1
|
Qin X, Han X, Sun Y. Discovery of small molecule inhibitors of neddylation catalyzing enzymes for anticancer therapy. Biomed Pharmacother 2024; 179:117356. [PMID: 39214012 DOI: 10.1016/j.biopha.2024.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/08/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Protein neddylation, a type of post-translational modifications, involves the transfer of the ubiquitin-like protein NEDD8 to the lysine residues of a target substrate, which is catalyzed by the NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). Cullin family proteins, core components of Cullin-RING E3 ubiquitin ligases (CRLs), are the most well-known physiological substrates of neddylation. CRLs, activated upon cullin neddylation, promote the ubiquitination of a variety of key signaling proteins for proteasome degradation, thereby regulating many critical biological functions. Abnormal activation of neddylation enzymes as well as CRLs has been frequently observed in various human cancers and is associated with poor prognosis for cancer patients. Consequently, targeting neddylation has emerged as a promising strategy for the development of novel anticancer therapeutics. This review first briefly introduces the properties of protein neddylation and its role in cancer, and then systematically summarizes all reported chemical inhibitors of the three neddylation enzymes, providing a focused, up to date, and comprehensive resource in the discovery and development of these small molecule inhibitors.
Collapse
Affiliation(s)
- Xiangshuo Qin
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China
| | - Xin Han
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China; Cancer Center of Zhejiang University, Hangzhou 310029, China; Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| |
Collapse
|
2
|
Zhang S, Yu Q, Li Z, Zhao Y, Sun Y. Protein neddylation and its role in health and diseases. Signal Transduct Target Ther 2024; 9:85. [PMID: 38575611 PMCID: PMC10995212 DOI: 10.1038/s41392-024-01800-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/06/2024] Open
Abstract
NEDD8 (Neural precursor cell expressed developmentally downregulated protein 8) is an ubiquitin-like protein that is covalently attached to a lysine residue of a protein substrate through a process known as neddylation, catalyzed by the enzyme cascade, namely NEDD8 activating enzyme (E1), NEDD8 conjugating enzyme (E2), and NEDD8 ligase (E3). The substrates of neddylation are categorized into cullins and non-cullin proteins. Neddylation of cullins activates CRLs (cullin RING ligases), the largest family of E3 ligases, whereas neddylation of non-cullin substrates alters their stability and activity, as well as subcellular localization. Significantly, the neddylation pathway and/or many neddylation substrates are abnormally activated or over-expressed in various human diseases, such as metabolic disorders, liver dysfunction, neurodegenerative disorders, and cancers, among others. Thus, targeting neddylation becomes an attractive strategy for the treatment of these diseases. In this review, we first provide a general introduction on the neddylation cascade, its biochemical process and regulation, and the crystal structures of neddylation enzymes in complex with cullin substrates; then discuss how neddylation governs various key biological processes via the modification of cullins and non-cullin substrates. We further review the literature data on dysregulated neddylation in several human diseases, particularly cancer, followed by an outline of current efforts in the discovery of small molecule inhibitors of neddylation as a promising therapeutic approach. Finally, few perspectives were proposed for extensive future investigations.
Collapse
Affiliation(s)
- Shizhen Zhang
- Department of Breast Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Qing Yu
- Department of Thyroid Surgery, Zhejiang Cancer Hospital, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
- Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Hangzhou, 310022, China
| | - Zhijian Li
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China
| | - Yongchao Zhao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Department of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
- Zhejiang University Cancer Center, Hangzhou, 310029, China.
- Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang, Hangzhou, 310024, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
3
|
Xiao Y, Liu R, Li N, Li Y, Huang X. Role of the ubiquitin-proteasome system on macrophages in the tumor microenvironment. J Cell Physiol 2024; 239:e31180. [PMID: 38219045 DOI: 10.1002/jcp.31180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/14/2023] [Accepted: 12/12/2023] [Indexed: 01/15/2024]
Abstract
Tumor-associated macrophages (TAMs) are key components of the tumor microenvironment, and their different polarization states play multiple roles in tumors by secreting cytokines, chemokines, and so on, which are closely related to tumor development. In addition, the enrichment of TAMs is often associated with poor prognosis of tumors. Thus, targeting TAMs is a potential tumor treatment strategy, in which therapeutic approaches such as reducing TAMs numbers, remodeling TAMs phenotypes, and altering their functions are being extensively investigated. Meanwhile, the ubiquitin-proteasome system (UPS), an important mechanism of protein hydrolysis in eukaryotic cells, participates in cellular processes by regulating the activity and stability of key proteins. Interestingly, UPS plays a dual role in the process of tumor development, and its role in TAMs deserve to be investigated in depth. This review builds on this foundation to further explore the multiple roles of UPS on TAMs and identifies a promising approach to treat tumors by targeting TAMs with UPS.
Collapse
Affiliation(s)
- Yue Xiao
- First School of Clinical Medicine, Nanchang University, Nanchang, China
| | - Ruiqian Liu
- School of Future Technology, Nanchang University, Nanchang, China
| | - Na Li
- School of Future Technology, Nanchang University, Nanchang, China
| | - Yong Li
- Department of Anesthesiology, Medical Center of Anesthesiology and Pain, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Huang
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Tao Y, Dai L, Liang W, Li X, Lyu Y, Li J, Li Z, Shi Z, Liang X, Zhou S, Fu X, Hu W, Wang X. Advancements and perspectives of RBX2 as a molecular hallmark in cancer. Gene 2024; 892:147864. [PMID: 37820940 DOI: 10.1016/j.gene.2023.147864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/13/2023]
Abstract
Cancer is a challenging issue for human health. One of the key methods to address this issue is by comprehending the molecular causes of tumors and creating medications that target those causes. RBX2 (RING box protein 2), also known as ROC2 (Regulator of Cullins 2), RNF7 (RING Finger Protein 7), or SAG (Sensitive to Apoptosis Gene) is a key component of the Cullin-RING-type E3 ubiquitin ligases (CRLs) and overexpressed in various human cancers. RBX2 is a potential drug target, the expression of which correlates with tumor staging, grading, and prognosis analysis. Through a synergistically biological interaction with Kras mutation in preclinical models, RBX2 accelerated the progression of skin cancer, pancreatic cancer, and lung cancer. In accordance, the aberrant expression of RBX2 will lead to dysregulation of many signaling pathways, which is crucial for tumor initiation and growth. However, the impact of RBX2 on tumors also intriguingly demonstrates a spatial reliance manner. In this review, we summarized the current understanding of RBX2 in multiple cancer types and suggested a significant potential of RBX2 as a therapeutic target.
Collapse
Affiliation(s)
- Yiran Tao
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Lirui Dai
- Department of Neurosurgery, Pituitary Adenoma Multidisciplinary Center, West China Hospital of Sichuan University, Chengdu 610041, Sichuan, China
| | - Wulong Liang
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xiang Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Yuan Lyu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China; Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Junqi Li
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China; Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, PR China; Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Zian Li
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Zimin Shi
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xianyin Liang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Shaolong Zhou
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xudong Fu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Weihua Hu
- Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China; Henan International Joint Laboratory of Glioma Metabolism and Microenvironment Research, Zhengzhou, Henan, PR China.
| |
Collapse
|
5
|
Mao H, Lin X, Sun Y. Neddylation Regulation of Immune Responses. RESEARCH (WASHINGTON, D.C.) 2023; 6:0283. [PMID: 38434245 PMCID: PMC10907026 DOI: 10.34133/research.0283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/15/2023] [Indexed: 03/05/2024]
Abstract
Neddylation plays a vital role in post-translational modification, intricately shaping the regulation of diverse biological processes, including those related to cellular immune responses. In fact, neddylation exerts control over both innate and adaptive immune systems via various mechanisms. Specifically, neddylation influences the function and survival of innate immune cells, activation of pattern recognition receptors and GMP-AMP synthase-stimulator of interferon genes pathways, as well as the release of various cytokines in innate immune reactions. Moreover, neddylation also governs the function and survival of antigen-presenting cells, which are crucial for initiating adaptive immune reactions. In addition, neddylation regulates T cell activation, proliferation, differentiation, survival, and their effector functions, thereby ensuring an appropriate adaptive immune response. In this review, we summarize the most recent findings in these aspects and delve into the connection between dysregulated neddylation events and immunological disorders, especially inflammatory diseases. Lastly, we propose future directions and potential treatments for these diseases by targeting neddylation.
Collapse
Affiliation(s)
- Hongmei Mao
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine,
Zhejiang University School of Medicine, Hangzhou 310029, China
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Xin Lin
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
- Changping Laboratory, Beijing 102206, China
| | - Yi Sun
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education) of the Second Affiliated Hospital and Institute of Translational Medicine,
Zhejiang University School of Medicine, Hangzhou 310029, China
- Cancer Center of Zhejiang University, Hangzhou 310029, China
- Zhejiang Provincial Clinical Research Center for Cancer, Hangzhou, Zhejiang Province, China.
- Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, Zhejiang Province, China
- Research Center for Life Science and Human Health,
Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| |
Collapse
|
6
|
Hussain MS, Afzal O, Gupta G, Altamimi ASA, Almalki WH, Alzarea SI, Kazmi I, Kukreti N, Gupta S, Sulakhiya K, Singh SK, Dua K. Probing the links: Long non-coding RNAs and NF-κB signalling in atherosclerosis. Pathol Res Pract 2023; 249:154773. [PMID: 37647827 DOI: 10.1016/j.prp.2023.154773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/16/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Atherosclerosis is a chronic inflammatory disease that involves the accumulation of lipids and immune cells in the arterial wall. NF-kB signaling is a key regulator of inflammation and is known to play a critical role in atherosclerosis. Recent studies have shown that lncRNAs can regulate NF-kB and contribute to the development and progression of atherosclerosis. Preliminary findings reveal significant alterations in the expression of specific lncRNAs in atherosclerotic lesions compared to healthy arterial tissue. Experimental evidence suggests that these dysregulated lncRNAs can influence the NF-kB pathway. By unravelling the crosstalk between lncRNAs and NF-kB signaling, this review aims to enhance our understanding of the molecular mechanisms underlying atherosclerosis. Identifying novel therapeutic targets and diagnostic markers may lead to developing interventions and management strategies for this prevalent cardiovascular disease. This review summarizes the current knowledge on the role of lncRNAs in NF-kB signaling in atherosclerosis and highlights their potential as therapeutic targets for this disease.
Collapse
Affiliation(s)
- Md Sadique Hussain
- School of Pharmaceutical Sciences, Jaipur National University, Jagatpura, 302017 Jaipur, Rajasthan, India
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura 302017, Jaipur, India; Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India.
| | | | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Saurabh Gupta
- Chameli Devi Institute of Pharmacy, Department of Pharmacology, Indore, Madhya Pradesh, India
| | - Kunjbihari Sulakhiya
- Neuro Pharmacology Research Laboratory (NPRL), Department of Pharmacy, Indira Gandhi National Tribal University, Amarkantak, Madhya Pradesh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
7
|
Kim DJ, Yi YW, Seong YS. Beta-Transducin Repeats-Containing Proteins as an Anticancer Target. Cancers (Basel) 2023; 15:4248. [PMID: 37686524 PMCID: PMC10487276 DOI: 10.3390/cancers15174248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Beta-transducin repeat-containing proteins (β-TrCPs) are E3-ubiquitin-ligase-recognizing substrates and regulate proteasomal degradation. The degradation of β-TrCPs' substrates is tightly controlled by various external and internal signaling and confers diverse cellular processes, including cell cycle progression, apoptosis, and DNA damage response. In addition, β-TrCPs function to regulate transcriptional activity and stabilize a set of substrates by distinct mechanisms. Despite the association of β-TrCPs with tumorigenesis and tumor progression, studies on the mechanisms of the regulation of β-TrCPs' activity have been limited. In this review, we studied publications on the regulation of β-TrCPs themselves and analyzed the knowledge gaps to understand and modulate β-TrCPs' activity in the future.
Collapse
Affiliation(s)
- Dong Joon Kim
- Department of Microbiology, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea;
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou University, Zhengzhou 450008, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
8
|
Sharma J, Mulherkar S, Chen UI, Xiong Y, Bajaj L, Cho BK, Goo YA, Leung HCE, Tolias KF, Sardiello M. Calpain activity is negatively regulated by a KCTD7-Cullin-3 complex via non-degradative ubiquitination. Cell Discov 2023; 9:32. [PMID: 36964131 PMCID: PMC10038992 DOI: 10.1038/s41421-023-00533-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/24/2023] [Indexed: 03/26/2023] Open
Abstract
Calpains are a class of non-lysosomal cysteine proteases that exert their regulatory functions via limited proteolysis of their substrates. Similar to the lysosomal and proteasomal systems, calpain dysregulation is implicated in the pathogenesis of neurodegenerative disease and cancer. Despite intensive efforts placed on the identification of mechanisms that regulate calpains, however, calpain protein modifications that regulate calpain activity are incompletely understood. Here we show that calpains are regulated by KCTD7, a cytosolic protein of previously uncharacterized function whose pathogenic mutations result in epilepsy, progressive ataxia, and severe neurocognitive deterioration. We show that KCTD7 works in complex with Cullin-3 and Rbx1 to execute atypical, non-degradative ubiquitination of calpains at specific sites (K398 of calpain 1, and K280 and K674 of calpain 2). Experiments based on single-lysine mutants of ubiquitin determined that KCTD7 mediates ubiquitination of calpain 1 via K6-, K27-, K29-, and K63-linked chains, whereas it uses K6-mediated ubiquitination to modify calpain 2. Loss of KCTD7-mediated ubiquitination of calpains led to calpain hyperactivation, aberrant cleavage of downstream targets, and caspase-3 activation. CRISPR/Cas9-mediated knockout of Kctd7 in mice phenotypically recapitulated human KCTD7 deficiency and resulted in calpain hyperactivation, behavioral impairments, and neurodegeneration. These phenotypes were largely prevented by pharmacological inhibition of calpains, thus demonstrating a major role of calpain dysregulation in KCTD7-associated disease. Finally, we determined that Cullin-3-KCTD7 mediates ubiquitination of all ubiquitous calpains. These results unveil a novel mechanism and potential target to restrain calpain activity in human disease and shed light on the molecular pathogenesis of KCTD7-associated disease.
Collapse
Affiliation(s)
- Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA.
| | - Shalaka Mulherkar
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Uan-I Chen
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yan Xiong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA
| | - Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Byoung-Kyu Cho
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at the McDonnell Genome Institute, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Biochemistry and Molecular Biophysics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Hon-Chiu Eastwood Leung
- Departments of Medicine, Pediatrics, and Molecular and Cellular Biology, Dan Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Verna and Marrs McLean Department of Biochemistry and Molecular Cell Biology, Baylor College of Medicine, Houston, TX, USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Washington University in St. Louis, School of Medicine, Genetics and Genomic Medicine, Saint Louis, MO, USA.
| |
Collapse
|
9
|
Basu B, Ghosh MK. Ubiquitination and deubiquitination in the regulation of epithelial-mesenchymal transition in cancer: Shifting gears at the molecular level. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119261. [PMID: 35307468 DOI: 10.1016/j.bbamcr.2022.119261] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The process of conversion of non-motile epithelial cells to their motile mesenchymal counterparts is known as epithelial-mesenchymal transition (EMT), which is a fundamental event during embryonic development, tissue repair, and for the maintenance of stemness. However, this crucial process is hijacked in cancer and becomes the means by which cancer cells acquire further malignant properties such as increased invasiveness, acquisition of stem cell-like properties, increased chemoresistance, and immune evasion ability. The switch from epithelial to mesenchymal phenotype is mediated by a wide variety of effector molecules such as transcription factors, epigenetic modifiers, post-transcriptional and post-translational modifiers. Ubiquitination and de-ubiquitination are two post-translational processes that are fundamental to the ubiquitin-proteasome system (UPS) of the cell, and the shift in equilibrium between these two processes during cancer dictates the suppression or activation of different intracellular processes, including EMT. Here, we discuss the complex and dynamic relationship between components of the UPS and EMT in cancer.
Collapse
Affiliation(s)
- Bhaskar Basu
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata- 700091 & 4, Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
10
|
Klosner J, Agelopoulos K, Rohde C, Göllner S, Schliemann C, Berdel WE, Müller-Tidow C. Integrated RNAi screening identifies the NEDDylation pathway as a synergistic partner of azacytidine in acute myeloid leukemia. Sci Rep 2021; 11:23280. [PMID: 34857808 PMCID: PMC8639713 DOI: 10.1038/s41598-021-02695-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/08/2021] [Indexed: 11/09/2022] Open
Abstract
Treatment of acute myeloid leukemia (AML) remains challenging and novel targets and synergistic therapies still need to be discovered. We performed a high-throughput RNAi screen in three different AML cell lines and primary human leukemic blasts to identify genes that synergize with common antileukemic therapies. We used a pooled shRNA library that covered 5043 different genes and combined transfection with exposure to either azacytidine or cytarabine analog to the concept of synthetic lethality. Suppression of the chemokine CXCL12 ranked highly among the candidates of the cytarabine group. Azacytidine in combination with suppression of genes within the neddylation pathway led to synergistic results. NEDD8 and RBX1 inhibition by the small molecule inhibitor pevonedistat inhibited leukemia cell growth. These findings establish an in vitro synergism between NEDD8 inhibition and azacytidine in AML. Taken together, neddylation constitutes a suitable target pathway for azacytidine combination strategies.
Collapse
Affiliation(s)
- Justine Klosner
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany.
| | - Konstantin Agelopoulos
- Department of Dermatology and Center for Chronic Pruritus, University Hospital Münster, Münster, Germany
| | - Christian Rohde
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefanie Göllner
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Schliemann
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Wolfgang E Berdel
- Department of Medicine A, Hematology, Oncology and Pneumology, University Hospital Münster, Münster, Germany
| | - Carsten Müller-Tidow
- Department of Medicine V, Hematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Wang S, Li S, Wang J, Li Q, Xin XF, Zhou S, Wang Y, Li D, Xu J, Luo ZQ, He SY, Sun W. A bacterial kinase phosphorylates OSK1 to suppress stomatal immunity in rice. Nat Commun 2021; 12:5479. [PMID: 34531388 PMCID: PMC8445998 DOI: 10.1038/s41467-021-25748-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
The Xanthomonas outer protein C2 (XopC2) family of bacterial effectors is widely found in plant pathogens and Legionella species. However, the biochemical activity and host targets of these effectors remain enigmatic. Here we show that ectopic expression of XopC2 promotes jasmonate signaling and stomatal opening in transgenic rice plants, which are more susceptible to Xanthomonas oryzae pv. oryzicola infection. Guided by these phenotypes, we discover that XopC2 represents a family of atypical kinases that specifically phosphorylate OSK1, a universal adaptor protein of the Skp1-Cullin-F-box ubiquitin ligase complexes. Intriguingly, OSK1 phosphorylation at Ser53 by XopC2 exclusively increases the binding affinity of OSK1 to the jasmonate receptor OsCOI1b, and specifically enhances the ubiquitination and degradation of JAZ transcription repressors and plant disease susceptibility through inhibiting stomatal immunity. These results define XopC2 as a prototypic member of a family of pathogenic effector kinases and highlight a smart molecular mechanism to activate jasmonate signaling.
Collapse
Affiliation(s)
- Shanzhi Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Shuai Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Jiyang Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Qian Li
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Xiu-Fang Xin
- grid.17088.360000 0001 2150 1785DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA ,grid.9227.e0000000119573309National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), CAS John Innes Centre of Excellence for Plant and Microbial Sciences (CEPAMS), Shanghai, China
| | - Shuang Zhou
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Yanping Wang
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Dayong Li
- grid.464353.30000 0000 9888 756XCollege of Plant Protection, Jilin Agricultural University, Changchun, Jilin China
| | - Jiaqing Xu
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhao-Qing Luo
- grid.169077.e0000 0004 1937 2197Purdue Institute for Inflammation, Immunology and Infectious Disease and Department of Biological Sciences, Purdue University, West Lafayette, IN USA
| | - Sheng Yang He
- grid.17088.360000 0001 2150 1785DOE Plant Research Laboratory, Michigan State University, East Lansing, MI USA ,grid.17088.360000 0001 2150 1785Howard Hughes Medical Institute, Michigan State University, East Lansing, MI USA
| | - Wenxian Sun
- grid.22935.3f0000 0004 0530 8290Department of Plant Pathology, the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, and Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China ,grid.464353.30000 0000 9888 756XCollege of Plant Protection, Jilin Agricultural University, Changchun, Jilin China
| |
Collapse
|
12
|
Harper JW, Schulman BA. Cullin-RING Ubiquitin Ligase Regulatory Circuits: A Quarter Century Beyond the F-Box Hypothesis. Annu Rev Biochem 2021; 90:403-429. [PMID: 33823649 PMCID: PMC8217159 DOI: 10.1146/annurev-biochem-090120-013613] [Citation(s) in RCA: 152] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cullin-RING ubiquitin ligases (CRLs) are dynamic modular platforms that regulate myriad biological processes through target-specific ubiquitylation. Our knowledge of this system emerged from the F-box hypothesis, posited a quarter century ago: Numerous interchangeable F-box proteins confer specific substrate recognition for a core CUL1-based RING E3 ubiquitin ligase. This paradigm has been expanded through the evolution of a superfamily of analogous modular CRLs, with five major families and over 200 different substrate-binding receptors in humans. Regulation is achieved by numerous factors organized in circuits that dynamically control CRL activation and substrate ubiquitylation. CRLs also serve as a vast landscape for developing small molecules that reshape interactions and promote targeted ubiquitylation-dependent turnover of proteins of interest. Here, we review molecular principles underlying CRL function, the role of allosteric and conformational mechanisms in controlling substrate timing and ubiquitylation, and how the dynamics of substrate receptor interchange drives the turnover of selected target proteins to promote cellular decision-making.
Collapse
Affiliation(s)
- J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA;
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany;
| |
Collapse
|
13
|
Jiang Y, Li L, Li Y, Liu G, Hoffman RM, Jia L. Neddylation Regulates Macrophages and Implications for Cancer Therapy. Front Cell Dev Biol 2021; 9:681186. [PMID: 34164400 PMCID: PMC8215544 DOI: 10.3389/fcell.2021.681186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor-associated macrophages (TAMs) promote cancer progression via stimulating angiogenesis, invasion/metastasis, and suppressing anti-cancer immunity. Targeting TAMs is a potential promising cancer therapeutic strategy. Neddylation adds the ubiquitin-like protein NEDD8 to substrates, and thereby regulates diverse biological processes in multiple cell types, including macrophages. By controlling cellular responses, the neddylation pathway regulates the function, migration, survival, and polarization of macrophages. In the present review we summarized how the neddylation pathway modulates Macrophages and its implications for cancer therapy.
Collapse
Affiliation(s)
- Yanyu Jiang
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Li
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Guangwei Liu
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, San Diego, CA, United States.,AntiCancer Inc., San Diego, CA, United States
| | - Lijun Jia
- Longhua Hospital, Cancer Institute, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Bi Y, Cui D, Xiong X, Zhao Y. The characteristics and roles of β-TrCP1/2 in carcinogenesis. FEBS J 2020; 288:3351-3374. [PMID: 33021036 DOI: 10.1111/febs.15585] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 10/01/2020] [Indexed: 12/11/2022]
Abstract
β-transducin repeat-containing protein (β-TrCP), one of the well-characterized F-box proteins, acts as a substrate receptor and constitutes an active SCFβ-TrCP E3 ligase with a scaffold protein CUL1, a RING protein RBX1, and an adaptor protein SKP1. β-TrCP plays a critical role in the regulation of various physiological and pathological processes, including signal transduction, cell cycle progression, cell migration, DNA damage response, and tumorigenesis, by governing burgeoning amounts of key regulators for ubiquitination and proteasomal degradation. Given that a variety of β-TrCP substrates are well-known oncoproteins and tumor suppressors, and dysregulation of β-TrCP is frequently identified in human cancers, β-TrCP plays a vital role in carcinogenesis. In this review, we first briefly introduce the characteristics of β-TrCP1, β-TrCP2, and SCFβ-TrCP ubiquitin ligase, and then discuss SCFβ-TrCP ubiquitin ligase regulated biological processes by targeting its substrates for degradation. Moreover, we summarize the regulation of β-TrCP1 and β-TrCP2 at multiple layers and further discuss the various roles of β-TrCP1 and β-TrCP2 in human cancer, functioning as either an oncoprotein or a tumor suppressor in a manner dependent of cellular context. Finally, we provide novel insights for future perspectives on the potential of targeting β-TrCP1 and β-TrCP2 for cancer therapy.
Collapse
Affiliation(s)
- Yanli Bi
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrui Cui
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiufang Xiong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongchao Zhao
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Li Z, Fan S, Wang J, Chen X, Liao Q, Liu X, Ouyang G, Cao H, Xiao W. Zebrafish F-box Protein fbxo3 Negatively Regulates Antiviral Response through Promoting K27-Linked Polyubiquitination of the Transcription Factors irf3 and irf7. THE JOURNAL OF IMMUNOLOGY 2020; 205:1897-1908. [DOI: 10.4049/jimmunol.2000305] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022]
|
16
|
Kunishige T, Migita K, Matsumoto S, Wakatsuki K, Nakade H, Miyao S, Kuniyasu H, Sho M. Ring box protein-1 is associated with a poor prognosis and tumor progression in esophageal cancer. Oncol Lett 2020; 20:2919-2927. [PMID: 32782608 PMCID: PMC7400995 DOI: 10.3892/ol.2020.11840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/28/2020] [Indexed: 12/24/2022] Open
Abstract
Ring box protein-1 (RBX1) is an essential component of the S-phase kinase-associated protein, Cullin and F-box containing ubiquitin ligases. Overexpression of RBX1 has been reported in several cancer types; however, little is known regarding the prognostic value and role of RBX1 in esophageal cancer. The present study examined 120 patients with esophageal cancer (EC) who underwent curative esophagectomy and 61 patients with EC who underwent neoadjuvant combination chemotherapy with docetaxel, cisplatin and 5-fluorouracil (5-FU; DCF) using immunohistochemistry. All specimens were classified into two groups according to the percentage of RBX1-positive tumor cells. In addition, the impact of RBX1 expression on cancer cell proliferation was analyzed in vitro using a small interfering RNA silencing technique. RBX1 expression levels showed significant differences according to tumor size (P<0.001), tumor depth (P=0.002), lymph node metastasis (P=0.004), pathological stage (P=0.001), lymphatic invasion (P=0.001) and venous invasion (P=0.001). The overall survival (OS) rate in the RBX1 high expression group was significantly lower compared with that in the low group (P=0.004). Multivariate analysis demonstrated that RBX1 status was an independent prognostic factor. RBX1 gene silencing inhibited the proliferation of human EC cells and enhanced the antitumor effect of 5-FU. Among patients who underwent neoadjuvant DCF therapy, the RBX1 high expression group had a significantly lower OS rate compared with that of the RBX1-low group (P<0.001). In conclusion, RBX1 has notable prognostic value, and RBX1 may serve an important function in the tumor progression of EC.
Collapse
Affiliation(s)
- Tomohiro Kunishige
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kazuhiro Migita
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Sohei Matsumoto
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kohei Wakatsuki
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroshi Nakade
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shintaro Miyao
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| |
Collapse
|
17
|
Yumimoto K, Yamauchi Y, Nakayama KI. F-Box Proteins and Cancer. Cancers (Basel) 2020; 12:cancers12051249. [PMID: 32429232 PMCID: PMC7281081 DOI: 10.3390/cancers12051249] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Controlled protein degradation is essential for the operation of a variety of cellular processes including cell division, growth, and differentiation. Identification of the relations between ubiquitin ligases and their substrates is key to understanding the molecular basis of cancer development and to the discovery of novel targets for cancer therapeutics. F-box proteins function as the substrate recognition subunits of S-phase kinase-associated protein 1 (SKP1)−Cullin1 (CUL1)−F-box protein (SCF) ubiquitin ligase complexes. Here, we summarize the roles of specific F-box proteins that have been shown to function as tumor promoters or suppressors. We also highlight proto-oncoproteins that are targeted for ubiquitylation by multiple F-box proteins, and discuss how these F-box proteins are deployed to regulate their cognate substrates in various situations.
Collapse
|
18
|
Liang Y, Jiang Y, Jin X, Chen P, Heng Y, Cai L, Zhang W, Li L, Jia L. Neddylation inhibition activates the protective autophagy through NF-κB-catalase-ATF3 Axis in human esophageal cancer cells. Cell Commun Signal 2020; 18:72. [PMID: 32398095 PMCID: PMC7218644 DOI: 10.1186/s12964-020-00576-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/06/2020] [Indexed: 11/11/2022] Open
Abstract
Background Protein neddylation plays a tumor-promoting role in esophageal cancer. Our previous study demonstrated that neddylation inhibition induced the accumulation of ATF4 to promote apoptosis in esophageal cancer cells. However, it is completely unknown whether neddylation inhibition could induce autophagy in esophageal cancer cells and affect the expression of other members of ATF/CREB subfamily, such as ATF3. Methods The expression of relevant proteins of NF-κB/Catalase/ATF3 pathway after neddylation inhibition was determined by immunoblotting analysis and downregulated by siRNA silencing for mechanistic studies. ROS generation upon MLN4924 treatment was determined by H2-DCFDA staining. The proliferation inhibition induced by MLN4924 was evaluated by ATPLite assay and apoptosis was evaluated by Annexin V /PI double staining. Results For the first time, we reported that MLN4924, a specific inhibitor of Nedd8-activating enzyme, promoted the expression of ATF3 to induce autophagy in esophageal cancer. Mechanistically, MLN4924 inhibited the activity of CRLs and induced the accumulation of its substrate IκBα to block NF-κB activation and Catalase expression. As a result, MLN4924 activated ATF3-induced protective autophagy, thereby inhibiting MLN4924-induced apoptosis, which could be alleviated by ATF3 silencing. Conclusions In our study, we elucidates a novel mechanism of NF-κB/Catalase/ATF3 pathway in MLN4924-induced protective autophagy in esophageal cancer cells, which provides a sound rationale and molecular basis for combinational anti-ESCC therapy with knockdown ATF3 and neddylation inhibitor (e.g. MLN4924). Video abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Yupei Liang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yanyu Jiang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ping Chen
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongqing Heng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Wenjuan Zhang
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|
19
|
Mao H, Sun Y. Neddylation-Independent Activities of MLN4924. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1217:363-372. [PMID: 31898238 DOI: 10.1007/978-981-15-1025-0_21] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MLN4924, also known as pevonedistat, is a highly selective small-molecule inhibitor of NEDD8 (neuronal precursor cell-expressed developmentally downregulated protein 8)-activating enzyme (NAE) to block the entire neddylation modification cascade, leading to inactivation of cullin-RING ligases (CRLs), since activation of CRLs requires cullin neddylation. MLN4924 showed impressive anticancer activity in many preclinical studies and is currently in several Phase I/II clinical trials for anticancer therapy as a single agent or in combination with chemotherapeutic drugs.In addition to well-characterized anti-neddylation activity, recent studies showed that MLN4924 has several neddylation-independent activities. First, MLN4924 triggers EGFR dimerization to activate EGFR and its downstream RAS/MAPK and PI3K/AKT1 signals, leading to enhanced tumor sphere formation, accelerated EGF-mediated wound healing, and inhibited ciliogenesis. Second, MLN4924 induces PKM2 tetramerization to promote glycolysis, thus affecting energy metabolism. Third, MLN4924 inhibits the interaction between ACT1 (NF-κB activator 1) and TRAF6 (tumor necrosis factor receptor-associated factor 6) and attenuates IL-17A-mediated activation of NF-κB to reduce pulmonary inflammation. Fourth, MLN4924 inhibits IRF3 binding to the IFN-β promoter to inhibit IFN-β production. And finally, MLN4924 activates the JNK signaling pathway to reduce c-FLIP levels, thus enhancing TRAIL-induced apoptosis. This chapter will summarize these neddylation-independent activities of MLN4924 and discuss the underlying mechanisms and potential therapeutic applications.
Collapse
Affiliation(s)
- Hongmei Mao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- The Gilbert Family Neurofibromatosis Institute, Centers for Cancer and Immunology Research and Neuroscience Research, The Children's National Hospital, Washington, DC, USA
| | - Yi Sun
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
20
|
Oya E, Nakagawa R, Yoshimura Y, Tanaka M, Nishibuchi G, Machida S, Shirai A, Ekwall K, Kurumizaka H, Tagami H, Nakayama J. H3K14 ubiquitylation promotes H3K9 methylation for heterochromatin assembly. EMBO Rep 2019; 20:e48111. [PMID: 31468675 PMCID: PMC6776926 DOI: 10.15252/embr.201948111] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 08/07/2019] [Accepted: 08/09/2019] [Indexed: 12/28/2022] Open
Abstract
The methylation of histone H3 at lysine 9 (H3K9me), performed by the methyltransferase Clr4/SUV39H, is a key event in heterochromatin assembly. In fission yeast, Clr4, together with the ubiquitin E3 ligase Cul4, forms the Clr4 methyltransferase complex (CLRC), whose physiological targets and biological role are currently unclear. Here, we show that CLRC-dependent H3 ubiquitylation regulates Clr4's methyltransferase activity. Affinity-purified CLRC ubiquitylates histone H3, and mass spectrometric and mutation analyses reveal that H3 lysine 14 (H3K14) is the preferred target of the complex. Chromatin immunoprecipitation analysis shows that H3K14 ubiquitylation (H3K14ub) is closely associated with H3K9me-enriched chromatin. Notably, the CLRC-mediated H3 ubiquitylation promotes H3K9me by Clr4, suggesting that H3 ubiquitylation is intimately linked to the establishment and/or maintenance of H3K9me. These findings demonstrate a cross-talk mechanism between histone ubiquitylation and methylation that is involved in heterochromatin assembly.
Collapse
Affiliation(s)
- Eriko Oya
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Present address:
Faculty of Science and EngineeringChuo UniversityBunkyo‐ku, TokyoJapan
| | - Reiko Nakagawa
- Laboratory for PhyloinformaticsRIKEN Center for Biosystems Dynamics ResearchKobeJapan
| | - Yuriko Yoshimura
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Mayo Tanaka
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
| | - Gohei Nishibuchi
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Present address:
Graduate School of ScienceOsaka UniversityToyonakaJapan
| | - Shinichi Machida
- Laboratory of Structural BiologyGraduate School of Advanced Science and EngineeringWaseda UniversityShinjuku‐ku, TokyoJapan
- Present address:
Institute of Human GeneticsCNRS UMR 9002MontpellierFrance
| | | | - Karl Ekwall
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Hitoshi Kurumizaka
- Laboratory of Structural BiologyGraduate School of Advanced Science and EngineeringWaseda UniversityShinjuku‐ku, TokyoJapan
- Laboratory of Chromatin Structure and FunctionInstitute for Quantitative BiosciencesThe University of TokyoBunkyo‐ku, TokyoJapan
| | - Hideaki Tagami
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
| | - Jun‐ichi Nakayama
- Graduate School of Natural SciencesNagoya City UniversityNagoyaJapan
- Division of Chromatin RegulationNational Institute for Basic BiologyOkazakiJapan
- Department of Basic BiologySchool of Life ScienceThe Graduate University for Advanced Studies (SOKENDAI)OkazakiJapan
| |
Collapse
|
21
|
Nakade H, Migita K, Matsumoto S, Wakatsuki K, Kunishige T, Miyao S, Sho M. Overexpression of Cullin4A correlates with a poor prognosis and tumor progression in esophageal squamous cell carcinoma. Int J Clin Oncol 2019; 25:446-455. [PMID: 31535245 DOI: 10.1007/s10147-019-01547-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cullin4A (CUL4A), which is a component of E3 ubiquitin ligase, is implicated in many cellular events. Although the altered expression of CUL4A has been reported in several human cancers, the role of CUL4A in esophageal cancer remains unknown. METHODS We investigated the CUL4A expression in primary esophageal squamous cell carcinoma (ESCC) tissue specimens from 120 patients by immunohistochemistry and explored its clinical relevance and prognostic value. Furthermore, the effect of the expression of CUL4A on cancer cell proliferation was analyzed in vitro using an siRNA silencing technique. RESULTS The higher expression of CUL4A was significantly associated with a deeper depth of tumor invasion (P < 0.001) and the presence of venous invasion (P = 0.014). The disease-specific survival (DSS) rate in patients with tumors that showed high CUL4A expression levels was significantly lower than that in patients whose tumors showed low CUL4A expression levels (P = 0.001). Importantly, the CUL4A status was identified as an independent prognostic factor for DSS (P = 0.045). Our results suggested that the CUL4A expression has significant prognostic value in ESCC. Furthermore, CUL4A gene silencing significantly inhibited the proliferation of ESCC cells in vitro. In addition, the knockdown of the CUL4A expression induced G1 phase arrest and increased the p21 and p27 protein levels. CONCLUSIONS CUL4A might play an important role in regulating the proliferation of ESCC cells and promoting the development of postoperative recurrence.
Collapse
Affiliation(s)
- Hiroshi Nakade
- Department of Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan.
| | - Kazuhiro Migita
- Department of Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Sohei Matsumoto
- Department of Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Kohei Wakatsuki
- Department of Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Tomohiro Kunishige
- Department of Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Shintaro Miyao
- Department of Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| | - Masayuki Sho
- Department of Surgery, Nara Medical University, 840 Shijo-Cho, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
22
|
Du X, Meng F, Peng D, Wang Z, Ouyang W, Han Y, Gu Y, Fan L, Wu F, Jiang X, Xu F, Qin FXF. Noncanonical Role of FBXO6 in Regulating Antiviral Immunity. THE JOURNAL OF IMMUNOLOGY 2019; 203:1012-1020. [PMID: 31308089 DOI: 10.4049/jimmunol.1801557] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 06/11/2019] [Indexed: 12/16/2022]
Abstract
The evolutionarily conserved F-box family of proteins are well known for their role as the key component of SKP1-Cullin1-F-box (SCF) E3 ligase in controlling cell cycle, cell proliferation and cell death, carcinogenesis, and cancer metastasis. However, thus far, there is only limited investigation on their involvement in antiviral immunity. In contrast to the canonical function of FBXO6 associated with SCF E3 ligase complex, we report, in this study, that FBXO6 can also potently regulate the activation of IFN-I signaling during host response to viral infection by targeting the key transcription factor IFN-regulatory factor 3 (IRF3) for accelerated degradation independent of SCF in human embryonic kidney cells (HEK293T) and human lung cancer epithelial cells (A549). Structure and function delineation has further revealed that FBXO6 interacts with IAD domain of IRF3 through its FBA region to induce ubiquitination and degradation of IRF3 without the involvement of SCF. Thus, our studies have identified a general but, to our knowledge, previously unrecognized role and a novel noncanonical mechanism of FBXO6 in modulating IFN-I-mediated antiviral immune responses, which may protect the host from immunopathology of overreactive and harmful IFN-I production.
Collapse
Affiliation(s)
- Xiaohong Du
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Fang Meng
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Di Peng
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Zining Wang
- Collaborative Innovation Center of Cancer Medicine, Department of Experimental Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Wei Ouyang
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Yu Han
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - Yayun Gu
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Lingbo Fan
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Fei Wu
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Xiaodong Jiang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520
| | - Feng Xu
- Department of Infectious Diseases, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; and
| | - F Xiao-Feng Qin
- Center of Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China; .,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| |
Collapse
|
23
|
Zhou L, Jiang Y, Liu X, Li L, Yang X, Dong C, Liu X, Lin Y, Li Y, Yu J, He R, Huang S, Liu G, Zhang Y, Jeong LS, Hoffman RM, Jia L. Promotion of tumor-associated macrophages infiltration by elevated neddylation pathway via NF-κB-CCL2 signaling in lung cancer. Oncogene 2019; 38:5792-5804. [PMID: 31243299 DOI: 10.1038/s41388-019-0840-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 02/15/2019] [Accepted: 04/09/2019] [Indexed: 12/21/2022]
Abstract
Tumor-associated macrophages (TAMs) are the most abundant cancer stromal cells and play an essential role in tumor immunosuppression, providing a suitable microenvironment for cancer development and progression. However, mechanisms of regulating TAMs infiltration in tumor sites are not fully understood. Here, we show that inactivation of neddylation pathway significantly inhibits infiltration of TAMs, leading to the suppression of lung cancer metastasis. RNA-sequencing analysis revealed that neddylation inactivation suppresses the transactivation of chemotactic cytokine ligand 2 (CCL2). Mechanistically, neddylation inactivation inhibits the activity of Cullin-RING ligases (CRLs) and induces the accumulation of its substrate IκBα to block NF-κB transcriptional activity and CCL2 transactivation. As a result, neddylation inactivation exhibits lower chemotaxis of monocytes, thereby decreasing TAMs infiltration, which can be alleviated by CCL2 addition. Moreover, the expression level of NEDD8 is positively correlated with high CCL2 expression in lung adenocarcinoma, conferring a worse overall patient survival. Together, neddylation pathway promotes CCL2 transactivation and TAMs infiltration in lung cancer to provide a tumor-promoting microenvironment, which validates neddylation pathway as a promising target for anti-TAMs therapeutic strategies.
Collapse
Affiliation(s)
- Lisha Zhou
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanyu Jiang
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Xiaojun Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xuguang Yang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoli Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yuli Lin
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yan Li
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Jinha Yu
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Shenglin Huang
- Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Guangwei Liu
- College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yanmei Zhang
- Department of Laboratory Medicine, Huaong Hospital, Fudan University, Shanghai, China
| | - Lak Shin Jeong
- College of Pharmacy, Seoul National University, Seoul, Korea
| | | | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
24
|
Fouani L, Kovacevic Z, Richardson DR. Targeting Oncogenic Nuclear Factor Kappa B Signaling with Redox-Active Agents for Cancer Treatment. Antioxid Redox Signal 2019; 30:1096-1123. [PMID: 29161883 DOI: 10.1089/ars.2017.7387] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Nuclear factor kappa B (NF-κB) signaling is essential under physiologically relevant conditions. However, aberrant activation of this pathway plays a pertinent role in tumorigenesis and contributes to resistance. Recent Advances: The importance of the NF-κB pathway means that its targeting must be specific to avoid side effects. For many currently used therapeutics and those under development, the ability to generate reactive oxygen species (ROS) is a promising strategy. CRITICAL ISSUES As cancer cells exhibit greater ROS levels than their normal counterparts, they are more sensitive to additional ROS, which may be a potential therapeutic niche. It is known that ROS are involved in (i) the activation of NF-κB signaling, when in sublethal amounts; and (ii) high levels induce cytotoxicity resulting in apoptosis. Indeed, ROS-induced cytotoxicity is valuable for its capabilities in killing cancer cells, but establishing the potency of ROS for effective inhibition of NF-κB signaling is necessary. Indeed, some cancer treatments, currently used, activate NF-κB and may stimulate oncogenesis and confer resistance. FUTURE DIRECTIONS Thus, combinatorial approaches using ROS-generating agents alongside conventional therapeutics may prove an effective tactic to reduce NF-κB activity to kill cancer cells. One strategy is the use of thiosemicarbazones, which form redox-active metal complexes that generate high ROS levels to deliver potent antitumor activity. These agents also upregulate the metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), which functions as an NF-κB signaling inhibitor. It is proposed that targeting NF-κB signaling may proffer a new therapeutic niche to improve the efficacy of anticancer regimens.
Collapse
Affiliation(s)
- Leyla Fouani
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
25
|
Bulatov E, Valiullina A, Sayarova R, Rizvanov A. Promising new therapeutic targets for regulation of inflammation and immunity: RING-type E3 ubiquitin ligases. Immunol Lett 2018; 202:44-51. [PMID: 30099009 DOI: 10.1016/j.imlet.2018.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 02/07/2023]
Abstract
Ubiquitin-proteasome system (UPS) is a primary signaling pathway for regulation of protein turnover and removal of misfolded proteins in eukaryotic cells. Enzymes of the UPS pathway - E1 activating, E2 conjugating, E3 ligating - act together to covalently tag substrate proteins with a chain of ubiquitins, small regulatory proteins. The poly-ubiquitin chain then serves as a recognition motif for 26S proteasome to recognize and degrade the substrate. In recent years UPS has emerged as attractive enzymatic cascade for development of novel therapeutics against various human diseases. Building on the previous success of targeting this pathway in cancer - the broader scientific community is currently looking for ways to elucidate functions of E3 ligases, substrate-specific members of the UPS. RING-type E3 ubiquitin ligases, the largest class of E3s, represent prospective targets for small molecule modulation and their importance is reinforced by ever growing evidence of playing role in non-cancer diseases, primarily associated with inflammatory and immune disorders. In this review, we aim to briefly cover the current knowledge of biological functions of RING-type E3 ligases in inflammation and immunity.
Collapse
Affiliation(s)
- Emil Bulatov
- Kazan Federal University, Kazan, Russian Federation.
| | | | | | | |
Collapse
|
26
|
Zhang JS, Li XJ, Yang L, Li WW, Wang Q. Expression pattern and functional analysis of the two RING box protein RBX in spermatogenesis of Chinese mitten crab Eriocheir sinensis. Gene 2018; 668:237-245. [PMID: 29775751 DOI: 10.1016/j.gene.2018.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/05/2018] [Accepted: 05/08/2018] [Indexed: 11/27/2022]
Abstract
Studies in E. sinensis have shown that ubiquitination mediated by Cullin-RING E3 ligases (CRLs) plays important roles in spermatogenesis. In other species, CRLs are also essential in cell cycle progression, DNA replication, signal transduction, gene transcription, and development. The catalytic RING component, the RING box protein, is an important part of CRLs. However, there have been few studies on CRLs in crustaceans. In this study, we cloned two RING box protein genes from the Chinese mitten crab, Eriocheir sinensis, termed Es-RBX1 and Es-RBX2 The full length Es-RBX1 cDNA comprises 741 nucleotides, and encodes a protein of 124 amino acid residues, whereas the Es-RBX2 cDNA comprises 1325 nucleotides, and encodes a protein of 110 amino acid residues. Bioinformatics analysis showed that the domains and structure of the RBX proteins have been highly conserved during evolution. Quantitative real-time polymerase chain reaction and western blotting showed that Es-RBX1 is highly expressed in the testis, particularly during the spermatocyte stage, whereas Es-RBX2 did not show specific expression in the male reproductive system. Furthermore, Es-RBX1 is mainly distributed in the nucleus, and changed its location with the development of the nucleus. Co-immunoprecipitation showed that Es-RBX1 could bind Cullin4. These results suggested that Es-RBX1 plays a key role in spermatogenesis of E. sinensis though forming a complex with Cullin4.
Collapse
Affiliation(s)
- Jia-Shun Zhang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Xue-Jie Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Lei Yang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
27
|
Bulatov E, Zagidullin A, Valiullina A, Sayarova R, Rizvanov A. Small Molecule Modulators of RING-Type E3 Ligases: MDM and Cullin Families as Targets. Front Pharmacol 2018; 9:450. [PMID: 29867461 PMCID: PMC5951978 DOI: 10.3389/fphar.2018.00450] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/18/2018] [Indexed: 12/14/2022] Open
Abstract
Ubiquitin-proteasome system (UPS) is a primary signaling pathway for regulation of intracellular protein levels. E3 ubiquitin ligases, substrate-specific members of the UPS, represent highly attractive protein targets for drug discovery. The importance of E3 ligases as prospective targets for small molecule modulation is reinforced by ever growing evidence of their role in cancer and other diseases. To date the number of potent compounds targeting E3 ligases remains rather low and their rational design constitutes a challenging task. To successfully address this problem one must take into consideration the multi-subunit nature of many E3 ligases that implies multiple druggable pockets and protein-protein interfaces. In this review, we briefly cover the current state of drug discovery in the field of RING-type E3 ligases with focus on MDM and Cullin families as targets. We also provide an overview of small molecule chimeras that induce RING-type E3-mediated proteasomal degradation of substrate proteins of interest.
Collapse
Affiliation(s)
- Emil Bulatov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Almaz Zagidullin
- A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Kazan, Russia
| | - Aygul Valiullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Regina Sayarova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Albert Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
28
|
Xia C, Wolf JJ, Vijayan M, Studstill CJ, Ma W, Hahm B. Casein Kinase 1α Mediates the Degradation of Receptors for Type I and Type II Interferons Caused by Hemagglutinin of Influenza A Virus. J Virol 2018; 92:e00006-18. [PMID: 29343571 PMCID: PMC5972889 DOI: 10.1128/jvi.00006-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 01/24/2023] Open
Abstract
Although influenza A virus (IAV) evades cellular defense systems to effectively propagate in the host, the viral immune-evasive mechanisms are incompletely understood. Our recent data showed that hemagglutinin (HA) of IAV induces degradation of type I IFN receptor 1 (IFNAR1). Here, we demonstrate that IAV HA induces degradation of type II IFN (IFN-γ) receptor 1 (IFNGR1), as well as IFNAR1, via casein kinase 1α (CK1α), resulting in the impairment of cellular responsiveness to both type I and II IFNs. IAV infection or transient HA expression induced degradation of both IFNGR1 and IFNAR1, whereas HA gene-deficient IAV failed to downregulate the receptors. IAV HA caused the phosphorylation and ubiquitination of IFNGR1, leading to the lysosome-dependent degradation of IFNGR1. Influenza viral HA strongly decreased cellular sensitivity to type II IFNs, as it suppressed the activation of STAT1 and the induction of IFN-γ-stimulated genes in response to exogenously supplied recombinant IFN-γ. Importantly, CK1α, but not p38 MAP kinase or protein kinase D2, was proven to be critical for HA-induced degradation of both IFNGR1 and IFNAR1. Pharmacologic inhibition of CK1α or small interfering RNA (siRNA)-based knockdown of CK1α repressed the degradation processes of both IFNGR1 and IFNAR1 triggered by IAV infection. Further, CK1α was shown to be pivotal for proficient replication of IAV. Collectively, the results suggest that IAV HA induces degradation of IFN receptors via CK1α, creating conditions favorable for viral propagation. Therefore, the study uncovers a new immune-evasive pathway of influenza virus.IMPORTANCE Influenza A virus (IAV) remains a grave threat to humans, causing seasonal and pandemic influenza. Upon infection, innate and adaptive immunity, such as the interferon (IFN) response, is induced to protect hosts against IAV infection. However, IAV seems to be equipped with tactics to evade the IFN-mediated antiviral responses, although the detailed mechanisms need to be elucidated. In the present study, we show that IAV HA induces the degradation of the type II IFN receptor IFNGR1 and thereby substantially attenuates cellular responses to IFN-γ. Of note, a cellular kinase, casein kinase 1α (CK1α), is crucial for IAV HA-induced degradation of both IFNGR1 and IFNAR1. Accordingly, CK1α is proven to positively regulate IAV propagation. Thus, this study unveils a novel strategy employed by IAV to evade IFN-mediated antiviral activities. These findings may provide new insights into the interplay between IAV and host immunity to impact influenza virus pathogenicity.
Collapse
MESH Headings
- A549 Cells
- Animals
- Casein Kinase I/genetics
- Casein Kinase I/immunology
- Chlorocebus aethiops
- Dogs
- HEK293 Cells
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Immune Evasion
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza, Human/genetics
- Influenza, Human/immunology
- Influenza, Human/pathology
- Madin Darby Canine Kidney Cells
- Protein Kinase D2
- Protein Kinases/genetics
- Protein Kinases/immunology
- Proteolysis
- Receptor, Interferon alpha-beta/genetics
- Receptor, Interferon alpha-beta/immunology
- Receptors, Interferon/genetics
- Receptors, Interferon/immunology
- STAT1 Transcription Factor/genetics
- STAT1 Transcription Factor/immunology
- Vero Cells
- p38 Mitogen-Activated Protein Kinases/genetics
- p38 Mitogen-Activated Protein Kinases/immunology
- Interferon gamma Receptor
Collapse
Affiliation(s)
- Chuan Xia
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Jennifer J Wolf
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Madhuvanthi Vijayan
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Caleb J Studstill
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| | - Wenjun Ma
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - Bumsuk Hahm
- Department of Surgery, University of Missouri, Columbia, Missouri, USA
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
29
|
Tilborghs S, Corthouts J, Verhoeven Y, Arias D, Rolfo C, Trinh XB, van Dam PA. The role of Nuclear Factor-kappa B signaling in human cervical cancer. Crit Rev Oncol Hematol 2017; 120:141-150. [PMID: 29198328 DOI: 10.1016/j.critrevonc.2017.11.001] [Citation(s) in RCA: 191] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 11/01/2017] [Indexed: 12/27/2022] Open
Abstract
Background The Nuclear Factor kappaB (NF-kB) family consists of transcription factors that play a complex and essential role in the regulation of immune responses and inflammation. NF-kB has recently generated considerable interest as it has been implicated in human cancer initiation, progression and resistance to treatment. In the present comprehensive review the different aspects of NF-kB signaling in the carcinogenesis of cancer of the uterine cervix are discussed. NF-kB functions as part of a network, which determines the pattern of its effects on the expression of several other genes (such as crosstalks with reactive oxygen species, p53, STAT3 and miRNAS) and thus its function. Activation of NF-kB triggered by a HPV infection is playing an important role in the innate and adaptive immune response of the host. The virus induces down regulation of NF-kB to liquidate the inhibitory activity for its replication triggered by the immune system leading a status of persistant HPV infection. During the progression to high grade intraepithelial neoplasia and cervical cancer NF-KB becomes constitutionally activated again. Mutations in NF-kB genes are rare in solid tumors but mutations of upstream signaling molecules such as RAS, EGFR, PGF, HER2 have been implicated in elevated NF-kB signaling. NF-kB can stimulate transcription of proliferation regulating genes (eg. cyclin D1 and c-myc), genes involved in metastasis, VEGF dependent angiogenesis and cell immortality by telomerase. NF-kB activation can also induce the expression of activation-induced cytodine deaminase (AID) and the APOBEC proteins, providing a mechanistic link between the NF-kB pathway and mutagenic characteristic of cervical cancer. Inhibition of NF-kB has the potential to be used to reverse resistance to radiotherapy and systemic anti-cancer medication, but currently no clinicaly active NF-kB targeting strategies are available.
Collapse
Affiliation(s)
- Sam Tilborghs
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Jerome Corthouts
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - Yannick Verhoeven
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium
| | - David Arias
- Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Christian Rolfo
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Phase I - Early Clinical Trials Unit & Center for Oncological Research (CORE), Antwerp University, Belgium
| | - Xuan Bich Trinh
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium
| | - Peter A van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA) Antwerp University Hospital, Edegem, Belgium; Gynecologic Oncology Unit, Antwerp University Hospital & Centre of Oncologic Research (CORE), Antwerp University, Belgium.
| |
Collapse
|
30
|
Cooperation of the Ebola Virus Proteins VP40 and GP 1,2 with BST2 To Activate NF-κB Independently of Virus-Like Particle Trapping. J Virol 2017; 91:JVI.01308-17. [PMID: 28878074 DOI: 10.1128/jvi.01308-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 08/28/2017] [Indexed: 11/20/2022] Open
Abstract
BST2 is a host protein with dual functions in response to viral infections: it traps newly assembled enveloped virions at the plasma membrane in infected cells, and it induces NF-κB activity, especially in the context of retroviral assembly. In this study, we examined whether Ebola virus proteins affect BST2-mediated induction of NF-κB. We found that the Ebola virus matrix protein, VP40, and envelope glycoprotein, GP, each cooperate with BST2 to induce NF-κB activity, with maximal activity when all three proteins are expressed. Unlike human immunodeficiency virus type 1 Vpu protein, which antagonizes both virion entrapment and the activation of NF-κB by BST2, Ebola virus GP does not inhibit NF-κB signaling even while it antagonizes the entrapment of virus-like particles. GP from Reston ebolavirus, a nonpathogenic species in humans, showed a phenotype similar to that of GP from Zaire ebolavirus, a highly pathogenic species, in terms of both the activation of NF-κB and the antagonism of virion entrapment. Although Ebola virus VP40 and GP both activate NF-κB independently of BST2, VP40 is the more potent activator. Activation of NF-κB by the Ebola virus proteins either alone or together with BST2 requires the canonical NF-κB signaling pathway. Mechanistically, the maximal NF-κB activation by GP, VP40, and BST2 together requires the ectodomain cysteines needed for BST2 dimerization, the putative BST2 tetramerization residue L70, and Y6 of a potential hemi-ITAM motif in BST2's cytoplasmic domain. BST2 with a glycosylphosphatidylinositol (GPI) anchor signal deletion, which is not expressed at the plasma membrane and is unable to entrap virions, activated NF-κB in concert with the Ebola virus proteins at least as effectively as wild-type BST2. Signaling by the GPI anchor mutant also depended on Y6 of BST2. Overall, our data show that activation of NF-κB by BST2 is independent of virion entrapment in the case of Ebola virus. Nonetheless, BST2 may induce or amplify proinflammatory signaling during Ebola virus infection, potentially contributing to the dysregulated cytokine response that is a hallmark of Ebola virus disease.IMPORTANCE Understanding how the host responds to viral infections informs the development of therapeutics and vaccines. We asked how proinflammatory signaling by the host protein BST2/tetherin, which is mediated by the transcription factor NF-κB, responds to Ebola virus proteins. Although the Ebola virus envelope glycoprotein (GP1,2) antagonizes the trapping of newly formed virions at the plasma membrane by BST2, we found that it does not inhibit BST2's ability to induce NF-κB activity. This distinguishes GP1,2 from the HIV-1 protein Vpu, the prototype BST2 antagonist, which inhibits both virion entrapment and the induction of NF-κB activity. Ebola virus GP1,2, the Ebola virus matrix protein VP40, and BST2 are at least additive with respect to the induction of NF-κB activity. The effects of these proteins converge on an intracellular signaling pathway that depends on a protein modification termed neddylation. Better mechanistic understanding of these phenomena could provide targets for therapies that modulate the inflammatory response during Ebola virus disease.
Collapse
|
31
|
Nakagawa T, Zhang T, Kushi R, Nakano S, Endo T, Nakagawa M, Yanagihara N, Zarkower D, Nakayama K. Regulation of mitosis-meiosis transition by the ubiquitin ligase β-TrCP in male germ cells. Development 2017; 144:4137-4147. [PMID: 28982686 DOI: 10.1242/dev.158485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 09/27/2017] [Indexed: 11/20/2022]
Abstract
The mitosis-meiosis transition is essential for spermatogenesis. Specific and timely downregulation of the transcription factor DMRT1, and consequent induction of Stra8 expression, is required for this process in mammals, but the molecular mechanism has remained unclear. Here, we show that β-TrCP, the substrate recognition component of an E3 ubiquitin ligase complex, targets DMRT1 for degradation and thereby controls the mitosis-meiosis transition in mouse male germ cells. Conditional inactivation of β-TrCP2 in male germ cells of β-TrCP1 knockout mice resulted in sterility due to a lack of mature sperm. The β-TrCP-deficient male germ cells did not enter meiosis, but instead underwent apoptosis. The induction of Stra8 expression was also attenuated in association with the accumulation of DMRT1 at the Stra8 promoter in β-TrCP-deficient testes. DMRT1 contains a consensus β-TrCP degron sequence that was found to bind β-TrCP. Overexpression of β-TrCP induced the ubiquitylation and degradation of DMRT1. Heterozygous deletion of Dmrt1 in β-TrCP-deficient spermatogonia increased meiotic cells with a concomitant reduction of apoptosis. Collectively, our data indicate that β-TrCP regulates the transition from mitosis to meiosis in male germ cells by targeting DMRT1 for degradation.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Teng Zhang
- Department of Genetics, Cell Biology, and Development, and Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ryo Kushi
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Seiji Nakano
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Takahiro Endo
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Makiko Nakagawa
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Noriko Yanagihara
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - David Zarkower
- Department of Genetics, Cell Biology, and Development, and Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Keiko Nakayama
- Division of Cell Proliferation, ART, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
32
|
Lang F, Aravamudhan S, Nolte H, Türk C, Hölper S, Müller S, Günther S, Blaauw B, Braun T, Krüger M. Dynamic changes in the mouse skeletal muscle proteome during denervation-induced atrophy. Dis Model Mech 2017; 10:881-896. [PMID: 28546288 PMCID: PMC5536905 DOI: 10.1242/dmm.028910] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 05/16/2017] [Indexed: 01/07/2023] Open
Abstract
Loss of neuronal stimulation enhances protein breakdown and reduces protein synthesis, causing rapid loss of muscle mass. To elucidate the pathophysiological adaptations that occur in atrophying muscles, we used stable isotope labelling and mass spectrometry to quantify protein expression changes accurately during denervation-induced atrophy after sciatic nerve section in the mouse gastrocnemius muscle. Additionally, mice were fed a stable isotope labelling of amino acids in cell culture (SILAC) diet containing 13C6-lysine for 4, 7 or 11 days to calculate relative levels of protein synthesis in denervated and control muscles. Ubiquitin remnant peptides (K-ε-GG) were profiled by immunoaffinity enrichment to identify potential substrates of the ubiquitin-proteasomal pathway. Of the 4279 skeletal muscle proteins quantified, 850 were differentially expressed significantly within 2 weeks after denervation compared with control muscles. Moreover, pulse labelling identified Lys6 incorporation in 4786 proteins, of which 43 had differential Lys6 incorporation between control and denervated muscle. Enrichment of diglycine remnants identified 2100 endogenous ubiquitination sites and revealed a metabolic and myofibrillar protein diglycine signature, including myosin heavy chains, myomesins and titin, during denervation. Comparative analysis of these proteomic data sets with known atrogenes using a random forest approach identified 92 proteins subject to atrogene-like regulation that have not previously been associated directly with denervation-induced atrophy. Comparison of protein synthesis and proteomic data indicated that upregulation of specific proteins in response to denervation is mainly achieved by protein stabilization. This study provides the first integrated analysis of protein expression, synthesis and ubiquitin signatures during muscular atrophy in a living animal. Summary: Comprehensive proteomic profiling of protein expression, synthesis and ubiquitination during skeletal muscle atrophy reveals that complex regulatory networks are activated during muscle wasting.
Collapse
Affiliation(s)
- Franziska Lang
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Sriram Aravamudhan
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Hendrik Nolte
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Clara Türk
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - Soraya Hölper
- Institute of Biochemistry II, Goethe University Medical School, 60590 Frankfurt, Germany
| | - Stefan Müller
- Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Bert Blaauw
- Venetian Institute of Molecular Medicine (VIMM), Department of Biomedical Sciences Padova, University of Padova, 35137 Padova, Italy
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Marcus Krüger
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany .,Center for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
33
|
Interplay between Inflammation and Stemness in Cancer Cells: The Role of Toll-Like Receptor Signaling. J Immunol Res 2016; 2016:4368101. [PMID: 28116318 PMCID: PMC5223024 DOI: 10.1155/2016/4368101] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/22/2016] [Accepted: 12/05/2016] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) are a small population of cancer cells that exhibit stemness. These cells contribute to cancer metastasis, treatment resistance, and relapse following therapy; therefore, they may cause malignancy and reduce the success of cancer treatment. Nuclear factor kappa B- (NF-κB-) mediated inflammatory responses increase stemness in cancer cells, and CSCs constitutively exhibit higher NF-κB activation, which in turn increases their stemness. These opposite effects form a positive feedback loop that further amplifies inflammation and stemness in cancer cells, thereby expanding CSC populations in the tumor. Toll-like receptors (TLRs) activate NF-κB-mediated inflammatory responses when stimulated by carcinogenic microbes and endogenous molecules released from cells killed during cancer treatment. NF-κB activation by extrinsic TLR ligands increases stemness in cancer cells. Moreover, it was recently shown that increased NF-κB activity and inflammatory responses in CSCs may be caused by altered TLR signaling during the enrichment of stemness in cancer cells. Thus, the activation of TLR signaling by extrinsic and intrinsic factors drives a positive interplay between inflammation and stemness in cancer cells.
Collapse
|
34
|
Hayes JD, Ebisine K, Sharma RS, Chowdhry S, Dinkova-Kostova AT, Sutherland C. Regulation of the CNC-bZIP transcription factor Nrf2 by Keap1 and the axis between GSK-3 and β-TrCP. CURRENT OPINION IN TOXICOLOGY 2016. [DOI: 10.1016/j.cotox.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Jakkampudi A, Jangala R, Reddy BR, Mitnala S, Nageshwar Reddy D, Talukdar R. NF-κB in acute pancreatitis: Mechanisms and therapeutic potential. Pancreatology 2016; 16:477-88. [PMID: 27282980 DOI: 10.1016/j.pan.2016.05.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/11/2022]
Abstract
The incidence of acute pancreatitis (AP) is increasing globally and mortality could be high among patients with organ failure and infected necrosis. The predominant factors responsible for the morbidity and mortality of AP are systemic inflammatory response syndrome and multiorgan dysfunction. Even though preclinical studies have shown antisecretory agents (somatostatin), antioxidants (S-adenosyl methionine [SAM], selenium), protease inhibitors, platelet activating factor inhibitor (Lexipafant), and anti-inflammatory immunomodulators (eg. prostaglandin E, indomethacin) to benefit AP in terms of reducing the severity and/or mortality, most of these agents have shown heterogeneous results in clinical studies. Several years of experimental studies have implicated nuclear factor-kappa B (NF-κB) activation as an early and central event in the progression of inflammation in AP. In this manuscript, we review the literature on the role of NF-κB in the pathogenesis of AP, its early intraacinar activation, and how it results in progression of the disease. We also discuss why anti-protease, antisecretory, and anti-inflammatory agents are unlikely to be effective in clinical acute pancreatitis. NF-κB, being a central molecule that links the initial acinar injury to systemic inflammation and perpetuate the inflammation, we propose that more studies be focussed towards targeted inhibition of NF-κB activity. Direct NF-κB inhibition strategies have already been attempted in patients with various cancers. So far, peroxisome proliferator activator receptor gamma (PPAR-γ) ligand, pyrrolidine dithiocarbamate (PDTC), proteasome inhibitor and calpain I inhibitor have been shown to have direct inhibitory effects on NF-κB activation in experimental AP.
Collapse
Affiliation(s)
- Aparna Jakkampudi
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - Ramaiah Jangala
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - B Ratnakar Reddy
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - Sasikala Mitnala
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India
| | - D Nageshwar Reddy
- Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India
| | - Rupjyoti Talukdar
- Wellcome-DBT Laboratory, Asian Healthcare Foundation, Hyderabad, India; Dept. of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India.
| |
Collapse
|
36
|
Yu Z, Chen T, Li X, Yang M, Tang S, Zhu X, Gu Y, Su X, Xia M, Li W, Zhang X, Wang Q, Cao X, Wang J. Lys29-linkage of ASK1 by Skp1-Cullin 1-Fbxo21 ubiquitin ligase complex is required for antiviral innate response. eLife 2016; 5. [PMID: 27063938 PMCID: PMC4887211 DOI: 10.7554/elife.14087] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/09/2016] [Indexed: 12/25/2022] Open
Abstract
Protein ubiquitination regulated by ubiquitin ligases plays important roles in innate immunity. However, key regulators of ubiquitination during innate response and roles of new types of ubiquitination (apart from Lys48- and Lys63-linkage) in control of innate signaling have not been clearly understood. Here we report that F-box only protein Fbxo21, a functionally unknown component of SCF (Skp1–Cul1–F-box protein) complex, facilitates Lys29-linkage and activation of ASK1 (apoptosis signal-regulating kinase 1), and promotes type I interferon production upon viral infection. Fbxo21 deficiency in mice cells impairs virus-induced Lys29-linkage and activation of ASK1, attenuates c-Jun N-terminal kinase (JNK) and p38 signaling pathway, and decreases the production of proinflammatory cytokines and type I interferon, resulting in reduced antiviral innate response and enhanced virus replication. Therefore Fbxo21 is required for ASK1 activation via Lys29-linkage of ASK1 during antiviral innate response, providing mechanistic insights into non-proteolytic roles of SCF complex in innate immune response. DOI:http://dx.doi.org/10.7554/eLife.14087.001 The innate immune system is the body’s first line of defense against being infected by viruses and other microbes. Upon recognizing a virus, host cells trigger the innate immune response in an effort to eliminate the threat. However, innate immune responses must be carefully controlled because an excessive response can cause inflammation that harms the body. The innate immune response involves a variety of cells and processes that are each activated through a series of communication systems called signaling pathways. While much has been learned about which parts of a virus trigger the innate immune response, it is not clear how the immune response to the virus is controlled. It has been suggested that a process known as ubiquitination could be involved in regulating the activity of signaling pathways that activate the innate immune response. During ubiquitination, enzymes attach a small molecule called ubiquitin to a specific target protein. Ubiquitin often acts as a label that targets a particular protein for destruction. Enzymes called E3 ubiquitin ligases play central roles in identifying specific target proteins for ubiquitination. Some of these enzymes consist of a single protein unit that acts alone, but other E3 ubiquitin ligases are formed by groups (or “complexes”) of several proteins working together. Members of the F-box only protein family are components of some ubiquitin ligase complexes. Here, Yu et al. used a “microarray” technique to assess which F-box only proteins in mice are produced during an immune response to two viruses. The experiments identified an F-box protein called Fbxo21 as a potential candidate for a role in regulating the innate immune response. Additional experiments revealed that Fbxo21 is involved in adding ubiquitin to a specific location on a signaling protein called ASK1, which is known to be crucial for innate immune responses. Instead of targeting ASK1 for destruction, this ubiquitination activates ASK1. Therefore, Yu et al.’s findings demonstrate that Fbxo21 plays an important role in regulating innate immune responses. A future challenge is to investigate exactly how ASK1 is activated by the ubiquitin. DOI:http://dx.doi.org/10.7554/eLife.14087.002
Collapse
Affiliation(s)
- Zhou Yu
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China.,National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China.,National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Taoyong Chen
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xuelian Li
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Mingjin Yang
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China.,National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Songqing Tang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuhui Zhu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Yan Gu
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Xiaoping Su
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China
| | - Meng Xia
- National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Weihua Li
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Xuemin Zhang
- Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Qingqing Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology and Institute of Immunology, Second Military Medical University, Shanghai, China.,National Key Laboratory of Medical Molecular Biology and Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China
| | - Jianli Wang
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Uddin S, Bhat AA, Krishnankutty R, Mir F, Kulinski M, Mohammad RM. Involvement of F-BOX proteins in progression and development of human malignancies. Semin Cancer Biol 2016; 36:18-32. [PMID: 26410033 DOI: 10.1016/j.semcancer.2015.09.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 12/13/2022]
Abstract
The Ubiquitin Proteasome System (UPS) is a core regulator with various protein components (ubiquitin-activating E1 enzymes, ubiquitin-conjugating E2 enzymes, ubiquitin-protein E3 ligases, and the 26S proteasome) which work together in a coordinated fashion to ensure the appropriate and efficient proteolysis of target substrates. E3 ubiquitin ligases are essential components of the UPS machinery, working with E1 and E2 enzymes to bind substrates and assist the transport of ubiquitin molecules onto the target protein. As the UPS controls the degradation of several oncogenes and tumor suppressors, dysregulation of this pathway leads to several human malignancies. A major category of E3 Ub ligases, the SCF (Skp-Cullin-F-box) complex, is composed of four principal components: Skp1, Cul1/Cdc53, Roc1/Rbx1/Hrt1, and an F-box protein (FBP). FBPs are the substrate recognition components of SCF complexes and function as adaptors that bring substrates into physical proximity with the rest of the SCF. Besides acting as a component of SCF complexes, FBPs are involved in DNA replication, transcription, cell differentiation and cell death. This review will highlight the recent literature on three well characterized FBPs SKP2, Fbw7, and beta-TRCP. In particular, we will focus on the involvement of these deregulated FBPs in the progression and development of various human cancers. We will also highlight some novel substrates recently identified for these FBPs.
Collapse
Affiliation(s)
- Shahab Uddin
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ajaz A Bhat
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Roopesh Krishnankutty
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Fayaz Mir
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Michal Kulinski
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar
| | - Ramzi M Mohammad
- Academic Health System, Translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| |
Collapse
|
38
|
Samadi AK, Bilsland A, Georgakilas AG, Amedei A, Amin A, Bishayee A, Azmi AS, Lokeshwar BL, Grue B, Panis C, Boosani CS, Poudyal D, Stafforini DM, Bhakta D, Niccolai E, Guha G, Vasantha Rupasinghe HP, Fujii H, Honoki K, Mehta K, Aquilano K, Lowe L, Hofseth LJ, Ricciardiello L, Ciriolo MR, Singh N, Whelan RL, Chaturvedi R, Ashraf SS, Shantha Kumara HMC, Nowsheen S, Mohammed SI, Keith WN, Helferich WG, Yang X. A multi-targeted approach to suppress tumor-promoting inflammation. Semin Cancer Biol 2015; 35 Suppl:S151-S184. [PMID: 25951989 PMCID: PMC4635070 DOI: 10.1016/j.semcancer.2015.03.006] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 03/13/2015] [Accepted: 03/16/2015] [Indexed: 12/15/2022]
Abstract
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Collapse
Affiliation(s)
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | - Alexandros G Georgakilas
- Physics Department, School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates; Faculty of Science, Cairo University, Cairo, Egypt
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin Health Sciences Institute, Miami, FL, United States
| | - Asfar S Azmi
- Department of Pathology, Wayne State Univeristy, Karmanos Cancer Center, Detroit, MI, USA
| | - Bal L Lokeshwar
- Department of Urology, University of Miami, Miller School of Medicine, Miami, FL, United States; Miami Veterans Administration Medical Center, Miami, FL, United States
| | - Brendan Grue
- Department of Environmental Science, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Carolina Panis
- Laboratory of Inflammatory Mediators, State University of West Paraná, UNIOESTE, Paraná, Brazil
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Deepak Poudyal
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Diana M Stafforini
- Huntsman Cancer Institute and Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dipita Bhakta
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | | | - Gunjan Guha
- School of Chemical and Biotechnology, SASTRA University, Thanjavur, Tamil Nadu, India
| | - H P Vasantha Rupasinghe
- Department of Environmental Sciences, Faculty of Agriculture and Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Kapil Mehta
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada.
| | - Lorne J Hofseth
- Department of Drug Discovery and Biomedical Sciences, South Carolina College of Pharmacy, University of South Carolina, Columbia, SC, United States
| | - Luigi Ricciardiello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Neetu Singh
- Advanced Molecular Science Research Centre (Centre for Advanced Research), King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Richard L Whelan
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - S Salman Ashraf
- Department of Chemistry, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - H M C Shantha Kumara
- Department of Surgery, St. Luke's Roosevelt Hospital, New York, NY, United States
| | - Somaira Nowsheen
- Medical Scientist Training Program, Mayo Graduate School, Mayo Medical School, Mayo Clinic, Rochester, MN, United States
| | - Sulma I Mohammed
- Department of Comparative Pathobiology, Purdue University Center for Cancer Research, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | - Xujuan Yang
- University of Illinois at Urbana Champaign, Champaign, IL, United States
| |
Collapse
|
39
|
Wu ZH, Pfeffer LM. MicroRNA regulation of F-box proteins and its role in cancer. Semin Cancer Biol 2015; 36:80-7. [PMID: 26433073 DOI: 10.1016/j.semcancer.2015.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/24/2015] [Accepted: 09/28/2015] [Indexed: 01/26/2023]
Abstract
MicroRNAs (miRNAs) are small endogenous non-coding RNAs, which play critical roles in cancer development by suppressing gene expression at the post-transcriptional level. In general, oncogenic miRNAs are upregulated in cancer, while miRNAs that act as tumor suppressors are downregulated, leading to decreased expression of tumor suppressors and upregulated oncogene expression, respectively. F-box proteins function as the substrate-recognition components of the SKP1-CUL1-F-box (SCF)-ubiquitin ligase complex for the degradation of their protein targets by the ubiquitin-proteasome system. Therefore F-box proteins and miRNAs both negatively regulate target gene expression post-transcriptionally. Since each miRNA is capable of fine-tuning the expression of multiple target genes, multiple F-box proteins may be suppressed by the same miRNA. Meanwhile, one F-box proteins could be regulated by several miRNAs in different cancer types. In this review, we will focus on miRNA-mediated downregulation of various F-box proteins, the resulting stabilization of F-box protein substrates and the impact of these processes on human malignancies. We provide insight into how the miRNA: F-box protein axis may regulate cancer progression and metastasis. We also consider the broader role of F-box proteins in the regulation of pathways that are independent of the ubiquitin ligase complex and how that impacts on oncogenesis. The area of miRNAs and the F-box proteins that they regulate in cancer is an emerging field and will inform new strategies in cancer treatment.
Collapse
Affiliation(s)
- Zhao-Hui Wu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
| | - Lawrence M Pfeffer
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Center for Cancer Research, University of Tennessee Health Science Center, 19 S. Manassas St., Memphis, TN 38163, USA.
| |
Collapse
|
40
|
Heo J, Eki R, Abbas T. Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 2015; 36:33-51. [PMID: 26432751 DOI: 10.1016/j.semcancer.2015.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023]
Abstract
F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
41
|
Kim JH, Choi JS, Kim S, Kim K, Myung PK, Park SG, Seo YS, Park BC. Synergistic effect of two E2 ubiquitin conjugating enzymes in SCF(hFBH1) catalyzed polyubiquitination. BMB Rep 2015; 48:25-9. [PMID: 24667174 PMCID: PMC4345638 DOI: 10.5483/bmbrep.2015.48.1.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/24/2014] [Accepted: 03/24/2014] [Indexed: 11/20/2022] Open
Abstract
Ubiquitination is a post translational modification which mostly links with proteasome dependent protein degradation. This process has been known to play pivotal roles in the number of biological events including apoptosis, cell signaling, transcription and translation. Although the process of ubiquitination has been studied extensively, the mechanism of polyubiquitination by multi protein E3 ubiquitin ligase, SCF complex remains elusive. In the present study, we identified UbcH5a as a novel stimulating factor for poly-ubiquitination catalyzed by SCFhFBH1 using biochemical fractionations and MALDI-TOF. Moreover, we showed that recombinant UbcH5a and Cdc34 synergistically stimulate SCFhFBH1 catalyzed polyubiquitination in vitro. These data may provide an important cue to understand the mechanism how the SCF complex efficiently polyubiquitinates target substrates. [BMB Reports 2015; 48(1): 25-29]
Collapse
Affiliation(s)
- Jeong-Hoon Kim
- Targeted Gene Regulation Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333; Department of Functional Genomics, University of Science and Technology (UST), Daejeon 305-350, Korea
| | - Jin Sun Choi
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333; College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Sunhong Kim
- Targeted Medicine Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Chungbuk 363-883, Korea
| | - Kidae Kim
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Korea
| | - Pyung Keun Myung
- College of Pharmacy, Chungnam National University, Daejeon 305-764, Korea
| | - Sung Goo Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Korea
| | - Yeon-Soo Seo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Korea
| | - Byoung Chul Park
- Medical Proteomics Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon 305-333, Korea
| |
Collapse
|
42
|
Targeting Cullin-RING E3 ubiquitin ligases for drug discovery: structure, assembly and small-molecule modulation. Biochem J 2015; 467:365-86. [PMID: 25886174 PMCID: PMC4403949 DOI: 10.1042/bj20141450] [Citation(s) in RCA: 178] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the last decade, the ubiquitin–proteasome system has emerged as a valid target for the development of novel therapeutics. E3 ubiquitin ligases are particularly attractive targets because they confer substrate specificity on the ubiquitin system. CRLs [Cullin–RING (really interesting new gene) E3 ubiquitin ligases] draw particular attention, being the largest family of E3s. The CRLs assemble into functional multisubunit complexes using a repertoire of substrate receptors, adaptors, Cullin scaffolds and RING-box proteins. Drug discovery targeting CRLs is growing in importance due to mounting evidence pointing to significant roles of these enzymes in diverse biological processes and human diseases, including cancer, where CRLs and their substrates often function as tumour suppressors or oncogenes. In the present review, we provide an account of the assembly and structure of CRL complexes, and outline the current state of the field in terms of available knowledge of small-molecule inhibitors and modulators of CRL activity. A comprehensive overview of the reported crystal structures of CRL subunits, components and full-size complexes, alone or with bound small molecules and substrate peptides, is included. This information is providing increasing opportunities to aid the rational structure-based design of chemical probes and potential small-molecule therapeutics targeting CRLs.
Collapse
|
43
|
A comprehensive method for detecting ubiquitinated substrates using TR-TUBE. Proc Natl Acad Sci U S A 2015; 112:4630-5. [PMID: 25827227 DOI: 10.1073/pnas.1422313112] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The identification of substrates for ubiquitin ligases has remained challenging, because most substrates are either immediately degraded by the proteasome or processed by deubiquitinating enzymes (DUBs) to remove polyubiquitin. Although a methodology that enables detection of ubiquitinated proteins using ubiquitin Lys-ε-Gly-Gly (diGly) remnant antibodies and MS has been developed, it is still insufficient for identification and characterization of the ubiquitin-modified proteome in cells overexpressing a particular ubiquitin ligase. Here, we show that exogenously expressed trypsin-resistant tandem ubiquitin-binding entity(ies) (TR-TUBE) protect polyubiquitin chains on substrates from DUBs and circumvent proteasome-mediated degradation in cells. TR-TUBE effectively associated with substrates ubiquitinated by an exogenously overexpressed ubiquitin ligase, allowing detection of the specific activity of the ubiquitin ligase and isolation of its substrates. Although the diGly antibody enabled effective identification of ubiquitinated proteins in cells, overexpression of an ubiquitin ligase and treatment with a proteasome inhibitor did not increase the level of diGly peptides specific for the ligase relative to the background level of diGly peptides, probably due to deubiquitination. By contrast, in TR-TUBE-expressing cells, the level of substrate-derived diGly peptides produced by the overexpressed ubiquitin ligase was significantly elevated. We developed a method for identifying the substrates of specific ubiquitin ligases using two enrichment strategies, TR-TUBE and diGly remnant antibodies, coupled with MS. Using this method, we identified target substrates of FBXO21, an uncharacterized F-box protein.
Collapse
|
44
|
Chong RA, Wu K, Kovacev J, Pan ZQ. Generation of a proteolytic signal: E3/E2-mediated polyubiquitination of IκBα. Methods Mol Biol 2015; 1280:339-354. [PMID: 25736759 DOI: 10.1007/978-1-4939-2422-6_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A key regulatory node in NF-κB signaling is the removal of the IκBα inhibitor, whose levels are tightly controlled by the ubiquitin-proteasome system. In response to signal activation and transmission, ubiquitin E1, E2, and E3 enzymes are employed to generate a lysine 48-linked ubiquitin chain that triggers degradation of IκBα by the proteasome. In this chapter we describe an in vitro biochemical approach to reconstitute the ubiquitination system. To do so, we detail methods for the preparation of the relevant enzymes and substrate, as well as for the execution of the reaction with high efficiency. This sensitive and highly reproducible readout can be applied to the study of proteins, small molecules, and other factors that modulate IκBα ubiquitination, thereby producing outcomes that impact NF-κB signaling to advance the course of improving human health.
Collapse
Affiliation(s)
- Robert A Chong
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029-6574, USA
| | | | | | | |
Collapse
|
45
|
Migita K, Takayama T, Matsumoto S, Wakatsuki K, Tanaka T, Ito M, Nishiwada S, Nakajima Y. Prognostic impact of RING box protein-1 (RBX1) expression in gastric cancer. Gastric Cancer 2014; 17:601-9. [PMID: 24292229 DOI: 10.1007/s10120-013-0318-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 11/10/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND RING box protein-1 (RBX1) is an essential component of the E3 ubiquitin ligase Skp1/Cullin/RBX1/F-box protein complex. Although an altered expression of RBX1 has been reported in several human cancers, the role of RBX1 in gastric cancer remains unknown. METHODS We investigated the RBX1 expression in primary gastric cancer tissues from 145 patients by immunohistochemistry, and explored its clinical relevance and prognostic value. Furthermore, the effect of RBX1 expression on cancer cell proliferation was analyzed in vitro using a siRNA silencing technique. RESULTS The RBX1 expression was abundant in gastric cancer tissues. There was a significant difference in the expression level of RBX1 in terms of the tumor depth (P = 0.008), presence of distant metastasis (P = 0.016) and venous invasion (P = 0.005). The postoperative overall (P < 0.001) and relapse-free survival (P < 0.001) rates were significantly poorer in patients with RBX1-high tumors than in patients with RBX1-low tumors. There was a significant correlation of the RBX1 status with postoperative hematogenous recurrence (P = 0.013). Importantly, the RBX1 status was identified as an independent prognostic factor for gastric cancer (P = 0.002). Furthermore, RBX1 gene silencing significantly inhibited the proliferation of gastric cancer cells in vitro. CONCLUSIONS The RBX1 expression has a significant prognostic value in gastric cancer. RBX1 might play an important role in regulating the proliferation of gastric cancer cells and promoting the development of postoperative recurrence. Our data provide a rationale for developing a novel therapy targeting RBX1 for gastric cancer.
Collapse
Affiliation(s)
- Kazuhiro Migita
- Department of Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara, 634-8522, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
46
|
The role of E3 ligases in the ubiquitin-dependent regulation of spermatogenesis. Semin Cell Dev Biol 2014; 30:27-35. [PMID: 24632385 DOI: 10.1016/j.semcdb.2014.03.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 03/02/2014] [Indexed: 12/23/2022]
Abstract
The ubiquitination of proteins is a post-translational modification that was first described as a means to target misfolded or unwanted proteins for degradation by the proteasome. It is now appreciated that the ubiquitination of proteins also serves as a mechanism to modify protein function and cellular functions such as protein trafficking, cell signaling, DNA repair, chromatin modifications, cell-cycle progression and cell death. The ubiquitination of proteins occurs through the hierarchal transfer of ubiquitin from an E1 ubiquitin-activating enzyme to an E2 ubiquitin-conjugating enzyme and finally to an E3 ubiquitin ligase that transfers the ubiquitin to its target protein. It is the final E3 ubiquitin ligase that confers the substrate specificity for ubiquitination and is the focus of this review. Spermatogenesis is a complex and highly regulated process by which spermatogonial stem cells undergo mitotic proliferation and expansion of the diploid spermatogonial population, differentiate into spermatocytes and progress through two meiotic divisions to produce haploid spermatids that proceed through a final morphogenesis to generate mature spermatozoa. The ubiquitination of proteins in the cells of the testis occurs in many of the processes required for the progression of mature spermatozoa. Since it is the E3 ubiquitin ligase that recognizes the target protein and provides the specificity and selectivity for ubiquitination, this review highlights known examples of E3 ligases in the testis and the differing roles that they play in maintaining functional spermatogenesis.
Collapse
|
47
|
Li H, Tan M, Jia L, Wei D, Zhao Y, Chen G, Xu J, Zhao L, Thomas D, Beer DG, Sun Y. Inactivation of SAG/RBX2 E3 ubiquitin ligase suppresses KrasG12D-driven lung tumorigenesis. J Clin Invest 2014; 124:835-46. [PMID: 24430184 PMCID: PMC3904615 DOI: 10.1172/jci70297] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Accepted: 11/07/2013] [Indexed: 12/20/2022] Open
Abstract
Cullin-RING ligases (CRLs) are a family of E3 ubiquitin ligase complexes that rely on either RING-box 1 (RBX1) or sensitive to apoptosis gene (SAG), also known as RBX2, for activity. RBX1 and SAG are both overexpressed in human lung cancer; however, their contribution to patient survival and lung tumorigenesis is unknown. Here, we report that overexpression of SAG, but not RBX1, correlates with poor patient prognosis and more advanced disease. We found that SAG is overexpressed in murine KrasG12D-driven lung tumors and that Sag deletion suppressed lung tumorigenesis and extended murine life span. Using cultured lung cancer cells, we showed that SAG knockdown suppressed growth and survival, inactivated both NF-κB and mTOR pathways, and resulted in accumulation of tumor suppressor substrates, including p21, p27, NOXA, and BIM. Importantly, growth suppression by SAG knockdown was partially rescued by simultaneous knockdown of p21 or the mTOR inhibitor DEPTOR. Treatment with MLN4924, a small molecule inhibitor of CRL E3s, also inhibited the formation of KrasG12D-induced lung tumors through a similar mechanism involving inactivation of NF-κB and mTOR and accumulation of tumor suppressor substrates. Together, our results demonstrate that Sag is a Kras-cooperating oncogene that promotes lung tumorigenesis and suggest that targeting SAG-CRL E3 ligases may be an effective therapeutic approach for Kras-driven lung cancers.
Collapse
Affiliation(s)
- Hua Li
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Mingjia Tan
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lijun Jia
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dongping Wei
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yongchao Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Guoan Chen
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Xu
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Lili Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dafydd Thomas
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - David G. Beer
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yi Sun
- Division of Radiation and Cancer Biology, Department of Radiation Oncology,
Thoracic Surgery, Department of Surgery,
Department of Biostatistics, and
Department of Pathology and Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
48
|
Kovacev J, Wu K, Spratt DE, Chong RA, Lee C, Nayak J, Shaw GS, Pan ZQ. A snapshot of ubiquitin chain elongation: lysine 48-tetra-ubiquitin slows down ubiquitination. J Biol Chem 2014; 289:7068-7081. [PMID: 24464578 DOI: 10.1074/jbc.m113.530576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have explored the mechanisms of polyubiquitin chain assembly with reconstituted ubiquitination of IκBα and β-catenin by the Skp1-cullin 1-βTrCP F-box protein (SCF(βTrCP)) E3 ubiquitin (Ub) ligase complex. Competition experiments revealed that SCF(βTrCP) formed a complex with IκBα and that the Nedd8 modified E3-substrate platform engaged in dynamic interactions with the Cdc34 E2 Ub conjugating enzyme for chain elongation. Using "elongation intermediates" containing β-catenin linked with Ub chains of defined length, it was observed that a Lys-48-Ub chain of a length greater than four, but not its Lys-63 linkage counterparts, slowed the rate of additional Ub conjugation. Thus, the Ub chain length and linkage impact kinetic rates of chain elongation. Given that Lys-48-tetra-Ub is packed into compact conformations due to extensive intrachain interactions between Ub subunits, this topology may limit the accessibility of SCF(βTrCP)/Cdc34 to the distal Ub Lys-48 and result in slowed elongation.
Collapse
Affiliation(s)
- Jordan Kovacev
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574
| | - Kenneth Wu
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574
| | - Donald E Spratt
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Robert A Chong
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574
| | - Chan Lee
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574
| | - Jaladhi Nayak
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574
| | - Gary S Shaw
- Department of Biochemistry, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Zhen-Qiang Pan
- Department of Oncological Sciences, The Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, New York 10029-6574; Xuzhou Medical College, Jiangsu Key Laboratory of Biological Cancer Therapy, Jiangsu 221002, China.
| |
Collapse
|
49
|
Kleiger G, Mayor T. Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol 2014; 24:352-9. [PMID: 24457024 DOI: 10.1016/j.tcb.2013.12.003] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/03/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
Eukaryotic cells are equipped to degrade proteins via the ubiquitin-proteasome system (UPS). Proteins become degraded upon their conjugation to chains of ubiquitin where they are then directed to the 26S proteasome, a macromolecular protease. The transfer of ubiquitin to proteins and their subsequent degradation are highly complex processes, and new research is beginning to uncover the molecular details of how ubiquitination and degradation take place in the cell. We review some of the new data providing insights into how these processes occur. Although distinct mechanisms are often observed, some common themes are emerging for how the UPS guides protein substrates through their final journey.
Collapse
Affiliation(s)
- Gary Kleiger
- Department of Chemistry, University of Nevada, Las Vegas, 4505 South Maryland Parkway, Las Vegas, NV 89154-4003, USA.
| | - Thibault Mayor
- Department of Biochemistry and Molecular Biology, Centre of High-Throughput Biology, University of British Columbia, 2125 East Mall, Vancouver, BC V6T1Z4, Canada.
| |
Collapse
|
50
|
Abstract
Cell division is controlled by a highly regulated program to accurately duplicate and segregate chromosomes. An important feature of the cell cycle regulatory program is that key cell cycle proteins are present and active during specific cell cycle stages but are later removed or inhibited to maintain appropriate timing. The ubiquitin-proteasome system has emerged as an important mechanism to target cell cycle proteins for degradation at critical junctures during cell division. Two key E3 ubiquitin ligase complexes that target key cell cycle proteins are the Skp1-Cul1-F-box protein complex and the anaphase-promoting complex/cyclosome. This chapter focuses on the role of these E3 ubiquitin ligases and how ubiquitin-dependent degradation of central cell cycle regulatory proteins advances the cell cycle.
Collapse
Affiliation(s)
- Deanna M Koepp
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN, 55455, USA,
| |
Collapse
|