1
|
Altendorfer B, Benedetti A, Mrowetz H, Bernegger S, Bretl A, Preishuber-Pflügl J, Bessa de Sousa DM, Ladek AM, Koller A, Le Faouder P, Bertrand-Michel J, Trost A, Aigner L. Omega-3 EPA Supplementation Shapes the Gut Microbiota Composition and Reduces Major Histocompatibility Complex Class II in Aged Wild-Type and APP/PS1 Alzheimer's Mice: A Pilot Experimental Study. Nutrients 2025; 17:1108. [PMID: 40218866 PMCID: PMC11990804 DOI: 10.3390/nu17071108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Neuroinflammation, a hallmark of Alzheimer's disease (AD), is characterized by elevated levels of inflammatory signaling molecules, including cytokines and eicosanoids, as well as increased microglial reactivity, and is augmented by gut microbiota dysbiosis via the gut-brain axis. We conducted a pilot experiment to elucidate the anti-inflammatory effects of dietary omega-3 polyunsaturated fatty acid (ω-3 PUFA) eicosapentaenoic acid (EPA) on the gut microbiota and neuroinflammation. Methods: Female APP/PS1 mice (TG) and non-transgenic littermates (WT), 13-14 months old, were fed a diet supplemented with 0.3% EPA or control chow for 3 weeks. The gut microbiota composition, hippocampal and plasma eicosanoids levels, platelet activation, and microglial phagocytosis, as well as the brain and retinal genes and protein expression, were analyzed. Results: EPA supplementation decreased the percentage of Bacteroidetes and increased bacteria of the phylum Firmicutes in APP/PS1 and WT mice. Inflammatory lipid mediators were elevated in the hippocampus of the TG mice, accompanied by a reduction in the endocannabinoid docosahexaenoyl ethanolamide (DHEA). Dietary EPA did not affect hippocampal lipid mediators, but reduced the levels of arachidonic-derived 5-HETE and N-arachidonoylethanolamine (AEA) in WT plasma. Moreover, EPA supplementation decreased major histocompatibility complex class II (MHCII) gene expression in the retina in both genotypes, and MHCII+ cells in the hippocampus of TG mice. Conclusions: This pilot study showed that short-term EPA supplementation shaped the gut microbiota by increasing butyrate-producing bacteria of the Firmicutes phylum and decreasing Gram-negative LPS-producing bacteria of the Bacteroidetes phylum, and downregulated the inflammatory microglial marker MHCII in two distinct regions of the central nervous system (CNS). Further investigation is needed to determine whether EPA-mediated effects on the microbiome and microglial MHCII have beneficial long-term effects on AD pathology and cognition.
Collapse
Affiliation(s)
- Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
| | - Ariane Benedetti
- Institute of Experimental Neuroregeneration, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
| | - Sabine Bernegger
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
| | - Alina Bretl
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
| | - Julia Preishuber-Pflügl
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.P.-P.); (A.M.L.); (A.K.); (A.T.)
| | - Diana Marisa Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
| | - Anja Maria Ladek
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.P.-P.); (A.M.L.); (A.K.); (A.T.)
| | - Andreas Koller
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.P.-P.); (A.M.L.); (A.K.); (A.T.)
| | - Pauline Le Faouder
- MetaToul-Lipidomique Core Facility, I2MC, Inserm 1048, 31432 Toulouse, France; (P.L.F.); (J.B.-M.)
| | - Justine Bertrand-Michel
- MetaToul-Lipidomique Core Facility, I2MC, Inserm 1048, 31432 Toulouse, France; (P.L.F.); (J.B.-M.)
| | - Andrea Trost
- Research Program for Experimental Ophthalmology and Glaucoma Research, Department of Ophthalmology and Optometry, University Hospital of the Paracelsus Medical University, 5020 Salzburg, Austria; (J.P.-P.); (A.M.L.); (A.K.); (A.T.)
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, 5020 Salzburg, Austria; (B.A.); (H.M.); (S.B.); (A.B.); (D.M.B.d.S.)
- Austrian Cluster of Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
2
|
Serrano M, Saumell-Esnaola M, Ocerin G, García del Caño G, Puente N, Sallés J, Rodríguez de Fonseca F, Rodríguez-Arias M, Gerrikagoitia I, Grandes P. Impact of Omega-3 on Endocannabinoid System Expression and Function, Enhancing Cognition and Behavior in Male Mice. Nutrients 2024; 16:4344. [PMID: 39770965 PMCID: PMC11676180 DOI: 10.3390/nu16244344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/03/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear. Methods and Results: Here, we demonstrate that hippocampal synaptosomes from male mice fed an omega-3-rich diet exhibit increased levels of cannabinoid CB1 receptors (~30%), phospholipase C β1 (PLCβ1, ~30%), monoacylglycerol lipase (MAGL, ~30%), and cannabinoid receptor-interacting protein 1a (Crip1a, ~60%). Conversely, these synaptosomes show decreased levels of diacylglycerol lipase α (DAGLα, ~40%), synaptosomal-associated protein 25kDa (SNAP-25, ~30%), and postsynaptic density protein 95 (PSD-95, ~40%). Omega-3 intake also reduces Gαo and Gαi3 levels, though receptor-stimulated [35S]GTPγS binding remains unaffected. Stimulation of the medial perforant path (MPP) induced long-term potentiation (LTP) in omega-3-fed mice. This LTP was dependent on group I metabotropic glutamate receptors (mGluR), 2 arachidonoylglycerol (2-AG), CB1 receptors, N-type Ca2+ channels, and actin filaments. Behaviorally, omega-3-fed mice displayed reduced exploratory behavior and significantly improved object discrimination in the novel object recognition test (NORT). They also spent more time in open arms and exhibited reduced freezing time in the elevated plus maze (EPM), indicative of reduced anxiety-like behavior. Conclusions: Our findings suggest that omega-3 leverages the ECS to enhance brain function under normal conditions.
Collapse
Affiliation(s)
- Maitane Serrano
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.S.); (G.O.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Miquel Saumell-Esnaola
- Bioaraba, Neurofarmacología Celular y Molecular, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (G.G.d.C.); (J.S.)
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Garazi Ocerin
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.S.); (G.O.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Gontzal García del Caño
- Bioaraba, Neurofarmacología Celular y Molecular, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (G.G.d.C.); (J.S.)
- Department of Neurosciences, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
| | - Nagore Puente
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.S.); (G.O.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Joan Sallés
- Bioaraba, Neurofarmacología Celular y Molecular, 01006 Vitoria-Gasteiz, Spain; (M.S.-E.); (G.G.d.C.); (J.S.)
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, 01006 Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental, 28029 Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Mental Health Clinical Management Unit, Institute of Biomedical Research of Málaga-IBIMA, Regional University Hospital of Málaga, 29010 Málaga, Spain;
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Faculty of Psychology, Universitat de València, 46010 Valencia, Spain;
| | - Inmaculada Gerrikagoitia
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.S.); (G.O.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| | - Pedro Grandes
- Department of Neurosciences, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940 Leioa, Spain; (M.S.); (G.O.); (N.P.)
- Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, 48940 Leioa, Spain
| |
Collapse
|
3
|
Patel MY, Yang R, Chakraborty N, Miller SA, DeMar JC, Batuure A, Wilder D, Long J, Hammamieh R, Gautam A. Impact of dietary changes on retinal neuronal plasticity in rodent models of physical and psychological trauma. Front Genet 2024; 15:1373447. [PMID: 39346777 PMCID: PMC11427283 DOI: 10.3389/fgene.2024.1373447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction Blast injury has been implicated as the major cause of traumatic brain injury (TBI) and ocular system injury, in military operations in Iraq and Afghanistan. Soldiers exposed to traumatic stress also have undiagnosed, chronic vision problems. Here we hypothesize that excessive intake of ω-6 fatty acid linoleic acid (LA) and insufficiency of dietary long chain ω-3 polyunsaturated fatty acids (PUFAs, e.g., docosahexaenoic acid; DHA) would dysregulate endocannabinoid-mediated neuronal plasticity and immune response. The study objective was to determine the effect of blast-TBI and traumatic stress on retinal gene expression and assess the role of dietary deficiency of long chain ω-3 PUFAs on the vulnerability to these injury models. Methods Linoleic acid was used as an independent variable to reflect the dietary increase in LA from 1 percent of energy (en%) to 8 en% present in the current western diets, and these custom LA diets were also devoid of long chain ω-3 PUFAs. Animals were exposed to a simulated blast overpressure wave followed by a weight drop head-concussion to induce TBI. A Separate group of rats were subjected to traumatic stress by a forced immersion underwater. Results Our findings showed that blast-TBI exposure, post 14 days, produced significant neuropathological changes such as axonal degeneration in the brain optic tracts from all the three diet groups, especially in rats fed the DHA-deprived 1 en% LA diet. Transcriptomic analysis showed that presence of DHA in the house chow diet prevented blast-induced disruption of neuronal plasticity by activating molecular networks like SNARE signaling, endocannabinoid pathway, and synaptic long-term depression when compared to DHA-deprived 8 en% LA diet group. Under traumatic stress, retinal synaptic function, neurovascular coupling, and opioid signaling mechanisms were dysregulated in rodents fed DHA-deficient diets (i.e., 8 en% LA and 1 en% LA), where reducing the levels of ω-6 linoleic acid from 8 en% to 1 en% was associated with increased neuronal plasticity and suppressed immune signaling. Conclusion The findings of our study suggest that deprivation of long chain ω-3 PUFAs in the diet affects endocannabinoid-mediated neuronal plasticity, vascular function and inflammatory response that could influence the resistance of veterans to TBI and psychological trauma.
Collapse
Affiliation(s)
- Mital Y Patel
- TechWerks, Arlington, United States
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ruoting Yang
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Nabarun Chakraborty
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Stacy-Ann Miller
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - James C DeMar
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Andrew Batuure
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Donna Wilder
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Joseph Long
- Blast-Induced Neurotrauma Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rasha Hammamieh
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Aarti Gautam
- Medical Readiness Systems Biology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
4
|
Russell L, Condo K, DeFlorville T. Nutrition, endocannabinoids, and the use of cannabis: An overview for the nutrition clinician. Nutr Clin Pract 2024; 39:815-823. [PMID: 38555505 DOI: 10.1002/ncp.11148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/21/2024] [Accepted: 03/02/2024] [Indexed: 04/02/2024] Open
Abstract
The endocannabinoid system (ECs) is composed of multiple signaling compounds and receptors within the central and peripheral nervous system along with various organs, including the gut, liver, and skeletal muscle. The ECs has been implicated in metabolism, gut motility, and eating behaviors. The ECs is altered in disease states such as obesity. Recent studies have clarified the role of the gut microbiome and nutrition on the ECs. Exogenous cannabinoid (CB) use, either organic or synthetic, stimulates the ECs through CB1 and CB2 receptors. However, the role of CBs is unclear in regard to nutrition optimization or to treat disease states. This review briefly summarizes the effect of the ECs and exogenous CBs on metabolism and nutrition. With the increased legalization of cannabis, there is a corresponding increased use in the United States. Therefore, nutrition clinicians need to be aware of both the benefits and harm of cannabis use on overall nutrition status, as well as the gaps in knowledge for future research and guideline development.
Collapse
Affiliation(s)
- Lindsey Russell
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgical Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Kayla Condo
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
| | - Tiffany DeFlorville
- Center for Human Nutrition, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Gastroenterology, Hepatology and Nutrition, Digestive Disease and Surgical Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
5
|
Wang Y, Balvers MGJ, Esser D, Schutte S, Vincken JP, Afman LA, Witkamp RF, Meijerink J. Nutrient composition of different energy-restricted diets determines plasma endocannabinoid profiles and adipose tissue DAGL-α expression; a 12-week randomized controlled trial in subjects with abdominal obesity. J Nutr Biochem 2024; 128:109605. [PMID: 38401691 DOI: 10.1016/j.jnutbio.2024.109605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
The endocannabinoid system (ECS) is dysregulated during obesity and metabolic disorders. Weight loss favours the re-establishment of ECS homeostatic conditions, but also the fatty acid composition of the diet can modulate endocannabinoid profiles. However, the combined impact of nutrient quality and energy restriction on the ECS remains unclear. In this 12 weeks randomized controlled trial, men and women (40-70 years) with obesity (BMI: 31.3 ± 3.5 kg/ m2) followed either a low nutrient quality 25% energy-restricted (ER) diet (n=39) high in saturated fats and fructose, or a high nutrient quality ER diet (n=34) amongst others enriched in n-3 polyunsaturated fatty acids (PUFAs) or kept their habitual diet (controls). Profiles of plasma- and adipose N-acylethanolamines and mono-acyl glycerol esters were quantified using LC-MS/MS. Gene expression of ECS-related enzymes and receptors was determined in adipose tissue. Measurements were performed under fasting conditions before and after 12 weeks. Our results showed that plasma level of the DHA-derived compound docosahexaenoylethanolamide (DHEA) was decreased in the low nutrient quality ER diet (P<0.001) compared with the high nutrient quality ER diet, whereas anandamide (AEA) and arachidonoylglycerol (2-AG) levels were unaltered. However, adipose tissue gene expression of the 2-AG synthesizing enzyme diacylglycerol lipase alpha (DAGL-α) was increased following the low nutrient quality ER diet (P<.009) and differed upon intervention with both other diets. Concluding, nutrient quality of the diet affects N-acylethanolamine profiles and gene expression of ECS-related enzymes and receptors even under conditions of high energy restriction in abdominally obese humans. ClinicalTrials.gov NCT02194504.
Collapse
Affiliation(s)
- Ya Wang
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands; The Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Diederik Esser
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sophie Schutte
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Jean-Paul Vincken
- The Laboratory of Food Chemistry, Wageningen University, Wageningen, The Netherlands
| | - Lydia A Afman
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Jocelijn Meijerink
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
6
|
Simard M, Tremblay A, Morin S, Rioux G, Flamand N, Pouliot R. N-eicosapentaenoyl-ethanolamine decreases the proliferation of psoriatic keratinocytes in a reconstructed psoriatic skin model. Sci Rep 2023; 13:12113. [PMID: 37495686 PMCID: PMC10371979 DOI: 10.1038/s41598-023-39185-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
Psoriasis is an inflammatory skin disease that is characterized by keratinocyte hyperproliferation, abnormal epidermal differentiation and dysregulated lipid metabolism. Some lipid mediators of the N-acylethanolamines (NAEs) and monoacylglycerols (MAGs) can bind to cannabinoid (CB) receptors and are referred to as part of the endocannabinoidome. Their implication in psoriasis remains unknown. The aim of the present study was to characterize the endocannabinoid system and evaluate the effects of n-3-derived NAEs, namely N-eicosapentaenoyl-ethanolamine (EPEA), in psoriatic keratinocytes using a psoriatic skin model produced by tissue engineering, following the self-assembly method. Psoriatic skin substitutes had lower FAAH2 expression and higher MAGL, ABHD6 and ABHD12 expression compared with healthy skin substitutes. Treatments with alpha-linolenic acid (ALA) increased the levels of EPEA and 1/2-docosapentaenoyl-glycerol, showing that levels of n-3 polyunsaturated fatty acids modulate related NAE and MAG levels. Treatments of the psoriatic substitutes with 10 μM of EPEA for 7 days resulted in decreased epidermal thickness and number of Ki67 positive keratinocytes, both indicating decreased proliferation of psoriatic keratinocytes. EPEA effects on keratinocyte proliferation were inhibited by the CB1 receptor antagonist rimonabant. Exogenous EPEA also diminished some inflammatory features of psoriasis. In summary, n-3-derived NAEs can reduce the psoriatic phenotype of a reconstructed psoriatic skin model.
Collapse
Affiliation(s)
- Mélissa Simard
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1A4, Canada
- Faculté de Pharmacie de l'Université Laval, Québec, QC, Canada
| | - Andréa Tremblay
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1A4, Canada
- Faculté de Pharmacie de l'Université Laval, Québec, QC, Canada
| | - Sophie Morin
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1A4, Canada
- Faculté de Pharmacie de l'Université Laval, Québec, QC, Canada
| | - Geneviève Rioux
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1A4, Canada
- Faculté de Pharmacie de l'Université Laval, Québec, QC, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Québec, QC, G1V 4G5, Canada
- Canada Excellence Research Chair On the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec, QC, G1V 0A6, Canada
| | - Roxane Pouliot
- Centre de Recherche en Organogénèse Expérimentale de l'Université Laval/LOEX, Axe médecine régénératrice, Centre de recherche du CHU de Québec-Université Laval, Québec, QC, G1J 1A4, Canada.
- Faculté de Pharmacie de l'Université Laval, Québec, QC, Canada.
| |
Collapse
|
7
|
Fu SS, Wen M, Zhao YC, Shi HH, Wang YM, Xue CH, Wei ZH, Zhang TT. Short-term supplementation of EPA-enriched ethanolamine plasmalogen increases the level of DHA in the brain and liver of n-3 PUFA deficient mice in early life after weaning. Food Funct 2022; 13:1906-1920. [PMID: 35088775 DOI: 10.1039/d1fo03345j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A lack of n-3 polyunsaturated fatty acids (PUFAs) in mothers' diet significantly reduced the amount of docosahexaenoic acid (DHA) in the brains of offspring, which might affect their brain function. Our previous research has proven multiple benefits of eicosapentaenoic acid (EPA)-enriched ethanolamine plasmalogen (pPE) in enhancing the learning and memory ability. However, the effect of dietary supplementation with EPA-pPE on the DHA content in the brain and liver of offspring lacking n-3 PUFAs in early life is still unclear. Female ICR mice were fed with n-3 PUFA-deficient diets throughout the gestation and lactation periods to get n-3 PUFA-deficient offspring. The lipid profiles in the cerebral cortex and liver of offspring were analyzed using lipidomics after dietary supplementation with EPA-pPE (0.05%, w/w) and EPA-phosphatidylcholine (PC) (0.05%, w/w) for 2 weeks after weaning. Dietary supplementation with EPA could significantly change fatty acid composition in a variety of phospholipid molecular species compared with the n-3 deficient group. EPA-pPE and EPA-PC remarkably increased the DHA content in the brain PC, ether-linked phosphatidylcholine (ePC), and phosphatidylethanolamine plasmalogen (pPE) and liver triglyceride (TG), lyso-phosphatidylcholine (LPC), ePC, phosphatidylethanolamine (PE), and pPE molecular species, in which EPA-pPE showed more significant effects on the increase of DHA in cerebral cortex PC, ePC and liver PC compared with EPA-PC. Both EPA-phospholipids could effectively increase the DHA levels, and the pPE form was superior to PC in the contribution of DHA content in the cerebral cortex PC, ePC and liver PC molecular species. EPA-enriched ethanolamine plasmalogen might be a good nutritional supplement to increase DHA levels in the brains of n-3 PUFA-deficient offspring.
Collapse
Affiliation(s)
- Shuai-Shuai Fu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Min- Wen
- Institute of Biopharmaceutical Research, Liaocheng University, Liaocheng 252059, China
| | - Ying-Cai Zhao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Hao-Hao Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Yu-Ming Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China. .,Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong, China
| | - Chang-Hu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China. .,Laboratory of Marine Drugs & Biological Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266237, Shandong, China
| | - Zi-Hao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | - Tian-Tian Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| |
Collapse
|
8
|
Effects of endocannabinoids on feed intake, stress response and whole-body energy metabolism in dairy cows. Sci Rep 2021; 11:23657. [PMID: 34880316 PMCID: PMC8655048 DOI: 10.1038/s41598-021-02970-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/24/2021] [Indexed: 11/12/2022] Open
Abstract
Endocannabinoids, particularly anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are instrumental in regulating energy homeostasis and stress response. However, little is known about the endocannabinoid system (ECS) in ruminants, although EC could improve dairy health and productivity, at least by increasing feed intake. In this study, we report if intraperitoneal (i.p.) AEA and 2-AG administration affects feed intake, whole-body macronutrient metabolism, isolation and restraint stress, and whether diet composition modulates circulating endocannabinoid concentrations in cows. Twenty Simmental cows in late lactation were fed a grass silage and a corn silage based diet. On each diet, cows received daily i.p. injections with either AEA (5 µg/kg; n = 7), 2-AG (2.5 µg/kg; n = 6) or saline (n = 7) for 8 days. Endocannabinoid administration for 5 days under free-ranging (non-stressed) conditions had no effect on feed intake or energy balance, but attenuated the stress-induced suppression of feed intake when housing changed to individual tie-stalls without social or tactile interaction. Endocannabinoids increased whole-body carbohydrate oxidation, reduced fat oxidation, and affected plasma non-esterified fatty acid concentrations and fatty acid contents of total lipids. There was no effect of endocannabinoids on plasma triglyceride concentrations or hepatic lipogenesis. Plasma AEA concentrations were not affected by diet, however, plasma 2-AG concentrations tended to be lower on the corn silage based diet. In conclusion, endocannabinoids attenuate stress-induced hypophagia, increase short-term feed intake and whole-body carbohydrate oxidation and decrease whole-body fat oxidation in cows.
Collapse
|
9
|
Miralpeix C, Reguera AC, Fosch A, Zagmutt S, Casals N, Cota D, Rodríguez-Rodríguez R. Hypothalamic endocannabinoids in obesity: an old story with new challenges. Cell Mol Life Sci 2021; 78:7469-7490. [PMID: 34718828 PMCID: PMC8557709 DOI: 10.1007/s00018-021-04002-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
The crucial role of the hypothalamus in the pathogenesis of obesity is widely recognized, while the precise molecular and cellular mechanisms involved are the focus of intense research. A disrupted endocannabinoid system, which critically modulates feeding and metabolic functions, through central and peripheral mechanisms, is a landmark indicator of obesity, as corroborated by investigations centered on the cannabinoid receptor CB1, considered to offer promise in terms of pharmacologically targeted treatment for obesity. In recent years, novel insights have been obtained, not only into relation to the mode of action of CB receptors, but also CB ligands, non-CB receptors, and metabolizing enzymes considered to be part of the endocannabinoid system (particularly the hypothalamus). The outcome has been a substantial expansion in knowledge of this complex signaling system and in drug development. Here we review recent literature, providing further evidence on the role of hypothalamic endocannabinoids in regulating energy balance and the implication for the pathophysiology of obesity. We discuss how these lipids are dynamically regulated in obesity onset, by diet and metabolic hormones in specific hypothalamic neurons, the impact of gender, and the role of endocannabinoid metabolizing enzymes as promising targets for tackling obesity and related diseases.
Collapse
Affiliation(s)
- Cristina Miralpeix
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 3300, Bordeaux, France.
| | - Ana Cristina Reguera
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Anna Fosch
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Sebastian Zagmutt
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de La Obesidad Y La Nutrición (CIBEROBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 3300, Bordeaux, France
| | - Rosalía Rodríguez-Rodríguez
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, Josep Trueta S/N, 08195, Sant Cugat del Vallès, Spain.
| |
Collapse
|
10
|
Fatty acids and evolving roles of their proteins in neurological, cardiovascular disorders and cancers. Prog Lipid Res 2021; 83:101116. [PMID: 34293403 DOI: 10.1016/j.plipres.2021.101116] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/04/2021] [Accepted: 07/14/2021] [Indexed: 01/03/2023]
Abstract
The dysregulation of fat metabolism is involved in various disorders, including neurodegenerative, cardiovascular, and cancers. The uptake of long-chain fatty acids (LCFAs) with 14 or more carbons plays a pivotal role in cellular metabolic homeostasis. Therefore, the uptake and metabolism of LCFAs must constantly be in tune with the cellular, metabolic, and structural requirements of cells. Many metabolic diseases are thought to be driven by the abnormal flow of fatty acids either from the dietary origin and/or released from adipose stores. Cellular uptake and intracellular trafficking of fatty acids are facilitated ubiquitously with unique combinations of fatty acid transport proteins and cytoplasmic fatty acid-binding proteins in every tissue. Extensive data are emerging on the defective transporters and metabolism of LCFAs and their clinical implications. Uptake and metabolism of LCFAs are crucial for the brain's functional development and cardiovascular health and maintenance. In addition, data suggest fatty acid metabolic transporter can normalize activated inflammatory response by reprogramming lipid metabolism in cancers. Here we review the current understanding of how LCFAs and their proteins contribute to the pathophysiology of three crucial diseases and the mechanisms involved in the processes.
Collapse
|
11
|
Sandre PC, da Silva Chagas L, de Velasco PC, Galvani RG, Dias Fraga KY, Tavares do Carmo MDG, Vianna PHO, Bonomo AC, Serfaty CA. Chronic nutritional restriction of omega-3 fatty acids induces a pro-inflammatory profile during the development of the rat visual system. Brain Res Bull 2021; 174:366-378. [PMID: 34237395 DOI: 10.1016/j.brainresbull.2021.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/19/2021] [Accepted: 07/02/2021] [Indexed: 12/24/2022]
Abstract
Modern western diets have been associated with a reduced proportion of dietary omega-3 fatty acids leading to decreased levels of DHA (docosahexaenoic acid) in the brain. Low DHA content has been associated with altered development of visual acuity in infants and also with an altered time course of synapse elimination and plasticity in subcortical visual nuclei in rodents. Microglia has an active role in normal developmental processes such as circuitry refinement and plasticity, and its activation status can be modulated by omega-3 (ω3) and omega-6 (ω6) essential fatty acids. In the present study, we investigated the impact of dietary restriction of DHA (ω3-), through the chronic administration of a coconut-based diet as the only fat source. This dietary protocol resulted in a reduction in DHA content in the retina and superior colliculus (SC) and in a neuroinflammatory outcome during the development of the rodent visual system. The ω3- group showed changes in microglial morphology in the retina and SC and a corresponding altered pattern of pro-inflammatory cytokine expression. Early and late fish oil protocols supplementation were able to restore DHA levels. The early supplementation also decreased neuroinflammatory markers in the visual system. The present study indicates that a chronic dietary restriction of omega-3 fatty acids and the resulting deficits in DHA content, commonly observed in Western diets, interferes with the microglial profile leading to an inflamed microenvironment which may underlie a disruption of synapse elimination, altered topographical organization, abnormal plasticity, and duration of critical periods during brain development.
Collapse
Affiliation(s)
- Poliana Capucho Sandre
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi, Brazil
| | - Luana da Silva Chagas
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi, Brazil
| | - Patricia Coelho de Velasco
- Josué Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Applied Nutrition, Institute of Nutrition, Rio de Janeiro State University, Rio de Janeiro, Brazil
| | - Rômulo Gonçalves Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Karla Yasmin Dias Fraga
- Josué Castro Nutrition Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Adriana Cesar Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Claudio Alberto Serfaty
- Laboratory of Neural Plasticity Neurobiology Department, Biology Institute, Federal Fluminense University, Niteroi, Brazil; National Institute of Science and Technology on Neuroimmunomodulation - INCT-NIM, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
12
|
Shared Biological Pathways between Antipsychotics and Omega-3 Fatty Acids: A Key Feature for Schizophrenia Preventive Treatment? Int J Mol Sci 2021; 22:ijms22136881. [PMID: 34206945 PMCID: PMC8269187 DOI: 10.3390/ijms22136881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/25/2022] Open
Abstract
Schizophrenia typically emerges during adolescence, with progression from an ultra-high risk state (UHR) to the first episode of psychosis (FEP) followed by a chronic phase. The detailed pathophysiology of schizophrenia and the factors leading to progression across these stages remain relatively unknown. The current treatment relies on antipsychotics, which are effective for FEP and chronic schizophrenia but ineffective for UHR patients. Antipsychotics modulate dopaminergic and glutamatergic neurotransmission, inflammation, oxidative stress, and membrane lipids pathways. Many of these biological pathways intercommunicate and play a role in schizophrenia pathophysiology. In this context, research of preventive treatment in early stages has explored the antipsychotic effects of omega-3 supplementation in UHR and FEP patients. This review summarizes the action of omega-3 in various biological systems involved in schizophrenia. Similar to antipsychotics, omega-3 supplementation reduces inflammation and oxidative stress, improves myelination, modifies the properties of cell membranes, and influences dopamine and glutamate pathways. Omega-3 supplementation also modulates one-carbon metabolism, the endocannabinoid system, and appears to present neuroprotective properties. Omega-3 has little side effects compared to antipsychotics and may be safely prescribed for UHR patients and as an add-on for FEP patients. This could to lead to more efficacious individualised treatments, thus contributing to precision medicine in psychiatry.
Collapse
|
13
|
Isaac AR, de Velasco PC, Fraga KYD, Tavares-do-Carmo MDG, Campos RMP, Iannotti FA, Verde R, Martins DBG, Santos TA, Ferreira BK, de Mello FG, Di Marzo V, Andrade-da-Costa BLDS, de Melo Reis RA. Maternal omega-3 intake differentially affects the endocannabinoid system in the progeny`s neocortex and hippocampus: Impact on synaptic markers. J Nutr Biochem 2021; 96:108782. [PMID: 34038760 DOI: 10.1016/j.jnutbio.2021.108782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 03/16/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFA) and the endocannabinoid system (ECS) modulate several functions through neurodevelopment including synaptic plasticity mechanisms. The interplay between n-3PUFA and the ECS during the early stages of development, however, is not fully understood. This study investigated the effects of maternal n-3PUFA supplementation (n-3Sup) or deficiency (n-3Def) on ECS and synaptic markers in postnatal offspring. Female rats were fed with a control, n-3Def, or n-3Sup diet from 15 days before mating and during pregnancy. The cerebral cortex and hippocampus of mothers and postnatal 1-2 days offspring were analyzed. In the mothers, a n-3 deficiency reduced CB1 receptor (CB1R) protein levels in the cortex and increased CB2 receptor (CB2R) in both cortex and hippocampus. In neonates, a maternal n-3 deficiency reduced the hippocampal CB1R amount while it increased CB2R. Additionally, total GFAP isoform expression was increased in both cortex and hippocampus in neonates of the n-3Def group. Otherwise, maternal n-3 supplementation increased the levels of n-3-derived endocannabinoids, DHEA and EPEA, in the cortex and hippocampus and reduced 2-arachidonoyl-glycerol (2-AG) concentrations in the cortex of the offspring. Furthermore, maternal n-3 supplementation also increased PKA phosphorylation in the cortex and ERK phosphorylation in the hippocampus. Synaptophysin immunocontent in both regions was also increased. In vitro assays showed that the increase of synaptophysin in the n-3Sup group was independent of CB1R activation. The findings show that variations in maternal dietary omega-3 PUFA levels may impact differently on the ECS and molecular markers in the cerebral cortex and hippocampus of the progeny.
Collapse
Affiliation(s)
- Alinny Rosendo Isaac
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Karla Yasmin Dias Fraga
- Instituto de Nutrição Josué de Castro (INJC), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria das Graças Tavares-do-Carmo
- Instituto de Nutrição Josué de Castro (INJC), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Maria Pereira Campos
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio Arturo Iannotti
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | - Roberta Verde
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy
| | - Danyelly Bruneska Gondim Martins
- Grupo de Bioinformática e prospecção molecular, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Thaysa Aragão Santos
- Grupo de Bioinformática e prospecção molecular, Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Bruna Klippel Ferreira
- Departamento de Bioquímica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Garcia de Mello
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare (ICB), Consiglio Nazionale delle Ricerche (CNR), Pozzuoli (NA), Italy; Canada Exellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health, CRIUCPQ and NUTRISS-INAF Universitè Laval, Quebec City, Canada
| | | | - Ricardo Augusto de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Rohbeck E, Eckel J, Romacho T. Cannabinoid Receptors in Metabolic Regulation and Diabetes. Physiology (Bethesda) 2021; 36:102-113. [PMID: 33595385 DOI: 10.1152/physiol.00029.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for developing effective drugs to combat the obesity and Type 2 diabetes mellitus epidemics. The endocannabinoid system plays a major role in energy homeostasis. It comprises the cannabinoid receptors 1 and 2 (CB1 and CB2), endogenous ligands called endocannabinoids and their metabolizing enzymes. Because the CB1 receptor is overactivated in metabolic alterations, pharmacological blockade of the CB1 receptor arose as a promising candidate to treat obesity. However, because of the wide distribution of CB1 receptors in the central nervous system, their negative central effects halted further therapeutic use. Although the CB2 receptor is mostly peripherally expressed, its role in metabolic homeostasis remains unclear. This review discusses the potential of CB1 and CB2 receptors at the peripheral level to be therapeutic targets in metabolic diseases. We focus on the impact of pharmacological intervention and/or silencing on peripheral cannabinoid receptors in organs/tissues relevant for energy homeostasis. Moreover, we provide a perspective on novel therapeutic strategies modulating these receptors. Targeting CB1 with peripherally restricted antagonists, neutral antagonists, inverse agonists, or monoclonal antibodies could represent successful strategies. CB2 agonism has shown promising results at preclinical level. Beyond classic antagonism and agonism targeting orthosteric sites, the recently described crystal structures of CB1 and CB2 open new possibilities for therapeutic interventions with negative and positive allosteric modulators. The challenge of simultaneously targeting CB1 and CB2 might be possible by developing dual-steric ligands. The future will tell whether these promising strategies result in a renaissance of the cannabinoid receptors as therapeutic targets in metabolic diseases.
Collapse
Affiliation(s)
- Elisabeth Rohbeck
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Juergen Eckel
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Tania Romacho
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
15
|
Parolini C. Marine n-3 polyunsaturated fatty acids: Efficacy on inflammatory-based disorders. Life Sci 2020; 263:118591. [PMID: 33069735 DOI: 10.1016/j.lfs.2020.118591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/21/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
Inflammation is a physiological response to injury, stimulating tissue repair and regeneration. However, the presence of peculiar individual conditions can negatively perturb the resolution phase eventually leading to a state of low-grade systemic chronic inflammation, characterized by tissue and organ damages and increased susceptibility to non-communicable disease. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are able to influence many aspects of this process. Experiments performed in various animal models of obesity, Alzheimer's disease and multiple sclerosis have demonstrated that n-3 PUFAs can modulate the basic mechanisms as well as the disease progression. This review describes the available data from experimental studies to the clinical trials.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
16
|
Sakayori N, Katakura M, Hamazaki K, Higuchi O, Fujii K, Fukabori R, Iguchi Y, Setogawa S, Takao K, Miyazawa T, Arita M, Kobayashi K. Maternal dietary imbalance between omega-6 and omega-3 fatty acids triggers the offspring's overeating in mice. Commun Biol 2020; 3:473. [PMID: 32859990 PMCID: PMC7455742 DOI: 10.1038/s42003-020-01209-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/06/2020] [Indexed: 11/16/2022] Open
Abstract
The increasing prevalence of obesity and its effects on our society warrant intensifying basic animal research for understanding why habitual intake of highly palatable foods has increased due to recent global environmental changes. Here, we report that pregnant mice that consume a diet high in omega-6 (n-6) polyunsaturated fatty acids (PUFAs) and low in omega-3 (n-3) PUFAs (an n-6high/n-3low diet), whose n-6/n-3 ratio is approximately 120, induces hedonic consumption in the offspring by upregulating the midbrain dopaminergic system. We found that exposure to the n-6high/n-3low diet specifically increases the consumption of palatable foods via increased mesolimbic dopamine release. In addition, neurodevelopmental analyses revealed that this induced hedonic consumption is programmed during embryogenesis, as dopaminergic neurogenesis is increased during in utero access to the n-6high/n-3low diet. Our findings reveal that maternal consumption of PUFAs can have long-lasting effects on the offspring’s pattern for consuming highly palatable foods. Sakayori et al. show that feeding pregnant mice with a diet high in omega-6 polyunsaturated fatty acids (PUFAs) and low in omega-3 PUFAs triggers hedonic consumption in the offspring by increasing its dopaminergic neurogenesis. This study suggests that maternal consumption of diets with unbalanced PUFAs contributes to the offspring’s overconsumption of foods.
Collapse
Affiliation(s)
- Nobuyuki Sakayori
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan. .,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan. .,Department of Physiology and Oral Physiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, 734-8553, Japan.
| | - Masanori Katakura
- Laboratory of Nutritional Physiology, Department of Pharmaceutical Sciences, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, Sakado, Saitama, 350-0295, Japan
| | - Kei Hamazaki
- Department of Public Health, Faculty of Medicine, University of Toyama, Sugitani, Toyama, 930-0194, Japan
| | - Oki Higuchi
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, 980-8579, Japan.,Biodynamic Plant Institute Co., Ltd., Sapporo, Hokkaido, 001-0021, Japan
| | - Kazuki Fujii
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Sugitani, Toyama, 930-0194, Japan.,Life Science Research Center, University of Toyama, Sugitani, Toyama, 930-0194, Japan
| | - Ryoji Fukabori
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Yoshio Iguchi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Susumu Setogawa
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan.,Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan.,Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Mibu-machi, Tochigi, 321-0293, Japan
| | - Keizo Takao
- Department of Behavioral Physiology, Graduate School of Innovative Life Science, University of Toyama, Sugitani, Toyama, 930-0194, Japan.,Life Science Research Center, University of Toyama, Sugitani, Toyama, 930-0194, Japan
| | - Teruo Miyazawa
- New Industry Creation Hatchery Center, Tohoku University, Sendai, Miyagi, 980-8579, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.,Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan.,Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy, Minato-ku, Tokyo, 105-0011, Japan
| | - Kazuto Kobayashi
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University, Fukushima, 960-1295, Japan
| |
Collapse
|
17
|
Yagin NL, Hajjarzadeh S, Aliasgharzadeh S, Aliasgari F, Mahdavi R. The association of dietary patterns with endocannabinoids levels in overweight and obese women. Lipids Health Dis 2020; 19:161. [PMID: 32631352 PMCID: PMC7339382 DOI: 10.1186/s12944-020-01341-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Higher levels of anandamide (AEA) and 2-arachidonoylglycerol (2-AG), the main arachidonic acid-derived endocannabinoids, are frequently reported in overweight and obese individuals. Recently, endocannabinoids have become a research interest in obesity area regarding their role in food intake. The relationship between dietary patterns and endocannabinoids is poorly understood; therefore, this study evaluated the association of the dietary patterns with AEA and 2-AG levels in overweight and obese women. METHODS In this cross sectional study, 183 overweight and obese females from Tabriz, Iran who aged between 19 and 50 years old and with mean BMI = 32.44 ± 3.79 kg/m2 were interviewed. The AEA and 2-AG levels were measured, and the dietary patterns were assessed using food frequency questionnaire. To extract the dietary patterns, factor analysis was applied. The association between AEA and 2-AG levels and dietary patterns was analyzed by linear regression. RESULTS Three major dietary patterns including "Western", "healthy", and "traditional" were extracted. After adjusting for age, physical activity, BMI, waist circumference, and fat mass, higher levels of AEA and 2-AG were observed in participants who were in the highest quintile of the Western pattern (P < 0.05). Also, in both unadjusted and adjusted models, significantly lower levels of AEA and 2-AG were detected in the women of the highest quintile of the healthy pattern (P < 0.01). Moreover, there was no significant association between "traditional" pattern and AEA and 2- AG levels in both unadjusted and adjusted models (P > 0.05). CONCLUSION In regard with the lower levels of endocannabinoids in healthy dietary pattern, adherence to healthy pattern might have promising results in regulating endocannabinoids levels.
Collapse
Affiliation(s)
- Neda Lotfi Yagin
- Student Research Committee, Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hajjarzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soghra Aliasgharzadeh
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Fereshteh Aliasgari
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Mahdavi
- Nutrition Research Center, School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Yang B, Lin L, Bazinet RP, Chien YC, Chang JPC, Satyanarayanan SK, Su H, Su KP. Clinical Efficacy and Biological Regulations of ω-3 PUFA-Derived Endocannabinoids in Major Depressive Disorder. PSYCHOTHERAPY AND PSYCHOSOMATICS 2020; 88:215-224. [PMID: 31269506 DOI: 10.1159/000501158] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/24/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Endocannabinoids (ECs) are one type of bioactive endogenous neuroinflammatory mediator derived from polyunsaturated fatty acids (PUFAs), which may regulate the emotional processes. Here, we assessed the effect of ω-3 PUFAs on EC levels, which may be the novel targets for the ω-3 PUFAs' antidepressive effects. METHODS We conducted a 12-week double-blind, nonplacebo, randomized controlled trial. Eighty-eight major depressive disorder (MDD) participants were randomly assigned to receive eicosapentaenoic acid (EPA, 3.0 g/day), docosahexaenoic acid (DHA, 1.4 g/day), or a combination of EPA (1.5 g/d) and DHA (0.7 g/day). Eighty-five participants completed the trial, and their clinical remission and plasma PUFA-derived EC levels (pmol/mL) were measured. RESULTS The cumulative rates of clinical remission were significantly higher in the EPA and EPA + DHA groups than the DHA group (51.85 and 53.84 vs. 34.37%; p =0.027 and p =0.024, respectively). EPA and EPA + DHA treatments increased the eicosapentaenoylethanolamide (EPEA) levels compared to DHA treatment (0.33 ± 0.18 and 0.35 ± 0.24 vs. 0.08 ± 0.12; p =0.002 and p =0.001, respectively), while EPA + DHA treatment increased the docosahexaenoylethanolamide levels more than EPA treatment (1.34 ± 2.09 vs. 0.01 ± 1.79; p =0.006). Plasma EPEA levels were positively correlated with rates of clinical remission (hazard ratio: 1.60, 95% confidence interval: 1.08-2.39). CONCLUSIONS Treatments enriched with EPA increased plasma EPEA levels, which was positively associated with clinical remission. This finding may suggest that levels of plasma EPEA play a potential novel endogenous therapeutic target in MDD.
Collapse
Affiliation(s)
- Bo Yang
- Institute of Lipids Medicine and School of Public Health, Wenzhou Medical University, Wenzhou, China.,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Lin Lin
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Yu-Chuan Chien
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Jane Pei-Chen Chang
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Senthil Kumaran Satyanarayanan
- Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan.,State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Kuan-Pin Su
- Institute of Lipids Medicine and School of Public Health, Wenzhou Medical University, Wenzhou, China, .,Department of Psychiatry and Mind-Body Interface Laboratory (MBI-Lab), China Medical University Hospital, Taichung, Taiwan, .,College of Medicine, China Medical University, Taichung, Taiwan,
| |
Collapse
|
19
|
Frajerman A, Kebir O, Chaumette B, Tessier C, Lamazière A, Nuss P, Krebs MO. [Membrane lipids in schizophrenia and early phases of psychosis: Potential biomarkers and therapeutic targets?]. Encephale 2020; 46:209-216. [PMID: 32151446 DOI: 10.1016/j.encep.2019.11.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/22/2019] [Accepted: 11/28/2019] [Indexed: 01/02/2023]
Abstract
The various roles of membrane lipids in human health has urged researchers to study their impact in neuropsychiatric diseases, especially in schizophrenia spectrum disorders and more recently in early stages of psychosis. The progress in mass spectrometry technologies now allows a more comprehensive analysis of phospholipids (PL) and their fatty acid (FA) molecular species. FA are defined by a carbon chain of variable length and are said to be unsaturated when their chain has one or more carbon-carbon double bonds. The PL are composed of a hydrophilic polar head with a phosphoric acid group and an hydrophobic part with FAs; they encompass glycerophospholipids and sphingolipids. The plasma membrane is a complex and dynamic structure consisting of a lipid bilayer composed of an outer layer and an inner layer of specific lipid composition. The permanent remodeling of membrane lipids involves phospholipases especially the phospholipase A2. Seventy percent of the brain consists of lipids from different classes and molecular species. Most of the brain lipids are composed of polyunsaturated fatty acid (PUFA)-enriched diacyl classes where omega-3 and omega-6 molecular species predominate. The balance between omega-3 and omega-6 is important for the neurodevelopment. PUFA are also involved in neurogenesis and neurotransmission. Sphingomyelin (SM) is a sphingolipid that influences inflammation, cell proliferation and lipid rafts formation. It is an important component of myelin sheaths of white matter and therefore is involved in cerebral connectivity. In rat models, deficiency in omega-3 causes abnormalities in dopaminergic neurotransmission, impacts on the functioning of some receptors (including cannabinoids CB1, glutamatergic N-methyl-D-aspartate receptor, NMDA), and increases sensitivity to hallucinogens. In contrast, omega-3 supplementation improves cognitive function and prevents psychotic-like behavior in some animal models for schizophrenia. It also reduces oxidative stress and prevents demyelination. The historical membrane hypothesis of schizophrenia has led to explore the lipids abnormality in this disorder. This hypothesis was initially based on the observation of an abnormal membrane prostaglandin production in schizophrenia caused by a membrane arachidonic acid deficiency. It has evolved emphasizing the various PUFA membrane's roles in particular regarding oxidative stress, inflammation and regulation of the NMDA receptors. In patients with mental disorders, low omega-3 index is more frequent than in the general population. This lipid abnormality could lead to myelination abnormalities and cognitive deficits observed in patients. It could also participate in oxidative stress abnormalities and inflammation reported in schizophrenia. On the other hand, low omega-3 index deficit was reported to be associated with an increased cardiovascular risk, and omega-3 supplementation may also have a positive cardiovascular impact in psychiatric patients, even more than in the general population. The presence of membrane lipid abnormalities is also found in patients during the first psychotic episode (FEP). The omega-3 supplementation improved the recovery rate and prevented the loss of gray matter in FEP. In patients at ultra-high risk to develop a psychotic disorder (UHR), omega-3 supplementation has been associated with a reduction of the rate of conversion to psychosis and with metabolic changes, such as decreased activity of phospholipase A2. However, this study has not as yet been replicated. Not all patients exhibit lipid abnormalities. Several studies, including studies from our team, have found a bimodal distribution of lipids in patients with schizophrenia. But some studies have found differences (in PUFA) in the acute phase whereas our studies (on phospholipids) are in chronic phases. It will be interesting to study in more depth the links between these two parameters. Furthermore, we identified a subgroup which was identified with a deficit in sphingomyelin and PUFA whereas others have found an increase of sphingomyelin. Individuals with this abnormal lipid cluster had more cognitive impairments and more severe clinical symptoms. Because the niacin test is an indirect reflection of arachidonic acid levels, it has been proposed to identify a subset of patients with membrane lipids anomalies. Niacin test response is influenced by several factors related to lipid metabolism, including cannabis use and phospholipase A2 activity. Despite progress, the function and impact of membrane lipids are still poorly understood in schizophrenia. They could serve as biomarkers for identifying biological subgroups among patients with schizophrenia. In UHR patients, their predictive value on the conversion to psychosis should be tested. Omega-3 supplementation could be a promising treatment thanks to its good tolerance and acceptability. It could be more appropriate for patients with PUFA anomalies in a more personalized medical approach.
Collapse
Affiliation(s)
- A Frajerman
- Inserm U1266 - GDR 3557, institut de psychiatrie et neurosciences de Paris, Institut de Psychiatrie, Paris, France.
| | - O Kebir
- Inserm U1266 - GDR 3557, institut de psychiatrie et neurosciences de Paris, Institut de Psychiatrie, Paris, France; GHU Paris psychiatrie et neurosciences, Paris, France
| | - B Chaumette
- Inserm U1266 - GDR 3557, institut de psychiatrie et neurosciences de Paris, Institut de Psychiatrie, Paris, France; GHU Paris psychiatrie et neurosciences, Paris, France; Université Paris Descartes, Université de Paris, Paris, France
| | - C Tessier
- ERL 1157, laboratoire de spectrométrie de masse, CHU de Saint-Antoine, Paris, France
| | - A Lamazière
- Inserm UMR_S 938, département METOMICS, centre de recherche Saint-Antoine, Sorbonne Université, AP-HP, Paris, France
| | - P Nuss
- Inserm UMR_S 938, département METOMICS, centre de recherche Saint-Antoine, Sorbonne Université, AP-HP, Paris, France; Service de psychiatrie et de psychologie médicale, Hôpital Saint-Antoine, Sorbonne Université, AP-HP, Paris, France
| | - M-O Krebs
- Inserm U1266 - GDR 3557, institut de psychiatrie et neurosciences de Paris, Institut de Psychiatrie, Paris, France; GHU Paris psychiatrie et neurosciences, Paris, France; Université Paris Descartes, Université de Paris, Paris, France
| |
Collapse
|
20
|
Carta G, Murru E, Vargiu R, Collu M, Carta M, Banni S, Stancampiano R. Essential fatty acids deficient diet modulates N-Acylethanolamide profile in rat's tissues. Prostaglandins Leukot Essent Fatty Acids 2020; 153:102053. [PMID: 31978675 DOI: 10.1016/j.plefa.2020.102053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/17/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
No data are available on whether a diet deficient of the essential fatty acids is able to modulate tissue levels of endocannabinoids and congeners. Male rats fed for 12 weeks a diet deficient of essential fatty acids, palmitic and oleic acids (EFAD), replaced with saturated fatty acids (SAFA), showed lowered n-3 and n-6 PUFAs levels in plasma, liver and adipose tissue, with concomitant steep increase of oleic and mead acids, while in hypothalamus no changes in PUFA concentration were detected and only palmitoleic acid was found increased. We found a reduction of anandamide and palmitoylethanolamide in liver and brain, while oleoylethanolamide increased significantly in liver and adipose tissue, associated to a 50 % body weight decrease. Changes in N-acylethanolamide profile may contribute to body weight reduction distinctive of EFA deficiency.
Collapse
Affiliation(s)
- Gianfranca Carta
- Dipartimento Scienze Biomediche, Università di Cagliari, Cittadella Universitaria, S.S. 554, km. 4,500, Monserrato, Cagliari 09042, Italy
| | - Elisabetta Murru
- Dipartimento Scienze Biomediche, Università di Cagliari, Cittadella Universitaria, S.S. 554, km. 4,500, Monserrato, Cagliari 09042, Italy
| | - Romina Vargiu
- Dipartimento Scienze Biomediche, Università di Cagliari, Cittadella Universitaria, S.S. 554, km. 4,500, Monserrato, Cagliari 09042, Italy
| | - Maria Collu
- Dipartimento Scienze Biomediche, Università di Cagliari, Cittadella Universitaria, S.S. 554, km. 4,500, Monserrato, Cagliari 09042, Italy
| | - Manolo Carta
- Dipartimento Scienze Biomediche, Università di Cagliari, Cittadella Universitaria, S.S. 554, km. 4,500, Monserrato, Cagliari 09042, Italy
| | - Sebastiano Banni
- Dipartimento Scienze Biomediche, Università di Cagliari, Cittadella Universitaria, S.S. 554, km. 4,500, Monserrato, Cagliari 09042, Italy.
| | - Roberto Stancampiano
- Dipartimento Scienze Biomediche, Università di Cagliari, Cittadella Universitaria, S.S. 554, km. 4,500, Monserrato, Cagliari 09042, Italy
| |
Collapse
|
21
|
Docosahexaenoic acid,22:6n-3: Its roles in the structure and function of the brain. Int J Dev Neurosci 2019; 79:21-31. [PMID: 31629800 DOI: 10.1016/j.ijdevneu.2019.10.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Docosahexaenoic acid,22:6n-3 (DHA) and its metabolites are vital for the structure and functional brain development of the fetus and infants, and also for maintenance of healthy brain function of adults. DHA is thought to be an essential nutrient required throughout the life cycle for the maintenance of overall brain health. The mode of actions of DHA and its derivatives at both cellular and molecular levels in the brain are emerging. DHA is the major prevalent fatty acid in the brain membrane. The brain maintains its fatty acid levels mainly via the uptake of plasma free fatty acids. Therefore, circulating plasma DHA is significantly related to cognitive abilities during ageing and is inversely associated with cognitive decline. The signaling pathways of DHA and its metabolites are involved in neurogenesis, antinociceptive effects, anti-apoptotic effect, synaptic plasticity, Ca2+ homeostasis in brain diseases, and the functioning of nigrostriatal activities. Mechanisms of action of DHA metabolites on various processes in the brain are not yet well known. Epidemiological studies support a link between low habitual intake of DHA and a higher risk of brain disorders. A diet characterized by higher intakes of foods containing high in n-3 fatty acids, and/or lower intake of n-6 fatty acids was strongly associated with a lower Alzheimer's Disease and other brain disorders. Supplementation of DHA improves some behaviors associated with attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior, as well as cognition. Nevertheless, the outcomes of trials with DHA supplementation have been controversial. Many intervention studies with DHA have shown an apparent benefit in brain function. However, clinical trials are needed for definitive conclusions. Dietary deficiency of n-3 fatty acids during fetal development in utero and the postnatal state has detrimental effects on cognitive abilities. Further research in humans is required to assess a variety of clinical outcomes, including quality of life and mental status, by supplementation of DHA.
Collapse
|
22
|
Dagnino-Subiabre A. Stress and Western diets increase vulnerability to neuropsychiatric disorders: A common mechanism. Nutr Neurosci 2019; 24:624-634. [PMID: 31524571 DOI: 10.1080/1028415x.2019.1661651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In modern lifestyle, stress and Western diets are two major environmental risk factors involved in the etiology of neuropsychiatric disorders. Lifelong interactions between stress, Western diets, and how they can affect brain physiology, remain unknown. A possible relation between dietary long chain polyunsaturated fatty acids (PUFA), endocannabinoids, and stress is proposed. This review suggests that both Western diets and negative stress or distress increase n-6/n-3 PUFA ratio in the phospholipids of the plasma membrane in neurons, allowing an over-activation of the endocannabinoid system in the limbic areas that control emotions. As a consequence, an excitatory/inhibitory imbalance is induced, which may affect the ability to synchronize brain areas involved in the control of stress responses. These alterations increase vulnerability to neuropsychiatric disorders. Accordingly, dietary intake of n-3 PUFA would counter the effects of stress on the brain of stressed subjects. In conclusion, this article proposes that PUFA, endocannabinoids, and stress form a unique system which is self-regulated in limbic areas which in turn controls the effects of stress on the brain throughout a lifetime.
Collapse
Affiliation(s)
- Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Center for Neurobiology and Integrative Pathophysiology, Institute of Physiology, Faculty of Sciences, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
23
|
Peritore AF, Siracusa R, Crupi R, Cuzzocrea S. Therapeutic Efficacy of Palmitoylethanolamide and Its New Formulations in Synergy with Different Antioxidant Molecules Present in Diets. Nutrients 2019; 11:E2175. [PMID: 31514292 PMCID: PMC6769461 DOI: 10.3390/nu11092175] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 11/16/2022] Open
Abstract
The use of a complete nutritional approach seems increasingly promising to combat chronic inflammation. The choice of healthy sources of carbohydrates, fats, and proteins, associated with regular physical activity and avoidance of smoking is essential to fight the war against chronic diseases. At the base of the analgesic, anti-inflammatory, or antioxidant action of the diets, there are numerous molecules, among which some of a lipidic nature very active in the inflammatory pathway. One class of molecules found in diets with anti-inflammatory actions are ALIAmides. Among all, one is particularly known for its ability to counteract the inflammatory cascade, the Palmitoylethanolamide (PEA). PEA is a molecular that is present in nature, in numerous foods, and is endogenously produced by our body, which acts as a balancer of inflammatory processes, also known as endocannabionoid-like. PEA is often used in the treatment of both acute and chronic inflammatory pathologies, either alone or in association with other molecules with properties, such as antioxidants or analgesics. This review aims to illustrate an overview of the different diets that are involved in the process of opposition to the inflammatory cascade, focusing on capacity of PEA and new formulations in synergy with other molecules.
Collapse
Affiliation(s)
- Alessio Filippo Peritore
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalia Crupi
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy.
- Department of Pharmacological and Physiological Sciences, Saint Louis University School of Medicine, St. Louis, MO 63104, USA.
| |
Collapse
|
24
|
Greer JB, Magnuson JT, Hester K, Giroux M, Pope C, Anderson T, Liu J, Dang V, Denslow ND, Schlenk D. Effects of Chlorpyrifos on Cholinesterase and Serine Lipase Activities and Lipid Metabolism in Brains of Rainbow Trout (Oncorhynchus mykiss). Toxicol Sci 2019; 172:146-154. [PMID: 31359069 PMCID: PMC6813751 DOI: 10.1093/toxsci/kfz167] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/08/2019] [Accepted: 07/09/2019] [Indexed: 12/20/2022] Open
Abstract
Chlorpyrifos is an organophosphorus insecticide that elicits acute toxicity through inhibition of acetylcholinesterase (AChE), leading to acetylcholine accumulation and prolonged stimulation of cholinergic receptors throughout the central and peripheral nervous systems. Previous studies have indicated that neurodevelopment may also be impaired through alternative pathways, including reduction of cAMP catalyzed downstream events. The upstream initiating events that underlie non-cholinergic neurological actions of chlorpyrifos and other organophosphorus compounds remain unclear. To investigate the potential role of disruption of fatty acid signaling as a mechanism of toxicity, lipid metabolism and fatty acid profiles were examined to identify alterations that may play a critical role in upstream signaling in the CNS. Juvenile rainbow trout were treated for 7 days with nominal chlorpyrifos concentrations previously reported to diminish olfactory responses (10, 20, and 40 μg/L). While lethality was noted higher doses, measured chlorpyrifos concentrations of 1.38 μg/L (nominal concentration 10 μg/L) significantly reduced the activity of AChE and two serine lipases, monoacylglycerol lipase and fatty acid amide hydrolase in the brain. Reductions in lysophosphatidylethanolamines (16:0; 18:0, 18:1, and 22:6) derived from the phosphatidylethanolamines and free fatty acids (Palmitic acid16:0; Linolenic acid18:3; Eicosadienoic acid 20:2; Arachidonic acid 20:4; and Docosahexaenoic acid 22:6) were also noted, suggesting that chlorpyrifos inhibited the metabolism of selected phospholipid signaling precursors at sublethal concentrations. These results indicate that in addition to AChE inhibition, environmentally relevant chlorpyrifos exposure alters serine lipase activity and lipid metabolites in the trout brain, which may compromise neuronal signaling and impact neurobehavioral responses in aquatic animals.
Collapse
Affiliation(s)
- J B Greer
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States
| | - J T Magnuson
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States
| | - K Hester
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - M Giroux
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States
| | - C Pope
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - T Anderson
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - J Liu
- Center for Veterinary Health Sciences and Interdisciplinary Toxicology Program, Oklahoma State University, 264 McElroy Hall, Stillwater, OK, United States
| | - V Dang
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, 2187 Mowry Rd., Gainesville, FL, United States
| | - N D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, PO Box 110885, 2187 Mowry Rd., Gainesville, FL, United States
| | - D Schlenk
- Department of Environmental Sciences, University of California Riverside, 2460A Geology, Riverside, CA, United States.,Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
de Bus I, Witkamp R, Zuilhof H, Albada B, Balvers M. The role of n-3 PUFA-derived fatty acid derivatives and their oxygenated metabolites in the modulation of inflammation. Prostaglandins Other Lipid Mediat 2019; 144:106351. [PMID: 31260750 DOI: 10.1016/j.prostaglandins.2019.106351] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022]
Abstract
Notwithstanding the ongoing debate on their full potential in health and disease, there is general consensus that n-3 PUFAs play important physiological roles. Increasing dietary n-3 PUFA intake results in increased DHA and EPA content in cell membranes as well as an increase in n-3 derived oxylipin and -endocannabinoid concentrations, like fatty acid amides and glycerol-esters. These shifts are believed to (partly) explain the pharmacological and anti-inflammatory effects of n-3 PUFAs. Recent studies discovered that n-3 PUFA-derived endocannabinoids can be further metabolized by the oxidative enzymes CYP-450, LOX and COX, similar to the n-6 derived endocannabinoids. Interestingly, these oxidized n-3 PUFA derived endocannabinoids of eicosapentaenoyl ethanolamide (EPEA) and docosahexaenoyl ethanolamide (DHEA) have higher anti-inflammatory and anti-proliferative potential than their precursors. In this review, an overview of recently discovered n-3 PUFA derived endocannabinoids and their metabolites is provided. In addition, the use of chemical probes will be presented as a promising technique to study the n-3 PUFA and n-3 PUFA metabolism within the field of lipid biochemistry.
Collapse
Affiliation(s)
- Ian de Bus
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Renger Witkamp
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands; School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin, PR China; Department of Chemical and Materials Engineering, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| | - Michiel Balvers
- Nutrition and Pharmacology Group, Division of Human Nutrition, Wageningen University & Research, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.
| |
Collapse
|
26
|
Hammels I, Binczek E, Schmidt-Soltau I, Jenke B, Thomas A, Vogel M, Thevis M, Filipova D, Papadopoulos S, Stoffel W. Novel CB1-ligands maintain homeostasis of the endocannabinoid system in ω3- and ω6-long-chain-PUFA deficiency. J Lipid Res 2019; 60:1396-1409. [PMID: 31167809 PMCID: PMC6672042 DOI: 10.1194/jlr.m094664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/04/2019] [Indexed: 01/01/2023] Open
Abstract
Mammalian ω3- and ω6-PUFAs are synthesized from essential fatty acids (EFAs) or supplied by the diet. PUFAs are constitutive elements of membrane architecture and precursors of lipid signaling molecules. EFAs and long-chain (LC)-PUFAs are precursors in the synthesis of endocannabinoid ligands of Gi/o protein-coupled cannabinoid receptor (CB)1 and CB2 in the endocannabinoid system, which critically regulate energy homeostasis as the metabolic signaling system in hypothalamic neuronal circuits and behavioral parameters. We utilized the auxotrophic fatty acid desaturase 2-deficient (fads2−/−) mouse, deficient in LC-PUFA synthesis, to follow the age-dependent dynamics of the PUFA pattern in the CNS-phospholipidome in unbiased dietary studies of three cohorts on sustained LC-PUFA-free ω6-arachidonic acid- and DHA-supplemented diets and their impact on the precursor pool of CB1 ligands. We discovered the transformation of eicosa-all cis-5,11,14-trienoic acid, uncommon in mammalian lipidomes, into two novel endocannabinoids, 20:35,11,14-ethanolamide and 2-20:35,11,14-glycerol. Their function as ligands of CB1 has been characterized in HEK293 cells. Labeling experiments excluded Δ8-desaturase activity and proved the position specificity of FADS2. The fads2−/− mutant might serve as an unbiased model in vivo in the development of novel CB1 agonists and antagonists.
Collapse
Affiliation(s)
- Ina Hammels
- Center of Molecular Medicine (CMMC), Laboratory of Molecular Neurosciences, Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany.,Cluster of Excellence, Cellular Stress Response in Aging Related Diseases (CECAD) University of Cologne, 50931 Cologne, Germany
| | - Erika Binczek
- Center of Molecular Medicine (CMMC), Laboratory of Molecular Neurosciences, Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Inga Schmidt-Soltau
- Center of Molecular Medicine (CMMC), Laboratory of Molecular Neurosciences, Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Britta Jenke
- Center of Molecular Medicine (CMMC), Laboratory of Molecular Neurosciences, Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany
| | - Andreas Thomas
- Institute of Biochemistry Deutsche Sporthochschule (DSHS) Cologne, 50933 Cologne, Germany
| | - Matthias Vogel
- Institute of Biochemistry Deutsche Sporthochschule (DSHS) Cologne, 50933 Cologne, Germany
| | - Mario Thevis
- Institute of Biochemistry Deutsche Sporthochschule (DSHS) Cologne, 50933 Cologne, Germany
| | - Dilyana Filipova
- Institute of Vegetative Physiology, Center of Physiology and Pathophysiology, University of Cologne, 50931 Cologne, Germany
| | - Symeon Papadopoulos
- Institute of Vegetative Physiology, Center of Physiology and Pathophysiology, University of Cologne, 50931 Cologne, Germany
| | - Wilhelm Stoffel
- Center of Molecular Medicine (CMMC), Laboratory of Molecular Neurosciences, Institute of Biochemistry, University of Cologne, 50931 Cologne, Germany .,Cluster of Excellence, Cellular Stress Response in Aging Related Diseases (CECAD) University of Cologne, 50931 Cologne, Germany.,Institute of Biochemistry Deutsche Sporthochschule (DSHS) Cologne, 50933 Cologne, Germany
| |
Collapse
|
27
|
Tarragon E, Moreno JJ. Role of Endocannabinoids on Sweet Taste Perception, Food Preference, and Obesity-related Disorders. Chem Senses 2019; 43:3-16. [PMID: 29293950 DOI: 10.1093/chemse/bjx062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The prevalence of obesity and obesity-related disorders such as type 2 diabetes (T2D) and metabolic syndrome has increased significantly in the past decades, reaching epidemic levels and therefore becoming a major health issue worldwide. Chronic overeating of highly palatable foods is one of the main responsible aspects behind overweight. Food choice is driven by food preference, which is influenced by environmental and internal factors, from availability to rewarding properties of food. Consequently, the acquisition of a dietary habit that may lead to metabolic alterations is the result of a learning process in which many variables take place. From genetics to socioeconomic status, the response to food and how this food affects energy metabolism is heavily influenced, even before birth. In this work, we review how food preference is acquired and established, particularly as regards sweet taste; towards which flavors and tastes we are positively predisposed by our genetic background, our early experience, further lifestyle, and our surroundings; and, especially, the role that the endocannabinoid system (ECS) plays in all of this. Ultimately, we try to summarize why this system is relevant for health purposes and how this is linked to important aspects of eating behavior, as its function as a modulator of energy homeostasis affects, and is affected by, physiological responses directly associated with obesity.
Collapse
Affiliation(s)
- Ernesto Tarragon
- Department of Neurobehavioral Genetics, Institute of Psychobiology, University of Trier, Germany
| | - Juan José Moreno
- Department of Nutrition, Food Sciences and Gastronomy, Institute of Nutrition and Food Safety, University of Barcelona, Spain.,CIBEROBN Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain
| |
Collapse
|
28
|
Larrieu T, Layé S. Food for Mood: Relevance of Nutritional Omega-3 Fatty Acids for Depression and Anxiety. Front Physiol 2018; 9:1047. [PMID: 30127751 PMCID: PMC6087749 DOI: 10.3389/fphys.2018.01047] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/13/2018] [Indexed: 12/28/2022] Open
Abstract
The central nervous system (CNS) has the highest concentration of lipids in the organism after adipose tissue. Among these lipids, the brain is particularly enriched with polyunsaturated fatty acids (PUFAs) represented by the omega-6 (ω6) and omega-3 (ω3) series. These PUFAs include arachidonic acid (AA) and docosahexaenoic acid (DHA), respectively. PUFAs have received substantial attention as being relevant to many brain diseases, including anxiety and depression. This review addresses an important question in the area of nutritional neuroscience regarding the importance of ω3 PUFAs in the prevention and/or treatment of neuropsychiatric diseases, mainly depression and anxiety. In particular, it focuses on clinical and experimental data linking dietary intake of ω3 PUFAs and depression or anxiety. In particular, we will discuss recent experimental data highlighting how ω3 PUFAs can modulate neurobiological processes involved in the pathophysiology of anxiety and depression. Potential mechanisms involved in the neuroprotective and corrective activity of ω3 PUFAs in the brain are discussed, in particular the sensing activity of free fatty acid receptors and the activity of the PUFAs-derived endocannabinoid system and the hypothalamic-pituitary-adrenal axis.
Collapse
Affiliation(s)
- Thomas Larrieu
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France
| | - Sophie Layé
- UMR 1286, NutriNeuro: Laboratoire Nutrition et Neurobiologie Intégrée, Institut National de la Recherche Agronomique, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
29
|
Endocannabinoids in Body Weight Control. Pharmaceuticals (Basel) 2018; 11:ph11020055. [PMID: 29849009 PMCID: PMC6027162 DOI: 10.3390/ph11020055] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Maintenance of body weight is fundamental to maintain one's health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and energy expenditure. Next, we will focus on how peripheral eCBs affect food digestion, nutrient transformation and energy expenditure by interfering with signaling cascades in the gastrointestinal tract, liver, pancreas, fat depots and endocrine glands. To finally outline the safe future potential of cannabinoids as medicines, our overall goal is to address the molecular, cellular and pharmacological logic behind central and peripheral eCB-mediated body weight control, and to figure out how these precise mechanistic insights are currently transferred into the development of next generation cannabinoid medicines displaying clearly improved safety profiles, such as significantly reduced side effects.
Collapse
|
30
|
Layé S, Nadjar A, Joffre C, Bazinet RP. Anti-Inflammatory Effects of Omega-3 Fatty Acids in the Brain: Physiological Mechanisms and Relevance to Pharmacology. Pharmacol Rev 2018; 70:12-38. [PMID: 29217656 DOI: 10.1124/pr.117.014092] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 09/05/2017] [Indexed: 12/17/2022] Open
Abstract
Classically, polyunsaturated fatty acids (PUFA) were largely thought to be relatively inert structural components of brain, largely important for the formation of cellular membranes. Over the past 10 years, a host of bioactive lipid mediators that are enzymatically derived from arachidonic acid, the main n-6 PUFA, and docosahexaenoic acid, the main n-3 PUFA in the brain, known to regulate peripheral immune function, have been detected in the brain and shown to regulate microglia activation. Recent advances have focused on how PUFA regulate the molecular signaling of microglia, especially in the context of neuroinflammation and behavior. Several active drugs regulate brain lipid signaling and provide proof of concept for targeting the brain. Because brain lipid metabolism relies on a complex integration of diet, peripheral metabolism, including the liver and blood, which supply the brain with PUFAs that can be altered by genetics, sex, and aging, there are many pathways that can be disrupted, leading to altered brain lipid homeostasis. Brain lipid signaling pathways are altered in neurologic disorders and may be viable targets for the development of novel therapeutics. In this study, we discuss in particular how n-3 PUFAs and their metabolites regulate microglia phenotype and function to exert their anti-inflammatory and proresolving activities in the brain.
Collapse
Affiliation(s)
- Sophie Layé
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Agnès Nadjar
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Corinne Joffre
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| | - Richard P Bazinet
- Institut National pour la Recherche Agronomique and Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux, France (S.L., A.N., C.J.); and Department of Nutritional Sciences, University of Toronto, Ontario, Canada (R.P.B.)
| |
Collapse
|
31
|
Dyall SC. Interplay Between n-3 and n-6 Long-Chain Polyunsaturated Fatty Acids and the Endocannabinoid System in Brain Protection and Repair. Lipids 2017; 52:885-900. [PMID: 28875399 PMCID: PMC5656721 DOI: 10.1007/s11745-017-4292-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/26/2017] [Indexed: 12/13/2022]
Abstract
The brain is enriched in arachidonic acid (ARA) and docosahexaenoic acid (DHA), long-chain polyunsaturated fatty acids (LCPUFAs) of the n-6 and n-3 series, respectively. Both are essential for optimal brain development and function. Dietary enrichment with DHA and other long-chain n-3 PUFA, such as eicosapentaenoic acid (EPA), has shown beneficial effects on learning and memory, neuroinflammatory processes, and synaptic plasticity and neurogenesis. ARA, DHA and EPA are precursors to a diverse repertoire of bioactive lipid mediators, including endocannabinoids. The endocannabinoid system comprises cannabinoid receptors, their endogenous ligands, the endocannabinoids, and their biosynthetic and degradation enzymes. Anandamide (AEA) and 2-arachidonoylglycerol (2-AG) are the most widely studied endocannabinoids and are both derived from phospholipid-bound ARA. The endocannabinoid system also has well-established roles in neuroinflammation, synaptic plasticity and neurogenesis, suggesting an overlap in the neuroprotective effects observed with these different classes of lipids. Indeed, growing evidence suggests a complex interplay between n-3 and n-6 LCPUFA and the endocannabinoid system. For example, long-term DHA and EPA supplementation reduces AEA and 2-AG levels, with reciprocal increases in levels of the analogous endocannabinoid-like DHA and EPA-derived molecules. This review summarises current evidence of this interplay and discusses the therapeutic potential for brain protection and repair.
Collapse
Affiliation(s)
- Simon C Dyall
- Faculty of Health and Social Sciences, Bournemouth University, Dorset, UK.
| |
Collapse
|
32
|
Freitas HR, Isaac AR, Malcher-Lopes R, Diaz BL, Trevenzoli IH, De Melo Reis RA. Polyunsaturated fatty acids and endocannabinoids in health and disease. Nutr Neurosci 2017; 21:695-714. [PMID: 28686542 DOI: 10.1080/1028415x.2017.1347373] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are lipid derivatives of omega-3 (docosahexaenoic acid, DHA, and eicosapentaenoic acid, EPA) or of omega-6 (arachidonic acid, ARA) synthesized from membrane phospholipids and used as a precursor for endocannabinoids (ECs). They mediate significant effects in the fine-tune adjustment of body homeostasis. Phyto- and synthetic cannabinoids also rule the daily life of billions worldwide, as they are involved in obesity, depression and drug addiction. Consequently, there is growing interest to reveal novel active compounds in this field. Cloning of cannabinoid receptors in the 90s and the identification of the endogenous mediators arachidonylethanolamide (anandamide, AEA) and 2-arachidonyglycerol (2-AG), led to the characterization of the endocannabinoid system (ECS), together with their metabolizing enzymes and membrane transporters. Today, the ECS is known to be involved in diverse functions such as appetite control, food intake, energy balance, neuroprotection, neurodegenerative diseases, stroke, mood disorders, emesis, modulation of pain, inflammatory responses, as well as in cancer therapy. Western diet as well as restriction of micronutrients and fatty acids, such as DHA, could be related to altered production of pro-inflammatory mediators (e.g. eicosanoids) and ECs, contributing to the progression of cardiovascular diseases, diabetes, obesity, depression or impairing conditions, such as Alzheimer' s disease. Here we review how diets based in PUFAs might be linked to ECS and to the maintenance of central and peripheral metabolism, brain plasticity, memory and learning, blood flow, and genesis of neural cells.
Collapse
Affiliation(s)
- Hércules Rezende Freitas
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Alinny Rosendo Isaac
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | | | - Bruno Lourenço Diaz
- c Laboratory of Inflammation, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Isis Hara Trevenzoli
- d Laboratory of Molecular Endocrinology, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| | - Ricardo Augusto De Melo Reis
- a Laboratory of Neurochemistry, Institute of Biophysics Carlos Chagas Filho , Universidade Federal do Rio de Janeiro, Cidade Universitária , Ilha do Fundão, Rio de Janeiro , RJ 21941-902 , Brazil
| |
Collapse
|
33
|
Araque A, Castillo PE, Manzoni OJ, Tonini R. Synaptic functions of endocannabinoid signaling in health and disease. Neuropharmacology 2017. [PMID: 28625718 DOI: 10.1016/j.neuropharm.2017.06.017] [Citation(s) in RCA: 153] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endocannabinoids (eCBs) are a family of lipid molecules that act as key regulators of synaptic transmission and plasticity. They are synthetized "on demand" following physiological and/or pathological stimuli. Once released from postsynaptic neurons, eCBs typically act as retrograde messengers to activate presynaptic type 1 cannabinoid receptors (CB1) and induce short- or long-term depression of neurotransmitter release. Besides this canonical mechanism of action, recent findings have revealed a number of less conventional mechanisms by which eCBs regulate neural activity and synaptic function, suggesting that eCB-mediated plasticity is mechanistically more diverse than anticipated. These mechanisms include non-retrograde signaling, signaling via astrocytes, participation in long-term potentiation, and the involvement of mitochondrial CB1. Focusing on paradigmatic brain areas, such as hippocampus, striatum, and neocortex, we review typical and novel signaling mechanisms, and discuss the functional implications in normal brain function and brain diseases. In summary, eCB signaling may lead to different forms of synaptic plasticity through activation of a plethora of mechanisms, which provide further complexity to the functional consequences of eCB signaling. This article is part of the Special Issue entitled "A New Dawn in Cannabinoid Neurobiology".
Collapse
Affiliation(s)
- Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| | - Olivier J Manzoni
- Institut National de la Santé et et de la Recherche Médicale U901 Marseille, France, Université de la Méditerranée UMR S901 Aix-Marseille Marseille, France, INMED Marseille, France.
| | - Raffaella Tonini
- Neuroscience and Brain Technologies Department, Istituto Italiano di Tecnologia, Genova, Italy.
| |
Collapse
|
34
|
Thomazeau A, Bosch-Bouju C, Manzoni O, Layé S. Nutritional n-3 PUFA Deficiency Abolishes Endocannabinoid Gating of Hippocampal Long-Term Potentiation. Cereb Cortex 2017; 27:2571-2579. [PMID: 26946127 DOI: 10.1093/cercor/bhw052] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Maternal n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, is critical during perinatal brain development. How early postnatal n-3 PUFA deficiency impacts on hippocampal synaptic plasticity is mostly unknown. Here we compared activity-dependent plasticity at excitatory and inhibitory synapses in the CA1 region of the hippocampus in weaned pups whose mothers were fed with an n-3 PUFA-balanced or n-3 PUFA-deficient diet. Normally, endogenous cannabinoids (eCB) produced by the post-synapse dually control network activity by mediating the long-term depression of inhibitory inputs (iLTD) and positively gating NMDAR-dependent long-term potentiation (LTP) of excitatory inputs. We found that both iLTD and LTP were impaired in n-3 PUFA-deficient mice. Pharmacological dissection of the underlying mechanism revealed that impairment of NMDAR-dependent LTP was causally linked to and attributable to the ablation of eCB-mediated iLTD and associated to disinhibitory gating of excitatory synapses. The data shed new light on how n-3 PUFAs shape synaptic activity in the hippocampus and provide a new synaptic substrate to the cognitive impairments associated with perinatal n-3 deficiency.
Collapse
Affiliation(s)
- Aurore Thomazeau
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, F-33000 Bordeaux, France.,Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux University, F-33000 Bordeaux, France
| | - Clémentine Bosch-Bouju
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, F-33000 Bordeaux, France.,Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux University, F-33000 Bordeaux, France
| | - Olivier Manzoni
- Aix-Marseille Université.,INSERM.,INMED UMR S 901, Marseille 13009, France
| | - Sophie Layé
- Nutrition et Neurobiologie Intégrée, UMR 1286, INRA, F-33000 Bordeaux, France.,Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux University, F-33000 Bordeaux, France
| |
Collapse
|
35
|
Ramírez-López MT, Vázquez M, Lomazzo E, Hofmann C, Blanco RN, Alén F, Antón M, Decara J, Arco R, Orio L, Suárez J, Lutz B, Gómez de Heras R, Bindila L, Rodríguez de Fonseca F. A moderate diet restriction during pregnancy alters the levels of endocannabinoids and endocannabinoid-related lipids in the hypothalamus, hippocampus and olfactory bulb of rat offspring in a sex-specific manner. PLoS One 2017; 12:e0174307. [PMID: 28346523 PMCID: PMC5367805 DOI: 10.1371/journal.pone.0174307] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 03/07/2017] [Indexed: 01/09/2023] Open
Abstract
Undernutrition during pregnancy has been associated to increased vulnerability to develop metabolic and behavior alterations later in life. The endocannabinoid system might play an important role in these processes. Therefore, we investigated the effects of a moderate maternal calorie-restricted diet on the levels of the endocannabinoid 2-arachidonoyl glycerol (2-AG), arachidonic acid (AA) and the N-acylethanolamines (NAEs) anandamide (AEA), oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) in the brain of newborn rat offspring. We focused on brain structures involved in metabolism, feeding behavior, as well as emotional and cognitive responses. Female Wistar rats were assigned during the entire pregnancy to either control diet (C) or restriction diet (R), consisting of a 20% calorie-restricted diet. Weight gain and caloric intake of rat dams were monitored and birth outcomes were assessed. 2-AG, AA and NAE levels were measured in hypothalamus, hippocampus and olfactory bulb of the offspring. R dams displayed lower gain weight from the middle pregnancy and consumed less calories during the entire pregnancy. Offspring from R dams were underweight at birth, but litter size was unaffected. In hypothalamus, R male offspring displayed decreased levels of AA and OEA, with no change in the levels of the endocannabinoids 2-AG and AEA. R female exhibited decreased 2-AG and PEA levels. The opposite was found in the hippocampus, where R male displayed increased 2-AG and AA levels, and R female exhibited elevated levels of AEA, AA and PEA. In the olfactory bulb, only R female presented decreased levels of AEA, AA and PEA. Therefore, a moderate diet restriction during the entire pregnancy alters differentially the endocannabinoids and/or endocannabinoid-related lipids in hypothalamus and hippocampus of the underweight offspring, similarly in both sexes, whereas sex-specific alterations occur in the olfactory bulb. Consequently, endocannabinoid and endocannabinoid-related lipid signaling alterations might be involved in the long-term and sexual dimorphism effects commonly observed after undernutrition and low birth weight.
Collapse
Affiliation(s)
- María Teresa Ramírez-López
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Mariam Vázquez
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Ermelinda Lomazzo
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Clementine Hofmann
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Rosario Noemi Blanco
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Francisco Alén
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - María Antón
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Decara
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Rocío Arco
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
| | - Laura Orio
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Suárez
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- Departamento de Biología Celular, Genética y Fisiología. IBIMA. Facultad de Ciencias, Universidad de Malaga. Campus de Teatinos s/n, Malaga, Spain
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Raquel Gómez de Heras
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- * E-mail: (FRF); (RGH)
| | - Laura Bindila
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Fernando Rodríguez de Fonseca
- Departamento de Psicobiología. Facultad de Psicología, Universidad Complutense de Madrid. Campus de Somosaguas s/n, Pozuelo de Alarcón, Madrid, Spain
- IBIMA, Unidad de Gestión Clínica de Salud Mental, Hospital Regional Universitario de Málaga, Universidad de Málaga, Málaga, Spain
- * E-mail: (FRF); (RGH)
| |
Collapse
|
36
|
Abstract
Cannabis sativa has long been used for medicinal purposes. To improve safety and efficacy, compounds from C. sativa were purified or synthesized and named under an umbrella group as cannabinoids. Currently, several cannabinoids may be prescribed in Canada for a variety of indications such as nausea and pain. More recently, an increasing number of reports suggest other salutary effects associated with endogenous cannabinoid signaling including cardioprotection. The therapeutic potential of cannabinoids is therefore extended; however, evidence is limited and mechanisms remain unclear. In addition, the use of cannabinoids clinically has been hindered due to pronounced psychoactive side effects. This review provides an overview on the endocannabinoid system, including known physiological roles, and conditions in which cannabinoid receptor signaling has been implicated.
Collapse
Affiliation(s)
- Yan Lu
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada
| | - Hope D Anderson
- a College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, 750 McDermot Avenue, Winnipeg, MB R3E 0T5, Canada.,b Canadian Centre for Agri-Food Research in Health and Medicine, St. Boniface Hospital Research Centre, 351 Taché Avenue, Winnipeg, MB R2H 2A6, Canada.,c Department of Pharmacology and Therapeutics, Max Rady College of Medicine, University of Manitoba, 753 McDermot Avenue, Winnipeg, MB R3E 0T6, Canada
| |
Collapse
|
37
|
Polyunsaturated Fatty Acids Differentially Modulate Cell Proliferation and Endocannabinoid System in Two Human Cancer Lines. Arch Med Res 2017; 48:46-54. [DOI: 10.1016/j.arcmed.2017.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022]
|
38
|
Dyall SC, Mandhair HK, Fincham REA, Kerr DM, Roche M, Molina-Holgado F. Distinctive effects of eicosapentaenoic and docosahexaenoic acids in regulating neural stem cell fate are mediated via endocannabinoid signalling pathways. Neuropharmacology 2016; 107:387-395. [PMID: 27044662 DOI: 10.1016/j.neuropharm.2016.03.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 11/29/2022]
Abstract
Emerging evidence suggests a complex interplay between the endocannabinoid system, omega-3 fatty acids and the immune system in the promotion of brain self-repair. However, it is unknown if all omega-3 fatty acids elicit similar effects on adult neurogenesis and if such effects are mediated or regulated by interactions with the endocannabinoid system. This study investigated the effects of DHA and EPA on neural stem cell (NSC) fate and the role of the endocannabinoid signalling pathways in these effects. EPA, but not DHA, significantly increased proliferation of NSCs compared to controls, an effect associated with enhanced levels of the endocannabinoid 2-arachidonylglycerol (2-AG) and p-p38 MAPK, effects attenuated by pre-treatment with CB1 (AM251) or CB2 (AM630) receptor antagonists. Furthermore, in NSCs derived from IL-1β deficient mice, EPA significantly decreased proliferation and p-p38 MAPK levels compared to controls, suggesting a key role for IL-1β signalling in the effects observed. Although DHA similarly increased 2-AG levels in wild-type NSCs, there was no concomitant increase in proliferation or p-p38 MAPK activity. In addition, in NSCs from IL-1β deficient mice, DHA significantly increased proliferation without effects on p-P38 MAPK, suggesting effects of DHA are mediated via alternative signalling pathways. These results provide crucial new insights into the divergent effects of EPA and DHA in regulating NSC proliferation and the pathways involved, and highlight the therapeutic potential of their interplay with endocannabinoid signalling in brain repair.
Collapse
Affiliation(s)
- S C Dyall
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK; Faculty of Health and Social Sciences, Bournemouth University, Dorset, UK.
| | - H K Mandhair
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK
| | - R E A Fincham
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK
| | - D M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - M Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - F Molina-Holgado
- Department of Life Sciences, University of Roehampton, Whitelands College, London, UK
| |
Collapse
|
39
|
Brose SA, Golovko SA, Golovko MY. Brain 2-Arachidonoylglycerol Levels Are Dramatically and Rapidly Increased Under Acute Ischemia-Injury Which Is Prevented by Microwave Irradiation. Lipids 2016; 51:487-95. [PMID: 27021494 DOI: 10.1007/s11745-016-4144-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
The involvement of brain 2-arachidonoylglycerol (2-AG) in a number of critical physiological and pathophysiological regulatory mechanisms highlights the importance for an accurate brain 2-AG determination. In the present study, we validated head-focused microwave irradiation (MW) as a method to prevent postmortem brain 2-AG alterations before analysis. We compared MW to freezing to prevent 2-AG induction and estimated exogenous and endogenous 2-AG stability upon exposure to MW. Using MW, we measured, for the first time, true 2-AG brain levels under basal conditions, 30 s after brain removal from the cranium, and upon exposure to 5 min of brain global ischemia. Our data indicate that brain 2-AG levels are instantaneously and dramatically increased approximately 60-fold upon brain removal from the cranium. With 5 min of brain global ischemia 2-AG levels are also, but less dramatically, increased 3.5-fold. Our data indicate that brain tissue fixation with MW is a required technique to measure both true basal 2-AG levels and 2-AG alterations under different experimental conditions including global ischemia, and 2-AG is stable upon exposure to MW.
Collapse
Affiliation(s)
- Stephen A Brose
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA
| | - Svetlana A Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA
| | - Mikhail Y Golovko
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 501 N. Columbia Rd., Grand Forks, ND, 58202-9037, USA.
| |
Collapse
|
40
|
Jacome-Sosa M, Vacca C, Mangat R, Diane A, Nelson RC, Reaney MJ, Shen J, Curtis JM, Vine DF, Field CJ, Igarashi M, Piomelli D, Banni S, Proctor SD. Vaccenic acid suppresses intestinal inflammation by increasing anandamide and related N-acylethanolamines in the JCR:LA-cp rat. J Lipid Res 2016; 57:638-49. [PMID: 26891736 PMCID: PMC4808772 DOI: 10.1194/jlr.m066308] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Indexed: 12/30/2022] Open
Abstract
Vaccenic acid (VA), the predominant ruminant-derived trans fat in the food chain, ameliorates hyperlipidemia, yet mechanisms remain elusive. We investigated whether VA could influence tissue endocannabinoids (ECs) by altering the availability of their biosynthetic precursor, arachidonic acid (AA), in membrane phospholipids (PLs). JCR:LA-cp rats were assigned to a control diet with or without VA (1% w/w), cis-9, trans-11 conjugated linoleic acid (CLA) (1% w/w) or VA+CLA (1% + 0.5% w/w) for 8 weeks. VA reduced the EC, 2-arachidonoylglycerol (2-AG), in the liver and visceral adipose tissue (VAT) relative to control diet (P < 0.001), but did not change AA in tissue PLs. There was no additive effect of combining VA+CLA on 2-AG relative to VA alone (P > 0.05). Interestingly, VA increased jejunal concentrations of anandamide and those of the noncannabinoid signaling molecules, oleoylethanolamide and palmitoylethanolamide, relative to control diet (P < 0.05). This was consistent with a lower jejunal protein abundance (but not activity) of their degrading enzyme, fatty acid amide hydrolase, as well as the mRNA expression of TNFα and interleukin 1β (P < 0.05). The ability of VA to reduce 2-AG in the liver and VAT provides a potential mechanistic explanation to alleviate ectopic lipid accumulation. The opposing regulation of ECs and other noncannabinoid lipid signaling molecules by VA suggests an activation of benefit via the EC system in the intestine.
Collapse
Affiliation(s)
- Miriam Jacome-Sosa
- Metabolic and Cardiovascular Disease Laboratory, Group on Molecular and Cell Biology of Lipids, Alberta Diabetes and Mazankowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Claudia Vacca
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | - Rabban Mangat
- Metabolic and Cardiovascular Disease Laboratory, Group on Molecular and Cell Biology of Lipids, Alberta Diabetes and Mazankowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Abdoulaye Diane
- Metabolic and Cardiovascular Disease Laboratory, Group on Molecular and Cell Biology of Lipids, Alberta Diabetes and Mazankowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Randy C Nelson
- Metabolic and Cardiovascular Disease Laboratory, Group on Molecular and Cell Biology of Lipids, Alberta Diabetes and Mazankowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Martin J Reaney
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jianheng Shen
- Department of Plant Science, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jonathan M Curtis
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Donna F Vine
- Metabolic and Cardiovascular Disease Laboratory, Group on Molecular and Cell Biology of Lipids, Alberta Diabetes and Mazankowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| | - Catherine J Field
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Miki Igarashi
- Laboratory for Medical Homeostasis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Daniele Piomelli
- Departments of Anatomy and Neurobiology, Pharmacology, and Biological Chemistry, University of California, Irvine, CA
| | - Sebastiano Banni
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria, Monserrato, Cagliari, Italy
| | - Spencer D Proctor
- Metabolic and Cardiovascular Disease Laboratory, Group on Molecular and Cell Biology of Lipids, Alberta Diabetes and Mazankowski Heart Institutes, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
41
|
Watkins BA, Kim J. The endocannabinoid system: directing eating behavior and macronutrient metabolism. Front Psychol 2015; 5:1506. [PMID: 25610411 PMCID: PMC4285050 DOI: 10.3389/fpsyg.2014.01506] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 12/06/2014] [Indexed: 01/11/2023] Open
Abstract
For many years, the brain has been the primary focus for research on eating behavior. More recently, the discovery of the endocannabinoids (EC) and the endocannabinoid system (ECS), as well as the characterization of its actions on appetite and metabolism, has provided greater insight on the brain and food intake. The purpose of this review is to explain the actions of EC in the brain and other organs as well as their precursor polyunsaturated fatty acids (PUFA) that are converted to these endogenous ligands. The binding of the EC to the cannabinoid receptors in the brain stimulates food intake, and the ECS participates in systemic macronutrient metabolism where the gastrointestinal system, liver, muscle, and adipose are involved. The EC are biosynthesized from two distinct families of dietary PUFA, namely the n-6 and n-3. Based on their biochemistry, these PUFA are well known to exert considerable physiological and health-promoting actions. However, little is known about how these different families of PUFA compete as precursor ligands of cannabinoid receptors to stimulate appetite or perhaps down-regulate the ECS to amend food intake and prevent or control obesity. The goal of this review is to assess the current available research on ECS and food intake, suggest research that may improve the complications associated with obesity and diabetes by dietary PUFA intervention, and further reveal mechanisms to elucidate the relationships between substrate for EC synthesis, ligand actions on receptors, and the physiological consequences of the ECS. Dietary PUFA are lifestyle factors that could potentially curb eating behavior, which may translate to changes in macronutrient metabolism, systemically and in muscle, benefiting health overall.
Collapse
Affiliation(s)
- Bruce A Watkins
- Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Jeffrey Kim
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of California Davis, Davis, CA, USA
| |
Collapse
|
42
|
Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15:771-85. [PMID: 25387473 DOI: 10.1038/nrn3820] [Citation(s) in RCA: 1030] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The brain is highly enriched with fatty acids. These include the polyunsaturated fatty acids (PUFAs) arachidonic acid and docosahexaenoic acid, which are largely esterified to the phospholipid cell membrane. Once PUFAs are released from the membrane, they can participate in signal transduction, either directly or after enzymatic conversion to a variety of bioactive derivatives ('mediators'). PUFAs and their mediators regulate several processes within the brain, such as neurotransmission, cell survival and neuroinflammation, and thereby mood and cognition. PUFA levels and the signalling pathways that they regulate are altered in various neurological disorders, including Alzheimer's disease and major depression. Diet and drugs targeting PUFAs may lead to novel therapeutic approaches for the prevention and treatment of brain disorders.
Collapse
|
43
|
D’Addario C, Micioni Di Bonaventura M, Pucci M, Romano A, Gaetani S, Ciccocioppo R, Cifani C, Maccarrone M. Endocannabinoid signaling and food addiction. Neurosci Biobehav Rev 2014; 47:203-24. [DOI: 10.1016/j.neubiorev.2014.08.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 07/28/2014] [Accepted: 08/18/2014] [Indexed: 10/24/2022]
|
44
|
Meijerink J, Balvers M, Witkamp R. N-Acyl amines of docosahexaenoic acid and other n-3 polyunsatured fatty acids - from fishy endocannabinoids to potential leads. Br J Pharmacol 2014; 169:772-83. [PMID: 23088259 DOI: 10.1111/bph.12030] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/15/2012] [Accepted: 10/15/2012] [Indexed: 02/06/2023] Open
Abstract
N-3 Long-chain polyunsaturated fatty acids (n-3 LC-PUFAs), in particular α-linolenic acid (18:3n-3), eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) are receiving much attention because of their presumed beneficial health effects. To explain these, a variety of mechanisms have been proposed, but their interactions with the endocannabinoid system have received relatively little attention so far. However, it has already been shown some time ago that consumption of n-3 LC-PUFAs not only affects the synthesis of prototypic endocannabinoids like anandamide but also stimulates the formation of specific n-3 LC-PUFA-derived conjugates with ethanolamine, dopamine, serotonin or other amines. Some of these fatty amides show overlapping biological activities with those of typical endocannabinoids, whereas others possess distinct and sometimes largely unknown receptor affinities and other properties. The ethanolamine and dopamine conjugates of DHA have been the most investigated thus far. These mediators may provide promising new leads to the field of inflammatory and neurological disorders and for other pharmacological applications, including their use as carrier molecules for neurotransmitters to target the brain. Furthermore, combinations of n-3 LC-PUFA-derived fatty acid amides, their precursors and FAAH inhibitors offer possibilities to optimise their effects in health and disease.
Collapse
Affiliation(s)
- Jocelijn Meijerink
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | | | | |
Collapse
|
45
|
Kim J, Carlson ME, Watkins BA. Docosahexaenoyl ethanolamide improves glucose uptake and alters endocannabinoid system gene expression in proliferating and differentiating C2C12 myoblasts. Front Physiol 2014; 5:100. [PMID: 24711795 PMCID: PMC3968752 DOI: 10.3389/fphys.2014.00100] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/27/2014] [Indexed: 11/26/2022] Open
Abstract
Skeletal muscle is a major storage site for glycogen and a focus for understanding insulin resistance and type-2-diabetes. New evidence indicates that overactivation of the peripheral endocannabinoid system (ECS) in skeletal muscle diminishes insulin sensitivity. Specific n-6 and n-3 polyunsaturated fatty acids (PUFA) are precursors for the biosynthesis of ligands that bind to and activate the cannabinoid receptors. The function of the ECS and action of PUFA in skeletal muscle glucose uptake was investigated in proliferating and differentiated C2C12 myoblasts treated with either 25 μM of arachidonate (AA) or docosahexaenoate (DHA), 25 μM of EC [anandamide (AEA), 2-arachidonoylglycerol (2-AG), docosahexaenoylethanolamide (DHEA)], 1 μM of CB1 antagonist NESS0327, and CB2 inverse agonist AM630. Compared to the BSA vehicle control cell cultures in both proliferating and differentiated myoblasts those treated with DHEA, the EC derived from the n-3 PUFA DHA, had higher 24 h glucose uptake, while AEA and 2-AG, the EC derived from the n-6 PUFA AA, had lower basal glucose uptake. Adenylyl cyclase mRNA was higher in myoblasts treated with DHA in both proliferating and differentiated states while those treated with AEA or 2-AG were lower compared to the control cell cultures. Western blot and qPCR analysis showed higher expression of the cannabinoid receptors in differentiated myoblasts treated with DHA while the opposite was observed with AA. These findings indicate a compensatory effect of DHA and DHEA compared to AA-derived ligands on the ECS and associated ECS gene expression and higher glucose uptake in myoblasts.
Collapse
Affiliation(s)
- Jeffrey Kim
- Center on Aging, University of Connecticut Health Center Farmington, CT, USA
| | - Morgan E Carlson
- Center on Aging, University of Connecticut Health Center Farmington, CT, USA
| | - Bruce A Watkins
- Center on Aging, University of Connecticut Health Center Farmington, CT, USA
| |
Collapse
|
46
|
McPartland JM, Guy GW, Di Marzo V. Care and feeding of the endocannabinoid system: a systematic review of potential clinical interventions that upregulate the endocannabinoid system. PLoS One 2014; 9:e89566. [PMID: 24622769 PMCID: PMC3951193 DOI: 10.1371/journal.pone.0089566] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/21/2014] [Indexed: 12/31/2022] Open
Abstract
Background The “classic” endocannabinoid (eCB) system includes the cannabinoid receptors CB1 and CB2, the eCB ligands anandamide (AEA) and 2-arachidonoylglycerol (2-AG), and their metabolic enzymes. An emerging literature documents the “eCB deficiency syndrome” as an etiology in migraine, fibromyalgia, irritable bowel syndrome, psychological disorders, and other conditions. We performed a systematic review of clinical interventions that enhance the eCB system—ways to upregulate cannabinoid receptors, increase ligand synthesis, or inhibit ligand degradation. Methodology/Principal Findings We searched PubMed for clinical trials, observational studies, and preclinical research. Data synthesis was qualitative. Exclusion criteria limited the results to 184 in vitro studies, 102 in vivo animal studies, and 36 human studies. Evidence indicates that several classes of pharmaceuticals upregulate the eCB system, including analgesics (acetaminophen, non-steroidal anti-inflammatory drugs, opioids, glucocorticoids), antidepressants, antipsychotics, anxiolytics, and anticonvulsants. Clinical interventions characterized as “complementary and alternative medicine” also upregulate the eCB system: massage and manipulation, acupuncture, dietary supplements, and herbal medicines. Lifestyle modification (diet, weight control, exercise, and the use of psychoactive substances—alcohol, tobacco, coffee, cannabis) also modulate the eCB system. Conclusions/Significance Few clinical trials have assessed interventions that upregulate the eCB system. Many preclinical studies point to other potential approaches; human trials are needed to explore these promising interventions.
Collapse
Affiliation(s)
- John M. McPartland
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
- Department of Family Medicine, University of Vermont, Burlington, Vermont, United States of America
- * E-mail:
| | - Geoffrey W. Guy
- GW Pharmaceuticals, Porton Down Science Park, Salisbury, Wiltshire, United Kingdom
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomoleculare, CNR, Via Campi Flegrei, Pozzuoli, Napoli, Italy
| |
Collapse
|
47
|
Abstract
The endocannabinoid (EC) system consists of two main receptors: cannabinoid type 1 receptor cannabinoid receptors are found in both the central nervous system (CNS) and periphery, whereas the cannabinoid type 2 receptor cannabinoid receptor is found principally in the immune system and to a lesser extent in the CNS. The EC family consists of two classes of well characterised ligands; the N-acyl ethanolamines, such as N-arachidonoyl ethanolamide or anandamide (AEA), and the monoacylglycerols, such as 2-arachidonoyl glycerol. The various synthetic and catabolic pathways for these enzymes have been (with the exception of AEA synthesis) elucidated. To date, much work has examined the role of EC in nociceptive processing and the potential of targeting the EC system to produce analgesia. Cannabinoid receptors and ligands are found at almost every level of the pain pathway from peripheral sites, such as peripheral nerves and immune cells, to central integration sites such as the spinal cord, and higher brain regions such as the periaqueductal grey and the rostral ventrolateral medulla associated with descending control of pain. EC have been shown to induce analgesia in preclinical models of acute nociception and chronic pain states. The purpose of this review is to critically evaluate the evidence for the role of EC in the pain pathway and the therapeutic potential of EC to produce analgesia. We also review the present clinical work conducted with EC, and examine whether targeting the EC system might offer a novel target for analgesics, and also potentially disease-modifying interventions for pathophysiological pain states.
Collapse
|
48
|
Alvheim AR, Torstensen BE, Lin YH, Lillefosse HH, Lock EJ, Madsen L, Frøyland L, Hibbeln JR, Malde MK. Dietary linoleic acid elevates the endocannabinoids 2-AG and anandamide and promotes weight gain in mice fed a low fat diet. Lipids 2013; 49:59-69. [PMID: 24081493 PMCID: PMC3889814 DOI: 10.1007/s11745-013-3842-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 09/06/2013] [Indexed: 12/18/2022]
Abstract
Dietary intake of linoleic acid (LNA, 18:2n-6) has increased dramatically during the 20th century and is associated with greater prevalence of obesity. The endocannabinoid system is involved in regulation of energy balance and a sustained hyperactivity of the endocannabinoid system may contribute to obesity. Arachidonic acid (ARA, 20:4n-6) is the precursor for 2-AG and anandamide (AEA), and we sought to determine if low fat diets (LFD) could be made obesogenic by increasing the endocannabinoid precursor pool of ARA, causing excessive endocannabinoid signaling leading to weight gain and a metabolic profile associated with obesity. Mice (C57BL/6j, 6 weeks of age) were fed 1 en% LNA and 8 en% LNA in low fat (12.5 en%) and medium fat diets (MFD, 35 en%) for 16 weeks. We found that increasing dietary LNA from 1 to 8 en% in LFD and MFD significantly increased ARA in phospholipids (ARA–PL), elevated 2-AG and AEA in liver, elevated plasma leptin, and resulted in larger adipocytes and more macrophage infiltration in adipose tissue. In LFD, dietary LNA of 8 en% increased feed efficiency and caused greater weight gain than in an isocaloric reduction to 1 en% LNA. Increasing dietary LNA from 1 to 8 en% elevates liver endocannabinoid levels and increases the risk of developing obesity. Thus a high dietary content of LNA (8 en%) increases the adipogenic properties of a low fat diet.
Collapse
Affiliation(s)
- Anita Røyneberg Alvheim
- National Institute of Nutrition and Seafood Research (NIFES), P. O. Box 2029, Nordnes, 5817, Bergen, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Endocannabinoid system as a potential mechanism for n-3 long-chain polyunsaturated fatty acid mediated cardiovascular protection. Proc Nutr Soc 2013; 72:460-9. [PMID: 24020800 DOI: 10.1017/s0029665113003406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The presence of an active and functioning endocannabinoid (EC) system within cardiovascular tissues implies that this system has either a physiological or pathophysiological role (or both), and there is a substantial literature to support the notion that, in the main, they are protective in the setting of various CVD states. Moreover, there is an equally extensive literature to demonstrate the cardio- and vasculo-protective effects of n-3 long-chain (LC)-PUFA. It is now becoming evident that there appears to be a close relationship between dietary intervention with n-3 LC-PUFA and changes in tissue levels of EC, raising the question as to whether or not EC may, at least in part, play a role in mediating the cardio-and vasculo-protective effects of n-3 LC-PUFA. This brief review summarises the current understanding of how both EC and n-3 LC-PUFA exert their protective effects in three major cardiovascular disorders (hypertension, atherosclerosis and acute myocardial infarction) and attempts to identify the similarities and differences that may indicate common or integrated mechanisms. From the data available, it is unlikely that in hypertension EC mediate any beneficial effects of n-3 LC-PUFA, since they do not share common mechanisms of blood pressure reduction. However, inhibition of inflammation is an effect shared by EC and n-3 LC-PUFA in the setting of both atherosclerosis and myocardial reperfusion injury, while blockade of L-type Ca2+ channels is one of the possible common mechanisms for their antiarrhythmic effects. Although both EC and n-3 LC-PUFA demonstrate vasculo- and cardio-protection, the literature overwhelmingly shows that n-3 LC-PUFA decrease tissue levels of EC through formation of EC–n-3 LC-PUFA conjugates, which is counter-intuitive to an argument that EC may mediate the effects of n-3 LC-PUFA. However, the discovery that these conjugates have a greater affinity for cannabinoid receptors than the native EC provides a fascinating avenue for further research into novel approaches for the treatment and prevention of atherosclerosis and myocardial injury following ischaemia/reperfusion.
Collapse
|
50
|
Nutritional properties of dietary omega-3-enriched phospholipids. BIOMED RESEARCH INTERNATIONAL 2013; 2013:965417. [PMID: 23984423 PMCID: PMC3747496 DOI: 10.1155/2013/965417] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Revised: 06/04/2013] [Accepted: 06/07/2013] [Indexed: 12/17/2022]
Abstract
Dietary fatty acids regulate several physiological functions. However, to exert their properties, they have to be present in the diet in an optimal balance. Particular attention has been focused on tissue highly polyunsaturated fatty acids (HPUFAs) n-6/n-3 ratio, influenced by the type and the esterified form of dietary fatty acids. Dietary EPA and DHA when esterified to phospholipids (PLs) are more efficiently incorporated into tissue PLs and seem to possess peculiar properties through specific mechanism(s) of action, such as the capacity to affect endocannabinoid biosynthesis at much lower doses than EPA and DHA in triglyceride form, probably because of the above mentioned higher incorporation into tissue PLs. Downregulation of the endocannabinoid system seems to mediate the positive effects exerted by omega-3-enriched PLs on several parameters of metabolic syndrome. PLs are one of the major dietary forms of EPA and DHA we are exposed to with the everyday diet; therefore, it is not surprising that it guarantees an effective EPA and DHA nutritional activity. Future studies should address whether EPA and DHA in PL form are also more effective than other formulations in ameliorating other pathological conditions where n-3 HPUFAs seem to exert beneficial activities such as cancer and psychiatric disorders.
Collapse
|