1
|
Nakada T, Koga M, Takeuchi H, Doi K, Sugiyama H, Sakurai H. PP2A adapter protein IER5 induces dephosphorylation and degradation of MDM2, thereby stabilizing p53. Cell Signal 2025; 131:111739. [PMID: 40081547 DOI: 10.1016/j.cellsig.2025.111739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/11/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
The tumor suppressor p53 activates transcription of the IER5 gene, which encodes an adapter protein of protein phosphatase PP2A. IER5 binds to both the B55 regulatory subunit of PP2A and PP2A's target proteins, facilitating PP2A/B55-catalyzed dephosphorylation of these proteins. Here, we show that IER5 functions as a positive regulator of p53 by inhibiting its ubiquitination, thereby increasing cellular p53 levels. Mechanistically, this effect of IER5 requires its nuclear localization and binding to both PP2A/B55 and the p53 ubiquitin E3 ligase MDM2. Importantly, IER5 fails to inhibit p53 ubiquitination in cells treated with the MDM2 inhibitor Nutlin-3. The IER5-PP2A/B55 complex dephosphorylates MDM2 at Ser166, leading to MDM2 ubiquitination and a reduction in nuclear MDM2. Altogether, our data provide evidence that IER5-PP2A/B55 regulates the nuclear balance between MDM2 and p53 via MDM2 dephosphorylation.
Collapse
Affiliation(s)
- Taisei Nakada
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Mayuko Koga
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroto Takeuchi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Kuriko Doi
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Haruka Sugiyama
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan
| | - Hiroshi Sakurai
- Division of Health Sciences, Graduate School of Medical Science, Kanazawa University, 5-11-80 Kodatsuno, Kanazawa, Ishikawa 920-0942, Japan.
| |
Collapse
|
2
|
Fitriastuti D, Miura K, Okada S, Hirano H, Osada H, Nakamura H. Discovery of niclosamide as a p300/transcription factor protein-protein interaction inhibitor. Bioorg Med Chem 2025; 121:118114. [PMID: 39970485 DOI: 10.1016/j.bmc.2025.118114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 02/11/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
Protein-protein interactions (PPIs) are crucial in various biological processes and are attractive targets for drug discovery. In this study, we identified niclosamide (9) as a novel inhibitor of the hypoxia-inducible factor 1α (HIF-1α)/p300 PPI from the RIKEN NPDepo compound library using a fluorescence anisotropy-based screening method. We synthesized niclosamide azide (10) as a photoaffinity labelling probe to identify the p300 binding site of compound 9 and elucidated the binding mode using photoaffinity labelling experiments and molecular docking simulations. Furthermore, we demonstrated that compound 9 inhibited not only HIF-1α/p300 PPI but also p300-transcription factor PPIs, including interaction with p53 and STAT3, thereby suppressing the expression of BAX and c-MYC, respectively.
Collapse
Affiliation(s)
- Dhina Fitriastuti
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Kazuki Miura
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Satoshi Okada
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Institute of Microbial Chemistry (BIKAKEN), 3-13-23, Kamiosaki, Shinagawa, Tokyo 141-0021, Japan
| | - Hiroyuki Nakamura
- School of Life Science and Technology, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan; Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan.
| |
Collapse
|
3
|
Weng C, Jin R, Jin X, Yang Z, He C, Zhang Q, Xu J, Lv B. Exploring the Mechanisms, Biomarkers, and Therapeutic Targets of TRIM Family in Gastrointestinal Cancer. Drug Des Devel Ther 2024; 18:5615-5639. [PMID: 39654601 PMCID: PMC11626976 DOI: 10.2147/dddt.s482340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/23/2024] [Indexed: 12/12/2024] Open
Abstract
Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates. As E3 ubiquitin ligases, proteins of tripartite motif (TRIM) family play a role in cancer signaling, development, apoptosis, and formation. These proteins regulate diverse biological activities and signaling pathways. This study comprehensively outlines the functions of TRIM proteins in gastrointestinal physiology, contributing to our knowledge of the molecular pathways involved in gastrointestinal tumors. Gastrointestinal region (GI) cancers are closely linked to the ubiquitination system, with the E3 ubiquitin ligase playing a crucial role by targeting various substrates.
Collapse
Affiliation(s)
- Chunyan Weng
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Rijuan Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Xiaoliang Jin
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Zimei Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Chenghai He
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Qiuhua Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| | - Jingli Xu
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Gastric Surgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
4
|
Li C, Xiao Y, Zhou J, Liu S, Zhang L, Song X, Guo X, Song Q, Zhao J, Deng N. Knockout of onecut2 inhibits proliferation and promotes apoptosis of tumor cells through SKP2-mediated p53 acetylation in hepatocellular carcinoma. Cell Mol Life Sci 2024; 81:469. [PMID: 39609269 PMCID: PMC11604872 DOI: 10.1007/s00018-024-05518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Onecut2 (OC2) plays a vital regulatory role in tumor growth, metastasis and angiogenesis. In this study, we report the regulatory role and specific molecular mechanism of OC2 in the apoptosis of hepatocellular carcinoma (HCC) cells. We found that OC2 knockout via the CRISPR/CAS9 system not only significantly inhibited the proliferation and angiogenesis of HCC cells but also significantly promoted apoptosis. The apoptosis rate of the OC2 knockout HCC cell line reached 30.514%. In a mouse model, the proliferation inhibition rate of tumor cells reached 98.8%. To explore the mechanism of apoptosis, ChIP-Seq and dual-luciferase reporter assays were carried out. The results showed that OC2 could directly bind to the promotor of SKP2 and regulate its expression. Moreover, downregulating the expression of OC2 and SKP2 could release p300, promote the acetylation of p53, increase the expression of p21 and p27, and promote the apoptosis of HCC cells. Moreover, the overexpression of OC2 or SKP2 in the knockout HCC cell line clearly inhibited the acetylation level of p53 and reduced cell apoptosis. This study revealed that OC2 could regulate the apoptosis of HCC cells through the SKP2/p53/p21 axis, which may provide some therapeutic targets for HCC in the clinic.
Collapse
Affiliation(s)
- Cunjie Li
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Yuxin Xiao
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Jieling Zhou
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Shifeng Liu
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Ligang Zhang
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
- School of Medicine, Foshan University, Foshan, 528225, China
| | - Xinran Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Xinhua Guo
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275, China
| | - Qifang Song
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China
| | - Jianfu Zhao
- Research Center of Cancer Diagnosis and Therapy, Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China.
| | - Ning Deng
- Guangdong Province Engineering Research Center for Antibody Drug and Immunoassay, Department of Biology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Bevill SM, Casaní-Galdón S, El Farran CA, Cytrynbaum EG, Macias KA, Oldeman SE, Oliveira KJ, Moore MM, Hegazi E, Adriaens C, Najm FJ, Demetri GD, Cohen S, Mullen JT, Riggi N, Johnstone SE, Bernstein BE. Impact of supraphysiologic MDM2 expression on chromatin networks and therapeutic responses in sarcoma. CELL GENOMICS 2023; 3:100321. [PMID: 37492096 PMCID: PMC10363746 DOI: 10.1016/j.xgen.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/09/2023] [Accepted: 04/14/2023] [Indexed: 07/27/2023]
Abstract
Amplification of MDM2 on supernumerary chromosomes is a common mechanism of P53 inactivation across tumors. Here, we investigated the impact of MDM2 overexpression on chromatin, gene expression, and cellular phenotypes in liposarcoma. Three independent regulatory circuits predominate in aggressive, dedifferentiated tumors. RUNX and AP-1 family transcription factors bind mesenchymal gene enhancers. P53 and MDM2 co-occupy enhancers and promoters associated with P53 signaling. When highly expressed, MDM2 also binds thousands of P53-independent growth and stress response genes, whose promoters engage in multi-way topological interactions. Overexpressed MDM2 concentrates within nuclear foci that co-localize with PML and YY1 and could also contribute to P53-independent phenotypes associated with supraphysiologic MDM2. Importantly, we observe striking cell-to-cell variability in MDM2 copy number and expression in tumors and models. Whereas liposarcoma cells are generally sensitive to MDM2 inhibitors and their combination with pro-apoptotic drugs, MDM2-high cells tolerate them and may underlie the poor clinical efficacy of these agents.
Collapse
Affiliation(s)
- Samantha M. Bevill
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Salvador Casaní-Galdón
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Chadi A. El Farran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Eli G. Cytrynbaum
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kevin A. Macias
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Sylvie E. Oldeman
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Kayla J. Oliveira
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Molly M. Moore
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Esmat Hegazi
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Carmen Adriaens
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Fadi J. Najm
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - George D. Demetri
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| | - Sonia Cohen
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - John T. Mullen
- Department of Surgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nicolò Riggi
- Department of Cell and Tissue Genomics (CTG), Genentech Inc, South San Francisco, CA 94080, USA
| | - Sarah E. Johnstone
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Bradley E. Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA 02115, USA
- Ludwig Center at Harvard, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
6
|
RUNX3 Meets the Ubiquitin-Proteasome System in Cancer. Cells 2023; 12:cells12050717. [PMID: 36899853 PMCID: PMC10001085 DOI: 10.3390/cells12050717] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 02/26/2023] Open
Abstract
RUNX3 is a transcription factor with regulatory roles in cell proliferation and development. While largely characterized as a tumor suppressor, RUNX3 can also be oncogenic in certain cancers. Many factors account for the tumor suppressor function of RUNX3, which is reflected by its ability to suppress cancer cell proliferation after expression-restoration, and its inactivation in cancer cells. Ubiquitination and proteasomal degradation represent a major mechanism for the inactivation of RUNX3 and the suppression of cancer cell proliferation. On the one hand, RUNX3 has been shown to facilitate the ubiquitination and proteasomal degradation of oncogenic proteins. On the other hand, RUNX3 can be inactivated through the ubiquitin-proteasome system. This review encapsulates two facets of RUNX3 in cancer: how RUNX3 suppresses cell proliferation by facilitating the ubiquitination and proteasomal degradation of oncogenic proteins, and how RUNX3 is degraded itself through interacting RNA-, protein-, and pathogen-mediated ubiquitination and proteasomal degradation.
Collapse
|
7
|
p90RSK Regulates p53 Pathway by MDM2 Phosphorylation in Thyroid Tumors. Cancers (Basel) 2022; 15:cancers15010121. [PMID: 36612117 PMCID: PMC9817759 DOI: 10.3390/cancers15010121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/10/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
The expression level of the tumor suppressor p53 is controlled by the E3 ubiquitin ligase MDM2 with a regulatory feedback loop, which allows p53 to upregulate its inhibitor MDM2. In this manuscript we demonstrated that p90RSK binds and phosphorylates MDM2 on serine 166 both in vitro and in vivo by kinase assay, immunoblot, and co-immunoprecipitation assay; this phosphorylation increases the stability of MDM2 which in turn binds p53, ubiquitinating it and promoting its degradation by proteasome. A pharmacological inhibitor of p90RSK, BI-D1870, decreases MDM2 phosphorylation, and restores p53 function, which in turn transcriptionally increases the expression of cell cycle inhibitor p21 and of pro-apoptotic protein Bax and downregulates the anti-apoptotic protein Bcl-2, causing a block of cell proliferation, measured by a BrdU assay and growth curve, and promoting apoptosis, measured by a TUNEL assay. Finally, an immunohistochemistry evaluation of primary thyroid tumors, in which p90RSK is very active, confirms MDM2 stabilization mediated by p90RSK phosphorylation.
Collapse
|
8
|
Corrigan AN, Lemkul JA. Electronic Polarization at the Interface between the p53 Transactivation Domain and Two Binding Partners. J Phys Chem B 2022; 126:4814-4827. [PMID: 35749260 PMCID: PMC9267131 DOI: 10.1021/acs.jpcb.2c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Intrinsically disordered proteins (IDPs) are an abundant class of highly charged proteins that participate in numerous crucial biological processes, often in regulatory roles. IDPs do not have one major free energy minimum with a dominant structure, instead existing as conformational ensembles of multiple semistable conformations. p53 is a prototypical protein with disordered regions and binds to many structurally diverse partners, making it a useful model for exploring the role of electrostatic interactions at IDP binding interfaces. In this study, we used the Drude-2019 force field to simulate the p53 transactivation domain with two protein partners to probe the role of electrostatic interactions in IDP protein-protein interactions. We found that the Drude-2019 polarizable force field reasonably reproduced experimental chemical shifts of the p53 transactivation domain (TAD) in one complex for which these data are available. We also found that the proteins in these complexes displayed dipole response at specific residues of each protein and that residues primarily involved in binding showed a large percent change in dipole moment between the unbound and complexed states. Probing the role of electrostatic interactions in IDP binding can allow us greater fundamental understanding of these interactions and may help with targeting p53 or its partners for drug design.
Collapse
Affiliation(s)
| | - Justin A. Lemkul
- Department of Biochemistry, Virginia Tech, Blacksburg, VA 20461, United States,Center for Drug Discovery, Virginia Tech, Blacksburg, VA 20461, United States,Corresponding Author: , Address: 111 Engel Hall, 340 West Campus Dr., Blacksburg, VA 24061, Phone: +1 (540) 231-3129
| |
Collapse
|
9
|
Wang S, Chen FE. Small-molecule MDM2 inhibitors in clinical trials for cancer therapy. Eur J Med Chem 2022; 236:114334. [DOI: 10.1016/j.ejmech.2022.114334] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 02/07/2023]
|
10
|
Cui H, Li H, Wu H, Du F, Xie X, Zeng S, Zhang Z, Dong K, Shang L, Jing C, Li L. A novel 3'tRNA-derived fragment tRF-Val promotes proliferation and inhibits apoptosis by targeting EEF1A1 in gastric cancer. Cell Death Dis 2022; 13:471. [PMID: 35585048 PMCID: PMC9117658 DOI: 10.1038/s41419-022-04930-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 12/14/2022]
Abstract
At present, it is commonly believed that tRFs and tiRNAs are formed by the specific and selective shear of tRNAs under certain pressure stimulation, rather than by random degradation of tRNA. tRFs and tiRNAs have been reported to contribute to the biological process of a variety of human cancers. However, the evidence for the mechanisms of tRFs and tiRNAs in the occurrence and development of gastric cancer (GC) is still insufficient. Here, we aimed to explore the carcinogenic roles of tRFs and tiRNAs in GC with RNA-sequencing technique, and found a novel 3'tRNA-derived fragment tRF-Val was significantly upregulated in GC tissues and cell lines. tRF-Val expression was positively correlated with tumor size and the depth of tumor invasion in GC tissues. Functionally, tRF-Val promoted proliferation and invasion, and inhibited apoptosis in GC cells. Mechanistically, tRF-Val directly bound to the chaperone molecule EEF1A1, mediated its transport into the nucleus and promoted its interaction with MDM2 (a specific p53 E3 ubiquitin ligase), thus inhibiting the downstream molecular pathway of p53 and promoting GC progression. These findings provided a new potential therapeutic target for GC and a new explanation for the occurrence of GC.
Collapse
Affiliation(s)
- Huaiping Cui
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| | - Han Li
- grid.452422.70000 0004 0604 7301Department of Gastrointestinal Surgery, the First Affiliated Hospital of Shandong First Medical University, Shandong Provincial Qianfoshan Hospital, 250013 Jinan, Shandong China
| | - Hao Wu
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Fengying Du
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Xiaozhou Xie
- grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China
| | - Shujie Zeng
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Zihao Zhang
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China
| | - Kangdi Dong
- grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China
| | - Liang Shang
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| | - Changqing Jing
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| | - Leping Li
- grid.27255.370000 0004 1761 1174Department of Gastrointestinal Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 250021 Jinan, Shandong China ,grid.460018.b0000 0004 1769 9639Shandong Provincial Laboratory of Translational Medicine Engineering for Digestive Tumors, Shandong Provincial Hospital, 250021 Jinan, Shandong China
| |
Collapse
|
11
|
Deciphering the acetylation code of p53 in transcription regulation and tumor suppression. Oncogene 2022; 41:3039-3050. [PMID: 35487975 PMCID: PMC9149126 DOI: 10.1038/s41388-022-02331-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/14/2022] [Accepted: 04/20/2022] [Indexed: 12/16/2022]
Abstract
Although it is well established that p53-mediated tumor suppression mainly acts through its ability in transcriptional regulation, the molecular mechanisms of this regulation are not completely understood. Among a number of regulatory modes, acetylation of p53 attracts great interests. p53 was one of the first non-histone proteins found to be functionally regulated by acetylation and deacetylation, and subsequent work has established that reversible acetylation is a general mechanism for regulation of non-histone proteins. Unlike other types of post-translational modifications occurred during stress responses, the role of p53 acetylation has been recently validated in vivo by using the knockin mice with both acetylation-defective and acetylation-mimicking p53 mutants. Here, we review the role of acetylation in p53-mediated activities, with a focus on which specific acetylation sites are critical for p53-dependent transcription regulation during tumor suppression and how acetylation of p53 recruits specific “readers” to execute its promoter-specific regulation of different targets. We also discuss the role of p53 acetylation in differentially regulating its classic activities in cell cycle arrest, senescence and apoptosis as well as newly identified unconventional functions such as cell metabolism and ferroptosis.
Collapse
|
12
|
Qian K, Yu D, Wang W, Jiang M, Yang R, Brown R, Gong DW. STK38 is a PPARγ-interacting protein promoting adipogenesis. Adipocyte 2021; 10:524-531. [PMID: 34670478 PMCID: PMC8726646 DOI: 10.1080/21623945.2021.1980257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Peroxisome proliferator-activated receptor-γ (PPARγ) is the master regulator of adipogenesis, but knowledge about how PPARγ is regulated at the protein level is very limited. We aimed to identify PPARγ-interacting proteins which modulate PPARγ’s protein levels and transactivating activities in human adipocytes. We expressed Flag-tagged PPARγ in human preadipocytes as bait to capture PPARγ-associated proteins, followed by mass spectroscopy and proteomics analysis, which identified serine/threonine kinase 38 (STK38) as a major PPARγ-associated protein. Protein pulldown studies confirmed this protein–protein interaction in transfected cells, and reporter assays demonstrated that STK38 enhanced PPARγ’s transactivating activities without requiring STK38’s kinase activity. In cell-based assays, STK38 increased PPARγ protein stability, extending PPARγ’s half-life from ~1.08 to 1.95 h. Notably, in human preadipocytes, the overexpression of STK38 enhanced adipogenesis, whereas knockdown impaired the process in a PPARγ-dependent manner. Thus, we discovered that STK38 is a novel PPARγ-cofactor promoting adipogenesis, likely through stabilization of PPARγ
Collapse
Affiliation(s)
- Kun Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Daozhan Yu
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Weiming Wang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Mengqi Jiang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
- Department of Nutrition and Food Hygiene, School of Public Health, China Medical University, Shenyang, China
| | - Rongze Yang
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Robert Brown
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| | - Da-Wei Gong
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
13
|
Portman N, Chen J, Lim E. MDM2 as a Rational Target for Intervention in CDK4/6 Inhibitor Resistant, Hormone Receptor Positive Breast Cancer. Front Oncol 2021; 11:777867. [PMID: 34804982 PMCID: PMC8596371 DOI: 10.3389/fonc.2021.777867] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
With the adoption of inhibitors of cyclin dependent kinases 4 and 6 (CDK4/6i) in combination with endocrine therapy as standard of care for the treatment of advanced and metastatic estrogen receptor positive (ER+) breast cancer, the search is now on for novel therapeutic options to manage the disease after the inevitable development of resistance to CDK4/6i. In this review we will consider the integral role that the p53/MDM2 axis plays in the interactions between CDK4/6, ERα, and inhibitors of these molecules, the current preclinical evidence for the efficacy of MDM2 inhibitors in ER+ breast cancer, and discuss the possibility of targeting the p53/MDM2 via inhibition of MDM2 in the CDK4/6i resistance setting.
Collapse
Affiliation(s)
- Neil Portman
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Julia Chen
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| | - Elgene Lim
- Cancer Theme, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,St. Vincent's Clinical School, University of New South Wales (UNSW) Sydney, Kensington, NSW, Australia
| |
Collapse
|
14
|
Barrio E, Vecino R, Sánchez-Morán I, Rodríguez C, Suárez-Pindado A, Bolaños JP, Almeida A, Delgado-Esteban M. Preconditioning-Activated AKT Controls Neuronal Tolerance to Ischemia through the MDM2-p53 Pathway. Int J Mol Sci 2021; 22:ijms22147275. [PMID: 34298892 PMCID: PMC8304232 DOI: 10.3390/ijms22147275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/29/2021] [Accepted: 07/02/2021] [Indexed: 12/28/2022] Open
Abstract
One of the most important mechanisms of preconditioning-mediated neuroprotection is the attenuation of cell apoptosis, inducing brain tolerance after a subsequent injurious ischemia. In this context, the antiapoptotic PI3K/AKT signaling pathway plays a key role by regulating cell differentiation and survival. Active AKT is known to increase the expression of murine double minute-2 (MDM2), an E3-ubiquitin ligase that destabilizes p53 to promote the survival of cancer cells. In neurons, we recently showed that the MDM2–p53 interaction is potentiated by pharmacological preconditioning, based on subtoxic stimulation of NMDA glutamate receptor, which prevents ischemia-induced neuronal apoptosis. However, whether this mechanism contributes to the neuronal tolerance during ischemic preconditioning (IPC) is unknown. Here, we show that IPC induced PI3K-mediated phosphorylation of AKT at Ser473, which in turn phosphorylated MDM2 at Ser166. This phosphorylation triggered the nuclear stabilization of MDM2, leading to p53 destabilization, thus preventing neuronal apoptosis upon an ischemic insult. Inhibition of the PI3K/AKT pathway with wortmannin or by AKT silencing induced the accumulation of cytosolic MDM2, abrogating IPC-induced neuroprotection. Thus, IPC enhances the activation of PI3K/AKT signaling pathway and promotes neuronal tolerance by controlling the MDM2–p53 interaction. Our findings provide a new mechanistic pathway involved in IPC-induced neuroprotection via modulation of AKT signaling, suggesting that AKT is a potential therapeutic target against ischemic injury.
Collapse
Affiliation(s)
- Emilia Barrio
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
| | - Rebeca Vecino
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, 37007 Salamanca, Spain
| | - Irene Sánchez-Morán
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
| | - Cristina Rodríguez
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
| | - Alberto Suárez-Pindado
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
| | - Juan P. Bolaños
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Angeles Almeida
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
| | - Maria Delgado-Esteban
- Institute of Functional Biology and Genomics, University of Salamanca, CSIC, 37007 Salamanca, Spain; (E.B.); (R.V.); (I.S.-M.); (C.R.); (A.S.-P.); (J.P.B.); (A.A.)
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, University of Salamanca, CSIC, 37007 Salamanca, Spain
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
- Correspondence: ; Tel.: +34-923-29-4908
| |
Collapse
|
15
|
Ramani S, Park S. HSP27 role in cardioprotection by modulating chemotherapeutic doxorubicin-induced cell death. J Mol Med (Berl) 2021; 99:771-784. [PMID: 33728476 DOI: 10.1007/s00109-021-02048-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 01/19/2023]
Abstract
The common phenomenon expected from any anti-cancer drug in use is to kill the cancer cells without any side effects to non-malignant cells. Doxorubicin is an anthracycline derivative anti-cancer drug active over different types of cancers with anti-cancer activity but attributed to unintended cytotoxicity and genotoxicity triggering mitogenic signals inducing apoptosis. Administration of doxorubicin tends to both acute and chronic toxicity resulting in cardiomyopathy (left ventricular dysfunction) and congestive heart failure (CHF). Cardiotoxicity is prevented through administration of different cardioprotectants along with the drug. This review elaborates on mechanism of drug-mediated cardiotoxicity and attenuation principle by different cardioprotectants, with a focus on Hsp27 as cardioprotectant by prevention of drug-induced oxidative stress, cell survival pathways with suppression of intrinsic cell death. In conclusion, Hsp27 may offer an exciting/alternating cardioprotectant, with a wider study being need of the hour, specifically on primary cell line and animal models in conforming its cardioprotectant behaviour.
Collapse
Affiliation(s)
- Sivasubramanian Ramani
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Seoul, 05006, South Korea
| | - Sungkwon Park
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Seoul, 05006, South Korea.
| |
Collapse
|
16
|
Lou J, Hao Y, Lin K, Lyu Y, Chen M, Wang H, Zou D, Jiang X, Wang R, Jin D, Lam EWF, Shao S, Liu Q, Yan J, Wang X, Chen P, Zhang B, Jin B. Circular RNA CDR1as disrupts the p53/MDM2 complex to inhibit Gliomagenesis. Mol Cancer 2020; 19:138. [PMID: 32894144 PMCID: PMC7487905 DOI: 10.1186/s12943-020-01253-y] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/20/2020] [Indexed: 12/26/2022] Open
Abstract
Background Inactivation of the tumor suppressor p53 is critical for pathogenesis of glioma, in particular glioblastoma multiforme (GBM). MDM2, the main negative regulator of p53, binds to and forms a stable complex with p53 to regulate its activity. Hitherto, it is unclear whether the stability of the p53/MDM2 complex is affected by lncRNAs, in particular circular RNAs that are usually abundant and conserved, and frequently implicated in different oncogenic processes. Methods RIP-seq and RIP-qPCR assays were performed to determine the most enriched lncRNAs (including circular RNAs) bound by p53, followed by bioinformatic assays to estimate the relevance of their expression with p53 signaling and gliomagenesis. Subsequently, the clinical significance of CDR1as was evaluated in the largest cohort of Chinese glioma patients from CGGA (n = 325), and its expression in human glioma tissues was further evaluated by RNA FISH and RT-qPCR, respectively. Assays combining RNA FISH with protein immunofluorescence were performed to determine co-localization of CDR1as and p53, followed by CHIRP assays to confirm RNA-protein interaction. Immunoblot assays were carried out to evaluate protein expression, p53/MDM2 interaction and p53 ubiquitination in cells in which CDR1as expression was manipulated. After AGO2 or Dicer was knocked-down to inhibit miRNA biogenesis, effects of CDR1as on p53 expression, stability and activity were determined by immunoblot, RT-qPCR and luciferase reporter assays. Meanwhile, impacts of CDR1as on DNA damage were evaluated by flow cytometric assays and immunohistochemistry. Tumorigenicity assays were performed to determine the effects of CDR1as on colony formation, cell proliferation, the cell cycle and apoptosis (in vitro), and on tumor volume/weight and survival of nude mice xenografted with GBM cells (in vivo). Results CDR1as is found to bind to p53 protein. CDR1as expression decreases with increasing glioma grade and it is a reliable independent predictor of overall survival in glioma, particularly in GBM. Through a mechanism independent of acting as a miRNA sponge, CDR1as stabilizes p53 protein by preventing it from ubiquitination. CDR1as directly interacts with the p53 DBD domain that is essential for MDM2 binding, thus disrupting the p53/MDM2 complex formation. Induced upon DNA damage, CDR1as may preserve p53 function and protect cells from DNA damage. Significantly, CDR1as inhibits tumor growth in vitro and in vivo, but has little impact in cells where p53 is absent or mutated. Conclusions Rather than acting as a miRNA sponge, CDR1as functions as a tumor suppressor through binding directly to p53 at its DBD region to restrict MDM2 interaction. Thus, CDR1as binding disrupts the p53/MDM2 complex to prevent p53 from ubiquitination and degradation. CDR1as may also sense DNA damage signals and form a protective complex with p53 to preserve p53 function. Therefore, CDR1as depletion may play a potent role in promoting tumorigenesis through down-regulating p53 expression in glioma. Our results broaden further our understanding of the roles and mechanism of action of circular RNAs in general and CDR1as in particular, and can potentially open up novel therapeutic avenues for effective glioma treatment.
Collapse
Affiliation(s)
- Jiacheng Lou
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yuchao Hao
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Kefeng Lin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yizhu Lyu
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Meiwei Chen
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Han Wang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Deyu Zou
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xuewen Jiang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Renchun Wang
- The Second Clinical Medicine School, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Di Jin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, W12 0NN, London, UK
| | - Shujuan Shao
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.,Key Laboratory of Proteomics, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Quentin Liu
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Jinsong Yan
- Department of Hematology, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| | - Xiang Wang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Puxiang Chen
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
| | - Bo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China. .,Present Address:Department of Neurosurgery, Shenzhen People's Hospital, the Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Bilian Jin
- Department of Neurosurgery, The Second Affiliated Hospital; Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
17
|
Kulka LAM, Fangmann PV, Panfilova D, Olzscha H. Impact of HDAC Inhibitors on Protein Quality Control Systems: Consequences for Precision Medicine in Malignant Disease. Front Cell Dev Biol 2020; 8:425. [PMID: 32582706 PMCID: PMC7291789 DOI: 10.3389/fcell.2020.00425] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Lysine acetylation is one of the major posttranslational modifications (PTM) in human cells and thus needs to be tightly regulated by the writers of this process, the histone acetyl transferases (HAT), and the erasers, the histone deacetylases (HDAC). Acetylation plays a crucial role in cell signaling, cell cycle control and in epigenetic regulation of gene expression. Bromodomain (BRD)-containing proteins are readers of the acetylation mark, enabling them to transduce the modification signal. HDAC inhibitors (HDACi) have been proven to be efficient in hematologic malignancies with four of them being approved by the FDA. However, the mechanisms by which HDACi exert their cytotoxicity are only partly resolved. It is likely that HDACi alter the acetylation pattern of cytoplasmic proteins, contributing to their anti-cancer potential. Recently, it has been demonstrated that various protein quality control (PQC) systems are involved in recognizing the altered acetylation pattern upon HDACi treatment. In particular, molecular chaperones, the ubiquitin proteasome system (UPS) and autophagy are able to sense the structurally changed proteins, providing additional targets. Recent clinical studies of novel HDACi have proven that proteins of the UPS may serve as biomarkers for stratifying patient groups under HDACi regimes. In addition, members of the PQC systems have been shown to modify the epigenetic readout of HDACi treated cells and alter proteostasis in the nucleus, thus contributing to changing gene expression profiles. Bromodomain (BRD)-containing proteins seem to play a potent role in transducing the signaling process initiating apoptosis, and many clinical trials are under way to test BRD inhibitors. Finally, it has been demonstrated that HDACi treatment leads to protein misfolding and aggregation, which may explain the effect of panobinostat, the latest FDA approved HDACi, in combination with the proteasome inhibitor bortezomib in multiple myeloma. Therefore, proteins of these PQC systems provide valuable targets for precision medicine in cancer. In this review, we give an overview of the impact of HDACi treatment on PQC systems and their implications for malignant disease. We exemplify the development of novel HDACi and how affected proteins belonging to PQC can be used to determine molecular signatures and utilized in precision medicine.
Collapse
Affiliation(s)
- Linda Anna Michelle Kulka
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Pia-Victoria Fangmann
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Diana Panfilova
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Heidi Olzscha
- Medical Faculty, Institute of Physiological Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
18
|
Fernandes MT, Calado SM, Mendes-Silva L, Bragança J. CITED2 and the modulation of the hypoxic response in cancer. World J Clin Oncol 2020; 11:260-274. [PMID: 32728529 PMCID: PMC7360518 DOI: 10.5306/wjco.v11.i5.260] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
CITED2 (CBP/p300-interacting transactivator with Glu/Asp-rich C-terminal domain, 2) is a ubiquitously expressed protein exhibiting a high affinity for the CH1 domain of the transcriptional co-activators CBP/p300, for which it competes with hypoxia-inducible factors (HIFs). CITED2 is particularly efficient in the inhibition of HIF-1α-dependent transcription in different contexts, ranging from organ development and metabolic homeostasis to tissue regeneration and immunity, being also potentially involved in various other physiological processes. In addition, CITED2 plays an important role in inhibiting HIF in some diseases, including kidney and heart diseases and type 2-diabetes. In the particular case of cancer, CITED2 either functions by promoting or suppressing cancer development depending on the context and type of tumors. For instance, CITED2 overexpression promotes breast and prostate cancers, as well as acute myeloid leukemia, while its expression is downregulated to sustain colorectal cancer and hepatocellular carcinoma. In addition, the role of CITED2 in the maintenance of cancer stem cells reveals its potential as a target in non-small cell lung carcinoma and acute myeloid leukemia, for example. But besides the wide body of evidence linking both CITED2 and HIF signaling to carcinogenesis, little data is available regarding CITED2 role as a negative regulator of HIF-1α specifically in cancer. Therefore, comprehensive studies exploring further the interactions of these two important mediators in cancer-specific models are sorely needed and this can potentially lead to the development of novel targeted therapies.
Collapse
Affiliation(s)
- Mónica T Fernandes
- School of Health, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Sofia M Calado
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
| | - Leonardo Mendes-Silva
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| | - José Bragança
- Centre for Biomedical Research, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
- Algarve Biomedical Centre, Faro 8005-139, Portugal
- Department of Biomedical Sciences and Medicine, Universidade do Algarve, Campus of Gambelas, Faro 8005-139, Portugal
| |
Collapse
|
19
|
Reza HA, Anamika WJ, Chowdhury MMK, Mostafa MG, Uddin MA. A cohort study on the association of MDM2 SNP309 with lung cancer risk in Bangladeshi population. Korean J Intern Med 2020; 35:672-681. [PMID: 32392664 PMCID: PMC7214377 DOI: 10.3904/kjim.2018.125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND/AIMS Bangladesh is a densely populated country with an increased incidence of lung cancer, mostly due to smoking. Therefore, elucidating the association of mouse double minute 2 homolog (MDM2) single nucleotide polymorphism (SNP) 309 (rs2279744) with lung cancer risk from smoking in Bangladeshi population has become necessary. METHODS DNA was extracted from blood samples of 126 lung cancer patient and 133 healthy controls. The MDM2 SNP309 was genotyped by polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP), using the restriction enzymes MspA1I. Logistic regression was then carried out to calculate odds ratios (ORs) and 95% confidence intervals (CIs) to estimate the risk of lung cancer. A meta-analysis of SNP309 was also carried out on 12,758 control subjects and 11,638 patient subjects. RESULTS In multivariate logistic regression, significantly increased risk of lung cancer was observed for MDM2 SNP309 in the dominant model (TG + GG vs. TT: OR, 2.13; 95% CI, 1.29 to 3.53). Stratification analysis revealed that age, sex, obesity, and smoking also increases the risk of lung cancer when carrying the MDM2 SNP309. Our meta-analysis revealed that MDM2 SNP309 was considerably associated with lung cancer in Asian populations (TG + GG vs. TT: OR, 1.32; 95% CI , 1.12 to 1.56; p = 0.019 for heterogeneity). CONCLUSION The MDM2 SNP309 was associated with high risk of lung cancer in Bangladeshi and Asian population, particularly with increased age, smoking, and body mass index.
Collapse
Affiliation(s)
- Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | | | | | - Mohammad Golam Mostafa
- Department of Histopathology, National Institute of Cancer Research and Hospital, Dhaka, Bangladesh
| | - M. Aftab Uddin
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
- Correspondence to M. Aftab Uddin, Ph.D. Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh Tel: +880-2-9661900 Fax: +880-2-9667222 E-mail:
| |
Collapse
|
20
|
4-Hydroxyestrone, an Endogenous Estrogen Metabolite, Can Strongly Protect Neuronal Cells Against Oxidative Damage. Sci Rep 2020; 10:7283. [PMID: 32350290 PMCID: PMC7190733 DOI: 10.1038/s41598-020-62984-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 03/18/2020] [Indexed: 11/08/2022] Open
Abstract
Earlier studies showed that endogenous estrogens have neuroprotective effect against oxidative damage. The present study seeks to investigate the protective effect of various endogenous estrogen metabolites against oxidative neurotoxicity in vitro and in vivo. Using immortalized mouse hippocampal neuronal cells as an in vitro model, 4-hydroxyestrone, an estrone metabolite with little estrogenic activity, is found to have the strongest neuroprotective effect against oxidative neurotoxicity among 25 endogenous estrogen metabolites tested, and its protective effect is stronger than 17β-estradiol. Similarly, 4-Hydroxyestrone also exerts a stronger protective effect than 17β-estradiol against kanic acid-induced hippocampal oxidative damage in rats. Neuroprotection by 4-hydroxyestrone involves increased cytoplasmic translocation of p53 resulting from SIRT1-mediated deacetylation of p53. Analysis of brain microsomal enzymes shows that estrogen 4-hydroxylation is the main metabolic pathway in the central nervous system. Together, these results show that 4-hydroxyestrone is an endogenous neuroestrogen that can strongly protect against oxidative neuronal damage.
Collapse
|
21
|
Oduah EI, Grossman SR. Harnessing the vulnerabilities of p53 mutants in lung cancer - Focusing on the proteasome: a new trick for an old foe? Cancer Biol Ther 2020; 21:293-302. [PMID: 32041464 PMCID: PMC7515531 DOI: 10.1080/15384047.2019.1702403] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 11/02/2019] [Accepted: 12/01/2019] [Indexed: 12/25/2022] Open
Abstract
Gain-of-function (GOF) p53 mutations occur commonly in human cancer and lead to both loss of p53 tumor suppressor function and acquisition of aggressive cancer phenotypes. The oncogenicity of GOF mutant p53 is highly related to its abnormal protein stability relative to wild type p53, and overall stoichiometric excess. We provide an overview of the mechanisms of dysfunction and abnormal stability of GOF p53 specifically in lung cancer, the leading cause of cancer-related mortality, where, depending on histologic subtype, 33-90% of tumors exhibit GOF p53 mutations. As a distinguishing feature and oncogenic mechanism in lung and many other cancers, GOF p53 represents an appealing and cancer-specific therapeutic target. We review preclinical evidence demonstrating paradoxical depletion of GOF p53 by proteasome inhibitors, as well as preclinical and clinical studies of proteasome inhibition in lung cancer. Finally, we provide a rationale for a reexamination of proteasome inhibition in lung cancer, focusing on tumors expressing GOF p53 alleles.
Collapse
Affiliation(s)
- Eziafa I. Oduah
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Steven R. Grossman
- Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
- VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
22
|
Xu D, Yao J, Zhang Y, Xiao N, Peng P, Li Z, Pan Z, Yao Z. The Effect of PEI-Mediated E1A on the Radiosensitivity of Hepatic Carcinoma Cells. Asian Pac J Cancer Prev 2020; 21:911-917. [PMID: 32334450 PMCID: PMC7445989 DOI: 10.31557/apjcp.2020.21.4.911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Indexed: 11/26/2022] Open
Abstract
Objective: The study was undertaken to investigate the effects of polyethyleneimine (PEI)-mediated adenovirus 5 early region 1A (E1A) on radiosensitivity of human hepatic carcinoma cell in vitro and to disclosure the underlying mechanism. Materials and Methods: Human hepatic carcinoma SMMC-7721 cell line was transfected with E1A gene using PEI vector. Untransfected cells (SMMC-7721 group), cells transfected with blank-vector (SMMC-7721-vect group), and cells transfected with E1A gene (SMMC-7721-E1A group) were treated with 6 MV X-ray irradiation at doses of 0, 1, 2, 4, 8 and Gy, respectively. Radiosensitivity was determined by MTT assay and quantified by calculating the cell survival rate. Cell-cycle distribution and apotosis rate were monitored by flow cytometry. Results: The survival rate of SMMC-7721-E1A was significantly lower than that of SMMC-7721 cell. Apoptosis rate of SMMC-7721-E1A group was significantly higher than that of SMMC-7721group (P<0.01).The ratio of S stage in cell cycle of SMMC-7721-E1A was significantly lower than that in SMMC-7721 cell. The ratio of G2/M stage in cell cycle of SMMC-7721-E1A was significantly higher than that in SMMC-7721 cell (P<0.01). Conclusion: PEI could transfect E1A gene into hepatic carcinoma cells PEI-mediated E1A could effectively enhance radiosensitivity of hepatic carcinoma cells which may be related to its effects on apoptosis promoting leading to S phase suppression and G2/M phase arrest.
Collapse
Affiliation(s)
- Danghui Xu
- Department of Radiology,Affiliated Hospital of Nanjing University of Chinese Medicine,Jiangsu Provincial Hospital of Traditional Chinese Medicine,Nanjing, Jiangsu Province ,China
| | - Jianxin Yao
- Department of Medical Imaging, Nanjing Vocational Health College, Nanjing, Jiangsu Province, China
| | - Yiwen Zhang
- Department of Nursing, The Affiliated Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Nan Xiao
- Department of Medical Imaging, Nanjing Vocational Health College, Nanjing, Jiangsu Province, China
| | - Peng Peng
- Department of Nursing, Nanjing Health College of Jiangsu Union Technical Institute, Nanjing, Jiangsu Province, China
| | - Zhanfeng Li
- Department of Medical Imaging, Nanjing Vocational Health College, Nanjing, Jiangsu Province, China
| | - Zhiyao Pan
- Department of Basic Medical Science, Zhejiang University Medical College, Hangzhou, Zhejiang Province, China
| | - Zhifeng Yao
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, China.,Department of Radiotherapy, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| |
Collapse
|
23
|
Bang S, Kaur S, Kurokawa M. Regulation of the p53 Family Proteins by the Ubiquitin Proteasomal Pathway. Int J Mol Sci 2019; 21:E261. [PMID: 31905981 PMCID: PMC6981958 DOI: 10.3390/ijms21010261] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 12/24/2019] [Indexed: 12/25/2022] Open
Abstract
The tumor suppressor p53 and its homologues, p63 and p73, play a pivotal role in the regulation of the DNA damage response, cellular homeostasis, development, aging, and metabolism. A number of mouse studies have shown that a genetic defect in the p53 family could lead to spontaneous tumor development, embryonic lethality, or severe tissue abnormality, indicating that the activity of the p53 family must be tightly regulated to maintain normal cellular functions. While the p53 family members are regulated at the level of gene expression as well as post-translational modification, they are also controlled at the level of protein stability through the ubiquitin proteasomal pathway. Over the last 20 years, many ubiquitin E3 ligases have been discovered that directly promote protein degradation of p53, p63, and p73 in vitro and in vivo. Here, we provide an overview of such E3 ligases and discuss their roles and functions.
Collapse
Affiliation(s)
| | | | - Manabu Kurokawa
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA; (S.B.); (S.K.)
| |
Collapse
|
24
|
Kannan S, Partridge AW, Lane DP, Verma CS. The Dual Interactions of p53 with MDM2 and p300: Implications for the Design of MDM2 Inhibitors. Int J Mol Sci 2019; 20:ijms20235996. [PMID: 31795143 PMCID: PMC6928821 DOI: 10.3390/ijms20235996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/26/2022] Open
Abstract
Proteins that limit the activity of the tumour suppressor protein p53 are increasingly being targeted for inhibition in a variety of cancers. In addition to the development of small molecules, there has been interest in developing constrained (stapled) peptide inhibitors. A stapled peptide ALRN_6924 that activates p53 by preventing its interaction with its negative regulator Mdm2 has entered clinical trials. This stapled peptide mimics the interaction of p53 with Mdm2. The chances that this peptide could bind to other proteins that may also interact with the Mdm2-binding region of p53 are high; one such protein is the CREB binding protein (CBP)/p300. It has been established that phosphorylated p53 is released from Mdm2 and binds to p300, orchestrating the transcriptional program. We investigate whether molecules such as ALRN_6924 would bind to p300 and, to do so, we used molecular simulations to explore the binding of ATSP_7041, which is an analogue of ALRN_6924. Our study shows that ATSP_7041 preferentially binds to Mdm2 over p300; however, upon phosphorylation, it appears to have a higher affinity for p300. This could result in attenuation of the amount of free p300 available for interacting with p53, and hence reduce its transcriptional efficacy. Our study highlights the importance of assessing off-target effects of peptide inhibitors, particularly guided by the understanding of the networks of protein-protein interactions (PPIs) that are being targeted.
Collapse
Affiliation(s)
- Srinivasaraghavan Kannan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- Correspondence: (S.K.); (C.S.V.); Tel.: +65-6478-8353 (S.K.); +65-6478-8273 (C.S.V.); Fax: +65-6478-9048 (S.K.); +65-6478-9048(C.S.V.)
| | - Anthony W. Partridge
- MSD International, Translation Medicine Research Centre, Singapore 138665, Singapore;
| | - David P. Lane
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, Singapore 138648, Singapore;
| | - Chandra S. Verma
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
- Correspondence: (S.K.); (C.S.V.); Tel.: +65-6478-8353 (S.K.); +65-6478-8273 (C.S.V.); Fax: +65-6478-9048 (S.K.); +65-6478-9048(C.S.V.)
| |
Collapse
|
25
|
Levy R, Gregory E, Borcherds W, Daughdrill G. p53 Phosphomimetics Preserve Transient Secondary Structure but Reduce Binding to Mdm2 and MdmX. Biomolecules 2019; 9:biom9030083. [PMID: 30832340 PMCID: PMC6468375 DOI: 10.3390/biom9030083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 02/07/2023] Open
Abstract
The disordered p53 transactivation domain (p53TAD) contains specific levels of transient helical secondary structure that are necessary for its binding to the negative regulators, mouse double minute 2 (Mdm2) and MdmX. The interactions of p53 with Mdm2 and MdmX are also modulated by posttranslational modifications (PTMs) of p53TAD including phosphorylation at S15, T18 and S20 that inhibits p53-Mdm2 binding. It is unclear whether the levels of transient secondary structure in p53TAD are changed by phosphorylation or other PTMs. We used phosphomimetic mutants to determine if adding a negative charge at positions 15 and 18 has any effect on the transient secondary structure of p53TAD and protein-protein binding. Using a combination of biophysical and structural methods, we investigated the effects of single and multisite phosphomimetics on the transient secondary structure of p53TAD and its interaction with Mdm2, MdmX, and the KIX domain. The phosphomimetics reduced Mdm2 and MdmX binding affinity by 3–5-fold, but resulted in minimal changes in transient secondary structure, suggesting that the destabilizing effect of phosphorylation on the p53TAD-Mdm2 interaction is primarily electrostatic. Phosphomimetics had no effect on the p53-KIX interaction, suggesting that increased binding of phosphorylated p53 to KIX may be influenced by decreased competition with its negative regulators.
Collapse
Affiliation(s)
- Robin Levy
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
- Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Emily Gregory
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
- Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Wade Borcherds
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
- Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| | - Gary Daughdrill
- Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, FL 33620, USA.
- Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
26
|
Xu W, Gao L, Li T, Zheng J, Shao A, Zhang J. Mesencephalic Astrocyte-Derived Neurotrophic Factor (MANF) Protects Against Neuronal Apoptosis via Activation of Akt/MDM2/p53 Signaling Pathway in a Rat Model of Intracerebral Hemorrhage. Front Mol Neurosci 2018; 11:176. [PMID: 29896089 PMCID: PMC5987019 DOI: 10.3389/fnmol.2018.00176] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 05/09/2018] [Indexed: 12/11/2022] Open
Abstract
Neuronal apoptosis plays key roles in secondary brain injury caused by intracerebral hemorrhage (ICH). This study first reported the role of mesencephalic astrocyte-derived neurotrophic factor (MANF) in alleviating secondary brain injury through anti-apoptosis in rat model of ICH. The recombinant human-MANF (rh-MANF) and selective Akt inhibitor MK2206 was administrated intracerebroventricularly 1 h after ICH. Brain water content, behavioral assessment, BBB (blood brain barrier) leakage was evaluated 24 h after the induction of ICH. Western blot analysis was used to evaluate the expression level of target proteins (MANF, mouse 3T3 cell double-minute 2 (MDM2), P53, Akt, Bcl-2, Bax, and caspase-3). Terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) was applied to evaluate the neuronal cell death. Besides, whether MANF was expressed in neurons was verified with double immunofluorescence staining. The results suggested that the level of MANF, and its downstream proteins, Akt, MDM2 was upregulated and reached peak at 24 h after ICH. MANF was mainly expressed in neurons. The administration of rh-MANF could significantly increase the level of p-Akt, p-MDM2, Bcl/Bax ratio, but reduce the expression of p53, caspase-3 and neuronal death, thus ameliorate the neurological functions at 24 h after ICH. However, these effects of rh-MANF could be obviously reversed by MK2206. MANF could exert its neuronal anti-apoptotic effects via Akt/MDM2/P53 pathways. Therefore, MANF could be a valuable drug target in the treatment of ICH.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Li
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingwei Zheng
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Katz C, Low-Calle AM, Choe JH, Laptenko O, Tong D, Joseph-Chowdhury JSN, Garofalo F, Zhu Y, Friedler A, Prives C. Wild-type and cancer-related p53 proteins are preferentially degraded by MDM2 as dimers rather than tetramers. Genes Dev 2018; 32:430-447. [PMID: 29549180 PMCID: PMC5900715 DOI: 10.1101/gad.304071.117] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/16/2018] [Indexed: 12/26/2022]
Abstract
The p53 tumor suppressor protein is the most well studied as a regulator of transcription in the nucleus, where it exists primarily as a tetramer. However, there are other oligomeric states of p53 that are relevant to its regulation and activities. In unstressed cells, p53 is normally held in check by MDM2 that targets p53 for transcriptional repression, proteasomal degradation, and cytoplasmic localization. Here we discovered a hydrophobic region within the MDM2 N-terminal domain that binds exclusively to the dimeric form of the p53 C-terminal domain in vitro. In cell-based assays, MDM2 exhibits superior binding to, hyperdegradation of, and increased nuclear exclusion of dimeric p53 when compared with tetrameric wild-type p53. Correspondingly, impairing the hydrophobicity of the newly identified N-terminal MDM2 region leads to p53 stabilization. Interestingly, we found that dimeric mutant p53 is partially unfolded and is a target for ubiquitin-independent degradation by the 20S proteasome. Finally, forcing certain tumor-derived mutant forms of p53 into dimer configuration results in hyperdegradation of mutant p53 and inhibition of p53-mediated cancer cell migration. Gaining insight into different oligomeric forms of p53 may provide novel approaches to cancer therapy.
Collapse
Affiliation(s)
- Chen Katz
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Ana Maria Low-Calle
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Joshua H Choe
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Oleg Laptenko
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - David Tong
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | - Francesca Garofalo
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | - Assaf Friedler
- Institute of Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem 9190401, Israel
| | - Carol Prives
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
28
|
Malik MZ, Alam MJ, Ishrat R, Agarwal SM, Singh RKB. Control of apoptosis by SMAR1. MOLECULAR BIOSYSTEMS 2017; 13:350-362. [PMID: 27934984 DOI: 10.1039/c6mb00525j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The nuclear matrix associated protein SMAR1 is sensitive to p53 and acts as a stress inducer as well as a regulator in the p53 regulatory network. Depending on the amount of stress SMAR1 stimulates, it can drive the p53 dynamics in the system to various dynamical states which correspond to various cellular states. The behavior of p53 in these dynamical states is found to be multifractal, due to the mostly long range correlations and large scale fluctuations imparted by stress. This fractal behavior is exhibited in the topological properties of the networks constructed from these dynamical states, and is a signature of self-organization to optimize information flow in the dynamics. The assortativity found in these networks is due to perturbation induced by stress, and indicates that the hubs in the time series play a significant role in stress management. SMAR1 can also regulate apoptosis in the presence of HDAC1, depending on the stress induced by it.
Collapse
Affiliation(s)
- Md Zubbair Malik
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India and School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Md Jahoor Alam
- College of Applied Medical Sciences, University of Ha'il, Ha'il-2440, Kingdom of Saudi Arabia
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Subhash M Agarwal
- Bioinformatics Division, Institute of Cytology and Preventive Oncology, 1-7, Sector - 39, Noida 201301, India
| | - R K Brojen Singh
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
29
|
Attar N, Kurdistani SK. Exploitation of EP300 and CREBBP Lysine Acetyltransferases by Cancer. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026534. [PMID: 27881443 DOI: 10.1101/cshperspect.a026534] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
p300 and CREB-binding protein (CBP), two homologous lysine acetyltransferases in metazoans, have a myriad of cellular functions. They exert their influence mainly through their roles as transcriptional regulators but also via nontranscriptional effects inside and outside of the nucleus on processes such as DNA replication and metabolism. The versatility of p300/CBP as molecular tools has led to their exploitation by viral oncogenes for cellular transformation and by cancer cells to achieve and maintain an oncogenic phenotype. How cancer cells use p300/CBP in their favor varies depending on the cellular context and is evident by the growing list of loss- and gain-of-function genetic alterations in p300 and CBP in solid tumors and hematological malignancies. Here, we discuss the biological functions of p300/CBP and how disruption of these functions by mutations and alterations in expression or subcellular localization contributes to the cancer phenotype.
Collapse
Affiliation(s)
- Narsis Attar
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| | - Siavash K Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California 90095.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, California 90095
| |
Collapse
|
30
|
Nihira NT, Ogura K, Shimizu K, North BJ, Zhang J, Gao D, Inuzuka H, Wei W. Acetylation-dependent regulation of MDM2 E3 ligase activity dictates its oncogenic function. Sci Signal 2017; 10:10/466/eaai8026. [PMID: 28196907 DOI: 10.1126/scisignal.aai8026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Abnormal activation of the oncogenic E3 ubiquitin ligase murine double minute 2 (MDM2) is frequently observed in human cancers. By ubiquitinating the tumor suppressor p53 protein, which leads to its proteasome-mediated destruction, MDM2 limits the tumor-suppressing activity of p53. On the other hand, by ubiquitinating itself, MDM2 targets itself for destruction and promotes the p53 tumor suppressor pathway, a process that can be antagonized by the deubiquitinase herpesvirus-associated ubiquitin-specific protease (HAUSP). We investigated the regulation of MDM2 substrate specificity and found that acetyltransferase p300-mediated acetylation and stabilization of MDM2 are molecular switches that block self-ubiquitination, thereby shifting its E3 ligase activity toward p53. In vitro and in cancer cell lines, p300-mediated acetylation of MDM2 on Lys182 and Lys185 enabled HAUSP to bind, presumably deubiquitinate, and stabilize MDM2. This acetylation within the nuclear localization signal domain decreased its interaction with the acidic domain, subsequently increased the interaction between the acidic domain and RING domain in MDM2, enabled the binding of HAUSP to the acidic domain in MDM2, and shifted MDM2 activity from autoubiquitination to p53 ubiquitination. However, upon genotoxic stress through exposure to etoposide, the deacetylase sirtuin 1 (SIRT1) deacetylated MDM2 at Lys182 and Lys185, thereby promoting self-ubiquitination and less ubiquitination and subsequent degradation of p53, thus increasing p53-dependent apoptosis. Therefore, this study indicates that dynamic acetylation is a molecular switch in the regulation of MDM2 substrate specificity, revealing further insight into the posttranslational regulation of the MDM2/p53 cell survival axis.
Collapse
Affiliation(s)
- Naoe T Nihira
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Kohei Ogura
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Department of Infectious Diseases, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Kouhei Shimizu
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Brian J North
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Daming Gao
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai 980-8575, Japan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
31
|
Tan BX, Liew HP, Chua JS, Ghadessy FJ, Tan YS, Lane DP, Coffill CR. Anatomy of Mdm2 and Mdm4 in evolution. J Mol Cell Biol 2017; 9:3-15. [PMID: 28077607 PMCID: PMC6372010 DOI: 10.1093/jmcb/mjx002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/24/2016] [Accepted: 01/10/2017] [Indexed: 01/09/2023] Open
Abstract
Mouse double minute (Mdm) genes span an evolutionary timeframe from the ancient eukaryotic placozoa Trichoplax adhaerens to Homo sapiens, implying a significant and possibly conserved cellular role throughout history. Maintenance of DNA integrity and response to DNA damage involve many key regulatory pathways, including precise control over the tumour suppressor protein p53. In most vertebrates, degradation of p53 through proteasomal targeting is primarily mediated by heterodimers of Mdm2 and the Mdm2-related protein Mdm4 (also known as MdmX). Both Mdm2 and Mdm4 have p53-binding regions, acidic domains, zinc fingers, and C-terminal RING domains that are conserved throughout evolution. Vertebrates typically have both Mdm2 and Mdm4 genes, while analyses of sequenced genomes of invertebrate species have identified single Mdm genes, suggesting that a duplication event occurred prior to emergence of jawless vertebrates about 550-440 million years ago. The functional relationship between Mdm and p53 in T. adhaerens, an organism that has existed for 1 billion years, implies that these two proteins have evolved together to maintain a conserved and regulated function.
Collapse
Affiliation(s)
- Ban Xiong Tan
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Hoe Peng Liew
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Joy S. Chua
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Farid J. Ghadessy
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis St, #07-01,Singapore138671, Singapore
| | - David P. Lane
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| | - Cynthia R. Coffill
- p53 Laboratory, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore138648, Singapore
| |
Collapse
|
32
|
Songock WK, Kim SM, Bodily JM. The human papillomavirus E7 oncoprotein as a regulator of transcription. Virus Res 2016; 231:56-75. [PMID: 27818212 DOI: 10.1016/j.virusres.2016.10.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022]
Abstract
High-risk human papillomaviruses (HPVs) encode oncoproteins which manipulate gene expression patterns in the host keratinocytes to facilitate viral replication, regulate viral transcription, and promote immune evasion and persistence. In some cases, oncoprotein-induced changes in host cell behavior can cause progression to cancer, but a complete picture of the functions of the viral oncoproteins in the productive HPV life cycle remains elusive. E7 is the HPV-encoded factor most responsible for maintaining cell cycle competence in differentiating keratinocytes. Through interactions with dozens of host factors, E7 has an enormous impact on host gene expression patterns. In this review, we will examine the role of E7 specifically as a regulator of transcription. We will discuss mechanisms of regulation of cell cycle-related genes by E7 as well as genes involved in immune regulation, growth factor signaling, DNA damage responses, microRNAs, and others pathways. We will also discuss some unanswered questions about how transcriptional regulation by E7 impacts the biology of HPV in both benign and malignant conditions.
Collapse
Affiliation(s)
- William K Songock
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Seong-Man Kim
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Jason M Bodily
- Department of Microbiology and Immunology and Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
33
|
Abstract
Cell death is a common outcome of virus infection. In some cases, cell death curbs virus replication. In others, cell death enhances virus dissemination and contributes to tissue injury, exacerbating viral disease. Three forms of cell death are observed following virus infection-apoptosis, necroptosis, and pyroptosis. In this review, I describe the core machinery needed for each of these forms of cell death. Using representative viruses, I highlight how distinct stages of virus replication initiate signaling pathways that elicit these forms of cell death. I also discuss viral strategies to overcome the deleterious effects of cell death on virus propagation and the consequences of cell death for host physiology.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana 47405;
| |
Collapse
|
34
|
Mantsou A, Koutsogiannouli E, Haitoglou C, Papavassiliou AG, Papanikolaou NA. Regulation of expression of the p21 CIP1 gene by the transcription factor ZNF217 and MDM2. Biochem Cell Biol 2016; 94:560-568. [PMID: 27792410 DOI: 10.1139/bcb-2016-0026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Using mouse double minute 2 (MDM2) protein-specific affinity chromatography and mass spectrometry, we have isolated the protein product of the oncogene znf217, which is a transcription factor and a component of a Hela-S-derived HDAC1 complex, as a novel MDM2-interacting protein. When co-expressed in cultured cancer cells, ZNF217 forms a complex with MDM2 and its ectopic over-expression reduces the steady-state levels of acetylated p53 in cell lines, suppressing its ability to activate the expression of a p21 promoter construct. In-silico analysis of the p21 promoter revealed the presence of several ZNF217-binding sites. These findings suggest that MDM2 controls p21 expression by at least 2 mechanisms: through ZNF217-mediated recruitment of HDAC1/MDM2 activity, which inhibits p53 acetylation; and through direct interaction with its binding site(s) on the p21 promoter.
Collapse
Affiliation(s)
- Aglaia Mantsou
- a Laboratory of Biological Chemistry, Division of Biological Sciences and Preventive Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus Bldg 16a, 54124 Thessaloniki, Greece
| | - Evangelia Koutsogiannouli
- a Laboratory of Biological Chemistry, Division of Biological Sciences and Preventive Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus Bldg 16a, 54124 Thessaloniki, Greece
| | - Costas Haitoglou
- a Laboratory of Biological Chemistry, Division of Biological Sciences and Preventive Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus Bldg 16a, 54124 Thessaloniki, Greece
| | - Athanasios G Papavassiliou
- b Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | - Nikolaos A Papanikolaou
- a Laboratory of Biological Chemistry, Division of Biological Sciences and Preventive Medicine, Faculty of Medicine, Aristotle University of Thessaloniki, University Campus Bldg 16a, 54124 Thessaloniki, Greece
| |
Collapse
|
35
|
Recognition of the disordered p53 transactivation domain by the transcriptional adapter zinc finger domains of CREB-binding protein. Proc Natl Acad Sci U S A 2016; 113:E1853-62. [PMID: 26976603 DOI: 10.1073/pnas.1602487113] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An important component of the activity of p53 as a tumor suppressor is its interaction with the transcriptional coactivators cyclic-AMP response element-binding protein (CREB)-binding protein (CBP) and p300, which activate transcription of p53-regulated stress response genes and stabilize p53 against ubiquitin-mediated degradation. The highest affinity interactions are between the intrinsically disordered N-terminal transactivation domain (TAD) of p53 and the TAZ1 and TAZ2 domains of CBP/p300. The NMR spectra of simple binary complexes of the TAZ1 and TAZ2 domains with the p53TAD suffer from exchange broadening, but innovations in construct design and isotopic labeling have enabled us to obtain high-resolution structures using fusion proteins, uniformly labeled in the case of the TAZ2-p53TAD fusion and segmentally labeled through transintein splicing for the TAZ1-p53TAD fusion. The p53TAD is bipartite, with two interaction motifs, termed AD1 and AD2, which fold to form short amphipathic helices upon binding to TAZ1 and TAZ2 whereas intervening regions of the p53TAD remain flexible. Both the AD1 and AD2 motifs bind to hydrophobic surfaces of the TAZ domains, with AD2 making more extensive hydrophobic contacts consistent with its greater contribution to the binding affinity. Binding of AD1 and AD2 is synergistic, and structural studies performed with isolated motifs can be misleading. The present structures of the full-length p53TAD complexes demonstrate the versatility of the interactions available to an intrinsically disordered domain containing bipartite interaction motifs and provide valuable insights into the structural basis of the affinity changes that occur upon stress-related posttranslational modification.
Collapse
|
36
|
Liu QJ, Shen HL, Lin J, Xu XH, Ji ZG, Han X, Shang DH, Yang PQ. Synergistic roles of p53 and HIF1α in human renal cell carcinoma-cell apoptosis responding to the inhibition of mTOR and MDM2 signaling pathways. DRUG DESIGN DEVELOPMENT AND THERAPY 2016; 10:745-55. [PMID: 26937175 PMCID: PMC4762585 DOI: 10.2147/dddt.s88779] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Introduction mTOR and MDM2 signaling pathways are frequently deregulated in cancer development, and inhibition of mTOR or MDM2 independently enhances carcinoma-cell apoptosis. However, responses to mTOR and MDM2 antagonists in renal cell carcinoma (RCC) remain unknown. Materials and methods A498 cells treated with MDM2 antagonist MI-319 and/or mTOR inhibitor rapamycin were employed in the present study. Cell apoptosis and Western blot analysis were performed. Results and conclusion We found that the MDM2 inhibitor MI-319 induced RCC cell apoptosis mainly dependent on p53 overexpression, while the mTOR antagonist rapamycin promoted RCC cell apoptosis primarily through upregulation of HIF1α expression. Importantly, strong synergistic effects of MI-319 and rapamycin combinations at relatively low concentrations on RCC cell apoptosis were observed. Depletion of p53 or HIF1α impaired both antagonist-elicited apoptoses to differential extents, corresponding to their expression changes responding to chemical treatments, and double knockdown of p53 and HIF1α remarkably hindered MI-319- or rapamycin-induced apoptosis, suggesting that both p53 and HIF1α are involved in MDM2 or mTOR antagonist-induced apoptosis. Collectively, we propose that concurrent activation of p53 and HIF1α may effectively result in cancer-cell apoptosis, and that combined MDM2 antagonists and mTOR inhibitors may be useful in RCC therapy.
Collapse
Affiliation(s)
- Qing-jun Liu
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Hong-liang Shen
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Jun Lin
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiu-hong Xu
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Zheng-guo Ji
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Xiao Han
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Dong-hao Shang
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Pei-qian Yang
- Department of Urology Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
37
|
Wienken M, Dickmanns A, Nemajerova A, Kramer D, Najafova Z, Weiss M, Karpiuk O, Kassem M, Zhang Y, Lozano G, Johnsen SA, Moll UM, Zhang X, Dobbelstein M. MDM2 Associates with Polycomb Repressor Complex 2 and Enhances Stemness-Promoting Chromatin Modifications Independent of p53. Mol Cell 2016; 61:68-83. [PMID: 26748827 PMCID: PMC6284523 DOI: 10.1016/j.molcel.2015.12.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/08/2015] [Accepted: 11/23/2015] [Indexed: 01/16/2023]
Abstract
The MDM2 oncoprotein ubiquitinates and antagonizes p53 but may also carry out p53-independent functions. Here we report that MDM2 is required for the efficient generation of induced pluripotent stem cells (iPSCs) from murine embryonic fibroblasts, in the absence of p53. Similarly, MDM2 depletion in the context of p53 deficiency also promoted the differentiation of human mesenchymal stem cells and diminished clonogenic survival of cancer cells. Most of the MDM2-controlled genes also responded to the inactivation of the Polycomb Repressor Complex 2 (PRC2) and its catalytic component EZH2. MDM2 physically associated with EZH2 on chromatin, enhancing the trimethylation of histone 3 at lysine 27 and the ubiquitination of histone 2A at lysine 119 (H2AK119) at its target genes. Removing MDM2 simultaneously with the H2AK119 E3 ligase Ring1B/RNF2 further induced these genes and synthetically arrested cell proliferation. In conclusion, MDM2 supports the Polycomb-mediated repression of lineage-specific genes, independent of p53.
Collapse
Affiliation(s)
- Magdalena Wienken
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Antje Dickmanns
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Alice Nemajerova
- Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Daniela Kramer
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Zeynab Najafova
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Miriam Weiss
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Oleksandra Karpiuk
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany
| | - Moustapha Kassem
- Molecular Endocrinology and Stem Cell Research Unit (KMEB), University Hospital of Odense and University of Southern Denmark, Odense 5000, Denmark
| | - Yanping Zhang
- Department of Radiation Oncology and Lineberger Comprehensive Cancer Center, the University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Steven A Johnsen
- Department of General, Visceral, and Pediatric Surgery, University Medical Center Göttingen, Göttingen 37077, Germany
| | - Ute M Moll
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany; Department of Pathology, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Xin Zhang
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany.
| | - Matthias Dobbelstein
- Institute of Molecular Oncology, Göttingen Center for Molecular Biosciences (GZMB), University Medical Center Göttingen, Göttingen 37077, Germany.
| |
Collapse
|
38
|
Yang ZP, Xie YH, Ling DY, Li JR, Jiang J, Fan YH, Zheng JL, Wu WX. SCYL1BP1 has tumor-suppressive functions in human lung squamous carcinoma cells by regulating degradation of MDM2. Asian Pac J Cancer Prev 2015; 15:7467-71. [PMID: 25227860 DOI: 10.7314/apjcp.2014.15.17.7467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
SCY1-like 1-binding protein 1 (SCYL1BP1) is a newly identified transcriptional activator domain containing protein with many unknown biological functions. Recently emerging evidence has revealed that it is a novel regulator of the p53 pathway, which is very important for the development of human cancer. However, the effects of SCYL1BP1 on human lung squamous carcinoma cell biological behavior remain poorly understood. In this study, we present evidence that SCYL1BP1 can promote the degradation of MDM2 protein and further inhibit the G1/S transition of lung squamous carcinoma cell lines. Functional assays found that reintroduction of SCYL1BP1 into lung squamous carcinoma cell lines significantly inhibited cell proliferation, migration, invasion and tumor formation in nude mice, suggesting strong tumor suppressive function of SCYL1BP1 in lung squamous carcinoma. Taken together, our data suggest that the interaction of SCYL1BP1/MDM2 could accelerate MDM2 degradation, and may function as an important tumor suppressor in lung squamous carcinomas.
Collapse
Affiliation(s)
- Zhi-Ping Yang
- Department of Oncology and Pathology, The First Hospital of Jiaxing, Jiaxing, China E-mail :
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shi D, Dai C, Qin J, Gu W. Negative regulation of the p300-p53 interplay by DDX24. Oncogene 2015; 35:528-36. [PMID: 25867071 PMCID: PMC4603993 DOI: 10.1038/onc.2015.77] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 02/09/2015] [Accepted: 02/16/2015] [Indexed: 12/15/2022]
Abstract
Numerous studies indicate that p300 acts as a key transcriptional cofactor in vivo, at least, in part, through modulating activities of p53 by acetylation. Nevertheless, the regulation of the p53-p300 interplay is not completely understood. Here, we have identified the DEAD box RNA helicase DDX24 as a novel regulator of the p300-p53 axis. We found that DDX24 interacts with p300, and this interaction leads to suppression of p300 mediated acetylation of p53. Notably, RNAi-mediated knockdown of endogenous DDX24 significantly increases the acetylation levels of endogenous p53 in human cancer cells and subsequently promotes p53-mediated activation of its transcriptional targets such as p21 and PUMA. In contrast, DDX24 expression inhibits the p300-p53 interaction and suppresses p300-mediated acetylation of p53. Moreover, DDX24 is overexpressed in human cancer cells and reduction of DDX24 protein levels by RNAi induces cell cycle arrest and senescence in a p53 dependent manner. These results reveal DDX24 as an important regulator of p300 and suggest that the modulation of the p53-p300 interplay by DDX24 is critical in controlling p53 activities in human cancer cells.
Collapse
Affiliation(s)
- D Shi
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - C Dai
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - J Qin
- Departments of Biochemistry and Cell Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, USA
| | - W Gu
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, College of Physicians & Surgeons, Columbia University, New York, NY, USA
| |
Collapse
|
40
|
TRIM25 has a dual function in the p53/Mdm2 circuit. Oncogene 2015; 34:5729-38. [PMID: 25728675 DOI: 10.1038/onc.2015.21] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/20/2022]
Abstract
P53 is an important tumor suppressor that, upon activation, induces growth arrest and cell death. Control of p53 is thus of prime importance for proliferating cells, but also for cancer therapy, where p53 activity contributes to the eradication of tumors. Mdm2 functionally inhibits p53 and targets the tumor suppressor protein for degradation. In a genetic screen, we identified TRIM25 as a novel regulator of p53 and Mdm2. TRIM25 increased p53 and Mdm2 abundance by inhibiting their ubiquitination and degradation in 26 S proteasomes. TRIM25 co-precipitated with p53 and Mdm2 and interfered with the association of p300 and Mdm2, a critical step for p53 polyubiquitination. Despite the increase in p53 levels, p53 activity was inhibited in the presence of TRIM25. Downregulation of TRIM25 resulted in an increased acetylation of p53 and p53-dependent cell death in HCT116 cells. Upon genotoxic insults, TRIM25 dampened the p53-dependent DNA damage response. The downregulation of TRIM25 furthermore resulted in massive apoptosis during early embryogenesis of medaka, which was rescued by the concomitant downregulation of p53, demonstrating the functional relevance of the regulation of p53 by TRIM25 in an organismal context.
Collapse
|
41
|
Barabutis N, Dimitropoulou C, Birmpas C, Joshi A, Thangjam G, Catravas JD. p53 protects against LPS-induced lung endothelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol 2015; 308:L776-87. [PMID: 25713322 DOI: 10.1152/ajplung.00334.2014] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 02/09/2015] [Indexed: 12/16/2022] Open
Abstract
New therapies toward heart and blood vessel disorders may emerge from the development of Hsp90 inhibitors. Several independent studies suggest potent anti-inflammatory activities of those agents in human tissues. The molecular mechanisms responsible for their protective effects in the vasculature remain unclear. The present study demonstrates that the transcription factor p53, an Hsp90 client protein, is crucial for the maintenance of vascular integrity, protects again LPS-induced endothelial barrier dysfunction, and is involved in the mediation of the anti-inflammatory activity of Hsp90 inhibitors in lung tissues. p53 silencing by siRNA decreased transendothelial resistance (a measure of endothelial barrier function). A similar effect was induced by the p53 inhibitor pifithrin, which also potentiated the LPS-induced hyperpermeability in human lung microvascular endothelial cells (HLMVEC). On the other hand, p53 induction by nutlin suppressed the LPS-induced vascular barrier dysfunction. LPS decreased p53 expression in lung tissues and that effect was blocked by pretreatment with Hsp90 inhibitors both in vivo and in vitro. Furthermore, the Hsp90 inhibitor 17-allyl-amino-demethoxy-geldanamycin suppressed the LPS-induced overexpression of the p53 negative regulator MDMX as well as p53 and MDM2 (another p53 negative regulator) phosphorylation in HLMVEC. Both negative p53 regulators were downregulated by LPS in vivo. Chemically induced p53 overexpression resulted in the suppression of LPS-induced RhoA activation and MLC2 phosphorylation, whereas p53 suppression caused the opposite effects. These observations reveal new mechanisms for the anti-inflammatory actions of Hsp90 inhibitors, i.e., the induction of the transcription factor p53, which in turn can orchestrate robust vascular anti-inflammatory responses both in vivo and in vitro.
Collapse
Affiliation(s)
| | | | | | - Atul Joshi
- Frank Reidy Research Center for Bioelectrics, Norfolk, Virginia; and
| | - Gagan Thangjam
- Frank Reidy Research Center for Bioelectrics, Norfolk, Virginia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Norfolk, Virginia; and School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
42
|
Reed SM, Quelle DE. p53 Acetylation: Regulation and Consequences. Cancers (Basel) 2014; 7:30-69. [PMID: 25545885 PMCID: PMC4381250 DOI: 10.3390/cancers7010030] [Citation(s) in RCA: 256] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications of p53 are critical in modulating its tumor suppressive functions. Ubiquitylation, for example, plays a major role in dictating p53 stability, subcellular localization and transcriptional vs. non-transcriptional activities. Less is known about p53 acetylation. It has been shown to govern p53 transcriptional activity, selection of growth inhibitory vs. apoptotic gene targets, and biological outcomes in response to diverse cellular insults. Yet recent in vivo evidence from mouse models questions the importance of p53 acetylation (at least at certain sites) as well as canonical p53 functions (cell cycle arrest, senescence and apoptosis) to tumor suppression. This review discusses the cumulative findings regarding p53 acetylation, with a focus on the acetyltransferases that modify p53 and the mechanisms regulating their activity. We also evaluate what is known regarding the influence of other post-translational modifications of p53 on its acetylation, and conclude with the current outlook on how p53 acetylation affects tumor suppression. Due to redundancies in p53 control and growing understanding that individual modifications largely fine-tune p53 activity rather than switch it on or off, many questions still remain about the physiological importance of p53 acetylation to its role in preventing cancer.
Collapse
Affiliation(s)
- Sara M Reed
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | - Dawn E Quelle
- Department of Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
43
|
Chlamydia infection depends on a functional MDM2-p53 axis. Nat Commun 2014; 5:5201. [PMID: 25392082 PMCID: PMC4243245 DOI: 10.1038/ncomms6201] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022] Open
Abstract
Chlamydia, a major human bacterial pathogen, assumes effective strategies to protect infected cells against death-inducing stimuli, thereby ensuring completion of its developmental cycle. Paired with its capacity to cause extensive host DNA damage, this poses a potential risk of malignant transformation, consistent with circumstantial epidemiological evidence. Here we reveal a dramatic depletion of p53, a tumor suppressor deregulated in many cancers, during Chlamydia infection. Using biochemical approaches and live imaging of individual cells, we demonstrate that p53 diminution requires phosphorylation of Murine Double Minute 2 (MDM2; a ubiquitin ligase) and subsequent interaction of phospho-MDM2 with p53 before induced proteasomal degradation. Strikingly, inhibition of the p53-MDM2 interaction is sufficient to disrupt intracellular development of Chlamydia and interferes with the pathogen's anti-apoptotic effect on host cells. This highlights the dependency of the pathogen on a functional MDM2-p53 axis and lends support to a potentially pro-carcinogenic effect of chlamydial infection.
Collapse
|
44
|
Abstract
The ubiquitin proteasome pathway is critical in restraining the activities of the p53 tumor suppressor. This review by Pant and Lozano focuses on ubiquitination as a mechanism for regulating p53 stability and function and reviews current findings from in vivo models that evaluate the importance of the ubiquitin proteasome system in regulating p53. The ubiquitin proteasome pathway is critical in restraining the activities of the p53 tumor suppressor. Numerous E3 and E4 ligases regulate p53 levels. Additionally, deubquitinating enzymes that modify p53 directly or indirectly also impact p53 function. When alterations of these proteins result in increased p53 activity, cells arrest in the cell cycle, senesce, or apoptose. On the other hand, alterations that result in decreased p53 levels yield tumor-prone phenotypes. This review focuses on the physiological relevance of these important regulators of p53 and their therapeutic implications.
Collapse
Affiliation(s)
- Vinod Pant
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | - Guillermina Lozano
- Department of Genetics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
45
|
MiR-630 inhibits proliferation by targeting CDC7 kinase, but maintains the apoptotic balance by targeting multiple modulators in human lung cancer A549 cells. Cell Death Dis 2014; 5:e1426. [PMID: 25255219 PMCID: PMC4225225 DOI: 10.1038/cddis.2014.386] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/21/2022]
Abstract
MicroRNAome analyses have shown microRNA-630 (miR-630) to be involved in the regulation of apoptosis. However, its apoptotic role is still debated and its participation in DNA replication is unknown. Here, we demonstrate that miR-630 inhibits cell proliferation by targeting cell-cycle kinase 7 (CDC7) kinase, but maintains the apoptotic balance by targeting multiple activators of apoptosis under genotoxic stress. We identified a novel regulatory mechanism of CDC7 gene expression, in which miR-630 downregulated CDC7 expression by recognizing and binding to four binding sites in CDC7 3'-UTR. We found that miR-630 was highly expressed in A549 and NIH3T3 cells where CDC7 was downregulated, but lower in H1299, MCF7, MDA-MB-231, HeLa and 2BS cells where CDC7 was upregulated. Furthermore, the induction of miR-630 occurred commonly in a variety of human cancer and immortalized cells in response to genotoxic agents. Importantly, downregulation of CDC7 by miR-630 was associated with cisplatin (CIS)-induced inhibitory proliferation in A549 cells. Mechanistically, miR-630 exerted its inhibitory proliferation by blocking CDC7-mediated initiation of DNA synthesis and by inducing G1 arrest, but maintains apoptotic balance under CIS exposure. On the one hand, miR-630 promoted apoptosis by downregulation of CDC7; on the other hand, it reduced apoptosis by downregulating several apoptotic modulators such as PARP3, DDIT4, EP300 and EP300 downstream effector p53, thereby maintaining the apoptotic balance. Our data indicate that miR-630 has a bimodal role in the regulation of apoptosis in response to DNA damage. Our data also support the notion that a certain mRNA can be targeted by several miRNAs, and in particular an miRNA may target a set of mRNAs. These data afford a comprehensive view of microRNA-dependent control of gene expression in the regulation of apoptosis under genotoxic stress.
Collapse
|
46
|
Wu G, Cai J, Han Y, Chen J, Huang ZP, Chen C, Cai Y, Huang H, Yang Y, Liu Y, Xu Z, He D, Zhang X, Hu X, Pinello L, Zhong D, He F, Yuan GC, Wang DZ, Zeng C. LincRNA-p21 regulates neointima formation, vascular smooth muscle cell proliferation, apoptosis, and atherosclerosis by enhancing p53 activity. Circulation 2014; 130:1452-1465. [PMID: 25156994 DOI: 10.1161/circulationaha.114.011675] [Citation(s) in RCA: 398] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have recently been implicated in many biological processes and diseases. Atherosclerosis is a major risk factor for cardiovascular disease. However, the functional role of lncRNAs in atherosclerosis is largely unknown. METHODS AND RESULTS We identified lincRNA-p21 as a key regulator of cell proliferation and apoptosis during atherosclerosis. The expression of lincRNA-p21 was dramatically downregulated in atherosclerotic plaques of ApoE(-/-) mice, an animal model for atherosclerosis. Through loss- and gain-of-function approaches, we showed that lincRNA-p21 represses cell proliferation and induces apoptosis in vascular smooth muscle cells and mouse mononuclear macrophage cells in vitro. Moreover, we found that inhibition of lincRNA-p21 results in neointimal hyperplasia in vivo in a carotid artery injury model. Genome-wide analysis revealed that lincRNA-p21 inhibition dysregulated many p53 targets. Furthermore, lincRNA-p21, a transcriptional target of p53, feeds back to enhance p53 transcriptional activity, at least in part, via binding to mouse double minute 2 (MDM2), an E3 ubiquitin-protein ligase. The association of lincRNA-p21 and MDM2 releases MDM2 repression of p53, enabling p53 to interact with p300 and to bind to the promoters/enhancers of its target genes. Finally, we show that lincRNA-p21 expression is decreased in patients with coronary artery disease. CONCLUSIONS Our studies identify lincRNA-p21 as a novel regulator of cell proliferation and apoptosis and suggest that this lncRNA could serve as a therapeutic target to treat atherosclerosis and related cardiovascular disorders.
Collapse
Affiliation(s)
- Gengze Wu
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China.,Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Jin Cai
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yu Han
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jinghai Chen
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Zhan-Peng Huang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Caiyu Chen
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yue Cai
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Hefei Huang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yujia Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yukai Liu
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zaicheng Xu
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Duofen He
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoqun Zhang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xiaoyun Hu
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Luca Pinello
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA
| | - Dan Zhong
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Fengtian He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard School of Public Heath, Boston, MA
| | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA.,Harvard Stem Cell Institute, Harvard University, Cambridge, MA
| | - Chunyu Zeng
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
47
|
Proietti S, Cucina A, Dobrowolny G, D'Anselmi F, Dinicola S, Masiello MG, Pasqualato A, Palombo A, Morini V, Reiter RJ, Bizzarri M. Melatonin down-regulates MDM2 gene expression and enhances p53 acetylation in MCF-7 cells. J Pineal Res 2014; 57:120-9. [PMID: 24920214 DOI: 10.1111/jpi.12150] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/06/2014] [Indexed: 01/10/2023]
Abstract
Compelling evidence demonstrated that melatonin increases p53 activity in cancer cells. p53 undergoes acetylation to be stabilized and activated for driving cells destined for apoptosis/growth inhibition. Over-expression of p300 induces p53 acetylation, leading to cell growth arrest by increasing p21 expression. In turn, p53 activation is mainly regulated in the nucleus by MDM2. MDM2 also acts as E3 ubiquitin ligase, promoting the proteasome-dependent p53 degradation. MDM2 entry into the nucleus is finely tuned by two different modulations: the ribosomal protein L11, acts by sequestering MDM2 in the cytosol, whereas the PI3K-AkT-dependent MDM2 phosphorylation is mandatory for MDM2 translocation across the nuclear membrane. In addition, MDM2-dependent targeting of p53 is regulated in a nonlinear fashion by MDM2/MDMX interplay. Melatonin induces both cell growth inhibition and apoptosis in MCF7 breast cancer cells. We previously reported that this effect is associated with reduced MDM2 levels and increased p53 activity. Herein, we demonstrated that melatonin drastically down-regulates MDM2 gene expression and inhibits MDM2 shuttling into the nucleus, given that melatonin increases L11 and inhibits Akt-PI3K-dependent MDM2 phosphorylation. Melatonin induces a 3-fold increase in both MDMX and p300 levels, decreasing simultaneously Sirt1, a specific inhibitor of p300 activity. Consequently, melatonin-treated cells display significantly higher values of both p53 and acetylated p53. Thus, a 15-fold increase in p21 levels was observed in melatonin-treated cancer cells. Our results provide evidence that melatonin enhances p53 acetylation by modulating the MDM2/MDMX/p300 pathway, disclosing new insights for understanding its anticancer effect.
Collapse
Affiliation(s)
- Sara Proietti
- Department of Surgery "P. Valdoni", "Sapienza" University of Rome, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ash2L enables P53-dependent apoptosis by favoring stable transcription pre-initiation complex formation on its pro-apoptotic target promoters. Oncogene 2014; 34:2461-70. [PMID: 25023704 PMCID: PMC4295002 DOI: 10.1038/onc.2014.198] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 05/07/2014] [Accepted: 05/21/2014] [Indexed: 01/20/2023]
Abstract
Chromatin conformation plays a major role in all cellular decisions. We showed previously that P53 pro-apoptotic target promoters are enriched with H3K9me3 mark and induction of P53 abrogates this repressive chromatin conformation by down-regulating SUV39H1, the writer of this mark present on these promoters. In the present study, we demonstrate that in response to P53 stabilization, its pro-apoptotic target promoters become enriched with the H3K4me3 epigenetic mark as well as its readers, Wdr5, RbBP5 and Ash2L, which were not observed in response to SUV39H1 down-regulation alone. Overexpression of Ash2L enhanced P53–dependent apoptosis in response to chemotherapy, associated with increased P53 pro–apoptotic gene promoter occupancy and target gene expression. In contrast, pre–silencing of Ash2L abrogated P53's ability to induce the expression of these transcriptional targets, without affecting P53 or RNAP II recruitment. However, Ash2L pre–silencing, under the same conditions, resulted in reduced RNAP II ser5–CTD phosphorylation on these same pro-apoptotic target promoters, which correlated with reduced promoter occupancy of TFIIB as well as TFIIF (RAP74). Based on these findings, we propose that Ash2L acts in concert with P53 promoter occupancy to activate RNAP II by aiding formation of a stable transcription pre–initiation complex required for its activation.
Collapse
|
49
|
Liu H, Zhou L, Shi S, Wang Y, Ni X, Xiao F, Wang S, Li P, Ding K. Oligosaccharide G19 inhibits U-87 MG human glioma cells growth in vitro and in vivo by targeting epidermal growth factor (EGF) and activating p53/p21 signaling. Glycobiology 2014; 24:748-65. [PMID: 24799378 DOI: 10.1093/glycob/cwu038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
G19 is a novel homogeneous sulfated oligosaccharide, prepared from Grateloupia filicina. In the present study, we first reported that oligosaccharide G19 exhibited a dose- and time-dependent anti-proliferation effect against U-87 malignant gliomas (MG) human glioma cells. Further studies indicated that G19 strongly bound to epidermal growth factor (EGF), suppressed EGF receptor phosphorylation and interrupted the phosphatidylinositol-3 kinase/Akt pathway in the cancer cells. Moreover, G19 elevated intracellular reactive oxygen species levels and caused endogenous DNA damage. These actions were associated with activation of ataxia-telangiectasia-mutated/checkpoint kinase 2 pathway. The downregulation of MDM2 with stabilizing p53 and the nuclear location of p21 were induced by G19 to cause cell cycle arrest and apoptosis to some extent. Meanwhile, intrinsic mitochondrial pathway and extrinsic death receptor pathway were involved in G19-mediated apoptosis. Pretreatment with free radical scavenger N-acetyl-l-cysteine nearly completely inversed G19-induced cell growth inhibition, cell cycle arrest and apoptosis in U-87 MG cells. Importantly, G19 could inhibit the growth of U-87 MG tumor cells xenograft in nude mice. The results suggested that G19 could be served as a new targeting drug candidate for human glioma treatment.
Collapse
Affiliation(s)
- Hailing Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ling Zhou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Wang
- Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xinyan Ni
- Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Fei Xiao
- Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ping Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Kan Ding
- Glycobiology and Glycochemistry Laboratory, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
50
|
Zhao Y, Yu H, Hu W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin (Shanghai) 2014; 46:180-9. [PMID: 24389645 DOI: 10.1093/abbs/gmt147] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tumor suppressor p53 plays a central role in preventing tumor formation. The levels and activity of p53 is under tight regulation to ensure its proper function. Murine double minute 2 (MDM2), a p53 target gene, is an E3 ubiquitin ligase. MDM2 is a key negative regulator of p53 protein, and forms an auto-regulatory feedback loop with p53. MDM2 is an oncogene with both p53-dependent and p53-independent oncogenic activities, and often has increased expression levels in a variety of human cancers. MDM2 is highly regulated; the levels and function of MDM2 are regulated at the transcriptional, translational and post-translational levels. This review provides an overview of the regulation of MDM2. Dysregulation of MDM2 impacts significantly upon the p53 functions, and in turn the tumorigenesis. Considering the key role that MDM2 plays in human cancers, a better understanding of the regulation of MDM2 will help us to develop novel and more effective cancer therapeutic strategies to target MDM2 and activate p53 in cells.
Collapse
Affiliation(s)
- Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|