1
|
Wingfield JL, Puthanveettil SV. Decoding the complex journeys of RNAs along neurons. Nucleic Acids Res 2025; 53:gkaf293. [PMID: 40243060 PMCID: PMC12004114 DOI: 10.1093/nar/gkaf293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Neurons are highly polarized, specialized cells that must overcome immense challenges to ensure the health and survival of the organism in which they reside. They can spread over meters and persist for decades yet communicate at sub-millisecond and millimeter scales. Thus, neurons require extreme levels of spatial-temporal control. Neurons employ molecular motors to transport coding and noncoding RNAs to distal synapses. Intracellular trafficking of RNAs enables neurons to locally regulate protein synthesis and synaptic activity. The way in which RNAs get loaded onto molecular motors and transported to their target locations, particularly following synaptic plasticity, is explored below.
Collapse
Affiliation(s)
- Jenna L Wingfield
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| | - Sathyanarayanan V Puthanveettil
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, Jupiter, FL, United States
| |
Collapse
|
2
|
Zhang X, Jeong H, Niu J, Holland SM, Rotanz BN, Gordon J, Einarson MB, Childers WE, Thomas GM. Inhibiting acute, axonal DLK palmitoylation is neuroprotective and avoids deleterious effects of cell-wide DLK inhibition. Nat Commun 2025; 16:3031. [PMID: 40180913 PMCID: PMC11968826 DOI: 10.1038/s41467-025-58036-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 03/05/2025] [Indexed: 04/05/2025] Open
Abstract
Inhibiting dual leucine-zipper kinase (DLK) could potentially ameliorate diverse neuropathological conditions, but a direct inhibitor of DLK's kinase domain caused unintended side effects in human patients, indicative of neuronal cytoskeletal disruption. We sought a more precise intervention and show here that axon-to-soma pro-degenerative signaling requires acute, axonal palmitoylation of DLK. To identify potential modulators of this modification, we screened >28,000 compounds using a high-content imaging readout of DLK's palmitoylation-dependent subcellular localization. Several hits alter DLK localization in non-neuronal cells, reduce DLK retrograde signaling and protect cultured dorsal root ganglion neurons from neurodegeneration. Mechanistically, the two most neuroprotective compounds selectively prevent DLK's stimulus-dependent palmitoylation and subsequent recruitment to axonal vesicles, but do not affect palmitoylation of other axonal proteins assessed and avoid the cytoskeletal disruption associated with direct DLK inhibition. Our hit compounds also reduce pro-degenerative retrograde signaling in vivo, revealing a previously unrecognized neuroprotective strategy.
Collapse
Affiliation(s)
- Xiaotian Zhang
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Heykyeong Jeong
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Jingwen Niu
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Sabrina M Holland
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - Brittany N Rotanz
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA
| | - John Gordon
- Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Margret B Einarson
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Wayne E Childers
- Moulder Center for Drug Discovery, School of Pharmacy, Temple University, Philadelphia, PA, USA
| | - Gareth M Thomas
- Center for Neural Development and Repair, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
- Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Zdradzinski MD, Vaughn LS, Matoo S, Trumbull K, Loomis A, Thames E, Lee SJ, Perrone-Bizzozero N, Lu Q, Larsen JM, Twiss JL. KHSRP-mediated Decay of Axonally Localized Prenyl-Cdc42 mRNA Slows Nerve Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636857. [PMID: 39975228 PMCID: PMC11839134 DOI: 10.1101/2025.02.06.636857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The small GTPase CDC42 promotes axon growth through actin filament polymerization and this growth is driven by axonal localization of the mRNA encoding the prenylated CDC42 isoform (Prenyl-Cdc42). Here, we show that axonal Prenyl-Cdc42 mRNA transport and translation are decreased by growth-inhibiting stimulation and increased by growth-promoting stimulation. In contrast, axonal RhoA mRNA transport and translation are increased by growth inhibition but unaffected by growth promotion. Localized increase in KHSRP in response to growth inhibitory stimulation, through elevation of intracellular Ca2+, promotes decay of axonal Prenyl-Cdc42 mRNA. Distinct 3'UTR motifs regulate transport and stability of axonal Prenyl-Cdc42 mRNA. KHSRP protein binds to a Prenyl-Cdc42 mRNA motif within nt 801-875 and the mRNA is remarkably increased in axons of Khsrp -/- mice. Selective depletion of Prenyl-Cdc42 mRNA from axons reverses the accelerated axon regeneration seen in Khsrp -/- mice.
Collapse
Affiliation(s)
- M D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Samaneh Matoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Kayleigh Trumbull
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA 29634
| | - Ashley Loomis
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
- Genomic Medicine, Biogen, Cambridge, MA, 02142 USA
| | | | - Qun Lu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
- South Carolina SmartState Centers for Neurotherapeutics, University of South Carolina, Columbia, SC 29208 USA
| | - Jessica M Larsen
- Department of Chemical and Biomolecular Engineering, Clemson University, Clemson, SC USA 29634
| | - J L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208 USA
- South Carolina SmartState Center for Childhood Neurotherapeutics, University of South Carolina, Columbia, SC 29208 USA
- Carolina Autism and Neurodevelopment Center, University of South Carolina, Columbia, SC 29208 USA
| |
Collapse
|
4
|
Fan Y, Luan X, Wang X, Li H, Zhao H, Li S, Li X, Qiu Z. Exploring the association between BDNF related signaling pathways and depression: A literature review. Brain Res Bull 2025; 220:111143. [PMID: 39608613 DOI: 10.1016/j.brainresbull.2024.111143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
Depression is a debilitating mental disease that inflicts significant harm upon individuals and society, yet effective treatment options remain elusive. At present, the pathogenesis of multiple depression is not fully clear, but its occurrence can be related to biological or environmental pathways, among which Brain-derived neurotrophic factor (BDNF) can unequivocally act on two downstream receptors, tyrosine kinase receptor (TrkB) and the p75 neurotrophin receptor (p75NTR), then affect the related signal pathways, affecting the occurrence and development of depression. Accumulating studies have revealed that BDNF-related pathways are critical in the pathophysiology of depression, and their interaction can further influence the efficacy of depression treatment. In this review, we mainly summarized the signaling pathways associated with BDNF and classified them according to different receptors and related molecules, providing promising insights and future directions in the treatment of depression.
Collapse
Affiliation(s)
- Yuchen Fan
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xinchi Luan
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Xuezhe Wang
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongchi Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Hongjiao Zhao
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Sheng Li
- Qingdao medical college, Qingdao University, Qingdao, Shandong, China.
| | - Xiaoxuan Li
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Zhenkang Qiu
- Interventional Medical Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
5
|
Lima KR, Rosa ACDSD, Gomes GCM, Sigaran GJ, Perretto AC, Mello-Carpes PB. Acute exercise performed during the late consolidation phase improves memory persistence by hippocampal protein synthesis and catecholamine modulation. Pharmacol Biochem Behav 2024; 245:173893. [PMID: 39419355 DOI: 10.1016/j.pbb.2024.173893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Memory persistence is a crucial aspect of long-term memory (LTM) and involves late consolidation processes that modulate memory stability over time. Acute physical exercise (PE) has emerged as a potential strategy to modulate memory consolidation and enhance memory persistence. While its effects have been extensively explored in the early consolidation phase, its impact on the late phase remains unexplored. In this study, we investigated the effects and mechanisms of an acute PE on the late consolidation window of novel object recognition (NOR) memory in rats. A 30-minute running session applied 11 h after NOR memory acquisition significantly increased memory persistence for at least 7 days. The inhibition of hippocampal protein synthesis immediately after acute PE using anisomycin (a ribosomal inhibitor) or rapamycin (an mTOR pathway inhibitor) impaired the effect of PE on memory persistence. Animals only presented memory 1 day after acquisition. The same effect was observed with the inhibition of beta-adrenergic receptors by timolol. Although there were no differences between the groups' comparison, blocking D1/D5 receptors after acute PE resulted in a lack of memory persistence in the dichotomous testing (remember/non-remember). Therefore, our exploration of the mechanisms underlying this enhancement revealed the involvement of protein synthesis and the requirement of beta-adrenergic and dopaminergic D1/D5 receptors in the dorsal hippocampus. These findings provide valuable insights into PE as a potential memory modulator, contributing to expanding our understanding of memory consolidation dynamics and acute PE effects.
Collapse
Affiliation(s)
- Karine Ramires Lima
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | | | | | - Gabriela Jaques Sigaran
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Anna Cecilia Perretto
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Pâmela Billig Mello-Carpes
- Physiology Research Group, Stress, Memory and Behavior Lab, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
6
|
Holt CE. Biological Roles of Local Protein Synthesis in Axons: A Journey of Discovery. Annu Rev Genet 2024; 58:1-18. [PMID: 39121543 DOI: 10.1146/annurev-genet-072220-030822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
The remit of this review is to give an autobiographical account of our discovery of the role of local protein synthesis in axon guidance. The paper reporting our initial findings was published in 2001. Here, I describe some of the work that led to this publication, the skepticism our findings initially received, and the subsequent exciting years of follow-up work that helped gradually to convince the neuroscience community of the existence and functional importance of local protein synthesis in multiple aspects of axon biology-guidance, branching, synaptogenesis, and maintenance. The journey has been an exhilarating one, taking me into a new field of RNA biology, with many unexpected twists and turns. In retelling it here, I have tried to recall the major influences on my thinking at the time rather than give a comprehensive review, and I apologize for any omissions due to my own ignorance during that era.
Collapse
Affiliation(s)
- Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
7
|
Onchan W, Attakitbancha C, Uttamapinant C. An expanded molecular and systems toolbox for imaging, mapping, and controlling local translation. Curr Opin Chem Biol 2024; 82:102523. [PMID: 39226865 DOI: 10.1016/j.cbpa.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/28/2024] [Accepted: 08/12/2024] [Indexed: 09/05/2024]
Abstract
Localized protein translation occurs through trafficking of mRNAs and protein translation machineries to different compartments of the cell, leading to rapid on-site synthesis of proteins in response to signaling cues. The spatiotemporally precise nature of the local translation process necessitates continual developments of technologies reviewed herein to visualize and map biomolecular components and the translation process with better spatial and temporal resolution and with fewer artifacts. We also discuss approaches to control local translation, which can serve as a design paradigm for subcellular genetic devices for eukaryotic synthetic biology.
Collapse
Affiliation(s)
- Warunya Onchan
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chadaporn Attakitbancha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Chayasith Uttamapinant
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
8
|
Tu WY, Xu W, Bai L, Liu J, Han Y, Luo B, Wang B, Zhang K, Shen C. Local protein synthesis at neuromuscular synapses is required for motor functions. Cell Rep 2024; 43:114661. [PMID: 39178112 DOI: 10.1016/j.celrep.2024.114661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/27/2024] [Accepted: 08/05/2024] [Indexed: 08/25/2024] Open
Abstract
Motor neurons are highly polarized, and their axons extend over great distances to form connections with myofibers via neuromuscular junctions (NMJs). Local translation at the NMJs in vivo has not been identified. Here, we utilized motor neuron-labeled RiboTag mice and the TRAP (translating ribosome affinity purification) technique to spatiotemporally profile the translatome at NMJs. We found that mRNAs associated with glucose catabolism, synaptic connection, and protein homeostasis are enriched at presynapses. Local translation at the synapse shifts from the assembly of cytoskeletal components during early developmental stages to energy production in adulthood. The mRNA of neuronal Agrin (Agrn), the key molecule for NMJ assembly, is present at motor axon terminals and locally translated. Disrupting the axonal location of Agrn mRNA causes impairment of synaptic transmission and motor functions in adult mice. Our findings indicate that spatiotemporal regulation of mRNA local translation at NMJs plays critical roles in synaptic transmission and motor functions in vivo.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Wentao Xu
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Lei Bai
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Jun Liu
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Han
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Benyan Luo
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Bingwei Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kejing Zhang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, MOE Joint International Research Laboratory of Pancreatic Diseases, First Affiliated Hospital, Hangzhou 310006, China.
| | - Chengyong Shen
- Department of Neurobiology of First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou 310020, China; MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
9
|
Bi X, Fang J, Jin X, Thirupathi A. The interplay between BDNF and PGC-1 alpha in maintaining brain health: role of exercise. Front Endocrinol (Lausanne) 2024; 15:1433750. [PMID: 39239097 PMCID: PMC11374591 DOI: 10.3389/fendo.2024.1433750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Throughout our evolutionary history, physical activity has played a significant role in shaping our physiology. Advances in exercise science have further reinforced this concept by highlighting how exercise can change gene expression and molecular signaling to achieve various beneficial outcomes. Several studies have shown that exercise can alter neuronal functions to prevent neurodegenerative conditions like Parkinson's and Alzheimer's diseases. However, individual genotypes, phenotypes, and varying exercise protocols hinder the prescription of exercise as standard therapy. Moreover, exercise-induced molecular signaling targets can be double-edged swords, making it difficult to use exercise as the primary candidate for beneficial effects. For example, activating PGC-1 alpha and BDNF through exercise could produce several benefits in maintaining brain health, such as plasticity, neuronal survival, memory formation, cognition, and synaptic transmission. However, higher expression of BDNF might play a negative role in bipolar disorder. Therefore, further understanding of a specific mechanistic approach is required. This review focuses on how exercise-induced activation of these molecules could support brain health and discusses the potential underlying mechanisms of the effect of exercise-induced PGC-1 alpha and BDNF on brain health.
Collapse
Affiliation(s)
- Xuecui Bi
- Institute of Physical Education and Training, Capital University of Physical Education and Sports, Beijing, China
| | - Jing Fang
- Basic Department, Dezhou Vocational and Technical College, Dezhou, China
| | - Xin Jin
- International Department, Beijing No.35 High School, Beijing, China
| | | |
Collapse
|
10
|
Koppers M, Özkan N, Nguyen HH, Jurriens D, McCaughey J, Nguyen DTM, Li CH, Stucchi R, Altelaar M, MacGillavry HD, Kapitein LC, Hoogenraad CC, Farías GG. Axonal endoplasmic reticulum tubules control local translation via P180/RRBP1-mediated ribosome interactions. Dev Cell 2024; 59:2053-2068.e9. [PMID: 38815583 PMCID: PMC11338522 DOI: 10.1016/j.devcel.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/31/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
Local mRNA translation in axons is critical for the spatiotemporal regulation of the axonal proteome. A wide variety of mRNAs are localized and translated in axons; however, how protein synthesis is regulated at specific subcellular sites in axons remains unclear. Here, we establish that the axonal endoplasmic reticulum (ER) supports axonal translation in developing rat hippocampal cultured neurons. Axonal ER tubule disruption impairs local translation and ribosome distribution. Using nanoscale resolution imaging, we find that ribosomes make frequent contacts with axonal ER tubules in a translation-dependent manner and are influenced by specific extrinsic cues. We identify P180/RRBP1 as an axonally distributed ribosome receptor that regulates local translation and binds to mRNAs enriched for axonal membrane proteins. Importantly, the impairment of axonal ER-ribosome interactions causes defects in axon morphology. Our results establish a role for the axonal ER in dynamically localizing mRNA translation, which is important for proper neuron development.
Collapse
Affiliation(s)
- Max Koppers
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands.
| | - Nazmiye Özkan
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Ha H Nguyen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Daphne Jurriens
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Janine McCaughey
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Dan T M Nguyen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Chun Hei Li
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Riccardo Stucchi
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Harold D MacGillavry
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands; Department of Neuroscience, Genentech, Inc., South San Francisco, CA 94080, USA
| | - Ginny G Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
11
|
Lockshin ER, Calakos N. The integrated stress response in brain diseases: A double-edged sword for proteostasis and synapses. Curr Opin Neurobiol 2024; 87:102886. [PMID: 38901329 PMCID: PMC11646490 DOI: 10.1016/j.conb.2024.102886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
The integrated stress response (ISR) is a highly conserved biochemical pathway that regulates protein synthesis. The ISR is activated in response to diverse stressors to restore cellular homeostasis. As such, the ISR is implicated in a wide range of diseases, including brain disorders. However, in the brain, the ISR also has potent influence on processes beyond proteostasis, namely synaptic plasticity, learning and memory. Thus, in the setting of brain diseases, ISR activity may have dual effects on proteostasis and synaptic function. In this review, we consider the ISR's contribution to brain disorders through the lens of its potential effects on synaptic plasticity. From these examples, we illustrate that at times ISR activity may be a "double-edged sword". We also highlight its potential as a therapeutic target to improve circuit function in brain diseases independent of its role in disease pathogenesis.
Collapse
Affiliation(s)
- Elana R Lockshin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Nicole Calakos
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
12
|
Martin-Solana E, Carter SD, Donahue EK, Ning J, Glausier JR, Preisegger MA, Eisenman L, Joseph PN, Bouchet-Marquis C, Wu K, Mobini CL, Frantz AN, Puig S, Hampton CM, Kabbani N, Jensen GJ, Watkins SC, Deisseroth K, Fenno LE, Gold MS, Wills ZP, Burkewitz K, Das S, Freyberg Z. Ribosome-Associated Vesicles promote activity-dependent local translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598007. [PMID: 38895376 PMCID: PMC11185778 DOI: 10.1101/2024.06.07.598007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Local protein synthesis in axons and dendrites underpins synaptic plasticity. However, the composition of the protein synthesis machinery in distal neuronal processes and the mechanisms for its activity-driven deployment to local translation sites remain unclear. Here, we employed cryo-electron tomography, volume electron microscopy, and live-cell imaging to identify Ribosome-Associated Vesicles (RAVs) as a dynamic platform for moving ribosomes to distal processes. Stimulation via chemically-induced long-term potentiation causes RAV accumulation in distal sites to drive local translation. We also demonstrate activity-driven changes in RAV generation and dynamics in vivo, identifying tubular ER shaping proteins in RAV biogenesis. Together, our work identifies a mechanism for ribosomal delivery to distal sites in neurons to promote activity-dependent local translation.
Collapse
Affiliation(s)
- Eva Martin-Solana
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephen D. Carter
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Eric K.F. Donahue
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jiying Ning
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jill R. Glausier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Leanna Eisenman
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Paul N. Joseph
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Ken Wu
- Materials and Structural Analysis, Thermo Fisher Scientific, Hillsboro, OR, USA
| | | | - Amber N. Frantz
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Puig
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Cheri M. Hampton
- UES, Inc., Dayton, OH, USA
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, USA
- School of Systems Biology, George Mason University, Fairfax, VA, USA
| | - Grant J. Jensen
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford, CA, USA
| | - Lief E. Fenno
- Departments of Psychiatry and Neuroscience, University of Texas Austin Dell Medical School, Austin, TX, USA
| | - Michael S. Gold
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kristopher Burkewitz
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Sulagna Das
- Department of Cell Biology, Albert Einstein College of Medicine, NY
- Department of Cell Biology, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Park I, Kim HJ, Shin J, Jung YJ, Lee D, Lim J, Park JM, Park JW, Kim J. AFM Imaging Reveals MicroRNA-132 to be a Positive Regulator of Synaptic Functions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306630. [PMID: 38493494 PMCID: PMC11077659 DOI: 10.1002/advs.202306630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/17/2024] [Indexed: 03/19/2024]
Abstract
The modification of synaptic and neural connections in adults, including the formation and removal of synapses, depends on activity-dependent synaptic and structural plasticity. MicroRNAs (miRNAs) play crucial roles in regulating these changes by targeting specific genes and regulating their expression. The fact that somatic and dendritic activity in neurons often occurs asynchronously highlights the need for spatial and dynamic regulation of protein synthesis in specific milieu and cellular loci. MicroRNAs, which can show distinct patterns of enrichment, help to establish the localized distribution of plasticity-related proteins. The recent study using atomic force microscopy (AFM)-based nanoscale imaging reveals that the abundance of miRNA(miR)-134 is inversely correlated with the functional activity of dendritic spine structures. However, the miRNAs that are selectively upregulated in potentiated synapses, and which can thereby support prospective changes in synaptic efficacy, remain largely unknown. Using AFM force imaging, significant increases in miR-132 in the dendritic regions abutting functionally-active spines is discovered. This study provides evidence for miR-132 as a novel positive miRNA regulator residing in dendritic shafts, and also suggests that activity-dependent miRNAs localized in distinct sub-compartments of neurons play bi-directional roles in controlling synaptic transmission and synaptic plasticity.
Collapse
Affiliation(s)
- Ikbum Park
- Technical Support Center for Chemical IndustryKorea Research Institute of Chemical Technology (KRICT)Ulsan44412Republic of Korea
| | - Hyun Jin Kim
- Department of Life SciencesPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Juyoung Shin
- Department of Life SciencesPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Yu Jin Jung
- Center for Specialty ChemicalsKorea Research Institute of Chemical Technology (KRICT)Ulsan44412Republic of Korea
| | - Donggyu Lee
- Division of Electronics and Information SystemDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Ji‐seon Lim
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Jong Mok Park
- Technical Support Center for Chemical IndustryKorea Research Institute of Chemical Technology (KRICT)Ulsan44412Republic of Korea
| | - Joon Won Park
- Department of ChemistryPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
| | - Joung‐Hun Kim
- Department of Life SciencesPohang University of Science and Technology (POSTECH)Pohang37673Republic of Korea
- Institute of Convergence ScienceYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
14
|
Veeraraghavan P, Engmann AK, Hatch JJ, Itoh Y, Nguyen D, Addison T, Macklis JD. Dynamic subtype- and context-specific subcellular RNA regulation in growth cones of developing neurons of the cerebral cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.24.559186. [PMID: 38328182 PMCID: PMC10849483 DOI: 10.1101/2023.09.24.559186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Molecular mechanisms that cells employ to compartmentalize function via localization of function-specific RNA and translation are only partially elucidated. We investigate long-range projection neurons of the cerebral cortex as highly polarized exemplars to elucidate dynamic regulation of RNA localization, stability, and translation within growth cones (GCs), leading tips of growing axons. Comparison of GC-localized transcriptomes between two distinct subtypes of projection neurons- interhemispheric-callosal and corticothalamic- across developmental stages identifies both distinct and shared subcellular machinery, and intriguingly highlights enrichment of genes associated with neurodevelopmental and neuropsychiatric disorders. Developmental context-specific components of GC-localized transcriptomes identify known and novel potential regulators of distinct phases of circuit formation: long-distance growth, target area innervation, and synapse formation. Further, we investigate mechanisms by which transcripts are enriched and dynamically regulated in GCs, and identify GC-enriched motifs in 3' untranslated regions. As one example, we identify cytoplasmic adenylation element binding protein 4 (CPEB4), an RNA binding protein regulating localization and translation of mRNAs encoding molecular machinery important for axonal branching and complexity. We also identify RNA binding motif single stranded interacting protein 1 (RBMS1) as a dynamically expressed regulator of RNA stabilization that enables successful callosal circuit formation. Subtly aberrant associative and integrative cortical circuitry can profoundly affect cortical function, often causing neurodevelopmental and neuropsychiatric disorders. Elucidation of context-specific subcellular RNA regulation for GC- and soma-localized molecular controls over precise circuit development, maintenance, and function offers generalizable insights for other polarized cells, and might contribute substantially to understanding neurodevelopmental and behavioral-cognitive disorders and toward targeted therapeutics.
Collapse
Affiliation(s)
- Priya Veeraraghavan
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Anne K. Engmann
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - John J. Hatch
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Yasuhiro Itoh
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Duane Nguyen
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Thomas Addison
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeffrey D. Macklis
- Department of Stem Cell and Regenerative Biology, and Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
15
|
Cagnetta R, Flanagan JG, Sonenberg N. Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease. J Neurosci 2023; 43:7247-7263. [PMID: 37914402 PMCID: PMC10621772 DOI: 10.1523/jneurosci.2240-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
16
|
Sun C, Schuman E. A multi-omics view of neuronal subcellular protein synthesis. Curr Opin Neurobiol 2023; 80:102705. [PMID: 36913750 DOI: 10.1016/j.conb.2023.102705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023]
Abstract
While it has long been known that protein synthesis is necessary for long-term memory in the brain, the logistics of neuronal protein synthesis is complicated by the extensive subcellular compartmentalization of the neuron. Local protein synthesis solves many of the logistic problems posed by the extreme complexity of dendritic and axonal arbors and the huge number of synapses. Here we review recent multi-omic and quantitative studies that elaborate a systems view of decentralized neuronal protein synthesis. We highlight recent insights from the transcriptomic, translatomic, and proteomic levels, discuss the nuanced logic of local protein synthesis for different protein features, and list the missing information needed to build a comprehensive logistic model for neuronal protein supply.
Collapse
Affiliation(s)
- Chao Sun
- Max Planck Institute for Brain Research, Frankfurt, Germany; Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic-EMBL Partnership for Molecular Medicine, Denmark; Aarhus University, Department of Molecular Biology and Genetics, Universitetsbyen 81, 8000 Aarhus C, Denmark. https://twitter.com/LukeChaoSun
| | - Erin Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany.
| |
Collapse
|
17
|
Jung J, Ohk J, Kim H, Holt CE, Park HJ, Jung H. mRNA transport, translation, and decay in adult mammalian central nervous system axons. Neuron 2023; 111:650-668.e4. [PMID: 36584679 DOI: 10.1016/j.neuron.2022.12.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/31/2022] [Accepted: 12/08/2022] [Indexed: 12/30/2022]
Abstract
Localized mRNA translation regulates synapse function and axon maintenance, but how compartment-specific mRNA repertoires are regulated is largely unknown. We developed an axonal transcriptome capture method that allows deep sequencing of metabolically labeled mRNAs from retinal ganglion cell axon terminals in mouse. Comparing axonal-to-somal transcriptomes and axonal translatome-to-transcriptome enables genome-wide visualization of mRNA transport and translation and unveils potential regulators tuned to each process. FMRP and TDP-43 stand out as key regulators of transport, and experiments in Fmr1 knockout mice validate FMRP's role in the axonal transportation of synapse-related mRNAs. Pulse-and-chase experiments enable genome-wide assessment of mRNA stability in axons and reveal a strong coupling between mRNA translation and decay. Measuring the absolute mRNA abundance per axon terminal shows that the adult axonal transcriptome is stably maintained by persistent transport. Our datasets provide a rich resource for unique insights into RNA-based mechanisms in maintaining presynaptic structure and function in vivo.
Collapse
Affiliation(s)
- Jane Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jiyeon Ohk
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyeyoung Kim
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Christine E Holt
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Hyun Jung Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea.
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
18
|
Sahoo PK, Twiss JL. Profiling Locally Translated mRNAs in Regenerating Axons. Methods Mol Biol 2023; 2636:145-161. [PMID: 36881299 DOI: 10.1007/978-1-0716-3012-9_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Spatial and temporal regulation of protein expression plays important roles in many cellular functions, particularly for highly polarized cell types. While the subcellular proteome can be altered by relocalizing proteins from other domains of the cell, transporting mRNAs to subcellular domains provides a means to locally synthesize new proteins in response to different stimuli. Localized protein synthesis is a critical mechanism in neurons that extend dendrites and axons long distances from their cell bodies. Here, we discuss methodologies that have been developed to study localized protein synthesis using axonal protein synthesis as an example. We provide an in-depth method using dual fluorescence recovery after photobleaching to visualize sites of protein synthesis using reporter cDNAs that encode two different localizing mRNAs along with diffusion-limited fluorescent reporter proteins. We show how this method can be used to determine how extracellular stimuli and different physiological states can alter the specificity of local mRNA translation in real time.
Collapse
Affiliation(s)
- Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA.
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC, USA
| |
Collapse
|
19
|
Machado JP, Athie MC, Matos AH, Lopes-Cendes I, Vieira A. The transcriptome of rat hippocampal subfields. IBRO Neurosci Rep 2022; 13:322-329. [PMID: 36247526 PMCID: PMC9561749 DOI: 10.1016/j.ibneur.2022.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/08/2022] Open
Abstract
The hippocampus comprises several neuronal populations such as CA1, CA2, CA3, and the dentate gyrus (DG), which present different neuronal origins, morphologies, and molecular mechanisms. Laser capture microdissection (LCM) allows selectively collecting samples from target regions and eliminating unwanted cells to obtain more specific results. LCM of hippocampus neuronal populations coupĺed with RNA-seq analysis has the potential to allow the exploration of the molecular machinery unique to each of these subfields. Previous RNA-seq investigation has already provided a molecular blueprint of the hippocampus, however, there is no RNA-seq data specific for each of the rat hippocampal regions. Serial tissue sections covering the hippocampus were produced from frozen brains of adult male Wistar rats, and the hippocampal subfields CA1, CA2, CA3, and DG were identified and isolated by LCM. We found evident segregation of the transcriptomic profile from different regions of the hippocampus and the expression of known, as well as novel, specific marker genes for each region. Gene ontology enrichment analysis of CA1 subfield indicates an enrichment of actin regulation and postsynaptic membrane AMPA receptors genes indispensable for long-term potentiation. CA2 and CA3 transcripts were found associated with the increased metabolic processes. DG expression was enriched for ribosome and spliceosome, both required for protein synthesis and maintenance of cell life. The present findings contribute to a deeper understanding of the differences in the molecular machinery expressed by the rat hippocampal neuronal populations, further exploring underlying mechanisms responsible for each subflied specific functions.
Collapse
Affiliation(s)
- João P.D. Machado
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Maria C.P. Athie
- Department of Translational Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Alexandre H.B. Matos
- Department of Translational Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - Iscia Lopes-Cendes
- Department of Translational Medicine, School of Medical Sciences. University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| | - André.S. Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, São Paulo, Brazil
| |
Collapse
|
20
|
Bai Y, Wang H, Li C. SAPAP Scaffold Proteins: From Synaptic Function to Neuropsychiatric Disorders. Cells 2022; 11:cells11233815. [PMID: 36497075 PMCID: PMC9740047 DOI: 10.3390/cells11233815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/30/2022] Open
Abstract
Excitatory (glutamatergic) synaptic transmission underlies many aspects of brain activity and the genesis of normal human behavior. The postsynaptic scaffolding proteins SAP90/PSD-95-associated proteins (SAPAPs), which are abundant components of the postsynaptic density (PSD) at excitatory synapses, play critical roles in synaptic structure, formation, development, plasticity, and signaling. The convergence of human genetic data with recent in vitro and in vivo animal model data indicates that mutations in the genes encoding SAPAP1-4 are associated with neurological and psychiatric disorders, and that dysfunction of SAPAP scaffolding proteins may contribute to the pathogenesis of various neuropsychiatric disorders, such as schizophrenia, autism spectrum disorders, obsessive compulsive disorders, Alzheimer's disease, and bipolar disorder. Here, we review recent major genetic, epigenetic, molecular, behavioral, electrophysiological, and circuitry studies that have advanced our knowledge by clarifying the roles of SAPAP proteins at the synapses, providing new insights into the mechanistic links to neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yunxia Bai
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
| | - Huimin Wang
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- NYU-ECNU Institute of Brain and Cognitive Science at NYU Shanghai, Shanghai 200062, China
| | - Chunxia Li
- Key Laboratory of Brain Functional Genomics (STCSM & MOE), Affiliated Mental Health Center (ECNU), School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
- Shanghai Changning Mental Health Center, Shanghai 200335, China
- Correspondence:
| |
Collapse
|
21
|
Costa RO, Martins LF, Tahiri E, Duarte CB. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1713. [PMID: 35075821 DOI: 10.1002/wrna.1713] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) plays multiple roles in the nervous system, including in neuronal development, in long-term synaptic potentiation in different brain regions, and in neuronal survival. Alterations in these regulatory mechanisms account for several diseases of the nervous system. The synaptic effects of BDNF mediated by activation of tropomyosin receptor kinase B (TrkB) receptors are partly mediated by stimulation of local protein synthesis which is now considered a ubiquitous feature in both presynaptic and postsynaptic compartments of the neuron. The capacity to locally synthesize proteins is of great relevance at several neuronal developmental stages, including during neurite development, synapse formation, and stabilization. The available evidence shows that the effects of BDNF-TrkB signaling on local protein synthesis regulate the structure and function of the developing and mature synapses. While a large number of studies have illustrated a wide range of effects of BDNF on the postsynaptic proteome, a growing number of studies also point to presynaptic effects of the neurotrophin in the local regulation of the protein composition at the presynaptic level. Here, we will review the latest evidence on the role of BDNF in local protein synthesis, comparing the effects on the presynaptic and postsynaptic compartments. Additionally, we overview the relevance of BDNF-associated local protein synthesis in neuronal development and synaptic plasticity, at the presynaptic and postsynaptic compartments, and their relevance in terms of disease. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís F Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Tahiri
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
22
|
Triantopoulou N, Vidaki M. Local mRNA translation and cytoskeletal reorganization: Mechanisms that tune neuronal responses. Front Mol Neurosci 2022; 15:949096. [PMID: 35979146 PMCID: PMC9376447 DOI: 10.3389/fnmol.2022.949096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 12/31/2022] Open
Abstract
Neurons are highly polarized cells with significantly long axonal and dendritic extensions that can reach distances up to hundreds of centimeters away from the cell bodies in higher vertebrates. Their successful formation, maintenance, and proper function highly depend on the coordination of intricate molecular networks that allow axons and dendrites to quickly process information, and respond to a continuous and diverse cascade of environmental stimuli, often without enough time for communication with the soma. Two seemingly unrelated processes, essential for these rapid responses, and thus neuronal homeostasis and plasticity, are local mRNA translation and cytoskeletal reorganization. The axonal cytoskeleton is characterized by high stability and great plasticity; two contradictory attributes that emerge from the powerful cytoskeletal rearrangement dynamics. Cytoskeletal reorganization is crucial during nervous system development and in adulthood, ensuring the establishment of proper neuronal shape and polarity, as well as regulating intracellular transport and synaptic functions. Local mRNA translation is another mechanism with a well-established role in the developing and adult nervous system. It is pivotal for axonal guidance and arborization, synaptic formation, and function and seems to be a key player in processes activated after neuronal damage. Perturbations in the regulatory pathways of local translation and cytoskeletal reorganization contribute to various pathologies with diverse clinical manifestations, ranging from intellectual disabilities (ID) to autism spectrum disorders (ASD) and schizophrenia (SCZ). Despite the fact that both processes are essential for the orchestration of pathways critical for proper axonal and dendritic function, the interplay between them remains elusive. Here we review our current knowledge on the molecular mechanisms and specific interaction networks that regulate and potentially coordinate these interconnected processes.
Collapse
Affiliation(s)
- Nikoletta Triantopoulou
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
| | - Marina Vidaki
- Division of Basic Sciences, Medical School, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas (IMBB-FORTH), Heraklion, Greece
- *Correspondence: Marina Vidaki,
| |
Collapse
|
23
|
Mohanan AG, Gunasekaran S, Jacob RS, Omkumar RV. Role of Ca2+/Calmodulin-Dependent Protein Kinase Type II in Mediating Function and Dysfunction at Glutamatergic Synapses. Front Mol Neurosci 2022; 15:855752. [PMID: 35795689 PMCID: PMC9252440 DOI: 10.3389/fnmol.2022.855752] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/25/2023] Open
Abstract
Glutamatergic synapses harbor abundant amounts of the multifunctional Ca2+/calmodulin-dependent protein kinase type II (CaMKII). Both in the postsynaptic density as well as in the cytosolic compartment of postsynaptic terminals, CaMKII plays major roles. In addition to its Ca2+-stimulated kinase activity, it can also bind to a variety of membrane proteins at the synapse and thus exert spatially restricted activity. The abundance of CaMKII in glutamatergic synapse is akin to scaffolding proteins although its prominent function still appears to be that of a kinase. The multimeric structure of CaMKII also confers several functional capabilities on the enzyme. The versatility of the enzyme has prompted hypotheses proposing several roles for the enzyme such as Ca2+ signal transduction, memory molecule function and scaffolding. The article will review the multiple roles played by CaMKII in glutamatergic synapses and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Archana G. Mohanan
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sowmya Gunasekaran
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - Reena Sarah Jacob
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- Research Scholar, Manipal Academy of Higher Education, Manipal, India
| | - R. V. Omkumar
- Neurobiology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: R. V. Omkumar,
| |
Collapse
|
24
|
Patel P, Buchanan CN, Zdradzinski MD, Sahoo PK, Kar A, Lee S, Vaughn L, Urisman A, Oses-Prieto J, Dell’Orco M, Cassidy D, Costa I, Miller S, Thames E, Smith T, Burlingame A, Perrone-Bizzozero N, Twiss J. Intra-axonal translation of Khsrp mRNA slows axon regeneration by destabilizing localized mRNAs. Nucleic Acids Res 2022; 50:5772-5792. [PMID: 35556128 PMCID: PMC9177972 DOI: 10.1093/nar/gkac337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
Axonally synthesized proteins support nerve regeneration through retrograde signaling and local growth mechanisms. RNA binding proteins (RBP) are needed for this and other aspects of post-transcriptional regulation of neuronal mRNAs, but only a limited number of axonal RBPs are known. We used targeted proteomics to profile RBPs in peripheral nerve axons. We detected 76 proteins with reported RNA binding activity in axoplasm, and levels of several change with axon injury and regeneration. RBPs with altered levels include KHSRP that decreases neurite outgrowth in developing CNS neurons. Axonal KHSRP levels rapidly increase after injury remaining elevated up to 28 days post axotomy. Khsrp mRNA localizes into axons and the rapid increase in axonal KHSRP is through local translation of Khsrp mRNA in axons. KHSRP can bind to mRNAs with 3'UTR AU-rich elements and targets those transcripts to the cytoplasmic exosome for degradation. KHSRP knockout mice show increased axonal levels of KHSRP target mRNAs, Gap43, Snap25, and Fubp1, following sciatic nerve injury and these mice show accelerated nerve regeneration in vivo. Together, our data indicate that axonal translation of the RNA binding protein Khsrp mRNA following nerve injury serves to promote decay of other axonal mRNAs and slow axon regeneration.
Collapse
Affiliation(s)
- Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Courtney N Buchanan
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Matthew D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Lauren S Vaughn
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Anatoly Urisman
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Juan Oses-Prieto
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Michela Dell’Orco
- Department of Neurosciences, University of New Mexico School of Health Sciences, Albuquerque, NM 87131, USA
| | - Devon E Cassidy
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Irene Dalla Costa
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sharmina Miller
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Elizabeth Thames
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Terika P Smith
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alma L Burlingame
- Department of Pharmaceutical Sciences, University of California, San Francisco, CA 94143, USA
| | - Nora Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Health Sciences, Albuquerque, NM 87131, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
25
|
Maffioli E, Angiulli E, Nonnis S, Grassi Scalvini F, Negri A, Tedeschi G, Arisi I, Frabetti F, D’Aniello S, Alleva E, Cioni C, Toni M. Brain Proteome and Behavioural Analysis in Wild Type, BDNF +/- and BDNF -/- Adult Zebrafish ( Danio rerio) Exposed to Two Different Temperatures. Int J Mol Sci 2022; 23:ijms23105606. [PMID: 35628418 PMCID: PMC9146406 DOI: 10.3390/ijms23105606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Experimental evidence suggests that environmental stress conditions can alter the expression of BDNF and that the expression of this neurotrophin influences behavioural responses in mammalian models. It has been recently demonstrated that exposure to 34 °C for 21 days alters the brain proteome and behaviour in zebrafish. The aim of this work was to investigate the role of BDNF in the nervous system of adult zebrafish under control and heat treatment conditions. For this purpose, zebrafish from three different genotypes (wild type, heterozygous BDNF+/- and knock out BDNF-/-) were kept for 21 days at 26 °C or 34 °C and then euthanized for brain molecular analyses or subjected to behavioural tests (Y-maze test, novel tank test, light and dark test, social preference test, mirror biting test) for assessing behavioural aspects such as boldness, anxiety, social preference, aggressive behaviour, interest for the novel environment and exploration. qRT-PCR analysis showed the reduction of gene expression of BDNF and its receptors after heat treatment in wild type zebrafish. Moreover, proteomic analysis and behavioural tests showed genotype- and temperature-dependent effects on brain proteome and behavioural responding. Overall, the absent expression of BDNF in KO alters (1) the brain proteome by reducing the expression of proteins involved in synapse functioning and neurotransmitter-mediated transduction; (2) the behaviour, which can be interpreted as bolder and less anxious and (3) the cellular and behavioural response to thermal treatment.
Collapse
Affiliation(s)
- Elisa Maffioli
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
| | - Elisa Angiulli
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Via Alfonso Borelli 50, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Simona Nonnis
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Francesca Grassi Scalvini
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
| | - Armando Negri
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
| | - Gabriella Tedeschi
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, Via dell’Università 6, 26900 Lodi, Italy; (E.M.); (S.N.); (F.G.S.); (A.N.); (G.T.)
- CRC I-WE (Coordinating Research Centre: Innovation for Well-Being and Environment), University of Milan, 20134 Milan, Italy
| | - Ivan Arisi
- Bioinformatics Facility, European Brain Research Institute (EBRI) “Rita Levi-Montalcini”, 00161 Rome, Italy;
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), 00131 Rome, Italy
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40136 Bologna, Italy;
| | - Salvatore D’Aniello
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn Napoli, Villa Comunale, 80121 Napoli, Italy;
| | - Enrico Alleva
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy;
| | - Carla Cioni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Via Alfonso Borelli 50, 00161 Rome, Italy; (E.A.); (C.C.)
| | - Mattia Toni
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University, Via Alfonso Borelli 50, 00161 Rome, Italy; (E.A.); (C.C.)
- Correspondence:
| |
Collapse
|
26
|
Chen N, Zhang Y, Adel M, Kuklin EA, Reed ML, Mardovin JD, Bakthavachalu B, VijayRaghavan K, Ramaswami M, Griffith LC. Local translation provides the asymmetric distribution of CaMKII required for associative memory formation. Curr Biol 2022; 32:2730-2738.e5. [PMID: 35545085 DOI: 10.1016/j.cub.2022.04.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/18/2022] [Accepted: 04/14/2022] [Indexed: 10/18/2022]
Abstract
How compartment-specific local proteomes are generated and maintained is inadequately understood, particularly in neurons, which display extreme asymmetries. Here we show that local enrichment of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in axons of Drosophila mushroom body neurons is necessary for cellular plasticity and associative memory formation. Enrichment is achieved via enhanced axoplasmic translation of CaMKII mRNA, through a mechanism requiring the RNA-binding protein Mub and a 23-base Mub-recognition element in the CaMKII 3' UTR. Perturbation of either dramatically reduces axonal, but not somatic, CaMKII protein without altering the distribution or amount of mRNA in vivo, and both are necessary and sufficient to enhance axonal translation of reporter mRNA. Together, these data identify elevated levels of translation of an evenly distributed mRNA as a novel strategy for generating subcellular biochemical asymmetries. They further demonstrate the importance of distributional asymmetry in the computational and biological functions of neurons.
Collapse
Affiliation(s)
- Nannan Chen
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Yunpeng Zhang
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Mohamed Adel
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Elena A Kuklin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Martha L Reed
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Jacob D Mardovin
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA
| | - Baskar Bakthavachalu
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - K VijayRaghavan
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology and School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore 560065, India; School of Basic Science, Indian Institute of Technology Mandi, Mandi, India
| | - Leslie C Griffith
- Department of Biology, Volen National Center for Complex Systems, Brandeis University, 415 South Street, Waltham, MA 02454-9110, USA.
| |
Collapse
|
27
|
Abstract
Cellular processes require tight and coordinated control of protein abundance, localization, and activity. One of the core mechanisms to achieve specific regulation of proteins is protein phosphorylation. Here we present a workflow to monitor protein abundance and phosphorylation in primary cultured neurons using liquid chromatography-coupled mass spectrometry. Our protocol provides a detailed guide on all steps for detection and label-free-quantification of phosphorylated and unmodified proteins of primary cortical neurons, including primary cell culture, phosphoproteomic sample preparation and data-processing, and evaluation. For complete details on the use and execution of this protocol, please refer to Desch et al. (2021).
Collapse
Affiliation(s)
- Kristina Desch
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Erin M. Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Julian D. Langer
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
- Max Planck Institute of Biophysics, Max von Laue Strasse 3, 60438 Frankfurt, Germany
| |
Collapse
|
28
|
Abstract
To form synaptic connections and store information, neurons continuously remodel their proteomes. The impressive length of dendrites and axons imposes logistical challenges to maintain synaptic proteins at locations remote from the transcription source (the nucleus). The discovery of thousands of messenger RNAs (mRNAs) near synapses suggested that neurons overcome distance and gain autonomy by producing proteins locally. It is not generally known, however, if, how, and when localized mRNAs are translated into protein. To investigate the translational landscape in neuronal subregions, we performed simultaneous RNA sequencing (RNA-seq) and ribosome sequencing (Ribo-seq) from microdissected rodent brain slices to identify and quantify the transcriptome and translatome in cell bodies (somata) as well as dendrites and axons (neuropil). Thousands of transcripts were differentially translated between somatic and synaptic regions, with many scaffold and signaling molecules displaying increased translation levels in the neuropil. Most translational changes between compartments could be accounted for by differences in RNA abundance. Pervasive translational regulation was observed in both somata and neuropil influenced by specific mRNA features (e.g., untranslated region [UTR] length, RNA-binding protein [RBP] motifs, and upstream open reading frames [uORFs]). For over 800 mRNAs, the dominant source of translation was the neuropil. We constructed a searchable and interactive database for exploring mRNA transcripts and their translation levels in the somata and neuropil [MPI Brain Research, The mRNA translation landscape in the synaptic neuropil. https://public.brain.mpg.de/dashapps/localseq/ Accessed 5 October 2021]. Overall, our findings emphasize the substantial contribution of local translation to maintaining synaptic protein levels and indicate that on-site translational control is an important mechanism to control synaptic strength.
Collapse
|
29
|
Fusco CM, Desch K, Dörrbaum AR, Wang M, Staab A, Chan ICW, Vail E, Villeri V, Langer JD, Schuman EM. Neuronal ribosomes exhibit dynamic and context-dependent exchange of ribosomal proteins. Nat Commun 2021; 12:6127. [PMID: 34675203 PMCID: PMC8531293 DOI: 10.1038/s41467-021-26365-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/29/2021] [Indexed: 12/11/2022] Open
Abstract
Owing to their morphological complexity and dense network connections, neurons modify their proteomes locally, using mRNAs and ribosomes present in the neuropil (tissue enriched for dendrites and axons). Although ribosome biogenesis largely takes place in the nucleus and perinuclear region, neuronal ribosomal protein (RP) mRNAs have been frequently detected remotely, in dendrites and axons. Here, using imaging and ribosome profiling, we directly detected the RP mRNAs and their translation in the neuropil. Combining brief metabolic labeling with mass spectrometry, we found that a group of RPs rapidly associated with translating ribosomes in the cytoplasm and that this incorporation was independent of canonical ribosome biogenesis. Moreover, the incorporation probability of some RPs was regulated by location (neurites vs. cell bodies) and changes in the cellular environment (following oxidative stress). Our results suggest new mechanisms for the local activation, repair and/or specialization of the translational machinery within neuronal processes, potentially allowing neuronal synapses a rapid means to regulate local protein synthesis.
Collapse
Affiliation(s)
- Claudia M. Fusco
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Kristina Desch
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Aline R. Dörrbaum
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,Present Address: MOS, Center for Mass Spectrometry and Optical Spectroscopy, Mannheim, Germany
| | - Mantian Wang
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.508836.0Present Address: Institute of Molecular and Clinical Ophthalmology, Basel, Switzerland
| | - Anja Staab
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Ivy C. W. Chan
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.424247.30000 0004 0438 0426Present Address: German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Eleanor Vail
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Veronica Villeri
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.412041.20000 0001 2106 639XPresent Address: Department of Neuroscience, University of Bordeaux, Bordeaux, France
| | - Julian D. Langer
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany ,grid.419494.50000 0001 1018 9466Max Planck Institute for Biophysics, Frankfurt, Germany
| | - Erin M. Schuman
- grid.419505.c0000 0004 0491 3878Max Planck Institute for Brain Research, Frankfurt, Germany
| |
Collapse
|
30
|
Sun C, Nold A, Fusco CM, Rangaraju V, Tchumatchenko T, Heilemann M, Schuman EM. The prevalence and specificity of local protein synthesis during neuronal synaptic plasticity. SCIENCE ADVANCES 2021; 7:eabj0790. [PMID: 34533986 PMCID: PMC8448450 DOI: 10.1126/sciadv.abj0790] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To supply proteins to their vast volume, neurons localize mRNAs and ribosomes in dendrites and axons. While local protein synthesis is required for synaptic plasticity, the abundance and distribution of ribosomes and nascent proteins near synapses remain elusive. Here, we quantified the occurrence of local translation and visualized the range of synapses supplied by nascent proteins during basal and plastic conditions. We detected dendritic ribosomes and nascent proteins at single-molecule resolution using DNA-PAINT and metabolic labeling. Both ribosomes and nascent proteins positively correlated with synapse density. Ribosomes were detected at ~85% of synapses with ~2 translational sites per synapse; ~50% of the nascent protein was detected near synapses. The amount of locally synthesized protein detected at a synapse correlated with its spontaneous Ca2+ activity. A multifold increase in synaptic nascent protein was evident following both local and global plasticity at respective scales, albeit with substantial heterogeneity between neighboring synapses.
Collapse
Affiliation(s)
- Chao Sun
- Max Planck Institute for Brain Research, Frankfurt, Germany
| | - Andreas Nold
- Max Planck Institute for Brain Research, Frankfurt, Germany
- Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | | | - Tatjana Tchumatchenko
- Max Planck Institute for Brain Research, Frankfurt, Germany
- Institute of Experimental Epileptology and Cognition Research, Life and Brain Center, Universitätsklinikum Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Mike Heilemann
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt, Germany
| | - Erin M. Schuman
- Max Planck Institute for Brain Research, Frankfurt, Germany
- Corresponding author.
| |
Collapse
|
31
|
Desch K, Langer JD, Schuman EM. Dynamic bi-directional phosphorylation events associated with the reciprocal regulation of synapses during homeostatic up- and down-scaling. Cell Rep 2021; 36:109583. [PMID: 34433048 PMCID: PMC8411114 DOI: 10.1016/j.celrep.2021.109583] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/15/2021] [Accepted: 07/29/2021] [Indexed: 01/17/2023] Open
Abstract
Homeostatic synaptic scaling allows for bi-directional adjustment of the strength of synaptic connections in response to changes in their input. Protein phosphorylation modulates many neuronal processes, but it has not been studied on a global scale during synaptic scaling. Here, we use liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses to measure changes in the phosphoproteome in response to up- or down-scaling in cultured cortical neurons over minutes to 24 h. Of ~45,000 phosphorylation events, ~3,300 (associated with 1,285 phosphoproteins) are regulated by homeostatic scaling. Activity-sensitive phosphoproteins are predominantly located at synapses and involved in cytoskeletal reorganization. We identify many early phosphorylation events that could serve as sensors for the activity offset as well as late and/or persistent phosphoregulation that could represent effector mechanisms driving the homeostatic response. Much of the persistent phosphorylation is reciprocally regulated by up- or down-scaling, suggesting that mechanisms underlying these two poles of synaptic regulation make use of a common signaling axis. Global proteome and phosphoproteome dynamics following homeostatic synaptic scaling Approximately 3,300 activity-sensitive, synapse-associated phospho-events Persistent signaling of ~25% of initial phospho-events (min to 24 h) Persistent and reciprocal phosphoregulation links synaptic up- and down-scaling
Collapse
Affiliation(s)
- Kristina Desch
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany
| | - Julian D Langer
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Max von Laue Strasse 4, 60438 Frankfurt, Germany.
| |
Collapse
|
32
|
Rajgor D, Welle TM, Smith KR. The Coordination of Local Translation, Membranous Organelle Trafficking, and Synaptic Plasticity in Neurons. Front Cell Dev Biol 2021; 9:711446. [PMID: 34336865 PMCID: PMC8317219 DOI: 10.3389/fcell.2021.711446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022] Open
Abstract
Neurons are highly complex polarized cells, displaying an extraordinary degree of spatial compartmentalization. At presynaptic and postsynaptic sites, far from the cell body, local protein synthesis is utilized to continually modify the synaptic proteome, enabling rapid changes in protein production to support synaptic function. Synapses undergo diverse forms of plasticity, resulting in long-term, persistent changes in synapse strength, which are paramount for learning, memory, and cognition. It is now well-established that local translation of numerous synaptic proteins is essential for many forms of synaptic plasticity, and much work has gone into deciphering the strategies that neurons use to regulate activity-dependent protein synthesis. Recent studies have pointed to a coordination of the local mRNA translation required for synaptic plasticity and the trafficking of membranous organelles in neurons. This includes the co-trafficking of RNAs to their site of action using endosome/lysosome “transports,” the regulation of activity-dependent translation at synapses, and the role of mitochondria in fueling synaptic translation. Here, we review our current understanding of these mechanisms that impact local translation during synaptic plasticity, providing an overview of these novel and nuanced regulatory processes involving membranous organelles in neurons.
Collapse
Affiliation(s)
- Dipen Rajgor
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Theresa M Welle
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Katharine R Smith
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
33
|
Bin Ibrahim MZ, Benoy A, Sajikumar S. Long-term plasticity in the hippocampus: maintaining within and 'tagging' between synapses. FEBS J 2021; 289:2176-2201. [PMID: 34109726 DOI: 10.1111/febs.16065] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Synapses between neurons are malleable biochemical structures, strengthening and diminishing over time dependent on the type of information they receive. This phenomenon known as synaptic plasticity underlies learning and memory, and its different forms, long-term potentiation (LTP) and long-term depression (LTD), perform varied cognitive roles in reinforcement, relearning and associating memories. Moreover, both LTP and LTD can exist in an early transient form (early-LTP/LTD) or a late persistent form (late-LTP/LTD), which are triggered by different induction protocols, and also differ in their dependence on protein synthesis and the involvement of key molecular players. Beyond homosynaptic modifications, synapses can also interact with one another. This is encapsulated in the synaptic tagging and capture hypothesis (STC), where synapses expressing early-LTP/LTD present a 'tag' that can capture the protein synthesis products generated during a temporally proximal late-LTP/LTD induction. This 'tagging' phenomenon forms the framework of synaptic interactions in various conditions and accounts for the cellular basis of the time-dependent associativity of short-lasting and long-lasting memories. All these synaptic modifications take place under controlled neuronal conditions, regulated by subcellular elements such as epigenetic regulation, proteasomal degradation and neuromodulatory signals. Here, we review current understanding of the different forms of synaptic plasticity and its regulatory mechanisms in the hippocampus, a brain region critical for memory formation. We also discuss expression of plasticity in hippocampal CA2 area, a long-overlooked narrow hippocampal subfield and the behavioural correlate of STC. Lastly, we put forth perspectives for an integrated view of memory representation in synapses.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Amrita Benoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
34
|
Sheppard PAS, Asling HA, Walczyk-Mooradally A, Armstrong SE, Elad VM, Lalonde J, Choleris E. Protein synthesis and actin polymerization in the rapid effects of 17β-estradiol on short-term social memory and dendritic spine dynamics in female mice. Psychoneuroendocrinology 2021; 128:105232. [PMID: 33892375 DOI: 10.1016/j.psyneuen.2021.105232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 04/10/2021] [Indexed: 11/28/2022]
Abstract
Estrogens rapidly facilitate learning and memory, including social recognition - the ability of an animal to recognize another. In ovariectomized female mice, systemic or dorsal hippocampal administration of 17β-estradiol (E2) facilitates short-term social recognition memory within 40 min. Within the same timeframe, E2 increases dendritic spine density in CA1 dorsal hippocampal neurons of behavioural task-naïve mice and in hippocampal sections. Mechanisms underlying these effects remain unclear. Estrogens rapidly modulate actin cytoskeletal dynamics through actin polymerization and the translation of key synaptic proteins. We first determined doses of actin polymerization inhibitor latrunculin A (LAT) and protein synthesis inhibitor anisomycin (ANI) that would block short-term social recognition memory when infused into the dorsal hippocampus of ovariectomized female mice 15 min prior to testing. The highest doses that did not block social recognition prevented the facilitating effects of E2, whereas DNA transcription inhibitor, actinomycin D, could not block social recognition. As task performance may interfere with E2-facilitated increases in dendritic spine density, dendritic spine density and length were examined in task-performing and task-naïve mice. E2 increased dendritic spine density 15 but not 40 min following treatment, regardless of whether the animal had performed the social recognition task. This effect was blocked by LAT, but not ANI. Thus, both actin polymerization and protein synthesis are necessary for E2 to rapidly facilitate social recognition, whereas actin polymerization, but not protein synthesis, is required for the rapid increase in dendritic spine density brought on by E2.
Collapse
Affiliation(s)
- Paul A S Sheppard
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Hayley A Asling
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | - Sabrina E Armstrong
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada
| | - Vissy M Elad
- Department of Human Health and Nutrition Sciences, University of Guelph, Guelph, ON, Canada; Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | - Jasmin Lalonde
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Elena Choleris
- Department of Psychology and Neuroscience Program, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
35
|
Lee SJ, Zdradzinski MD, Sahoo PK, Kar AN, Patel P, Kawaguchi R, Aguilar BJ, Lantz KD, McCain CR, Coppola G, Lu Q, Twiss JL. Selective axonal translation of the mRNA isoform encoding prenylated Cdc42 supports axon growth. J Cell Sci 2021; 134:237797. [PMID: 33674450 DOI: 10.1242/jcs.251967] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 02/24/2021] [Indexed: 12/13/2022] Open
Abstract
The small Rho-family GTPase Cdc42 has long been known to have a role in cell motility and axon growth. The eukaryotic Ccd42 gene is alternatively spliced to generate mRNAs with two different 3' untranslated regions (UTRs) that encode proteins with distinct C-termini. The C-termini of these Cdc42 proteins include CaaX and CCaX motifs for post-translational prenylation and palmitoylation, respectively. Palmitoyl-Cdc42 protein was previously shown to contribute to dendrite maturation, while the prenyl-Cdc42 protein contributes to axon specification and its mRNA was detected in neurites. Here, we show that the mRNA encoding prenyl-Cdc42 isoform preferentially localizes into PNS axons and this localization selectively increases in vivo during peripheral nervous system (PNS) axon regeneration. Functional studies indicate that prenyl-Cdc42 increases axon length in a manner that requires axonal targeting of its mRNA, which, in turn, needs an intact C-terminal CaaX motif that can drive prenylation of the encoded protein. In contrast, palmitoyl-Cdc42 has no effect on axon growth but selectively increases dendrite length. Together, these data show that alternative splicing of the Cdc42 gene product generates an axon growth promoting, locally synthesized prenyl-Cdc42 protein. This article has an associated First Person interview with one of the co-first authors of the paper.
Collapse
Affiliation(s)
- Seung Joon Lee
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Matthew D Zdradzinski
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Pabitra K Sahoo
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Amar N Kar
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Priyanka Patel
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Riki Kawaguchi
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Byron J Aguilar
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Kelsey D Lantz
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Caylee R McCain
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| | - Giovanni Coppola
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA.,Department of Neurology, Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095-1761, USA
| | - Qun Lu
- Department of Anatomy and Cell Biology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Jeffery L Twiss
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208USA
| |
Collapse
|
36
|
Roselli C, Ramaswami M, Boto T, Cervantes-Sandoval I. The Making of Long-Lasting Memories: A Fruit Fly Perspective. Front Behav Neurosci 2021; 15:662129. [PMID: 33859556 PMCID: PMC8042140 DOI: 10.3389/fnbeh.2021.662129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Understanding the nature of the molecular mechanisms underlying memory formation, consolidation, and forgetting are some of the fascinating questions in modern neuroscience. The encoding, stabilization and elimination of memories, rely on the structural reorganization of synapses. These changes will enable the facilitation or depression of neural activity in response to the acquisition of new information. In other words, these changes affect the weight of specific nodes within a neural network. We know that these plastic reorganizations require de novo protein synthesis in the context of Long-term memory (LTM). This process depends on neural activity triggered by the learned experience. The use of model organisms like Drosophila melanogaster has been proven essential for advancing our knowledge in the field of neuroscience. Flies offer an optimal combination of a more straightforward nervous system, composed of a limited number of cells, and while still displaying complex behaviors. Studies in Drosophila neuroscience, which expanded over several decades, have been critical for understanding the cellular and molecular mechanisms leading to the synaptic and behavioral plasticity occurring in the context of learning and memory. This is possible thanks to sophisticated technical approaches that enable precise control of gene expression in the fruit fly as well as neural manipulation, like chemogenetics, thermogenetics, or optogenetics. The search for the identity of genes expressed as a result of memory acquisition has been an active interest since the origins of behavioral genetics. From screenings of more or less specific candidates to broader studies based on transcriptome analysis, our understanding of the genetic control behind LTM has expanded exponentially in the past years. Here we review recent literature regarding how the formation of memories induces a rapid, extensive and, in many cases, transient wave of transcriptional activity. After a consolidation period, transcriptome changes seem more stable and likely represent the synthesis of new proteins. The complexity of the circuitry involved in memory formation and consolidation is such that there are localized changes in neural activity, both regarding temporal dynamics and the nature of neurons and subcellular locations affected, hence inducing specific temporal and localized changes in protein expression. Different types of neurons are recruited at different times into memory traces. In LTM, the synthesis of new proteins is required in specific subsets of cells. This de novo translation can take place in the somatic cytoplasm and/or locally in distinct zones of compartmentalized synaptic activity, depending on the nature of the proteins and the plasticity-inducing processes that occur. We will also review recent advances in understanding how localized changes are confined to the relevant synapse. These recent studies have led to exciting discoveries regarding proteins that were not previously involved in learning and memory processes. This invaluable information will lead to future functional studies on the roles that hundreds of new molecular actors play in modulating neural activity.
Collapse
Affiliation(s)
- Camilla Roselli
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Mani Ramaswami
- Trinity College Institute of Neuroscience, School of Genetics and Microbiology, Smurfit Institute of Genetics and School of Natural Sciences, Trinity College Dublin, Dublin, Ireland.,National Centre for Biological Sciences, TIFR, Bengaluru, India
| | - Tamara Boto
- Trinity College Institute of Neuroscience, Department of Physiology, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Isaac Cervantes-Sandoval
- Department of Biology, Georgetown University, Washington, DC, United States.,Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States
| |
Collapse
|
37
|
Differential regulation of local mRNA dynamics and translation following long-term potentiation and depression. Proc Natl Acad Sci U S A 2021; 118:2017578118. [PMID: 33771924 PMCID: PMC8020670 DOI: 10.1073/pnas.2017578118] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Decades of work have demonstrated that messenger RNAs (mRNAs) are localized and translated within neuronal dendrites and axons to provide proteins for remodeling and maintaining growth cones or synapses. It remains unknown, however, whether specific forms of plasticity differentially regulate the dynamics and translation of individual mRNA species. To address this, we targeted three individual synaptically localized mRNAs, CamkIIa, β-actin, Psd95, and used molecular beacons to track endogenous mRNA movements. We used reporters and CRISPR/Cas9 gene editing to track mRNA translation in cultured neurons. We found alterations in mRNA dynamic properties occurred during two forms of synaptic plasticity, long-term potentiation (cLTP) and depression (mGluR-LTD). Changes in mRNA dynamics following either form of plasticity resulted in an enrichment of mRNA in the vicinity of dendritic spines. Both the reporters and tagging of endogenous proteins revealed the transcript-specific stimulation of protein synthesis following cLTP or mGluR-LTD. As such, the plasticity-induced enrichment of mRNA near synapses could be uncoupled from its translational status. The enrichment of mRNA in the proximity of spines allows for localized signaling pathways to decode plasticity milieus and stimulate a specific translational profile, resulting in a customized remodeling of the synaptic proteome.
Collapse
|
38
|
Mitchell J, Smith CS, Titlow J, Otto N, van Velde P, Booth M, Davis I, Waddell S. Selective dendritic localization of mRNA in Drosophila mushroom body output neurons. eLife 2021; 10:e62770. [PMID: 33724180 PMCID: PMC8004107 DOI: 10.7554/elife.62770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 03/15/2021] [Indexed: 11/24/2022] Open
Abstract
Memory-relevant neuronal plasticity is believed to require local translation of new proteins at synapses. Understanding this process requires the visualization of the relevant mRNAs within these neuronal compartments. Here, we used single-molecule fluorescence in situ hybridization to localize mRNAs at subcellular resolution in the adult Drosophila brain. mRNAs for subunits of nicotinic acetylcholine receptors and kinases could be detected within the dendrites of co-labeled mushroom body output neurons (MBONs) and their relative abundance showed cell specificity. Moreover, aversive olfactory learning produced a transient increase in the level of CaMKII mRNA within the dendritic compartments of the γ5β'2a MBONs. Localization of specific mRNAs in MBONs before and after learning represents a critical step towards deciphering the role of dendritic translation in the neuronal plasticity underlying behavioral change in Drosophila.
Collapse
Affiliation(s)
- Jessica Mitchell
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Carlas S Smith
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
- Delft Center for Systems and Control, Delft University of TechnologyDelftNetherlands
| | - Josh Titlow
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Nils Otto
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| | - Pieter van Velde
- Delft Center for Systems and Control, Delft University of TechnologyDelftNetherlands
| | - Martin Booth
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
- Department of Engineering Science, University of OxfordOxfordUnited Kingdom
| | - Ilan Davis
- Department of Biochemistry, University of OxfordOxfordUnited Kingdom
| | - Scott Waddell
- Centre for Neural Circuits and Behaviour, University of OxfordOxfordUnited Kingdom
| |
Collapse
|
39
|
Kim W, Kim DY, Lee KH. RNA-Binding Proteins and the Complex Pathophysiology of ALS. Int J Mol Sci 2021; 22:ijms22052598. [PMID: 33807542 PMCID: PMC7961459 DOI: 10.3390/ijms22052598] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Genetic analyses of patients with amyotrophic lateral sclerosis (ALS) have identified disease-causing mutations and accelerated the unveiling of complex molecular pathogenic mechanisms, which may be important for understanding the disease and developing therapeutic strategies. Many disease-related genes encode RNA-binding proteins, and most of the disease-causing RNA or proteins encoded by these genes form aggregates and disrupt cellular function related to RNA metabolism. Disease-related RNA or proteins interact or sequester other RNA-binding proteins. Eventually, many disease-causing mutations lead to the dysregulation of nucleocytoplasmic shuttling, the dysfunction of stress granules, and the altered dynamic function of the nucleolus as well as other membrane-less organelles. As RNA-binding proteins are usually components of several RNA-binding protein complexes that have other roles, the dysregulation of RNA-binding proteins tends to cause diverse forms of cellular dysfunction. Therefore, understanding the role of RNA-binding proteins will help elucidate the complex pathophysiology of ALS. Here, we summarize the current knowledge regarding the function of disease-associated RNA-binding proteins and their role in the dysfunction of membrane-less organelles.
Collapse
Affiliation(s)
- Wanil Kim
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Correspondence: (D.-Y.K.); (K.-H.L.); Tel.: +82-53-660-6880 (D.-Y.K.); +82-53-819-7743 (K.-H.L.)
| | - Kyung-Ha Lee
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
- Correspondence: (D.-Y.K.); (K.-H.L.); Tel.: +82-53-660-6880 (D.-Y.K.); +82-53-819-7743 (K.-H.L.)
| |
Collapse
|
40
|
Andreassi C, Luisier R, Crerar H, Darsinou M, Blokzijl-Franke S, Lenn T, Luscombe NM, Cuda G, Gaspari M, Saiardi A, Riccio A. Cytoplasmic cleavage of IMPA1 3' UTR is necessary for maintaining axon integrity. Cell Rep 2021; 34:108778. [PMID: 33626357 PMCID: PMC7918530 DOI: 10.1016/j.celrep.2021.108778] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 12/22/2020] [Accepted: 01/29/2021] [Indexed: 12/31/2022] Open
Abstract
The 3' untranslated regions (3' UTRs) of messenger RNAs (mRNAs) are non-coding sequences involved in many aspects of mRNA metabolism, including intracellular localization and translation. Incorrect processing and delivery of mRNA cause severe developmental defects and have been implicated in many neurological disorders. Here, we use deep sequencing to show that in sympathetic neuron axons, the 3' UTRs of many transcripts undergo cleavage, generating isoforms that express the coding sequence with a short 3' UTR and stable 3' UTR-derived fragments of unknown function. Cleavage of the long 3' UTR of Inositol Monophosphatase 1 (IMPA1) mediated by a protein complex containing the endonuclease argonaute 2 (Ago2) generates a translatable isoform that is necessary for maintaining the integrity of sympathetic neuron axons. Thus, our study provides a mechanism of mRNA metabolism that simultaneously regulates local protein synthesis and generates an additional class of 3' UTR-derived RNAs.
Collapse
Affiliation(s)
- Catia Andreassi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | | | - Hamish Crerar
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Marousa Darsinou
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Sasja Blokzijl-Franke
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Tchern Lenn
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Nicholas M Luscombe
- Francis Crick Institute, London NW1 1AT, UK; UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Giovanni Cuda
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro 88100, Italy
| | - Marco Gaspari
- Research Centre for Advanced Biochemistry and Molecular Biology, Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Catanzaro 88100, Italy
| | - Adolfo Saiardi
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
| | - Antonella Riccio
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
41
|
Transmembrane Prolyl 4-Hydroxylase is a Novel Regulator of Calcium Signaling in Astrocytes. eNeuro 2021; 8:ENEURO.0253-20.2020. [PMID: 33298456 PMCID: PMC7814479 DOI: 10.1523/eneuro.0253-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/09/2020] [Accepted: 11/27/2020] [Indexed: 12/11/2022] Open
Abstract
Prolyl 4-hydroxylases (P4Hs) have vital roles in regulating collagen synthesis and hypoxia response. A transmembrane P4H (P4H-TM) is a recently identified member of the family. Biallelic loss of function P4H-TM mutations cause a severe autosomal recessive intellectual disability syndrome in humans, but functions of P4H-TM are essentially unknown at cellular level. Our microarray data on P4h-tm -/- mouse cortexes where P4H-TM is abundantly expressed indicated expression changes in genes involved in calcium signaling and expression of several calcium sequestering ATPases was upregulated in P4h-tm -/- primary mouse astrocytes. Cytosolic and intraorganellar calcium imaging of P4h-tm -/- cells revealed that receptor-operated calcium entry (ROCE) and store-operated calcium entry (SOCE) and calcium re-uptake by mitochondria were compromised. HIF1, but not HIF2, was found to be a key mediator of the P4H-TM effect on calcium signaling. Furthermore, total internal reflection fluorescence (TIRF) imaging showed that calcium agonist-induced gliotransmission was attenuated in P4h-tm -/- astrocytes. This phenotype was accompanied by redistribution of mitochondria from distal processes to central parts of the cell body and decreased intracellular ATP content. Our data show that P4H-TM is a novel regulator of calcium dynamics and gliotransmission.
Collapse
|
42
|
Perez JD, Dieck ST, Alvarez-Castelao B, Tushev G, Chan IC, Schuman EM. Subcellular sequencing of single neurons reveals the dendritic transcriptome of GABAergic interneurons. eLife 2021; 10:63092. [PMID: 33404500 PMCID: PMC7819707 DOI: 10.7554/elife.63092] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/05/2021] [Indexed: 12/23/2022] Open
Abstract
Although mRNAs are localized in the processes of excitatory neurons, it is still unclear whether interneurons also localize a large population of mRNAs. In addition, the variability in the localized mRNA population within and between cell types is unknown. Here we describe the unbiased transcriptomic characterization of the subcellular compartments of hundreds of single neurons. We separately profiled the dendritic and somatic transcriptomes of individual rat hippocampal neurons and investigated mRNA abundances in the soma and dendrites of single glutamatergic and GABAergic neurons. We found that, like their excitatory counterparts, interneurons contain a rich repertoire of ~4000 mRNAs. We observed more cell type-specific features among somatic transcriptomes than their associated dendritic transcriptomes. Finally, using celltype-specific metabolic labeling of isolated neurites, we demonstrated that the processes of glutamatergic and, notably, GABAergic neurons were capable of local translation, suggesting mRNA localization and local translation are general properties of neurons.
Collapse
Affiliation(s)
- Julio D Perez
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | - Beatriz Alvarez-Castelao
- Department of Biochemistry and Molecular Biology, Veterinary School, Complutense University of Madrid, Madrid, Spain
| | - Georgi Tushev
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Ivy Cw Chan
- Department of Behavior and Brain Organization, Center of Advanced European Studies and Research, Bonn, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| |
Collapse
|
43
|
Lee YJ, Kim HR, Lee CY, Hyun SA, Ko MY, Lee BS, Hwang DY, Ka M. 2-Phenylethylamine (PEA) Ameliorates Corticosterone-Induced Depression-Like Phenotype via the BDNF/TrkB/CREB Signaling Pathway. Int J Mol Sci 2020; 21:ijms21239103. [PMID: 33265983 PMCID: PMC7729630 DOI: 10.3390/ijms21239103] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/19/2022] Open
Abstract
Depression is a serious medical illness that is one of the most prevalent psychiatric disorders. Corticosterone (CORT) increases depression-like behavior, with some effects on anxiety-like behavior. 2-Phenethylamine (PEA) is a monoamine alkaloid that acts as a central nervous system stimulant in humans. Here, we show that PEA exerts antidepressant effects by modulating the Brain-derived neurotrophic factor (BDNF)/tropomyosin receptor kinase B (TrkB)/cAMP response element binding protein (CREB) signaling pathway in CORT-induced depression. To investigate the potential effects of PEA on CORT-induced depression, we first treated CORT (50 μM)-induced hippocampal neurons with 100 μM PEA for 24 h. We found that treatment with CORT altered dendritic spine architecture; however, treatment with PEA rescued dendritic spine formation via regulation of BDNF/TrkB/CREB signaling. Next, we used a mouse model of CORT-induced depression. Mice were treated with CORT (20 mg/kg) for 21 days, followed by assessments of a battery of depression-like behaviors. During the final four days of CORT exposure, the mice were treated with PEA (50 mg/kg). We found that CORT injection promoted depression-like behavior and significantly decreased BDNF and TrkB expression in the hippocampus. However, treatment with PEA significantly ameliorated the behavioral and biochemical changes induced by CORT. Our findings reveal that PEA exerts antidepressant effects by modulating the BDNF/TrkB/CREB signaling pathway in a mouse model of CORT-induced depression.
Collapse
Affiliation(s)
- Young-Ju Lee
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Hye Ryeong Kim
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
- Laboratory Animal Center, Korea Brain Research Institute, Daegu 61062, Korea
| | - Chang Youn Lee
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
| | - Sung-Ae Hyun
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
| | - Moon Yi Ko
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
| | - Byoung-Seok Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea;
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Minhan Ka
- Pharmacology and Drug Abuse Group, Convergence Toxicology Research Division, Korea Institute of Toxicology, KRICT, Daejeon 34114, Korea; (Y.-J.L.); (H.R.K.); (C.Y.L.); (S.-A.H.); (M.Y.K.)
- Correspondence: ; Tel.: +82-42-610-8095; Fax: +82-42-610-8252
| |
Collapse
|
44
|
Wang J, Fourriere L, Gleeson PA. Local Secretory Trafficking Pathways in Neurons and the Role of Dendritic Golgi Outposts in Different Cell Models. Front Mol Neurosci 2020; 13:597391. [PMID: 33324160 PMCID: PMC7726432 DOI: 10.3389/fnmol.2020.597391] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/19/2020] [Indexed: 12/18/2022] Open
Abstract
A fundamental characteristic of neurons is the relationship between the architecture of the polarized neuron and synaptic transmission between neurons. Intracellular membrane trafficking is paramount to establish and maintain neuronal structure; perturbation in trafficking results in defects in neurodevelopment and neurological disorders. Given the physical distance from the cell body to the distal sites of the axon and dendrites, transport of newly synthesized membrane proteins from the central cell body to their functional destination at remote, distal sites represents a conundrum. With the identification of secretory organelles in dendrites, including endoplasmic reticulum (ER) and Golgi outposts (GOs), recent studies have proposed local protein synthesis and trafficking distinct from the conventional anterograde transport pathways of the cell body. A variety of different model organisms, including Drosophila, zebrafish, and rodents, have been used to probe the organization and function of the local neuronal secretory network. Here, we review the evidence for local secretory trafficking pathways in dendrites in a variety of cell-based neuronal systems and discuss both the similarities and differences in the organization and role of the local secretory organelles, especially the GOs. In addition, we identify the gaps in the current knowledge and the potential advances using human induced pluripotent stem cells (iPSCs) in defining local membrane protein trafficking in human neurons and in understanding the molecular basis of neurological diseases.
Collapse
Affiliation(s)
- Jingqi Wang
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Lou Fourriere
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A Gleeson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
45
|
Kozlova I, Sah S, Keable R, Leshchyns'ka I, Janitz M, Sytnyk V. Cell Adhesion Molecules and Protein Synthesis Regulation in Neurons. Front Mol Neurosci 2020; 13:592126. [PMID: 33281551 PMCID: PMC7689008 DOI: 10.3389/fnmol.2020.592126] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Cell adhesion molecules (CAMs) mediate interactions of neurons with the extracellular environment by forming adhesive bonds with CAMs on adjacent membranes or via binding to proteins of the extracellular matrix. Binding of CAMs to their extracellular ligands results in the activation of intracellular signaling cascades, leading to changes in neuronal structure and the molecular composition and function of neuronal contacts. Ultimately, many of these changes depend on the synthesis of new proteins. In this review, we summarize the evidence showing that CAMs regulate protein synthesis by modulating the activity of transcription factors, gene expression, protein translation, and the structure and distribution of organelles involved in protein synthesis and transport.
Collapse
Affiliation(s)
- Irina Kozlova
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Saroj Sah
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ryan Keable
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Iryna Leshchyns'ka
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
46
|
Jung Y, Seo JY, Ryu HG, Kim DY, Lee KH, Kim KT. BDNF-induced local translation of GluA1 is regulated by HNRNP A2/B1. SCIENCE ADVANCES 2020; 6:6/47/eabd2163. [PMID: 33219033 PMCID: PMC7679154 DOI: 10.1126/sciadv.abd2163] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/08/2020] [Indexed: 05/05/2023]
Abstract
The AMPA receptor subunit GluA1 is essential for induction of synaptic plasticity. While various regulatory mechanisms of AMPA receptor expression have been identified, the underlying mechanisms of GluA1 protein synthesis are not fully understood. In neurons, axonal and dendritic mRNAs have been reported to be translated in a cap-independent manner. However, molecular mechanisms of cap-independent translation of synaptic mRNAs remain largely unknown. Here, we show that GluA1 mRNA contains an internal ribosome entry site (IRES) in the 5'UTR. We also demonstrate that heterogeneous nuclear ribonucleoprotein (hnRNP) A2/B1 interacts with GluA1 mRNA and mediates internal initiation of GluA1 Brain-derived neurotrophic factor (BDNF) stimulation increases IRES-mediated GluA1 translation via up-regulation of HNRNP A2/B1. Moreover, BDNF-induced GluA1 expression and dendritic spine density were significantly decreased in neurons lacking hnRNP A2/B1. Together, our data demonstrate that IRES-mediated translation of GluA1 mRNA is a previously unidentified feature of local expression of the AMPA receptor.
Collapse
Affiliation(s)
- Youngseob Jung
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Ji-Young Seo
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hye Guk Ryu
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Kyung-Ha Lee
- Division of Cosmetic Science and Technology, Daegu Haany University, Gyeongbuk 38610, Republic of Korea
| | - Kyong-Tai Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea.
| |
Collapse
|
47
|
Statistical Laws of Protein Motion in Neuronal Dendritic Trees. Cell Rep 2020; 33:108391. [PMID: 33207192 PMCID: PMC7672524 DOI: 10.1016/j.celrep.2020.108391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/31/2020] [Accepted: 10/23/2020] [Indexed: 12/31/2022] Open
Abstract
Across their dendritic trees, neurons distribute thousands of protein species that are necessary for maintaining synaptic function and plasticity and that need to be produced continuously and trafficked to their final destination. As each dendritic branchpoint splits the protein flow, increasing branchpoints decreases the total protein number downstream. Consequently, a neuron needs to produce more proteins to maintain a minimal protein number at distal synapses. Combining in vitro experiments and a theoretical framework, we show that proteins that diffuse within the cell plasma membrane are, on average, 35% more effective at reaching downstream locations than proteins that diffuse in the cytoplasm. This advantage emerges from a bias for forward motion at branchpoints when proteins diffuse within the plasma membrane. Using 3D electron microscopy (EM) data, we show that pyramidal branching statistics and the diffusion lengths of common proteins fall into a region that minimizes the overall protein need. Surface proteins are more efficient at reaching distal sites than soluble proteins Daughter radius optimization reduces the number of proteins needed to populate dendrites Ratios of daughter radii at branchpoints are cell type specific Highly diffusive proteins incur a smaller extra cost for non-optimized radii
Collapse
|
48
|
Kim HR, Lee YJ, Kim TW, Lim RN, Hwang DY, Moffat JJ, Kim S, Seo JW, Ka M. Asparagus cochinchinensis extract ameliorates menopausal depression in ovariectomized rats under chronic unpredictable mild stress. BMC Complement Med Ther 2020; 20:325. [PMID: 33109198 PMCID: PMC7590795 DOI: 10.1186/s12906-020-03121-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Depression is a serious and common psychiatric disorder generally affecting more women than men. A woman's risk of developing depression increases steadily with age, and higher incidence is associated with the onset of menopause. Here we evaluated the antidepressant properties of Asparagus cochinchinensis (AC) extract and investigated its underlying mechanisms in a rat menopausal depression model. METHODS To model this menopausal depression, we induced a menopause-like state in rats via ovariectomy and exposed them to chronic unpredictable mild stress (CUMS) for 6 weeks, which promotes the development of depression-like symptoms. During the final 4 weeks of CUMS, rats were treated with either AC extract (1000 or 2000 mg/kg, PO), which has been reported to provide antidepressant effects, or with the tricyclic antidepressant imipramine (10 mg/kg, IP). RESULTS We report that CUMS promotes depression-like behavior and significantly increases serum corticosterone and inflammatory cytokine levels in the serum of ovariectomized (OVX) rats. We also found that CUMS decreases the expression of brain-derived neurotrophic factor (BDNF) and its primary receptor, tropomyosin receptor kinase B (TrkB), in OVX rats, and treatment with AC extract rescues both BDNF and TrkB expression levels. CONCLUSION These results suggest that AC extract exerts antidepressant effects, possibly via modulation of the BDNF-TrkB pathway, in a rat model of menopausal depression.
Collapse
Affiliation(s)
- Hye Ryeong Kim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.,Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea.,Laboratory Animal Center, Korea Brain Research Institute, Daegu, 61062, Republic of Korea
| | - Young-Ju Lee
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Tae-Wan Kim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Ri-Na Lim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jeffrey J Moffat
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Soonil Kim
- Olmanfood Co., Ltd, Seoul, 03709, Republic of Korea
| | - Joung-Wook Seo
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| | - Minhan Ka
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
49
|
Gobert D, Schohl A, Kutsarova E, Ruthazer ES. TORC1 selectively regulates synaptic maturation and input convergence in the developing visual system. Dev Neurobiol 2020; 80:332-350. [DOI: 10.1002/dneu.22782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Delphine Gobert
- Montreal Neurological Institute‐Hospital McGill University Montreal QC Canada
| | - Anne Schohl
- Montreal Neurological Institute‐Hospital McGill University Montreal QC Canada
| | - Elena Kutsarova
- Montreal Neurological Institute‐Hospital McGill University Montreal QC Canada
| | - Edward S. Ruthazer
- Montreal Neurological Institute‐Hospital McGill University Montreal QC Canada
| |
Collapse
|
50
|
Gobbo F, Cattaneo A. Neuronal Activity at Synapse Resolution: Reporters and Effectors for Synaptic Neuroscience. Front Mol Neurosci 2020; 13:572312. [PMID: 33192296 PMCID: PMC7609880 DOI: 10.3389/fnmol.2020.572312] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/31/2020] [Indexed: 12/15/2022] Open
Abstract
The development of methods for the activity-dependent tagging of neurons enabled a new way to tackle the problem of engram identification at the cellular level, giving rise to groundbreaking findings in the field of memory studies. However, the resolution of activity-dependent tagging remains limited to the whole-cell level. Notably, events taking place at the synapse level play a critical role in the establishment of new memories, and strong experimental evidence shows that learning and synaptic plasticity are tightly linked. Here, we provide a comprehensive review of the currently available techniques that enable to identify and track the neuronal activity with synaptic spatial resolution. We also present recent technologies that allow to selectively interfere with specific subsets of synapses. Lastly, we discuss how these technologies can be applied to the study of learning and memory.
Collapse
Affiliation(s)
- Francesco Gobbo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
| |
Collapse
|