and strengthening of synaptic transmission within nociceptive pathways. Such changes are considered as maladaptive and depend on changes in the surface expression and signaling of AMPA-type glutamate receptors (AMPARs). The PDZ-domain scaffold protein PICK1 binds the AMPARs and has been suggested to play a key role in these maladaptive changes. In the present paper, we review the regulation of AMPARs by PICK1 and its relation to pain pathology. Moreover, we highlight other pain-relevant PICK1 interactions, and we evaluate various compounds that target PICK1 and have been successfully tested in pain models. Finally, we evaluate the potential on-target side effects of interfering with the action of PICK1 action in CNS and beyond. We conclude that PICK1 constitutes a valid drug target for the treatment of inflammatory and neuropathic pain conditions without the side effects and abuse liability associated with current pain medication.
Collapse
Affiliation(s)
| | | | | | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; (A.T.S.); (J.R.); (U.G.)
| |
Collapse
|
22
|
He JG, Zhou HY, Wang F, Chen JG. Dysfunction of Glutamatergic Synaptic Transmission in Depression: Focus on AMPA Receptor Trafficking. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 3:187-196. [PMID: 37124348 PMCID: PMC10140449 DOI: 10.1016/j.bpsgos.2022.02.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/06/2022] [Accepted: 02/22/2022] [Indexed: 11/26/2022] Open
Abstract
Pharmacological and anatomical evidence suggests that abnormal glutamatergic neurotransmission may be associated with the pathophysiology of depression. Compounds that act as NMDA receptor antagonists may be a potential treatment for depression, notably the rapid-acting agent ketamine. The rapid-acting and sustained antidepressant effects of ketamine rely on the activation of AMPA receptors (AMPARs). As the key elements of fast excitatory neurotransmission in the brain, AMPARs are crucially involved in synaptic plasticity and memory. Recent efforts have been directed toward investigating the bidirectional dysregulation of AMPAR-mediated synaptic transmission in depression. Here, we summarize the published evidence relevant to the dysfunction of AMPAR in stress conditions and review the recent progress toward the understanding of the involvement of AMPAR trafficking in the pathophysiology of depression, focusing on the roles of AMPAR auxiliary subunits, key AMPAR-interacting proteins, and posttranslational regulation of AMPARs. We also discuss new prospects for the development of improved therapeutics for depression.
Collapse
|
23
|
Binkle L, Klein M, Borgmeyer U, Kuhl D, Hermey G. The adaptor protein PICK1 targets the sorting receptor SorLA. Mol Brain 2022; 15:18. [PMID: 35183222 PMCID: PMC8858569 DOI: 10.1186/s13041-022-00903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
SorLA is a member of the Vps10p-domain (Vps10p-D) receptor family of type-I transmembrane proteins conveying neuronal endosomal sorting. The extracellular/luminal moiety of SorLA has a unique mosaic domain composition and interacts with a large number of different and partially unrelated ligands, including the amyloid precursor protein as well as amyloid-β. Several studies support a strong association of SorLA with sporadic and familial forms of Alzheimer’s disease (AD). Although SorLA seems to be an important factor in AD, the large number of different ligands suggests a role as a neuronal multifunctional receptor with additional intracellular sorting capacities. Therefore, understanding the determinants of SorLA’s subcellular targeting might be pertinent for understanding neuronal endosomal sorting mechanisms in general. A number of cytosolic adaptor proteins have already been demonstrated to determine intracellular trafficking of SorLA. Most of these adaptors and several ligands of the extracellular/luminal moiety are shared with the Vps10p-D receptor Sortilin. Although SorLA and Sortilin show both a predominant intracellular and endosomal localization, they are targeted to different endosomal compartments. Thus, independent adaptor proteins may convey their differential endosomal targeting. Here, we hypothesized that Sortilin and SorLA interact with the cytosolic adaptors PSD95 and PICK1 which have been shown to bind the Vps10p-D receptor SorCS3. We observed only an interaction for SorLA and PICK1 in mammalian-two-hybrid, pull-down and cellular recruitment experiments. We demonstrate by mutational analysis that the C-terminal minimal PDZ domain binding motif VIA of SorLA mediates the interaction. Moreover, we show co-localization of SorLA and PICK1 at vesicular structures in primary neurons. Although the physiological role of the interaction between PICK1 and SorLA remains unsolved, our study suggests that PICK1 partakes in regulating SorLA’s intracellular itinerary.
Collapse
|
24
|
Becic A, Leifeld J, Shaukat J, Hollmann M. Tetraspanins as Potential Modulators of Glutamatergic Synaptic Function. Front Mol Neurosci 2022; 14:801882. [PMID: 35046772 PMCID: PMC8761850 DOI: 10.3389/fnmol.2021.801882] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/07/2021] [Indexed: 12/16/2022] Open
Abstract
Tetraspanins (Tspans) comprise a membrane protein family structurally defined by four transmembrane domains and intracellular N and C termini that is found in almost all cell types and tissues of eukaryotes. Moreover, they are involved in a bewildering multitude of diverse biological processes such as cell adhesion, motility, protein trafficking, signaling, proliferation, and regulation of the immune system. Beside their physiological roles, they are linked to many pathophysiological phenomena, including tumor progression regulation, HIV-1 replication, diabetes, and hepatitis. Tetraspanins are involved in the formation of extensive protein networks, through interactions not only with themselves but also with numerous other specific proteins, including regulatory proteins in the central nervous system (CNS). Interestingly, recent studies showed that Tspan7 impacts dendritic spine formation, glutamatergic synaptic transmission and plasticity, and that Tspan6 is correlated with epilepsy and intellectual disability (formerly known as mental retardation), highlighting the importance of particular tetraspanins and their involvement in critical processes in the CNS. In this review, we summarize the current knowledge of tetraspanin functions in the brain, with a particular focus on their impact on glutamatergic neurotransmission. In addition, we compare available resolved structures of tetraspanin family members to those of auxiliary proteins of glutamate receptors that are known for their modulatory effects.
Collapse
|
25
|
Jensen KL, Noes-Holt G, Sørensen AT, Madsen KL. A Novel Peripheral Action of PICK1 Inhibition in Inflammatory Pain. Front Cell Neurosci 2021; 15:750902. [PMID: 34975407 PMCID: PMC8714954 DOI: 10.3389/fncel.2021.750902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/25/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic pain is a major healthcare problem that impacts one in five adults across the globe. Current treatment is compromised by dose-limiting side effects including drowsiness, apathy, fatigue, loss of ability to function socially and professionally as well as a high abuse liability. Most of these side effects result from broad suppression of excitatory neurotransmission. Chronic pain states are associated with specific changes in the efficacy of synaptic transmission in the pain pathways leading to amplification of non-noxious stimuli and spontaneous pain. Consequently, a reversal of these specific changes may pave the way for the development of efficacious pain treatment with fewer side effects. We have recently described a high-affinity, bivalent peptide TAT-P4-(C5)2, enabling efficient targeting of the neuronal scaffold protein, PICK1, a key protein in mediating chronic pain sensitization. In the present study, we demonstrate that in an inflammatory pain model, the peptide does not only relieve mechanical allodynia by targeting PICK1 involved in central sensitization, but also by peripheral actions in the inflamed paw. Further, we assess the effects of the peptide on novelty-induced locomotor activity, abuse liability, and memory performance without identifying significant side effects.
Collapse
Affiliation(s)
- Kathrine Louise Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
26
|
Wang L, Lin F, Ren M, Liu X, Xie W, Zhang A, Qian M, Mo Y, Wang J, Lv Y. The PICK1/TLR4 complex on microglia is involved in the regulation of LPS-induced sepsis-associated encephalopathy. Int Immunopharmacol 2021; 100:108116. [PMID: 34500285 DOI: 10.1016/j.intimp.2021.108116] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 01/14/2023]
Abstract
The treatment options for sepsis-associated encephalopathy caused by systemic inflammation are still not sufficient. Protein kinase C interaction protein 1 (PICK1) has attracted much attention because of its important physiological functions in many tissues. However, its role in sepsis-associated encephalopathy remains elusive. Our study results revealed that the expression levels of PICK1 protein in mice with lipopolysaccharide-induced sepsis-associated encephalopathy were not significantly changed, but PICK1 deficiency led to excessive activation of microglia and Toll-like receptor (TLR)4 pathways, which aggravated the sepsis- associated encephalopathy. We also observed that PICK1 and TLR4 form a complex in microglial cells, thereby providing brain protection. These findings contribute to our understanding of the important role of PICK1 in sepsis and may provide novel therapeutic targets to treat sepsis-associated encephalopathy.
Collapse
Affiliation(s)
- Lu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, Zhejiang 325000, PR China; Department of Anesthesiology,The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Feihong Lin
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, Zhejiang 325000, PR China
| | - Miao Ren
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, Zhejiang 325000, PR China
| | - Xia Liu
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, Zhejiang 325000, PR China
| | - Wenjing Xie
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, Zhejiang 325000, PR China
| | - Anqi Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, Zhejiang 325000, PR China
| | - Meizi Qian
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, Zhejiang 325000, PR China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, Zhejiang 325000, PR China.
| | - Junlu Wang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, Zhejiang 325000, PR China.
| | - Ya Lv
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Nanbaixiang, Wenzhou, Zhejiang 325000, PR China.
| |
Collapse
|
27
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
28
|
Li L, Chen SR, Zhou MH, Wang L, Li DP, Chen H, Lee G, Jayaraman V, Pan HL. α2δ-1 switches the phenotype of synaptic AMPA receptors by physically disrupting heteromeric subunit assembly. Cell Rep 2021; 36:109396. [PMID: 34289359 PMCID: PMC8353586 DOI: 10.1016/j.celrep.2021.109396] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/19/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
Many neurological disorders show an increased prevalence of GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs), which dramatically alters synaptic function. However, the molecular mechanism underlying this distinct synaptic plasticity remains enigmatic. Here, we show that nerve injury potentiates postsynaptic, but not presynaptic, CP-AMPARs in the spinal dorsal horn via α2δ-1. Overexpressing α2δ-1, previously regarded as a Ca2+ channel subunit, augments CP-AMPAR levels at the cell surface and synapse. Mechanistically, α2δ-1 physically interacts with both GluA1 and GluA2 via its C terminus, inhibits the GluA1/GluA2 heteromeric assembly, and increases GluA2 retention in the endoplasmic reticulum. Consequently, α2δ-1 diminishes the availability and synaptic expression of GluA1/GluA2 heterotetramers in the spinal cord in neuropathic pain. Inhibiting α2δ-1 with gabapentin or disrupting the α2δ-1-AMPAR complex fully restores the intracellular assembly and synaptic dominance of heteromeric GluA1/GluA2 receptors. Thus, α2δ-1 is a pivotal AMPAR-interacting protein that controls the subunit composition and Ca2+ permeability of postsynaptic AMPARs.
Collapse
Affiliation(s)
- Lingyong Li
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shao-Rui Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Meng-Hua Zhou
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Wang
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - De-Pei Li
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Medicine, University of Missouri School of Medicine, Columbia, MO 65211, USA
| | - Hong Chen
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Garam Lee
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Vasanthi Jayaraman
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center, Houston, TX 77030, USA
| | - Hui-Lin Pan
- Center for Neuroscience and Pain Research, Department of Anesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
29
|
Xiong GJ, Cheng XT, Sun T, Xie Y, Huang N, Li S, Lin MY, Sheng ZH. Defects in syntabulin-mediated synaptic cargo transport associate with autism-like synaptic dysfunction and social behavioral traits. Mol Psychiatry 2021; 26:1472-1490. [PMID: 32332993 PMCID: PMC7584772 DOI: 10.1038/s41380-020-0713-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 01/09/2023]
Abstract
The formation and maintenance of synapses require long-distance delivery of newly synthesized synaptic proteins from the soma to distal synapses, raising the fundamental question of whether impaired transport is associated with neurodevelopmental disorders such as autism. We previously revealed that syntabulin acts as a motor adapter linking kinesin-1 motor and presynaptic cargos. Here, we report that defects in syntabulin-mediated transport and thus reduced formation and maturation of synapses are one of core synaptic mechanisms underlying autism-like synaptic dysfunction and social behavioral abnormalities. Syntabulin expression in the mouse brain peaks during the first 2 weeks of postnatal development and progressively declines during brain maturation. Neurons from conditional syntabulin-/- mice (stb cKO) display impaired transport of presynaptic cargos, reduced synapse density and active zones, and altered synaptic transmission and long-term plasticity. Intriguingly, stb cKO mice exhibit core autism-like traits, including defective social recognition and communication, increased stereotypic behavior, and impaired spatial learning and memory. These phenotypes establish a new mechanistic link between reduced transport of synaptic cargos and impaired maintenance of synaptic transmission and plasticity, contributing to autism-associated behavioral abnormalities. This notion is further confirmed by the human missense variant STB-R178Q, which is found in an autism patient and loses its adapter capacity for binding kinesin-1 motors. Expressing STB-R178Q fails to rescue reduced synapse formation and impaired synaptic transmission and plasticity in stb cKO neurons. Altogether, our study suggests that defects in syntabulin-mediated transport mechanisms underlie the synaptic dysfunction and behavioral abnormalities that bear similarities to autism.
Collapse
Affiliation(s)
- Gui-Jing Xiong
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Xiu-Tang Cheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Tao Sun
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Yuxiang Xie
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Ning Huang
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Mei-Yao Lin
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD, 20892-3706, USA.
| |
Collapse
|
30
|
Rabies virus glycoprotein enhances spatial memory via the PDZ binding motif. J Neurovirol 2021; 27:434-443. [PMID: 33788140 DOI: 10.1007/s13365-021-00972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
Rabies is a life-threatening viral infection of the brain. Rabies virus (RABV) merely infects excitable cells including neurons provoking drastic behaviors including negative emotional memories. RABV glycoprotein (RVG) plays a critical role in RABV pathogenesis. RVG interacts with various cytoplasmic PDZ (PSD-95/Dlg/ZO-1) containing proteins through its PDZ binding motif (PBM). PTZ domains have crucial role in formation and function of signal transduction. Hippocampus is one of the cerebral regions that contain high load of viral antigens. We examined impact of RVG expression in the dorsal hippocampus on aversive as well as spatial learning and memory performance in rats. Two microliter of the lentiviral vector (~108 T.U./ml) encoding RVG or ∆RVG (deleted PBM) genomes was microinjected into the hippocampal CA1. After 1 week, rat's brain was cross-sectioned and RVG/∆RVG-expressing neuronal cells were confirmed by fluorescent microscopy. Passive avoidance and spatial learning and memory were assessed in rats by Shuttle box and Morris water maze (MWM). In the shuttle box, both RVG and ∆RVG decreased the time spent in the dark compartment compared to control (p < 0.05). In MWM, RVG and ∆RVG did not affect the acquisition of spatial task. In the probe test, RVG-expressing rats spent more time in the target quadrant, and also reached the platform position sooner than control group (p < 0.05). Rats expressing ∆RVG significantly swam farther from the hidden platform than RVG group (p < 0.05). Our data indicate RVG expression in the hippocampus strengthens aversive and spatial learning and memory performance. The boosting effect on spatial but not avoidance memory is mediated through PBM.
Collapse
|
31
|
Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain 2021; 14:8. [PMID: 33430908 PMCID: PMC7802216 DOI: 10.1186/s13041-020-00717-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022] Open
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are important cellular mechanisms underlying learning and memory processes. N-Methyl-d-aspartate receptor (NMDAR)-dependent LTP and LTD play especially crucial roles in these functions, and their expression depends on changes in the number and single channel conductance of the major ionotropic glutamate receptor α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) located on the postsynaptic membrane. Structural changes in dendritic spines comprise the morphological platform and support for molecular changes in the execution of synaptic plasticity and memory storage. At the molecular level, spine morphology is directly determined by actin cytoskeleton organization within the spine and indirectly stabilized and consolidated by scaffold proteins at the spine head. Palmitoylation, as a uniquely reversible lipid modification with the ability to regulate protein membrane localization and trafficking, plays significant roles in the structural and functional regulation of LTP and LTD. Altered structural plasticity of dendritic spines is also considered a hallmark of neurodevelopmental disorders, while genetic evidence strongly links abnormal brain function to impaired palmitoylation. Numerous studies have indicated that palmitoylation contributes to morphological spine modifications. In this review, we have gathered data showing that the regulatory proteins that modulate the actin network and scaffold proteins related to AMPAR-mediated neurotransmission also undergo palmitoylation and play roles in modifying spine architecture during structural plasticity.
Collapse
Affiliation(s)
- Benjun Ji
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| | - Małgorzata Skup
- Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland.
| |
Collapse
|
32
|
Hippocampal Lnx1-NMDAR multiprotein complex mediates initial social memory. Mol Psychiatry 2021; 26:3956-3969. [PMID: 31772302 PMCID: PMC8550978 DOI: 10.1038/s41380-019-0606-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 11/08/2022]
Abstract
Social interaction and communication are evolutionary conserved behaviours that are developed in mammals to establish partner cognition. Deficit in sociability has been represented in human patients and animal models of neurodevelopmental disorders, which are connected with genetic variants of synaptic glutamate receptors and associated PDZ-binding proteins. However, it remains elusive how these key proteins are specialized in the cellular level for the initial social behaviour during postnatal developmental stage. Here we identify a hippocampal CA3 specifically expressed PDZ scaffold protein Lnx1 required for initial social behaviour. Through gene targeting we find that Lnx1 deficiency led to a hippocampal subregional disorder in neuronal activity and social memory impairments for partner discrimination observed in juvenile mice which also show cognitive defects in adult stage. We further demonstrate that Lnx1 deletion causes NMDA receptor (NMDAR) hypofunction and this is attributable to decreased GluN2B expression in PSD compartment and disruption of the Lnx1-NMDAR-EphB2 complex. Specific restoration of Lnx1 or EphB2 protein in the CA3 area of Lnx1-/- mice rescues the defective synaptic function and social memory. These findings thus reveal crucial roles of postsynaptic NMDAR multiprotein complex that regulates the formation of initial social memory during the adolescent period.
Collapse
|
33
|
Rosenbaum MI, Clemmensen LS, Bredt DS, Bettler B, Strømgaard K. Targeting receptor complexes: a new dimension in drug discovery. Nat Rev Drug Discov 2020; 19:884-901. [PMID: 33177699 DOI: 10.1038/s41573-020-0086-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 12/11/2022]
Abstract
Targeting receptor proteins, such as ligand-gated ion channels and G protein-coupled receptors, has directly enabled the discovery of most drugs developed to modulate receptor signalling. However, as the search for novel and improved drugs continues, an innovative approach - targeting receptor complexes - is emerging. Receptor complexes are composed of core receptor proteins and receptor-associated proteins, which have profound effects on the overall receptor structure, function and localization. Hence, targeting key protein-protein interactions within receptor complexes provides an opportunity to develop more selective drugs with fewer side effects. In this Review, we discuss our current understanding of ligand-gated ion channel and G protein-coupled receptor complexes and discuss strategies for their pharmacological modulation. Although such strategies are still in preclinical development for most receptor complexes, they exemplify how receptor complexes can be drugged, and lay the groundwork for this nascent area of research.
Collapse
Affiliation(s)
- Mette Ishøy Rosenbaum
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Louise S Clemmensen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA, USA
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
34
|
Widagdo J, Kerk JW, Guntupalli S, Huganir RL, Anggono V. Subunit-Specific Augmentation of AMPA Receptor Ubiquitination by Phorbol Ester. Cell Mol Neurobiol 2020; 40:1213-1222. [PMID: 32052226 PMCID: PMC7423626 DOI: 10.1007/s10571-020-00809-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
Excitatory neurotransmission relies on the precise targeting of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors to the neuronal plasma membrane. Activity-dependent ubiquitination of AMPA receptor (AMPAR) subunits sorts internalised receptors to late endosomes for degradation, which ultimately determines the number of AMPARs on neuronal membrane. Our recent study has demonstrated a functional cross-talk between the phosphorylation and ubiquitination of the GluA1 subunit in mammalian central neurons. However, the existence of such a cross modulation for the GluA2 subunit remains unknown. Here, we have shown that bicuculline induced GluA2 ubiquitination on the same lysine residues (Lys-870 and Lys-882) in the C-terminal as those elicited by the AMPA treatment. Interestingly, bicuculline-induced ubiquitination was markedly enhanced by the phospho-mimetic GluA2 S880E mutant. Pharmacological activation of protein kinase C (PKC) by phorbol ester, which mediates the phosphorylation of GluA2 at Ser-880, augmented bicuculline-induced ubiquitination of GluA2 in cultured neurons. This effect was specific for the GluA2 subunit because phorbol ester did not alter the level of GluA1 ubiquitination. However, phorbol ester-induced enhancement of GluA2 ubiquitination did not require Ser-880 phosphorylation. This suggests that pseudo-phosphorylation of Ser-880 is sufficient but is not necessary for the augmentation of bicuculline-induced GluA2 ubiquitination. Collectively, these data provide the first demonstration of subunit-specific modulation of AMPAR ubiquitination by the PKC-dependent signalling pathway in mammalian central neurons.
Collapse
Affiliation(s)
- Jocelyn Widagdo
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jun Wei Kerk
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Sumasri Guntupalli
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Richard L Huganir
- Department of Neuroscience and Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
35
|
Yong XLH, Cousin MA, Anggono V. PICK1 Controls Activity-Dependent Synaptic Vesicle Cargo Retrieval. Cell Rep 2020; 33:108312. [PMID: 33113376 DOI: 10.1016/j.celrep.2020.108312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 12/23/2022] Open
Abstract
Efficient retrieval of synaptic vesicles (SVs) is crucial to sustain synaptic transmission. Protein interacting with C-kinase 1 (PICK1) is a unique PDZ (postsynaptic density-95/disc-large/zona-occluden-1)- and BAR (Bin-Amphiphysin-Rvs )-domain-containing protein that regulates the trafficking of postsynaptic glutamate receptors. It is also expressed in presynaptic terminals and is associated with the SVs; however, its role in regulating SV recycling remains unknown. Here, we show that PICK1 loss of function selectively slows the kinetics of SV endocytosis in primary hippocampal neurons during high-frequency stimulation. PICK1 knockdown also causes surface stranding and mislocalization of major SV proteins, synaptophysin and vGlut1, along the axon. A functional PDZ domain of PICK1 and its interaction with the core endocytic adaptor protein (AP)-2 are required for the proper targeting and clustering of synaptophysin. Furthermore, PICK1 and its interaction with AP-2 are required for efficient SV endocytosis and sustained glutamate release. Our findings, therefore, identify PICK1 as a key regulator of presynaptic vesicle recycling in central synapses.
Collapse
Affiliation(s)
- Xuan Ling Hilary Yong
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Michael A Cousin
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK; Muir Maxwell Epilepsy Centre, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK; Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh EH8 9XD, Scotland, UK
| | - Victor Anggono
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
36
|
Pharmacological inhibition of glycogen synthase kinase 3 increases operant alcohol self-administration in a manner associated with altered pGSK-3β, protein interacting with C kinase and GluA2 protein expression in the reward pathway of male C57BL/6J mice. Behav Pharmacol 2020; 31:15-26. [PMID: 31503067 DOI: 10.1097/fbp.0000000000000501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Glycogen synthase kinase 3 (GSK-3) is a constitutively active serine-threonine kinase that regulates numerous signaling pathways and has been implicated in neurodegenerative and neuropsychiatric diseases. Alcohol exposure increases GSK-3β (ser9) phosphorylation (pGSK-3β); however, few studies have investigated whether GSK-3 regulates the positive reinforcing effects of alcohol, which drive repetitive drug use. To address this goal, male C57BL/6J mice were trained to lever press on a fixed-ratio 4 schedule of sweetened alcohol or sucrose-only reinforcement in operant conditioning chambers. The GSK-3 inhibitor CHIR 99021 (0-10 mg/kg, i.p.) was injected 45 minutes prior to self-administration sessions. After completion of the self-administration dose-effect curve, potential locomotor effects of the GSK-3 inhibitor were assessed. To determine molecular efficacy, CHIR 99021 (10 mg/kg, i.p.) was evaluated on pGSK-3β, GSK-3β, protein interacting with C kinase (PICK1), and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluA2 subunit protein expression in amygdala, nucleus accumbens (NAcb), and frontal cortex. Results showed that CHIR 99021 (10 mg/kg) dose-dependently increased alcohol reinforced responding with no effect on sucrose self-administration or locomotor activity. CHIR 99021 (10 mg/kg) significantly decreased pGSK-3β expression in all brain regions tested, reduced PICK1 and increased GluA2 total expression only in the NAcb. We conclude that GSK-3 inhibition increased the reinforcing effects of alcohol in mice. This was associated with reduced pGSK-3β and PICK1, and increased GluA2 expression. Given prior results showing that AMPA receptor activity regulates alcohol self-administration, we propose that signaling through the GSK-3/PICK1/GluA2 molecular pathway drives the positive reinforcing effects of the drug, which are required for abuse liability.
Collapse
|
37
|
Chen L, Tao F, Zhang Y, Shu C, Xiang W, Yang L, Chen X, Hong Y, Chen B, Li K, Zhang W, Hao K, Ge F, Wang Z, Lyu J. Islet-cell autoantigen 69 accelerates liver regeneration by downregulating Tgfbr1 and attenuating Tgfβ signaling in mice. FEBS Lett 2020; 594:2881-2893. [PMID: 32531799 DOI: 10.1002/1873-3468.13859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/08/2022]
Abstract
Regeneration is a unique defense mechanism of liver tissue in response to functional cell loss induced by toxic chemicals or surgical resection. In this study, we found that Islet-cell autoantigen 69 (Ica69) accelerates liver regeneration in mice. Following 70% partial hepatectomy, both Ica69 mRNA and protein are significantly upregulated in mouse hepatocytes at the early stage of liver regeneration. Compared with the wild-type mice, Ica69-deficient mice have more severe liver injury, delayed liver regeneration, and high surgical accidental mortality following hepatectomy. Mechanistically, Ica69 interacts with Pick1 protein to regulate Tgfbr1 protein expression and Tgfβ-induced Smad2 phosphorylation. Our findings suggest that Ica69 in liver tissue is a new potential target for promoting liver regeneration.
Collapse
Affiliation(s)
- Linjie Chen
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Fei Tao
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | | | - Chongyi Shu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| | - Weiling Xiang
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Leixiang Yang
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Xiaopan Chen
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Yeting Hong
- Laboratory Medical School, Hangzhou Medical College, China
| | - Bingyu Chen
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Kaiqiang Li
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Wei Zhang
- Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Ke Hao
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Feihang Ge
- Laboratory Medical School, Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Zhen Wang
- Laboratory Medical School, Hangzhou Medical College, China.,Research Center of Blood Transfusion Medicine, Ministry of Education Key Laboratory People's Hospital, People's Hospital of Hangzhou Medical College, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, China
| | - Jianxin Lyu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, China
| |
Collapse
|
38
|
Christensen NR, De Luca M, Lever MB, Richner M, Hansen AB, Noes-Holt G, Jensen KL, Rathje M, Jensen DB, Erlendsson S, Bartling CR, Ammendrup-Johnsen I, Pedersen SE, Schönauer M, Nissen KB, Midtgaard SR, Teilum K, Arleth L, Sørensen AT, Bach A, Strømgaard K, Meehan CF, Vaegter CB, Gether U, Madsen KL. A high-affinity, bivalent PDZ domain inhibitor complexes PICK1 to alleviate neuropathic pain. EMBO Mol Med 2020; 12:e11248. [PMID: 32352640 PMCID: PMC7278562 DOI: 10.15252/emmm.201911248] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Maladaptive plasticity involving increased expression of AMPA-type glutamate receptors is involved in several pathologies, including neuropathic pain, but direct inhibition of AMPARs is associated with side effects. As an alternative, we developed a cell-permeable, high-affinity (~2 nM) peptide inhibitor, Tat-P4 -(C5)2 , of the PDZ domain protein PICK1 to interfere with increased AMPAR expression. The affinity is obtained partly from the Tat peptide and partly from the bivalency of the PDZ motif, engaging PDZ domains from two separate PICK1 dimers to form a tetrameric complex. Bivalent Tat-P4 -(C5)2 disrupts PICK1 interaction with membrane proteins on supported cell membrane sheets and reduce the interaction of AMPARs with PICK1 and AMPA-receptor surface expression in vivo. Moreover, Tat-P4 -(C5)2 administration reduces spinal cord transmission and alleviates mechanical hyperalgesia in the spared nerve injury model of neuropathic pain. Taken together, our data reveal Tat-P4 -(C5)2 as a novel promising lead for neuropathic pain treatment and expand the therapeutic potential of bivalent inhibitors to non-tandem protein-protein interaction domains.
Collapse
Affiliation(s)
- Nikolaj R Christensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Marta De Luca
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michael B Lever
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Richner
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Astrid B Hansen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gith Noes-Holt
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kathrine L Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mette Rathje
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Dennis Bo Jensen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Simon Erlendsson
- Structural biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Ro Bartling
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ina Ammendrup-Johnsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofie E Pedersen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michèle Schönauer
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Klaus B Nissen
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Søren R Midtgaard
- Structural Biophysics, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lise Arleth
- Structural Biophysics, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andreas T Sørensen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders Bach
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, Faculty of Health and Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Claire F Meehan
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christian B Vaegter
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic-EMBL Partnership for Molecular Medicine, Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth L Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Turner C, De Luca M, Wolfheimer J, Hernandez N, Madsen KL, Schmidt HD. Administration of a novel high affinity PICK1 PDZ domain inhibitor attenuates cocaine seeking in rats. Neuropharmacology 2020; 164:107901. [PMID: 31805281 PMCID: PMC6954965 DOI: 10.1016/j.neuropharm.2019.107901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Protein interacting with C kinase-1 (PICK1) regulates intra-cellular trafficking of GluA2-containing AMPA receptors, a process known to play a critical role in cocaine-seeking behavior. This suggests that PICK1 may represent a molecular target for developing novel pharmacotherapies to treat cocaine craving-induced relapse. Emerging evidence indicates that inhibition of PICK1 attenuates the reinstatement of cocaine-seeking behavior, an animal model of relapse. Here, we show that systemic administration of TAT-P4-(DATC5)2, a novel high-affinity peptide inhibitor of the PICK1 PDZ domain, dose-dependently attenuated the reinstatement of cocaine seeking in rats at doses that did not produce operant learning deficits or suppress locomotor activity. We also show that systemic TAT-P4-(DATC5)2 penetrated the brain where it was visualized in the nucleus accumbens shell. Consistent with these effects, infusions of TAT-P4-(DATC5)2 directly into the accumbens shell reduced cocaine, but not sucrose, seeking. The effects of TAT-P4-(DATC5)2 on cocaine seeking are likely due, in part, to inhibition of PICK1 in medium spiny neurons (MSNs) of the accumbens shell as TAT-P4-(DATC5)2 was shown to accumulate in striatal neurons and bind PICK1. Taken together, these findings highlight a novel role for PICK1 in the reinstatement of cocaine seeking and support future studies examining the efficacy of peptide inhibitors of PICK1 in animal and human models of cocaine relapse.
Collapse
Affiliation(s)
- Christopher Turner
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marta De Luca
- Department of Neurosciences, Faculty of Health Sciences, University of Copenhagen Blegdamsvej 3, DK, 2200, Copenhagen, Denmark
| | - Jordan Wolfheimer
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicole Hernandez
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kenneth Lindegaard Madsen
- Department of Neurosciences, Faculty of Health Sciences, University of Copenhagen Blegdamsvej 3, DK, 2200, Copenhagen, Denmark
| | - Heath D Schmidt
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
40
|
Modified Glutamatergic Postsynapse in Neurodegenerative Disorders. Neuroscience 2019; 454:116-139. [PMID: 31887357 DOI: 10.1016/j.neuroscience.2019.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/02/2019] [Accepted: 12/02/2019] [Indexed: 01/27/2023]
Abstract
The postsynaptic density (PSD) is a complex subcellular domain important for postsynaptic signaling, function, and plasticity. The PSD is present at excitatory synapses and specialized to allow for precise neuron-to-neuron transmission of information. The PSD is localized immediately underneath the postsynaptic membrane forming a major protein network that regulates postsynaptic signaling and synaptic plasticity. Glutamatergic synaptic dysfunction affecting PSD morphology and signaling events have been described in many neurodegenerative disorders, either sporadic or familial forms. Thus, in this review we describe the main protein players forming the PSD and their activity, as well as relevant modifications in key components of the postsynaptic architecture occurring in Huntington's, Parkinson's and Alzheimer's diseases.
Collapse
|
41
|
Reiner A, Levitz J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2019; 98:1080-1098. [PMID: 29953871 DOI: 10.1016/j.neuron.2018.05.018] [Citation(s) in RCA: 407] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/19/2018] [Accepted: 05/10/2018] [Indexed: 12/28/2022]
Abstract
Glutamate serves as both the mammalian brain's primary excitatory neurotransmitter and as a key neuromodulator to control synapse and circuit function over a wide range of spatial and temporal scales. This functional diversity is decoded by two receptor families: ionotropic glutamate receptors (iGluRs) and metabotropic glutamate receptors (mGluRs). The challenges posed by the complexity and physiological importance of each of these subtypes has limited our appreciation and understanding of how these receptors work in concert. In this review, by comparing both receptor families with a focus on their crosstalk, we argue for a more holistic understanding of neural glutamate signaling.
Collapse
Affiliation(s)
- Andreas Reiner
- Department of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
42
|
Christensen NR, Čalyševa J, Fernandes EFA, Lüchow S, Clemmensen LS, Haugaard‐Kedström LM, Strømgaard K. PDZ Domains as Drug Targets. ADVANCED THERAPEUTICS 2019; 2:1800143. [PMID: 32313833 PMCID: PMC7161847 DOI: 10.1002/adtp.201800143] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/25/2019] [Indexed: 12/14/2022]
Abstract
Protein-protein interactions within protein networks shape the human interactome, which often is promoted by specialized protein interaction modules, such as the postsynaptic density-95 (PSD-95), discs-large, zona occludens 1 (ZO-1) (PDZ) domains. PDZ domains play a role in several cellular functions, from cell-cell communication and polarization, to regulation of protein transport and protein metabolism. PDZ domain proteins are also crucial in the formation and stability of protein complexes, establishing an important bridge between extracellular stimuli detected by transmembrane receptors and intracellular responses. PDZ domains have been suggested as promising drug targets in several diseases, ranging from neurological and oncological disorders to viral infections. In this review, the authors describe structural and genetic aspects of PDZ-containing proteins and discuss the current status of the development of small-molecule and peptide modulators of PDZ domains. An overview of potential new therapeutic interventions in PDZ-mediated protein networks is also provided.
Collapse
Affiliation(s)
- Nikolaj R. Christensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Jelena Čalyševa
- European Molecular Biology Laboratory (EMBL)Structural and Computational Biology UnitMeyerhofstraße 169117HeidelbergGermany
- EMBL International PhD ProgrammeFaculty of BiosciencesEMBL–Heidelberg UniversityGermany
| | - Eduardo F. A. Fernandes
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Susanne Lüchow
- Department of Chemistry – BMCUppsala UniversityBox 576SE75123UppsalaSweden
| | - Louise S. Clemmensen
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Linda M. Haugaard‐Kedström
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| | - Kristian Strømgaard
- Center for BiopharmaceuticalsDepartment of Drug Design and PharmacologyUniversity of CopenhagenUniversitetsparken 22100CopenhagenDenmark
| |
Collapse
|
43
|
Bissen D, Foss F, Acker-Palmer A. AMPA receptors and their minions: auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci 2019; 76:2133-2169. [PMID: 30937469 PMCID: PMC6502786 DOI: 10.1007/s00018-019-03068-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/12/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022]
Abstract
To correctly transfer information, neuronal networks need to continuously adjust their synaptic strength to extrinsic stimuli. This ability, termed synaptic plasticity, is at the heart of their function and is, thus, tightly regulated. In glutamatergic neurons, synaptic strength is controlled by the number and function of AMPA receptors at the postsynapse, which mediate most of the fast excitatory transmission in the central nervous system. Their trafficking to, at, and from the synapse, is, therefore, a key mechanism underlying synaptic plasticity. Intensive research over the last 20 years has revealed the increasing importance of interacting proteins, which accompany AMPA receptors throughout their lifetime and help to refine the temporal and spatial modulation of their trafficking and function. In this review, we discuss the current knowledge about the roles of key partners in regulating AMPA receptor trafficking and focus especially on the movement between the intracellular, extrasynaptic, and synaptic pools. We examine their involvement not only in basal synaptic function, but also in Hebbian and homeostatic plasticity. Included in our review are well-established AMPA receptor interactants such as GRIP1 and PICK1, the classical auxiliary subunits TARP and CNIH, and the newest additions to AMPA receptor native complexes.
Collapse
Affiliation(s)
- Diane Bissen
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany
| | - Franziska Foss
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany
| | - Amparo Acker-Palmer
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences (BMLS), University of Frankfurt, Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438, Frankfurt am Main, Germany.
- Cardio-Pulmonary Institute (CPI), Max-von-Laue-Str. 15, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
44
|
Handy G, Lawley SD, Borisyuk A. Role of trap recharge time on the statistics of captured particles. Phys Rev E 2019; 99:022420. [PMID: 30934303 DOI: 10.1103/physreve.99.022420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 11/07/2022]
Abstract
We consider n particles diffusing freely in a domain. The boundary contains absorbing escape regions, where the particles can escape, and traps, where the particles can be captured. Modeled after biological examples such as receptors in the synaptic cleft and ambush predators waiting for prey, these traps, or capture regions, must recharge between captures. We are interested in characterizing the time courses of the number of particles remaining in the domain, the number of cumulative captures, and the number of available capture regions. We find that under certain conditions, the number of cumulative captures increases linearly in time with a slope and duration determined explicitly by the recharge rate of the capture regions. This recharge rate also determines the mean and variance of the clearance time, defined as the time it takes for all particles to leave the domain. Further, we find that while a finite recharge rate will always result in a lower number of captured particles when compared to instantaneous recharging, it can either increase or decrease the amount of variability. Lastly, we extend the model to partially absorbing traps in order to investigate the dynamics of receptor activation within an idealized synaptic cleft. We find that the width of the domain controls the amount of time that these receptors are activated, while the number of receptors controls the amplitude of activation. Our mathematical results are derived from considering this system in several ways: as a full spatial diffusion process with recharging traps, as a continuous-time Markov process on a discrete state space, and as a system of ordinary differential equations in a mean-field approximation.
Collapse
Affiliation(s)
- Gregory Handy
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Sean D Lawley
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| | - Alla Borisyuk
- Department of Mathematics, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
45
|
Sohn H, Park M. Palmitoylation-mediated synaptic regulation of AMPA receptor trafficking and function. Arch Pharm Res 2019; 42:426-435. [PMID: 30838509 PMCID: PMC6505502 DOI: 10.1007/s12272-019-01134-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 02/19/2019] [Indexed: 12/23/2022]
Abstract
The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is a major glutamate-gated ion channel in the brain and is important for synaptic transmission, synaptic plasticity, and learning. Palmitoylation, a post-translational modification, is a critical process regulating AMPAR trafficking, synaptic function and plasticity, and learning and memory in health and diseases. In this review, we discuss current knowledge on the palmitoylation-dependent regulation of AMPAR trafficking and functions. We focus on the palmitoylation of AMPARs and other synaptic proteins that directly or indirectly interact with AMPARs, including postsynaptic density 95, glutamate receptor-interacting protein/AMPAR-binding protein, A-kinase anchoring protein 79/150, and protein interacting with C kinase 1. Finally, we discuss what future studies should address in the field of palmitoylation-dependent AMPAR trafficking and function with regard to physiology and neurodegenerative diseases.
Collapse
Affiliation(s)
- Heesung Sohn
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea.,Department of Life Sciences, School of Natural Science, Hanyang University, Seoul, 04763, South Korea
| | - Mikyoung Park
- Center for Functional Connectomics, Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea. .,Department of Neuroscience, Korea University of Science and Technology, Daejeon, 34113, South Korea.
| |
Collapse
|
46
|
Erlendsson S, Thorsen TS, Vauquelin G, Ammendrup-Johnsen I, Wirth V, Martinez KL, Teilum K, Gether U, Madsen KL. Mechanisms of PDZ domain scaffold assembly illuminated by use of supported cell membrane sheets. eLife 2019; 8:39180. [PMID: 30605082 PMCID: PMC6345565 DOI: 10.7554/elife.39180] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/02/2019] [Indexed: 01/07/2023] Open
Abstract
PDZ domain scaffold proteins are molecular modules orchestrating cellular signalling in space and time. Here, we investigate assembly of PDZ scaffolds using supported cell membrane sheets, a unique experimental setup enabling direct access to the intracellular face of the cell membrane. Our data demonstrate how multivalent protein-protein and protein-lipid interactions provide critical avidity for the strong binding between the PDZ domain scaffold proteins, PICK1 and PSD-95, and their cognate transmembrane binding partners. The kinetics of the binding were remarkably slow and binding strength two-three orders of magnitude higher than the intrinsic affinity for the isolated PDZ interaction. Interestingly, discrete changes in the intrinsic PICK1 PDZ affinity did not affect overall binding strength but instead revealed dual scaffold modes for PICK1. Our data supported by simulations suggest that intrinsic PDZ domain affinities are finely tuned and encode specific cellular responses, enabling multiplexed cellular functions of PDZ scaffolds. Inside a cell, many different signals carry information that is essential for the cell to remain healthy and perform its role in the body. It is, therefore, very important that the signals are sent to the right places at the right times. Scaffold proteins play an essential role in organizing these signals by bringing specific proteins and other molecules into close contact at particular times and locations within the cell. Defects in scaffolding proteins can lead to cancer, psychiatric disorders and other diseases, so these proteins represent potential new targets for medicinal drugs. Many scaffolding proteins assemble groups of proteins on the surface of the membrane that surrounds the cell. Previous studies have shown that scaffolding proteins are able to bind to several other proteins as well as the membrane itself at the same time. However, the precise way in which scaffolding proteins assemble such groups is not clear because it is technically challenging to study this process in living cells. To overcome this challenge, Erlendsson, Thorsen et al. used a new experimental setup known as supported cell membrane sheets – which provides direct access to the side of the cell membrane that usually faces into the cell – to study two scaffolding proteins known as PICK1 and PSD-95. The experiments show that PICK1 and PSD-95 bind to their partner proteins up to 100 times more strongly than previously observed using other approaches. This is due to the scaffolding proteins binding more strongly to both their partners and the membrane. Unexpectedly, the experiments show that the shape and physical characteristics of the partner protein have no effect on the increase in the strength of the binding. Further experiments suggest that altering the ability of the PDZ domain of PICK1 to bind to partner proteins changes the mode of action of the PICK1 protein so that it can activate different responses in the cell. Together these findings imply that the ability of scaffolding proteins to bind to their partner proteins is finely tuned to encode specific responses in cells in different situations – a hypothesis that Erlendsson, Thorsen et al. are planning to test in intact cells.
Collapse
Affiliation(s)
- Simon Erlendsson
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark.,Structural Biology and NMR Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Thor Seneca Thorsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Georges Vauquelin
- Molecular and Biochemical Pharmacology, Department of Biotechnology, Free University Brussels (VUB), Brussels, Belgium
| | - Ina Ammendrup-Johnsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Volker Wirth
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-science Center, University of Copenhagen, Copenhagen, Denmark
| | - Karen L Martinez
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, Nano-science Center, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kenneth Lindegaard Madsen
- Molecular Neuropharmacology and Genetics Laboratory, Department of Neuroscience, Faculty of Health and Medical Sciences, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
47
|
Cao F, Zhou Z, Cai S, Xie W, Jia Z. Hippocampal Long-Term Depression in the Presence of Calcium-Permeable AMPA Receptors. Front Synaptic Neurosci 2018; 10:41. [PMID: 30483111 PMCID: PMC6242858 DOI: 10.3389/fnsyn.2018.00041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/22/2018] [Indexed: 11/28/2022] Open
Abstract
The GluA2 subunit of AMPA glutamate receptors (AMPARs) has been shown to be critical for the expression of NMDA receptor (NMDAR)-dependent long-term depression (LTD). However, in young GluA2 knockout (KO) mice, this form of LTD can still be induced in the hippocampus, suggesting that LTD mechanisms may be modified in the presence of GluA2-lacking, Ca2+ permeable AMPARs. In this study, we examined LTD at the CA1 synapse in GluA2 KO mice by using several well-established inhibitory peptides known to block LTD in wild type (WT) rodents. We showed that while LTD in the KO mice is still blocked by the protein interacting with C kinase 1 (PICK1) peptide pepEVKI, it becomes insensitive to the N-ethylmaleimide-sensitive factor (NSF) peptide pep2m. In addition, the effects of actin and cofilin inhibitory peptides were also altered. These results indicate that in the absence of GluA2, LTD expression mechanisms are different from those in WT animals, suggesting that there are multiple molecular processes enabling LTD expression that are adaptable to physiological and genetic manipulations.
Collapse
Affiliation(s)
- Feng Cao
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Zikai Zhou
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada.,The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.,The Collaborative Innovation Center for Brain Science, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Sammy Cai
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China.,The Collaborative Innovation Center for Brain Science, Institute of Life Sciences, Southeast University, Nanjing, China
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
PICK1 Deficiency Induces Autophagy Dysfunction via Lysosomal Impairment and Amplifies Sepsis-Induced Acute Lung Injury. Mediators Inflamm 2018; 2018:6757368. [PMID: 30402043 PMCID: PMC6192133 DOI: 10.1155/2018/6757368] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Sepsis is a systemic inflammatory reaction caused by infection. Multiple organ failure ultimately leads to high morbidity and mortality. Unfortunately, therapies against these responses have been unsuccessful due to the insufficient underlying pathophysiological evidence. Protein interacting with C-kinase 1 (PICK1) has received considerable attention because of its important physiological functions in many tissues. However, its role in sepsis-induced acute lung injury (ALI) is unclear. In this study, we used cecal ligation and puncture (CLP) to establish a septic model and found that decreased microtubule-associated protein-1light chain 3 (LC3)-II/LC3-I in PICK1−/− septic mice was caused by autophagy dysfunction. Consistently, the transmission electron microscopy (TEM) of bone marrow-derived macrophages (BMDMs) from PICK1−/− mice showed the accumulation of autophagosomes as well. However, more serious damage was caused by PICK1 deficiency indicating that the disrupted autophagic flux was harmful to sepsis-induced ALI. We also observed that it was the impaired lysosomal function that mediated autophagic flux blockade, and the autophagy progress was relevant to PI3K-Akt-mTOR pathway. These findings will aid in the potential development of PICK1 with novel evidence of autophagy in sepsis treatment and prevention.
Collapse
|
49
|
Goo BMSS, Sanstrum BJ, Holden DZY, Yu Y, James NG. Arc/Arg3.1 has an activity-regulated interaction with PICK1 that results in altered spatial dynamics. Sci Rep 2018; 8:14675. [PMID: 30279480 PMCID: PMC6168463 DOI: 10.1038/s41598-018-32821-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/25/2018] [Indexed: 01/28/2023] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc; also known as Arg3.1) is an immediate early gene product that is transcribed in dendritic spines and, to date, has been best characterized as a positive regulator of AMPAR endocytosis during long-term depression (LTD) through interaction with endocytic proteins. Here, we show that protein interacting with C terminal kinase 1 (PICK1), a protein known to bind to the GluA2 subunit of AMPARs and associated with AMPAR trafficking, was pulled-down from brain homogenates and synaptosomes when using Arc as immobilized bait. Fluctuation and FLIM-FRET-Phasor analysis revealed direct interaction between these proteins when co-expressed that was increased under depolarizing conditions in live cells. At the plasma membrane, Arc-mCherry oligomerization was found to be concentration dependent. Additionally, co-expression of Arc-mCherry and EGFP-PICK1 followed by depolarizing conditions resulted in significant increases in the number and size of puncta containing both proteins. Furthermore, we identified the Arc binding region to be the first 126 amino acids of the PICK1 BAR domain. Overall, our data support a novel interaction and model where PICK1 mediates Arc regulation of AMPARs particularly under depolarizing conditions.
Collapse
Affiliation(s)
- Brandee M S S Goo
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, 651 Ilalo St., BSB 222, University of Hawaii, Honolulu, HI, 96813, USA
| | - Bethany J Sanstrum
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, 651 Ilalo St., BSB 222, University of Hawaii, Honolulu, HI, 96813, USA
| | - Diana Z Y Holden
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, 651 Ilalo St., BSB 222, University of Hawaii, Honolulu, HI, 96813, USA
| | | | - Nicholas G James
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, 651 Ilalo St., BSB 222, University of Hawaii, Honolulu, HI, 96813, USA.
| |
Collapse
|
50
|
Moretto E, Passafaro M. Recent Findings on AMPA Receptor Recycling. Front Cell Neurosci 2018; 12:286. [PMID: 30233324 PMCID: PMC6129582 DOI: 10.3389/fncel.2018.00286] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 08/10/2018] [Indexed: 02/04/2023] Open
Abstract
α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs) are tetrameric protein complexes that mediate most of the fast-excitatory transmission in response to the neurotransmitter glutamate in neurons. The abundance of AMPA-Rs at the surface of excitatory synapses establishes the strength of the response to glutamate. It is thus evident that neurons need to tightly regulate this feature, particularly in the context of all synaptic plasticity events, which are considered the biological correlates of higher cognitive functions such as learning and memory. AMPA-R levels at the synapse are regulated by insertion of newly synthesized receptors, lateral diffusion on the plasma membrane and endosomal cycling. The latter is likely the most important especially for synaptic plasticity. This process starts with the endocytosis of the receptor from the cell surface and is followed by either degradation, if the receptor is directed to the lysosomal compartment, or reinsertion at the cell surface through a specialized endosomal compartment called recycling endosomes. Although the basic steps of this process have been discovered, the details and participation of additional regulatory proteins are still being discovered. In this review article, we describe the most recent findings shedding light on this crucial mechanism of synaptic regulation.
Collapse
Affiliation(s)
- Edoardo Moretto
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| | - Maria Passafaro
- Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Milan, Italy
| |
Collapse
|