1
|
Sisti MS, Giorello AN, Kamenetzky L, Caramelo JJ, Kennedy MW, Gómez GE, Delfino JM, Franchini GR. Biochemical and biophysical characterization of Dr-DLP-1, the major pseudocoelomic lipid binding protein of the giant kidney worm Dioctophyme renale. Biochem Biophys Res Commun 2025; 758:151626. [PMID: 40112538 DOI: 10.1016/j.bbrc.2025.151626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/08/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Adults of the parasitic nematode Dioctophyme renale locate in the renal pelvis of one (usually the right) kidney of mammals, destroying its parenchyma and function. The unaffected kidney compensates and hypertrophies such that, in most cases, there are no clear clinical signs of infection. It has recently been shown that the pseudocelomic body fluid of D. renale contains a highly abundant protein of 44 kDa in both males and females, here dubbed "dorylipophorin" (Dr-DLP-1), that binds lipids in highly apolar sites. Orthologues of this protein are specific to Clade I (Dorylaimia) of the Phylum Nematoda, initially described as the poly-cysteine and histidine-tailed proteins of unknown function of Trichinella spiralis, and one that is the immunomodulatory secreted p43 protein from Trichuris muris. We here present a biochemical and biophysical characterization of Dr-DLP-1, demonstrating that it is N-glycosylated, is more stable when bound to a fatty acid, and can be detected in the fluid surrounding the parasite in parasitized kidneys. The analysis of Dr-DLP-1 lipid binding activity showed Kd values of 2.1 ± 0.2 μM and 2.2 ± 0.4 μM for the fluorescent probes 11-(dansylamino) undecanoic acid (DAUDA) and 8-anilinonaphthalene-1-sulfonic acid (ANS) respectively. Moreover, the apparent affinity constants for oleic acid (Kdapp 6.9 ± 0.5 μM) and cholesterol (Kdapp 27.6 ± 2 μM) were estimated by competition assays. As a whole, these results indicate that Dr-DLP-1 binds fatty acids with an affinity appropriate for a transporter. This novel nematode protein likely has a role in mass distribution of lipids within the parasites and could be functionally replacing the nematode polyprotein allergens (NPAs) found in other nematode clades.
Collapse
Affiliation(s)
- Martin S Sisti
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), La Plata, B1900, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, B1900, Argentina
| | - A Nahili Giorello
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, B1900, Argentina
| | - Laura Kamenetzky
- Instituto de Biociencias, Biotecnología y Biología Traslacional, Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, C1428, Argentina
| | - Julio J Caramelo
- Fundación Instituto Leloir, IIBBA CONICET, Patricias Argentinas 435, 1405, Buenos Aires, Argentina
| | - Malcolm W Kennedy
- Institute of Biodiversity, Animal Health & Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Gabriela E Gómez
- IQUIFIB (UBA-CONICET) and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Jose M Delfino
- IQUIFIB (UBA-CONICET) and Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gisela R Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata (UNLP)-Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), La Plata, B1900, Argentina; Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), La Plata, B1900, Argentina.
| |
Collapse
|
2
|
Wu TK, Fu Q, Liotta JL, Bowman DD. Proteomic analysis of extracellular vesicles and extracellular vesicle-depleted excretory-secretory products of Toxocara canis and Toxocara cati larval cultures. Vet Parasitol 2024; 332:110331. [PMID: 39426022 DOI: 10.1016/j.vetpar.2024.110331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Toxocara canis and Toxocara cati are parasitic nematodes in the order Ascaridida, which inhabit the small intestines of dogs and cats, respectively, as adults. Although often nonpathogenic as adults, nematodes within this genus are capable of causing widespread disease throughout the host while in a larval stage, during which time larvae migrate throughout the body in a process termed larva migrans. Larvae are also capable of surviving within host tissues in an encysted arrested stage, without immune clearance by the host. The ability of larvae to survive within host tissues during migration and encystment may be attributed to immunomodulatory molecules released by the excretory cells of larvae in excretory-secretory (ES) products. ES products of parasites contain a variety of molecules, including proteins, lipids, and extracellular vesicles (EVs). Toxocara excretory-secretory (TES) products have been studied to some degree, with proteomic analysis of TES proteins described previously; however, investigation of the EVs within TES is lacking, despite the suggested role for these molecules in host interaction and potential immunomodulation. To further characterize the protein cargo within EVs in TES, EVs were isolated from larval cultures of T. canis and T. cati via ultrafiltration, with concurrent collection of EV-depleted TES filtrate for additional study. Isolated EVs and EV-depleted TES from both T. canis and T. cati were submitted for proteomic analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). Proteomic identification results revealed 140 proteins across all samples, with 16 shared by all samples, and 76 total proteins shared between T. canis and T. cati, present within EVs and EV-depleted TES. There were 17 proteins shared exclusively by EV samples, and 15 were shared exclusively between EV-depleted TES samples. Many shared proteins were associated with the host immune response. Several proteins were specific to either T. canis or T. cati, highlighting the potential use of these proteins as diagnostic tools in the differentiation of etiologic agents in cases of toxocariasis. The results of this study build upon previously reported proteomic evaluations of TES, contributing new information in regards to newly identified proteins, EV protein cargo within TES, and potential immunomodulatory functions of these proteins.
Collapse
Affiliation(s)
- Timothy K Wu
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States.
| | - Qin Fu
- Cornell University, Proteomics and Metabolomics Facility, Institute of Biotechnology, Ithaca, NY 14850, United States
| | - Janice L Liotta
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States
| | - Dwight D Bowman
- Cornell University, Department of Microbiology and Immunology, Ithaca, NY 14853, United States
| |
Collapse
|
3
|
Tan CH, Wang TY, Park H, Lomenick B, Chou TF, Sternberg PW. Single-tissue proteomics in Caenorhabditis elegans reveals proteins resident in intestinal lysosome-related organelles. Proc Natl Acad Sci U S A 2024; 121:e2322588121. [PMID: 38861598 PMCID: PMC11194598 DOI: 10.1073/pnas.2322588121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
The nematode intestine is the primary site for nutrient uptake and storage as well as the synthesis of biomolecules; lysosome-related organelles known as gut granules are important for many of these functions. Aspects of intestine biology are not well understood, including the export of the nutrients it imports and the molecules it synthesizes, as well as the complete functions and protein content of the gut granules. Here, we report a mass spectrometry (MS)-based proteomic analysis of the intestine of the Caenorhabditis elegans and of its gut granules. Overall, we identified approximately 5,000 proteins each in the intestine and the gonad and showed that most of these proteins can be detected in samples extracted from a single worm, suggesting the feasibility of individual-level genetic analysis using proteomes. Comparing proteomes and published transcriptomes of the intestine and the gonad, we identified proteins that appear to be synthesized in the intestine and then transferred to the gonad. To identify gut granule proteins, we compared the proteome of individual intestines deficient in gut granules to the wild type. The identified gut granule proteome includes proteins known to be exclusively localized to the granules and additional putative gut granule proteins. We selected two of these putative gut granule proteins for validation via immunohistochemistry, and our successful confirmation of both suggests that our strategy was effective in identifying the gut granule proteome. Our results demonstrate the practicability of single-tissue MS-based proteomic analysis in small organisms and in its future utility.
Collapse
Affiliation(s)
- Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Ting-Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| | - Brett Lomenick
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA91125
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA91125
| |
Collapse
|
4
|
The Immune Response to Nematode Infection. Int J Mol Sci 2023; 24:ijms24032283. [PMID: 36768605 PMCID: PMC9916427 DOI: 10.3390/ijms24032283] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Nematode infection is a major threat to the health of humans, domestic animals and wildlife. Nematodes vary in their effect on the host and in the mechanisms underlying immunity but the general features are becoming clear. There is considerable variation among individuals in resistance to infection and much of this variation is due to genetic variation in the immune response. The major histocompatibility complex has a strong influence on resistance to infection but other genes are collectively more important. Resistant individuals produce more IgA, eosinophils, IgE and mast cells than susceptible individuals and this is a consequence of stronger type 2 (Th2) immune responses. A variety of factors promote Th2 responses including genetic background, diet, molecules produced by the parasite and the location of the infection. A variety of cells and molecules including proteins, glycolipids and RNA act in concert to promote responses and to regulate the response. Nematodes themselves also modulate the host response and over 20 parasite-derived immunomodulatory molecules have been identified. Different species of nematodes modulate the immune response in different ways and probably use multiple molecules. The reasons for this are unclear and the interactions among immunomodulators have still to be investigated.
Collapse
|
5
|
Uzoechi SC, Rosa BA, Singh KS, Choi YJ, Bracken BK, Brindley PJ, Townsend RR, Sprung R, Zhan B, Bottazzi ME, Hawdon JM, Wong Y, Loukas A, Djuranovic S, Mitreva M. Excretory/Secretory Proteome of Females and Males of the Hookworm Ancylostoma ceylanicum. Pathogens 2023; 12:95. [PMID: 36678443 PMCID: PMC9865600 DOI: 10.3390/pathogens12010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The dynamic host-parasite mechanisms underlying hookworm infection establishment and maintenance in mammalian hosts remain poorly understood but are primarily mediated by hookworm's excretory/secretory products (ESPs), which have a wide spectrum of biological functions. We used ultra-high performance mass spectrometry to comprehensively profile and compare female and male ESPs from the zoonotic human hookworm Ancylostoma ceylanicum, which is a natural parasite of dogs, cats, and humans. We improved the genome annotation, decreasing the number of protein-coding genes by 49% while improving completeness from 92 to 96%. Compared to the previous genome annotation, we detected 11% and 10% more spectra in female and male ESPs, respectively, using this improved version, identifying a total of 795 ESPs (70% in both sexes, with the remaining sex-specific). Using functional databases (KEGG, GO and Interpro), common and sex-specific enriched functions were identified. Comparisons with the exclusively human-infective hookworm Necator americanus identified species-specific and conserved ESPs. This is the first study identifying ESPs from female and male A. ceylanicum. The findings provide a deeper understanding of hookworm protein functions that assure long-term host survival and facilitate future engineering of transgenic hookworms and analysis of regulatory elements mediating the high-level expression of ESPs. Furthermore, the findings expand the list of potential vaccine and diagnostic targets and identify biologics that can be explored for anti-inflammatory potential.
Collapse
Affiliation(s)
- Samuel C. Uzoechi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bruce A. Rosa
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kumar Sachin Singh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Young-Jun Choi
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Paul J. Brindley
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - R. Reid Townsend
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert Sprung
- Division of Endocrinology, Metabolism and Lipid Research, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Bin Zhan
- Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria-Elena Bottazzi
- Department of Pediatric Tropical Medicine, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - John M. Hawdon
- Department of Microbiology, Immunology & Tropical Medicine, Research Center for Neglected Diseases of Poverty, School of Medicine and Health Sciences, George Washington University, Washington, DC 20037, USA
| | - Yide Wong
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Australia
| | - Sergej Djuranovic
- Department of Cell Biology and Physiology, Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Makedonka Mitreva
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Function of lipid binding proteins of parasitic helminths: still a long road. Parasitol Res 2022; 121:1117-1129. [PMID: 35169885 DOI: 10.1007/s00436-022-07463-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
Infections with parasitic helminths cause severe debilitating and sometimes lethal diseases in humans and domestic animals on a global scale. Unable to synthesize de novo their own fatty acids and sterols, helminth parasites (nematodes, trematodes, cestodes) rely on their hosts for their supply. These organisms produce and secrete a wide range of lipid binding proteins that are, in most cases, structurally different from the ones found in their hosts, placing them as possible novel therapeutic targets. In this sense, a lot of effort has been made towards the structure determination of these proteins, but their precise function is still unknown. In this review, we aim to present the current knowledge on the functions of LBPs present in parasitic helminths as well as novel members of this highly heterogeneous group of proteins.
Collapse
|
7
|
Holland CV. The long and winding road of Ascaris larval migration: the role of mouse models. Parasitology 2021; 148:1-9. [PMID: 33612124 PMCID: PMC8660642 DOI: 10.1017/s0031182021000366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/14/2021] [Accepted: 02/16/2021] [Indexed: 11/27/2022]
Abstract
Ascaris lumbricoides and Ascaris suum are helminth parasites of humans and pigs, respectively. The life cycle of Ascaris sets it apart from the other soil-transmitted helminths because of its hepato-tracheal migration. Larval migration contributes to underestimated morbidity in humans and pigs. This migration, coupled with a lack of a murine model in which the Ascaris parasite might complete its life cycle, has undoubtedly contributed to the neglected status of the ascarid. Our knowledge of the epidemiology of adult worm infections had led us to an enhanced understanding of patterns of infection such as aggregation and predisposition; however, the mechanisms underlying these complex phenomena remain elusive. Carefully controlled experiments in defined inbred strains of mice – with enhanced recovery of larvae in tandem with measurements of cellular, histopathological and molecular processes – have greatly enhanced our knowledge of the early phase of infection, a phase crucial to the success or failure of adult worm establishment. Furthermore, the recent development of a mouse model of susceptibility and resistance, with highly consistent and diverging Ascaris larval burdens in the murine lungs, represents the extremes of the host phenotype displayed in the aggregated distribution of worms and provides an opportunity to explore the mechanistic basis that confers predisposition to light and heavy Ascaris infection. Certainly, detailed knowledge of the cellular hepatic and pulmonary responses at the molecular level can be accrued from murine models of infection and, once available, may enhance our ability to develop immunomodulatory therapies to elicit resistance to infection.
Collapse
Affiliation(s)
- C. V. Holland
- Department of Zoology, School of Natural Sciences, Trinity College, Dublin 2, Ireland
| |
Collapse
|
8
|
Lagatie O, Verheyen A, Van Hoof K, Lauwers D, Odiere MR, Vlaminck J, Levecke B, Stuyver LJ. Detection of Ascaris lumbricoides infection by ABA-1 coproantigen ELISA. PLoS Negl Trop Dis 2020; 14:e0008807. [PMID: 33057357 PMCID: PMC7591086 DOI: 10.1371/journal.pntd.0008807] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/27/2020] [Accepted: 09/21/2020] [Indexed: 11/19/2022] Open
Abstract
Intestinal worms, or soil-transmitted helminths (STHs), affect hundreds of millions of people in all tropical and subtropical regions of the world. The most prevalent STH is Ascaris lumbricoides. Through large-scale deworming programs, World Health Organization aims to reduce morbidity, caused by moderate-to-heavy intensity infections, below 2%. In order to monitor these control programs, stool samples are examined microscopically for the presence of worm eggs. This procedure requires well-trained personnel and is known to show variability between different operators interpreting the slides. We have investigated whether ABA-1, one of the excretory-secretory products of A. lumbricoides can be used as a coproantigen marker for infection with this parasite. Polyclonal antibodies were generated and a coproantigen ELISA was developed. Using this ELISA, it was found that ABA-1 in stool detected Ascaris infection with a sensitivity of 91.5% and a specificity of 95.3%. Our results also demonstrate that there is a correlation between ABA-1 levels in stool and A. lumbricoides DNA detected in stool. Using a threshold of 18.2 ng/g stool the ABA-1 ELISA correctly assigned 68.4% of infected individuals to the moderate-to-heavy intensity infection group, with a specificity of 97.1%. Furthermore, the levels of ABA-1 in stool were shown to rapidly and strongly decrease upon administration of a standard anthelminthic treatment (single oral dose of 400 mg albendazole). In an Ascaris suum infection model in pigs, it was found that ABA-1 remained undetectable until day 28 and was detected at day 42 or 56, concurrent with the appearance of worm eggs in the stool. This report demonstrates that ABA-1 can be considered an Ascaris -specific coproantigen marker that can be used to monitor infection intensity. It also opens the path for development of point-of-care immunoassay-based tests to determine A. lumbricoides infection in stool at the sample collection site.
Collapse
Affiliation(s)
- Ole Lagatie
- Janssen Global Public Health, Janssen R&D, Beerse, Belgium
| | | | | | - Dax Lauwers
- Janssen Global Public Health, Janssen R&D, Beerse, Belgium
| | - Maurice R. Odiere
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Johnny Vlaminck
- Department of Virology, Parasitology and Immunology, University of Ghent, Merelbeke, Belgium
| | - Bruno Levecke
- Department of Virology, Parasitology and Immunology, University of Ghent, Merelbeke, Belgium
| | | |
Collapse
|
9
|
Zakzuk J, Acevedo N, Harb H, Eick L, Renz H, Potaczek DP, Caraballo L. IgE Levels to Ascaris and House Dust Mite Allergens Are Associated With Increased Histone Acetylation at Key Type-2 Immune Genes. Front Immunol 2020; 11:756. [PMID: 32425942 PMCID: PMC7204827 DOI: 10.3389/fimmu.2020.00756] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Epigenetic changes in response to allergen exposure are still not well understood. The aim of this study was to evaluate histone acetylation levels in peripheral blood leukocytes from humans naturally infected by intestinal parasites and perennially exposed to house dust mites (HDM). Methods Peripheral blood mononuclear cells (PBMCs) were isolated by gradient centrifugation from 20 infected and 21 non-infected individuals living in a rural/village in Colombia. Histone 3 acetylation (H3Ac) and histone 4 acetylation (H4Ac) levels were measured in six immune genes previously associated with helminth immunity by chromatin immunoprecipitation (ChIP)-quantitative PCR. Then we analyzed the association between histone acetylation levels with total parasite egg burden and IgE levels. Results We found an inverse correlation between H4Ac levels in the IL13 gene and egg worm burden that remained significant after adjustment by age [−0.20 (−0.32 to −0.09), p < 0.0001]. Moreover, we found significant associations between H4Ac levels in IL4 [0.32 (0.05–0.60), p = 0.02] and CHI3L1 [0.29 (0.08–0.51), p = 0.008] with the IgE levels to Ascaris lumbricoides. In addition, the levels of specific IgE antibodies to HDM were associated with H4Ac levels in the gene TNFSF13B encoding the B cell activating factor (BAFF) [0.51 (0.26–0.76), p < 0.001]. All values are presented as beta (95% CI). Conclusion Histone acetylation levels at key type-2 immune genes in humans were modified by nematode infection and HDM allergens and are associated with the intensity of the IgE response.
Collapse
Affiliation(s)
- Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Hani Harb
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Lisa Eick
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Harald Renz
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany
| | - Daniel P Potaczek
- Institute of Laboratory Medicine, Member of the German Center for Lung Research (DZL), Universities of Giessen and Marburg Lung Center (UGMLC), Philipps-University Marburg, Marburg, Germany.,John Paul II Hospital, Krakow, Poland
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
10
|
Kim JY, Yi MH, Yong TS. Allergen-like Molecules from Parasites. Curr Protein Pept Sci 2020; 21:186-202. [DOI: 10.2174/1389203720666190708154300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/02/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023]
Abstract
Parasite infections modulate immunologic responses, and the loss of parasite infections in the
last two to three decades might explain the increased prevalence of allergic diseases in developed countries.
However, parasites can enhance allergic responses. Parasites contain or release allergen-like molecules
that induce the specific immunoglobulin, IgE, and trigger type-2 immune responses. Some parasites
and their proteins, such as Anisakis and Echinococcus granulosus allergens, act as typical allergens.
A number of IgE-binding proteins of various helminthic parasites are cross-reactive to other environmental
allergens, which cause allergic symptoms or hamper accurate diagnosis of allergic diseases. The
cross-reactivity is based on the fact that parasite proteins are structurally homologous to common environmental
allergens. In addition, IgE-binding proteins of parasites might be useful for developing vaccines
to prevent host re-infection. This review discusses the functions of the IgE-biding proteins of parasites.
Collapse
Affiliation(s)
- Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, and Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
11
|
Persson G, Ekmann JR, Hviid TVF. Reflections upon immunological mechanisms involved in fertility, pregnancy and parasite infections. J Reprod Immunol 2019; 136:102610. [PMID: 31479960 DOI: 10.1016/j.jri.2019.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 07/25/2019] [Accepted: 08/09/2019] [Indexed: 02/08/2023]
Abstract
During a pregnancy, the mother accepts her semi-allogeneic fetus with no signs of immunological rejection. Therefore, some modulation of the maternal immune system must occur. Similarly, changes in the host's immune system occurs during infections with parasites. In a study conducted in an endemic area in Bolivia, it has been reported that women infected with either the helminthic parasite roundworm or hookworm were estimated to give birth to either two more, or three fewer, children than uninfected, endemic women, respectively. Immune regulation by helminthic parasites is a rather well-researched concept, but there are few reports on the effects on human fecundity. The current review focuses on mechanisms of possible importance for especially the increased fertility rates in women infected with roundworm. The host immune response to roundworm has been hypothesized to be more favourable for a successful pregnancy because it bears resemblance to the anti-inflammatory immunological responses observed in pregnancy, steering the immunological response away from a pro-inflammatory state that seem to suppress fecundity. Further research into parasitic worm interactions, fertility, and the molecular mechanisms that they unfold may widen our understanding of the immunomodulatory pathways in both helminthic infections and in fertility and pregnancy.
Collapse
Affiliation(s)
- Gry Persson
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark
| | - Josephine Roth Ekmann
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), The ReproHealth Research Consortium ZUH, Zealand University Hospital, and Department of Clinical Medicine, University of Copenhagen, 10 Sygehusvej, 4000 Roskilde, Denmark.
| |
Collapse
|
12
|
Biological role of excretory-secretory proteins in endemic parasites of Latin America and the Caribbean. J Helminthol 2019; 94:e53. [PMID: 31092301 DOI: 10.1017/s0022149x19000312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neglected tropical diseases (NTDs) share certain traits: they are parasitic infections, prevailing in tropical environments and affecting marginalized sectors of the population. Six NTDs - ascariasis, cysticercosis, echinococcosis, hookworm infection, onchocerciasis and trichuriasis - all of them endemic in Latin America and the Caribbean (LAC), are analysed in this work. This review aims to discuss key information on the function of excretory/secretory (E/S) proteins from these parasites in their infectivity, pathogeny and diagnosis. The modulation of the host immune system to favour the permanence and survival of the parasite is also discussed. An updated knowledge on the function of E/S molecules in endemic parasitoses in LAC may lead to new approaches for the clinical management and diagnosis of these diseases. In turn, this could allow us to optimize their treatment and make it more affordable - a relevant goal given the economic constraints that the region is facing.
Collapse
|
13
|
Caraballo L, Acevedo N, Zakzuk J. Ascariasis as a model to study the helminth/allergy relationships. Parasite Immunol 2018; 41:e12595. [PMID: 30295330 DOI: 10.1111/pim.12595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/02/2018] [Indexed: 12/18/2022]
Abstract
Ascariasis is the most frequent soil transmitted helminthiasis and, as well as other helminth infections, is expected to influence the clinical presentation of allergic diseases such as asthma. Indeed, several clinical and experimental works have shown an important impact either increasing or suppressing symptoms, and the same effects have been detected on the underlying immune responses. In this review we analyze the work on this field performed in Colombia, a Latin American tropical country, including aspects such as the molecular genetics of the IgE response to Ascaris; the allergenic activity of Ascaris IgE-binding molecular components and the immunological and clinical influences of ascariasis on asthma. The analysis allows us to conclude that the impact of ascariasis on the inception and evolution of allergic diseases such as asthma deserves more investigation, but advances have been made during the last years. The concurrent parasite-induced immunostimulatory and immunosuppressive effects during this helminthiasis do modify the natural history of asthma and some aspects of the practice of allergology in the tropics. Theoretically it can also influence the epidemiological trends of allergic diseases either by its absence or presence in different regions and countries.
Collapse
Affiliation(s)
- Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| |
Collapse
|
14
|
Zhan B, Arumugam S, Kennedy MW, Tricoche N, Lian LY, Asojo OA, Bennuru S, Bottazzi ME, Hotez PJ, Lustigman S, Klei TR. Ligand binding properties of two Brugia malayi fatty acid and retinol (FAR) binding proteins and their vaccine efficacies against challenge infection in gerbils. PLoS Negl Trop Dis 2018; 12:e0006772. [PMID: 30296268 PMCID: PMC6193737 DOI: 10.1371/journal.pntd.0006772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 10/18/2018] [Accepted: 08/21/2018] [Indexed: 11/19/2022] Open
Abstract
Parasitic nematodes produce an unusual class of fatty acid and retinol (FAR)-binding proteins that may scavenge host fatty acids and retinoids. Two FARs from Brugia malayi (Bm-FAR-1 and Bm-FAR-2) were expressed as recombinant proteins, and their ligand binding, structural characteristics, and immunogenicities examined. Circular dichroism showed that rBm-FAR-1 and rBm-FAR-2 are similarly rich in α-helix structure. Unexpectedly, however, their lipid binding activities were found to be readily differentiated. Both FARs bound retinol and cis-parinaric acid similarly, but, while rBm-FAR-1 induced a dramatic increase in fluorescence emission and blue shift in peak emission by the fluorophore-tagged fatty acid (dansyl-undecanoic acid), rBm-FAR-2 did not. Recombinant forms of the related proteins from Onchocerca volvulus, rOv-FAR-1 and rOv-FAR-2, were found to be similarly distinguishable. This is the first FAR-2 protein from parasitic nematodes that is being characterized. The relative protein abundance of Bm-FAR-1 was higher than Bm-FAR-2 in the lysates of different developmental stages of B. malayi. Both FAR proteins were targets of strong IgG1, IgG3 and IgE antibody in infected individuals and individuals who were classified as endemic normal or putatively immune. In a B. malayi infection model in gerbils, immunization with rBm-FAR-1 and rBm-FAR-2 formulated in a water-in-oil-emulsion (®Montanide-720) or alum elicited high titers of antigen-specific IgG, but only gerbils immunized with rBm-FAR-1 formulated with the former produced a statistically significant reduction in adult worms (68%) following challenge with B. malayi infective larvae. These results suggest that FAR proteins may play important roles in the survival of filarial nematodes in the host, and represent potential candidates for vaccine development against lymphatic filariasis and related filarial infections.
Collapse
Affiliation(s)
- Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Sridhar Arumugam
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States of America
| | - Malcolm W. Kennedy
- Institute of Biodiversity Animal Health and Comparative Medicine, Graham Kerr Building, University of Glasgow, Glasgow, Scotland, UK
| | - Nancy Tricoche
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States of America
| | - Lu-Yun Lian
- NMR Centre for Structural Biology, University of Liverpool, Crown Street, Liverpool, United Kingdom
| | - Oluwatoyin A. Asojo
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Sasisekhar Bennuru
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, United States of America
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatric Tropical Medicine and Molecular Virology and Microbiology, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States of America
| | - Sara Lustigman
- Laboratory of Molecular Parasitology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY, United States of America
| | - Thomas R. Klei
- Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States of America
| |
Collapse
|
15
|
Giorello AN, Kennedy MW, Butti MJ, Radman NE, Córsico B, Franchini GR. Identification and characterization of the major pseudocoelomic proteins of the giant kidney worm, Dioctophyme renale. Parasit Vectors 2017; 10:446. [PMID: 28954629 PMCID: PMC5615634 DOI: 10.1186/s13071-017-2388-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The giant kidney worm, Dioctophyme renale, is a debilitating and potentially lethal parasite that inhabits and destroys, typically host's right kidney, and may also be found in ectopic sites. It is circumglobally distributed, mainly in dogs, and is increasingly regarded as a threat to other domestic animals and humans. There is little information on the parasite's true incidence, or immune responses to it, and none on its biochemistry and molecular biology. RESULTS We characterised the soluble proteins of body wall, intestine, gonads and pseudocelomic fluid (PCF) of adult parasites. Two proteins, P17 and P44, dominate the PCF of both male and females. P17 is of 16,622 Da by mass spectrometry, and accounts for the intense red colour of the adult parasites. It may function to carry or scavenge oxygen and be related to the 'nemoglobins' found in other nematode clades. P44 is of 44,460 Da and was found to associate with fatty acids by thin layer chromatography. Using environment-sensitive fluorescent lipid probes, P44 proved to be a hydrophobic ligand-binding protein with a binding site that is highly apolar, and competitive displacement experiments showed that P44 binds fatty acids. It may therefore have a role in distributing lipids within the parasites and, if also secreted, might influence local inflammatory and tissue responses. N-terminal and internal peptide amino-acid sequences of P44 indicate a relationship with a cysteine- and histidine-rich protein of unknown function from Trichinella spiralis. CONCLUSIONS The dominant proteins of D. renale PCF are, like those of large ascaridids, likely to be involved in lipid and oxygen handling, although there is evidence of strong divergence between the two groups.
Collapse
Affiliation(s)
- A Nahili Giorello
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Malcolm W Kennedy
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK.,School of Life Sciences, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Marcos J Butti
- Laboratorio de Parasitosis Humanas y Zoonosis Parasitarias, Cátedra de Parasitología Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Nilda E Radman
- Laboratorio de Parasitosis Humanas y Zoonosis Parasitarias, Cátedra de Parasitología Comparada, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata, Argentina
| | - Betina Córsico
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Gisela R Franchini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina.
| |
Collapse
|
16
|
Acevedo N, Bornacelly A, Mercado D, Unneberg P, Mittermann I, Valenta R, Kennedy M, Scheynius A, Caraballo L. Genetic Variants in CHIA and CHI3L1 Are Associated with the IgE Response to the Ascaris Resistance Marker ABA-1 and the Birch Pollen Allergen Bet v 1. PLoS One 2016; 11:e0167453. [PMID: 27977724 PMCID: PMC5157985 DOI: 10.1371/journal.pone.0167453] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/14/2016] [Indexed: 11/23/2022] Open
Abstract
Helminth infections and allergic diseases are associated with IgE hyperresponsiveness but the genetics of this phenotype remain to be defined. Susceptibility to Ascaris lumbricoides infection and antibody levels to this helminth are associated with polymorphisms in locus 13q33-34. We aimed to explore this and other genomic regions to identify genetic variants associated with the IgE responsiveness in humans. Forty-eight subjects from Cartagena, Colombia, with extreme values of specific IgE to Ascaris and ABA-1, a resistance marker of this nematode, were selected for targeted resequencing. Burden analyses were done comparing extreme groups for IgE values. One-hundred one SNPs were genotyped in 1258 individuals of two well-characterized populations from Colombia and Sweden. Two low-frequency coding variants in the gene encoding the Acidic Mammalian Chitinase (CHIA rs79500525, rs139812869, tagged by rs10494133) were found enriched in high IgE responders to ABA-1 and confirmed by genetic association analyses. The SNP rs4950928 in the Chitinase 3 Like 1 gene (CHI3L1) was associated with high IgE to ABA-1 in Colombians and with high IgE to Bet v 1 in the Swedish population. CHIA rs10494133 and ABDH13 rs3783118 were associated with IgE responses to Ascaris. SNPs in the Tumor Necrosis Factor Superfamily Member 13b gene (TNFSF13B) encoding the cytokine B cell activating Factor were associated with high levels of total IgE in both populations. This is the first report on the association between low-frequency and common variants in the chitinases-related genes CHIA and CHI3L1 with the intensity of specific IgE to ABA-1 in a population naturally exposed to Ascaris and with Bet v 1 in a Swedish population. Our results add new information about the genetic influences of human IgE responsiveness; since the genes encode for enzymes involved in the immune response to parasitic infections, they could be helpful for understanding helminth immunity and allergic responses. We also confirmed that TNFSF13B has an important and conserved role in the regulation of total IgE levels, which supports potential evolutionary links between helminth immunity and allergic response.
Collapse
Affiliation(s)
- Nathalie Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- Science for Life Laboratory, Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Adriana Bornacelly
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Dilia Mercado
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Per Unneberg
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Irene Mittermann
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Rudolf Valenta
- Department of Pathophysiology and Allergy Research, Division of Immunopathology, Center for Pathophysiology, Infectology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Malcolm Kennedy
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Annika Scheynius
- Science for Life Laboratory, Department of Clinical Science and Education, Karolinska Institutet, and Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
- * E-mail:
| |
Collapse
|
17
|
Buendía E, Zakzuk J, Mercado D, Alvarez A, Caraballo L. The IgE response to Ascaris molecular components is associated with clinical indicators of asthma severity. World Allergy Organ J 2015; 8:8. [PMID: 25780492 PMCID: PMC4347909 DOI: 10.1186/s40413-015-0058-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/21/2015] [Indexed: 11/10/2022] Open
Abstract
Background Asthma is a common chronic disease worldwide and Ascaris lumbricoides infection (ascariasis) is frequent in tropical regions. However, the effect of ascariasis on asthma severity has not been sufficiently explored. We sought to evaluate the influence of the IgE immune response to Ascaris extract and purified house dust mites (HDM) and Ascaris allergens on indicators of asthma severity in patients living in the tropics. Methods Asthmatic patients from Cartagena, Colombia were recruited. Clinical assessment included questionnaires, physical examination, allergy skin tests, spirometry, parasite stool examination and IgE antibody measurements. Asthma was diagnosed by a physician according to validated criteria. Indicators of severity were occurrence of severe dyspnea episodes, night awakenings events, > 4 emergency room (ER) visits and hospitalizations during the last year. Specific IgE to Der p 2, Ascaris spp., Blomia tropicalis and Dermatophagoides pteronyssinus extracts was determined by ImmunoCap. IgE to tropomyosins (Asc l 3, Blo t 10 and Der p 10), Blo t 5 and Asc s 1 was detected by ELISA. Logistic regression analyses were used to explore the relationships between sensitization and indicators of asthma severity. Results After adjustment for HDM sensitization, Ascaris sensitization remained associated with severe dyspnea (aOR: 1.90, 95% CI: 1.08 - 3.34, p = 0.03) and > 4 ER visits (aOR: 2.23, 95% CI: 1.15 - 4.30, p = 0.02). We also found that sensitization to the species specific markers Blo t 5 and Asc s 1, as well as the cross-reactive tropomyosins of D. pteronyssinus and Ascaris were associated with > 4 ER visits. Der p 2 sensitization was associated with bronchodilator responsiveness (aOR: 2.24: 1.25-4.02, p = 0.01). Remarkably, significantly higher IgE levels to HDM species specific allergens were found in Ascaris sensitized patients. Conclusions In this tropical population, IgE sensitization to Ascaris and the cross-reactive tropomyosins was frequent and associated with clinical indicators of asthma severity. The significant relationship between sensitization to the nematode-specific marker Asc s 1 and ER attendance supports these findings. Moreover, ascariasis increases the human IgE responses to HDM specific allergens.
Collapse
Affiliation(s)
- Emiro Buendía
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Josefina Zakzuk
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia ; Foundation for the Development of Medical and Biological Sciences (Fundemeb), Cartagena, Colombia
| | - Dilia Mercado
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | - Alvaro Alvarez
- Department of Microbiology, Faculty of Medicine, University of Cartagena, Cartagena, Colombia
| | - Luis Caraballo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia ; Foundation for the Development of Medical and Biological Sciences (Fundemeb), Cartagena, Colombia
| |
Collapse
|
18
|
Franchini GR, Pórfido JL, Ibáñez Shimabukuro M, Rey Burusco MF, Bélgamo JA, Smith BO, Kennedy MW, Córsico B. The unusual lipid binding proteins of parasitic helminths and their potential roles in parasitism and as therapeutic targets. Prostaglandins Leukot Essent Fatty Acids 2015; 93:31-6. [PMID: 25282399 DOI: 10.1016/j.plefa.2014.08.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 08/17/2014] [Accepted: 08/19/2014] [Indexed: 02/03/2023]
Abstract
In this review paper we aim at presenting the current knowledge on structural aspects of soluble lipid binding proteins (LBPs) found in parasitic helminths and to discuss their potential role as novel drug targets. Helminth parasites produce and secrete a great variety of LBPs that may participate in the acquisition of nutrients from their host, such as fatty acids and cholesterol. It is also postulated that LBPs might interfere in the regulation of the host׳s immune response by sequestering lipidic intermediates or delivering bioactive lipids. A detailed comprehension of the structure of these proteins, as well as their interactions with ligands and membranes, is important to understand host-parasite relationships that they may mediate. This information could also contribute to determining the role that these proteins may play in the biology of parasitic helminths and how they modulate the immune systems of their hosts, and also towards the development of new therapeutics and prevention of the diseases caused by these highly pathogenic parasites.
Collapse
Affiliation(s)
- Gisela R Franchini
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina.
| | - Jorge L Pórfido
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Marina Ibáñez Shimabukuro
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - María F Rey Burusco
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Julián A Bélgamo
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| | - Brian O Smith
- Institute of Molecular, Cell and Systems Biology & School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Malcolm W Kennedy
- Institute of Molecular, Cell and Systems Biology & School of Life Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | - Betina Córsico
- INIBIOLP, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, Calle 60 y 120, 1900 La Plata, Argentina
| |
Collapse
|
19
|
Fairfax KC, Harrison LM, Cappello M. Molecular cloning and characterization of a nematode polyprotein antigen/allergen from the human and animal hookworm Ancylostoma ceylanicum. Mol Biochem Parasitol 2014; 198:37-44. [PMID: 25481749 DOI: 10.1016/j.molbiopara.2014.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 11/30/2022]
Abstract
Nematodes are unable to synthesize fatty acids de novo and must acquire them from the environment or host. It is hypothesized that two unique classes of fatty acid and retinol binding proteins that nematodes produce (fatty acid and retinol binding (FAR) and nematode polyprotein antigen/allergen (NPA)) are used to meet this need. A partial cDNA has been cloned corresponding to four subunits of a putative Ancylostoma ceylanicum NPA (AceNPA). The translated amino acid sequence of AceNPA shares sequence identity with similar proteins from Dictyocaulus viviparus, Ascaris suum, and Ostertagia ostertagi. Immunoblot experiments using a polyclonal anti-AceNPA IgG revealed proteins corresponding to the expected sizes of single, as well as two or three un-cleaved NPA subunits in adult excretory/secretory proteins and soluble adult worm extracts. Immunohistochemistry experiments localize AceNPA to the cuticle, pseudocoelomic space and testes suggesting a role in hookworm biology that is distinct from what has previously been defined for other hookworm lipid binding proteins. A single recombinant subunit of AceNPA (rAceNPAb) demonstrated binding in vitro to fluorescent fatty acids DAUDA, cis-parinaric acid, as well as retinol, at equilibrium dissociation constants in the low micromolar range. Further, in vitro data reveal that rAceNPAb binds fatty acids with chain lengths of C12-C22, with the greatest affinities for arachidonic, linoleic (C18), and eicosapentaenoic (C20) acids.
Collapse
Affiliation(s)
- Keke C Fairfax
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - Lisa M Harrison
- Infectious Diseases Section and Program in International Child Health, Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| | - Michael Cappello
- Infectious Diseases Section and Program in International Child Health, Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
20
|
Chehayeb JF, Robertson AP, Martin RJ, Geary TG. Proteomic analysis of adult Ascaris suum fluid compartments and secretory products. PLoS Negl Trop Dis 2014; 8:e2939. [PMID: 24901219 PMCID: PMC4046973 DOI: 10.1371/journal.pntd.0002939] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 04/29/2014] [Indexed: 01/10/2023] Open
Abstract
Background Strategies employed by parasites to establish infections are poorly understood. The host-parasite interface is maintained through a molecular dialog that, among other roles, protects parasites from host immune responses. Parasite excretory/secretory products (ESP) play major roles in this process. Understanding the biology of protein secretion by parasites and their associated functional processes will enhance our understanding of the roles of ESP in host-parasite interactions. Methodology/Principal Findings ESP was collected after culturing 10 adult female Ascaris suum. Perienteric fluid (PE) and uterine fluid (UF) were collected directly from adult females by dissection. Using SDS-PAGE coupled with LC-MS/MS, we identified 175, 308 and 274 proteins in ESP, PE and UF, respectively. Although many proteins were shared among the samples, the protein composition of ESP was distinct from PE and UF, whereas PE and UF were highly similar. The distribution of gene ontology (GO) terms for proteins in ESP, PE and UF supports this claim. Comparison of ESP composition in A. suum, Brugia malayi and Heligmosoides polygyrus showed that proteins found in UF were also secreted by males and by larval stages of other species, suggesting that multiple routes of secretion may be used for homologous proteins. ESP composition of nematodes is both phylogeny- and niche-dependent. Conclusions/Significance Analysis of the protein composition of A. suum ESP and UF leads to the conclusion that the excretory-secretory apparatus and uterus are separate routes for protein release. Proteins detected in ESP have distinct patterns of biological functions compared to those in UF. PE is likely to serve as the source of the majority of proteins in UF. This analysis expands our knowledge of the biology of protein secretion from nematodes and will inform new studies on the function of secreted proteins in the orchestration of host-parasite interactions. Ascaris lumbricoides, the most prevalent metazoan parasite of humans, is a public health concern in resource-limited countries. Survival of this parasite in its host is mediated at least in part by parasite materials secreted into the host. Little is known about the composition of these secretions; defining their contents and functions will illuminate host-parasite interactions that lead to parasite establishment. Ascaris suum, a parasite of pigs, was used as a model organism because its genome has been sequenced and it is very closely related to A. lumbricoides. Excretory/secretory products (ESP), uterine fluid (UF) and perienteric fluid (PE) were collected from adult A. suum. Proteins were subjected to LC-MS/MS. ESP proteins (the ‘secretome’) included many also present in UF. Proteins in ESP but not in UF had considerably different characteristics than those in PE or UF, which were similar to each other. We conclude that proteins released from the secretory apparatus have distinct patterns of biological function and that UF proteins are likely derived from PE. Comparing the protein composition of A. suum ESP to ESP from B. malayi and H. polygyrus suggests that the secretome is conserved at the level of both phylogeny and host predilection site.
Collapse
Affiliation(s)
- James F. Chehayeb
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | - Alan P. Robertson
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Richard J. Martin
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, Iowa, United States of America
| | - Timothy G. Geary
- Institute of Parasitology and Centre for Host-Parasite Interactions, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
- * E-mail:
| |
Collapse
|
21
|
Immunosuppressive PAS-1 is an excretory/secretory protein released by larval and adult worms of the ascarid nematodeAscaris suum. J Helminthol 2014; 89:367-74. [DOI: 10.1017/s0022149x14000200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractHelminths use several strategies to evade and/or modify the host immune response, including suppression or inactivation of the host antigen-specific response. Several helminth immunomodulatory molecules have been identified. Our studies have focused on immunosuppression induced by the roundwormAscaris suumand anA. suum-derived protein named protein 1 fromA. suum(PAS-1). Here we assessed whether PAS-1 is an excretory/secretory (E/S) protein and whether it can suppress lipopolysaccharide-induced inflammation. Larvae from infective eggs were cultured in unsupplemented Dulbecco's modified Eagle medium (DMEM) for 2 weeks. PAS-1 was then measured in the culture supernatants and in adultA. suumbody fluid at different time points by enzyme-linked immunosorbent assay (ELISA) with the monoclonal antibody MAIP-1. Secreted PAS-1 was detected in both larval culture supernatant and adult body fluid. It suppressed lipopolysaccharide (LPS)-induced leucocyte migration and pro-inflammatory cytokine production, and stimulated interleukin (IL)-10 secretion, indicating that larval and adult secreted PAS-1 suppresses inflammation in this model. Moreover, the anti-inflammatory activity of PAS-1 was abolished by treatment with MAIP-1, a PAS-1-specific monoclonal antibody, confirming the crucial role of PAS-1 in suppressing LPS-induced inflammation. These findings demonstrate that PAS-1 is an E/S protein with anti-inflammatory properties likely to be attributable to IL-10 production.
Collapse
|
22
|
Reduction of the number of major representative allergens: from clinical testing to 3-dimensional structures. Mediators Inflamm 2014; 2014:291618. [PMID: 24778467 PMCID: PMC3980986 DOI: 10.1155/2014/291618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/07/2014] [Indexed: 12/02/2022] Open
Abstract
Vast amounts of allergen sequence data have been accumulated, thus complicating the identification of specific allergenic proteins when performing diagnostic allergy tests and immunotherapy. This study aims to rank the importance/potency of the allergens so as to logically reduce the number of allergens and/or allergenic sources. Meta-analysis of 62 allergenic sources used for intradermal testing on 3,335 allergic patients demonstrated that in southern China, mite, sesame, spiny amaranth, Pseudomonas aeruginosa, and house dust account for 88.0% to 100% of the observed positive reactions to the 62 types of allergenic sources tested. The Kolmogorov-Smironov Test results of the website-obtained allergen data and allergen family featured peptides suggested that allergen research in laboratories worldwide has been conducted in parallel on many of the same species. The major allergens were reduced to 21 representative allergens, which were further divided into seven structural classes, each of which contains similar structural components. This study therefore has condensed numerous allergenic sources and major allergens into fewer major representative ones, thus allowing for the use of a smaller number of allergens when conducting comprehensive allergen testing and immunotherapy treatments.
Collapse
|
23
|
Zhan B, Beaumier CM, Briggs N, Jones KM, Keegan BP, Bottazzi ME, Hotez PJ. Advancing a multivalent 'Pan-anthelmintic' vaccine against soil-transmitted nematode infections. Expert Rev Vaccines 2014; 13:321-31. [PMID: 24392641 PMCID: PMC3934375 DOI: 10.1586/14760584.2014.872035] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Ascaris lumbricoides The Sabin Vaccine Institute Product Development Partnership is developing a Pan-anthelmintic vaccine that simultaneously targets the major soil-transmitted nematode infections, in other words, ascariasis, trichuriasis and hookworm infection. The approach builds off the current bivalent Human Hookworm Vaccine now in clinical development and would ultimately add both a larval Ascaris lumbricoides antigen and an adult-stage Trichuris trichiura antigen from the parasite stichosome. Each selected antigen would partially reproduce the protective immunity afforded by UV-attenuated Ascaris eggs and Trichuris stichosome extracts, respectively. Final antigen selection will apply a ranking system that includes the evaluation of expression yields and solubility, feasibility of process development and the absence of circulating antigen-specific IgE among populations living in helminth-endemic regions. Here we describe a five year roadmap for the antigen discovery, feasibility and antigen selection, which will ultimately lead to the scale-up expression, process development, manufacture, good laboratory practices toxicology and preclinical evaluation, ultimately leading to Phase 1 clinical testing.
Collapse
Affiliation(s)
- Bin Zhan
- Sabin Vaccine Institute and Texas Children's Hospital Center for Vaccine Development, National School of Tropical Medicine, Baylor College of Medicine , Houston, TX , USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu R, Holck AL, Yang E, Liu C, Xue W. Tropomyosin from tilapia (Oreochromis mossambicus) as an allergen. Clin Exp Allergy 2013; 43:365-77. [PMID: 23414545 DOI: 10.1111/cea.12056] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 09/24/2012] [Accepted: 10/24/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Tilapia is among the most common fresh water fish species raised by fish farms and can cause allergic reactions upon ingestion. OBJECTIVE To investigate important allergens in Tilapia (Oreochromis mossambicus). METHODS Allergens were detected using immunoblotting. An important allergen was purified to homogeneity by reversed-phase High Pressure Liquid Chromatography and characterized by enzyme linked immunosorbent assay (ELISA), competitive ELISA, Mass spectrometry (MS), circular dichroism measurements and differential scanning calorimetry. RESULTS By immunoblotting using sera from 10 patients with confirmed tilapia allergy, we identified a number of allergens with apparent molecular weights 114 to 17 kD. All patients produced IgE against a 32 kD allergen, Ore m 4, which was identified by MS as tropomyosin (TM). IgE binding of the pure protein was confirmed by immunoblotting, ELISA and ELISA inhibition. cDNA from tilapia tropomyosin (TM) was sequenced and compared with TMs from other species. The tilapia TM showed 53.5% homology to TM from shrimp. Homology was much higher to human TM isoform 5 (87.7%). CONCLUSION AND CLINICAL RELEVANCE TMs are the major allergens in allergy to crustaceans. Auto-antibodies against human TM isoform 5 have been implicated as a causative agent in inflammatory bowel disease (IBD). Intriguingly, six of the 10 tilapia allergic patients had also been diagnosed with IBD, corroborating a connection between allergy and IBD. To our knowledge, this is the first report of tropomyosin from vertebrates as an allergen.
Collapse
Affiliation(s)
- R Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, 100083, PR China
| | | | | | | | | |
Collapse
|
25
|
New Allergens of Relevance in Tropical Regions: The Impact of Ascaris lumbricoides Infections. World Allergy Organ J 2013; 4:77-84. [PMID: 23282442 PMCID: PMC3651106 DOI: 10.1097/wox.0b013e3182167e04] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
One of the many aspects of the relationships between parasite infections and allergic diseases is the possibility that allergens from parasites enhance the TH2 responses, especially IgE production, in allergic diseases such as asthma. In this review we discuss about the allergenic composition of the nematode Ascaris lumbricoides and their potential impact on allergy sensitization and asthma pathogenesis and prevalence in populations living in the tropics and naturally exposed to both, mite allergens and helminth infections.
Collapse
|
26
|
Role of leukotrienes on protozoan and helminth infections. Mediators Inflamm 2012; 2012:595694. [PMID: 22577251 PMCID: PMC3337730 DOI: 10.1155/2012/595694] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 01/30/2012] [Indexed: 01/21/2023] Open
Abstract
Leukotrienes (LTs), formed by the 5-lipoxygenase-(5-LO-) catalyzed oxidation of arachidonic acid, are lipid mediators that have potent proinflammatory activities. Pharmacologic or genetic inhibition of 5-LO biosynthesis in animals is associated with increased mortality and impaired clearance of bacteria, fungi, and parasites. LTs play a role in the control of helminth and protozoan infections by modulating the immune system and/or through direct cytotoxicity to parasites; however, LTs may also be associated with pathogenesis, such as in cerebral malaria and schistosomal granuloma. Interestingly, some proteins from the saliva of insect vectors that transmit protozoans and secreted protein from helminth could bind LTs and may consequently modulate the course of infection or pathogenesis. In addition, the decreased production of LTs in immunocompromised individuals might modulate the pathophysiology of helminth and protozoan infections. Herein, in this paper, we showed the immunomodulatory and pathogenic roles of LTs during the helminth and protozoan infections.
Collapse
|
27
|
Fermín G, Keith RC, Suzuki JY, Ferreira SA, Gaskill DA, Pitz KY, Manshardt RM, Gonsalves D, Tripathi S. Allergenicity assessment of the papaya ringspot virus coat protein expressed in transgenic rainbow papaya. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10006-12. [PMID: 21819140 DOI: 10.1021/jf201194r] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The virus-resistant, transgenic commercial papaya Rainbow and SunUp (Carica papaya L.) have been consumed locally in Hawaii and elsewhere in the mainland United States and Canada since their release to planters in Hawaii in 1998. These papaya are derived from transgenic papaya line 55-1 and carry the coat protein (CP) gene of papaya ringspot virus (PRSV). The PRSV CP was evaluated for potential allergenicity, an important component in assessing the safety of food derived from transgenic plants. The transgene PRSV CP sequence of Rainbow papaya did not exhibit greater than 35% amino acid sequence homology to known allergens, nor did it have a stretch of eight amino acids found in known allergens which are known common bioinformatic methods used for assessing similarity to allergen proteins. PRSV CP was also tested for stability in simulated gastric fluid and simulated intestinal fluid and under various heat treatments. The results showed that PRSV CP was degraded under conditions for which allergenic proteins relative to nonallergens are purported to be stable. The potential human intake of transgene-derived PRSV CP was assessed by measuring CP levels in Rainbow and SunUp along with estimating the fruit consumption rates and was compared to potential intake estimates of PRSV CP from naturally infected nontransgenic papaya. Following accepted allergenicity assessment criteria, our results show that the transgene-derived PRSV CP does not pose a risk of food allergy.
Collapse
Affiliation(s)
- Gustavo Fermín
- USDA-ARS-Pacific Basin Agricultural Research Center, Hilo, Hawaii 96720, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Acevedo N, Caraballo L. IgE cross-reactivity between Ascaris lumbricoides and mite allergens: possible influences on allergic sensitization and asthma. Parasite Immunol 2011; 33:309-21. [PMID: 21388422 DOI: 10.1111/j.1365-3024.2011.01288.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nematode infections such as Ascariasis are important health problems in underdeveloped countries, most of them located in the tropics where environmental conditions also promote the perennial co-exposure to high concentrations of domestic mite allergens. Allergic diseases are common, and most of patients with asthma exhibit a predominant and strong IgE sensitization to mites. It is unknown whether co-exposure to Ascaris lumbricoides and the domestic mites Blomia tropicalis and Dermatophagoides pteronyssinus potentiates Th2 responses and IgE sensitization, thereby modifying the natural history of allergy. Recently, we obtained experimental evidence of a high cross-reactivity between the allergenic extracts of these invertebrates, involving well-known allergens such as tropomyosin and glutathione transferases. There is indirect evidence suggesting that the clinical impact of these findings may be important. In this review, we discuss the potential role of this cross-reactivity on several aspects of allergy in the tropics that have been a focus of a number of investigations, some of them with controversial results.
Collapse
Affiliation(s)
- N Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | |
Collapse
|
29
|
Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of Ascaris reveals a novel fold and two discrete lipid-binding sites. PLoS Negl Trop Dis 2011; 5:e1040. [PMID: 21526216 PMCID: PMC3079579 DOI: 10.1371/journal.pntd.0001040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/18/2011] [Indexed: 01/12/2023] Open
Abstract
Background Nematode polyprotein allergens (NPAs) are an unusual class of lipid-binding proteins found only in nematodes. They are synthesized as large, tandemly repetitive polyproteins that are post-translationally cleaved into multiple copies of small lipid binding proteins with virtually identical fatty acid and retinol (Vitamin A)-binding characteristics. They are probably central to transport and distribution of small hydrophobic compounds between the tissues of nematodes, and may play key roles in nutrient scavenging, immunomodulation, and IgE antibody-based responses in infection. In some species the repeating units are diverse in amino acid sequence, but, in ascarid and filarial nematodes, many of the units are identical or near-identical. ABA-1A is the most common repeating unit of the NPA of Ascaris suum, and is closely similar to that of Ascaris lumbricoides, the large intestinal roundworm of humans. Immune responses to NPAs have been associated with naturally-acquired resistance to infection in humans, and the immune repertoire to them is under strict genetic control. Methodology/Principal Findings The solution structure of ABA-1A was determined by protein nuclear magnetic resonance spectroscopy. The protein adopts a novel seven-helical fold comprising a long central helix that participates in two hollow four-helical bundles on either side. Discrete hydrophobic ligand-binding pockets are found in the N-terminal and C-terminal bundles, and the amino acid sidechains affected by ligand (fatty acid) binding were identified. Recombinant ABA-1A contains tightly-bound ligand(s) of bacterial culture origin in one of its binding sites. Conclusions/Significance This is the first mature, post-translationally processed, unit of a naturally-occurring tandemly-repetitive polyprotein to be structurally characterized from any source, and it belongs to a new structural class. NPAs have no counterparts in vertebrates, so represent potential targets for drug or immunological intervention. The nature of the (as yet) unidentified bacterial ligand(s) may be pertinent to this, as will our characterization of the unusual binding sites. Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris, and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structure.
Collapse
|
30
|
Liu R, Krishnan HB, Xue W, Liu C. Characterization of allergens isolated from the freshwater fish blunt snout bream (Megalobrama amblycephala). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:458-463. [PMID: 21142203 DOI: 10.1021/jf103942p] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Fish are an important source of dietary protein for humans throughout the world. However, they are recognized as one of the most common food allergens and pose a serious health problem in countries where fish consumption is high. Many marine fish allergens have been extensively studied, but relatively little is known about freshwater fish allergens. This study identified two main allergens from blunt snout bream (Megalobrama amblycephala), a freshwater fish widely consumed in China. Sera from 11 patients with convincing clinical history of blunt snout bream allergy were utilized in IgE immunoblot analysis to identify prominent allergens. Several blunt snout bream proteins revealed specific binding to serum IgE, with the 47 and 41 kDa proteins being the most immunodominant among them. Two-dimensional gel electrophoresis (2D SDS-PAGE) enabled resolution of the 47 and 41 kDa proteins into several protein spots with distinct isoelectric points. 2D SDS-PAGE along with IgE immunoblot analysis further confirmed the strong reactivity of these protein spots with the pooled sera from blunt snout bream-sensitive patients. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis of the peptides generated by trypsin digestion of the different spots corresponding to the 47 and 41 kDa proteins indicated that these spots were isoforms of enolase and muscle creatine kinase, respectively. The potential allergenicity of these proteins was further verified by an bioinformatics approach using the full-length and 80 amino acid sliding window FASTA searches, which revealed a significant amino acid sequence homology between blunt snout bream allergens and several known inhaled and crustacean allergens.
Collapse
Affiliation(s)
- Rong Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Haidian, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
31
|
Polimeno L, Loiacono M, Pesetti B, Mallamaci R, Mastrodonato M, Azzarone A, Annoscia E, Gatti F, Amoruso A, Ventura MT. Anisakiasis, an underestimated infection: effect on intestinal permeability of Anisakis simplex-sensitized patients. Foodborne Pathog Dis 2010; 7:809-14. [PMID: 20367330 DOI: 10.1089/fpd.2009.0484] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Anisakis simplex is a parasite that, if present in uncooked and contaminated saltwater fish, can invade the human gut. Two different clinical situations are recognized: the first, known as a gastrointestinal disease, varying from an asymptomatic episode to vomiting and diarrhea, and the second, classified as an adverse reaction to food, characterized by a wide spectrum of allergic reactions like rhinitis, conjunctivitis, or even anaphylaxis causing hypotension and/or shock. The intestinal epithelium, the major defense system against external molecules, represents an open gate for toxins and allergens if its protective function is compromised. Previous data have demonstrated a strict relationship between an altered intestinal permeability (I.P.) and worsening of the clinical manifestations in patients with adverse reactions to the food. In this article we evaluated the sensitization to A. simplex among patients who referred clinical symptoms of allergy. All subjects underwent commonly used alimentary skin prick test for food allergens, to which Ani s1, an A. simplex allergen, was added. In addition, in A. simplex-sensitized subjects, I.P. was determined upon their enrolment to the study (time 0) and after 6 months of consuming a raw fish-free diet (time 6). Five hundred and forty subjects were screened, and 170 had a positive skin prick test, 87 (51.2%) of whom were positive to Ani s1. Increased I.P. was evidenced in A. simplex-sensitized subjects with worse clinical symptoms, which receded after 6 months' elimination of raw seafood. With our data we demonstrated that the alimentary habit to eat raw fish represents a high risk for the integrity of the intestinal mucosa, and we suggest that this pathological situation may constitute an ideal, under-estimated, open gate for molecules that predispose to other, more important pathologies.
Collapse
Affiliation(s)
- Lorenzo Polimeno
- Section of Gastroenterology, Department of Emergency and Organ Transplantation (DETO), University of Bari, Bari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Acevedo N, Sánchez J, Erler A, Mercado D, Briza P, Kennedy M, Fernandez A, Gutierrez M, Chua KY, Cheong N, Jiménez S, Puerta L, Caraballo L. IgE cross-reactivity between Ascaris and domestic mite allergens: the role of tropomyosin and the nematode polyprotein ABA-1. Allergy 2009; 64:1635-43. [PMID: 19624559 DOI: 10.1111/j.1398-9995.2009.02084.x] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Analysis of cross-reactivity between the nematode Ascaris ssp. and dust mites, two important allergen sources in the tropics, will contribute in understanding their influence on asthma and atopy. The objective of this study was to investigate immunoglobulin E (IgE) cross-reactivity between Ascaris and two domestic mites in the tropics. METHODS Sera from 24 asthmatic patients were used in ELISA and immunoblotting IgE-binding inhibition assays using Ascaris, Blomia tropicalis and Dermatophagoides pteronyssinus extracts and the recombinants Blo t 10, ABA-1 and Blo t 13 as competitors. Identification of Ascaris allergens was confirmed by mass spectrometry (LC-MS/MS). RESULTS We detected at least 12 human IgE-binding components in Ascaris extract. Blomia tropicalis and D. pteronyssinus inhibited 83.3% and 79% of IgE-binding to Ascaris, while Ascaris inhibited 58.3% and 79.3% to B. tropicalis and D. pteronyssinus respectively. Mite tropomyosin inhibited 85% of IgE-binding to Ascaris. Affinity-purified human IgE to rBlo t 10 identified an allergen of 40 kDa in Ascaris extract, further confirmed as tropomyosin by LC-MS/MS. We found no evidence of IgE cross-reactivity between rABA-1 and any allergen component in mite extracts, including rBlo t 13. CONCLUSIONS There is cross-reactivity between Ascaris and mites, determined by several allergens including tropomyosin and glutathione-S-transferase. In addition to its potential impact on asthma pathogenesis, Ascaris infection and mite allergy diagnosis relying on the determination of specific IgE could be affected by this cross-reactivity. ABA-1 has no cross-reactive counterpart in mite extracts, suggesting its usefulness as a more specific marker of Ascaris infection.
Collapse
Affiliation(s)
- N Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Acevedo N, Mercado D, Vergara C, Sánchez J, Kennedy MW, Jiménez S, Fernández AM, Gutiérrez M, Puerta L, Caraballo L. Association between total immunoglobulin E and antibody responses to naturally acquired Ascaris lumbricoides infection and polymorphisms of immune system-related LIG4, TNFSF13B and IRS2 genes. Clin Exp Immunol 2009; 157:282-90. [PMID: 19604268 PMCID: PMC2730854 DOI: 10.1111/j.1365-2249.2009.03948.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2009] [Indexed: 12/27/2022] Open
Abstract
The 13q33-34 region harbours a susceptibility locus to Ascaris lumbricoides, although the underlying genes are unknown. Immunoglobulin (Ig)E and IgG confer protective immunity and here we sought to investigate in an endemic population whether LIG4, TNFSF13B and IRS2 genes influence IgE and IgG levels against Ascaris and the ABA-1 allergen as a putative resistance marker. Mite-allergic asthmatic patients were analysed for potential relationships between Ascaris predisposition and allergy. One thousand and sixty-four subjects from Cartagena, Colombia, were included. Single nucleotide polymorphisms (SNPs) were genotyped using TaqMan assays. Antibody levels were measured by enzyme-linked immunosorbent assay. Linear and logistic regressions were used to model effects of genotypes on antibody levels. The GG genotype of LIG4 (rs1805388) was associated with higher IgE levels to Ascaris compared with other genotypes. TNFSF13B (rs10508198) was associated positively with IgG levels against Ascaris extract and IgE levels against ABA-1. In asthmatics, IRS2 (rs2289046) was associated with high total IgE levels. Associations held up after correction by population stratification using a set of 52 ancestry markers, age, sex and disease status. There was no association with asthma or mite sensitization. In a tropical population, LIG4 and TNFSF13B polymorphisms are associated with specific IgE and IgG to Ascaris, supporting previous linkage studies implicating the 13q33 region. Our results suggest that genes protecting against parasite infections can be different to those predisposing to asthma and atopy.
Collapse
Affiliation(s)
- N Acevedo
- Institute for Immunological Research, University of Cartagena, Cartagena, Colombia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kuang L, Colgrave ML, Bagnall NH, Knox MR, Qian M, Wijffels G. The complexity of the secreted NPA and FAR lipid-binding protein families of Haemonchus contortus revealed by an iterative proteomics-bioinformatics approach. Mol Biochem Parasitol 2009; 168:84-94. [PMID: 19615410 DOI: 10.1016/j.molbiopara.2009.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 11/18/2022]
Abstract
Two different classes of small nematode specific lipid-binding proteins, the nematode polyprotein allergens/antigens (NPAs) and the fatty acid- and retinol-binding (FAR) proteins, are secreted by helminth parasites. Until now, there was no evidence of the expression or secretion of these two families of proteins in Haemonchus contortus. In this study, we applied proteomic and bioinformatic tools in an iterative manner to reveal the expression and complexity of these proteins in the excretory/secretory products (ESP) of adult H. contortus at the protein and gene levels. Initial examination of the mass spectra of ESP fractions against standard databases returned nine peptides mapping to Ostertagia ostertagi NPA and FAR sequences. Searches of the H. contortus EST and genomic contig databases with the O. ostertagi and Caenorhabditis elegans homologues retrieved diverse sequences encoding H. contortus NPA and FAR proteins. H. contortus sequences were then integrated into a customized database and a new search of the mass spectra achieved a 10-fold improvement in coverage of the predicted H. contortus NPAs. The final analyses of the mass spectra achieved 49-60% coverage of H. contortus NPAs and 7-47% coverage of H. contortus FARs. Moreover, the diversity in structures of the encoding genes was revealed by assembling the genomic sequence data with predicted protein sequences confirmed by the peptide evidence. We predict there are at least one Hc-NPA gene and six Hc-FAR genes in H. contortus, and life stage gene expression of Hc-FAR-1 to -6 revealed unique transcription patterns for each of these genes.
Collapse
Affiliation(s)
- Lisha Kuang
- CSIRO Livestock Industries, Queensland Biosciences Precinct, 306 Carmody Road, St. Lucia, 4067 QLD, Australia
| | | | | | | | | | | |
Collapse
|
35
|
Audicana MT, Kennedy MW. Anisakis simplex: from obscure infectious worm to inducer of immune hypersensitivity. Clin Microbiol Rev 2008; 21:360-79, table of contents. [PMID: 18400801 PMCID: PMC2292572 DOI: 10.1128/cmr.00012-07] [Citation(s) in RCA: 364] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infection of humans with the nematode worm parasite Anisakis simplex was first described in the 1960s in association with the consumption of raw or undercooked fish. During the 1990s it was realized that even the ingestion of dead worms in food fish can cause severe hypersensitivity reactions, that these may be more prevalent than infection itself, and that this outcome could be associated with food preparations previously considered safe. Not only may allergic symptoms arise from infection by the parasites ("gastroallergic anisakiasis"), but true anaphylactic reactions can also occur following exposure to allergens from dead worms by food-borne, airborne, or skin contact routes. This review discusses A. simplex pathogenesis in humans, covering immune hypersensitivity reactions both in the context of a living infection and in terms of exposure to its allergens by other routes. Over the last 20 years, several studies have concentrated on A. simplex antigen characterization and innate as well as adaptive immune response to this parasite. Molecular characterization of Anisakis allergens and isolation of their encoding cDNAs is now an active field of research that should provide improved diagnostic tools in addition to tools with which to enhance our understanding of pathogenesis and controversial aspects of A. simplex allergy. We also discuss the potential relevance of parasite products such as allergens, proteinases, and proteinase inhibitors and the activation of basophils, eosinophils, and mast cells in the induction of A. simplex-related immune hypersensitivity states induced by exposure to the parasite, dead or alive.
Collapse
Affiliation(s)
- M Teresa Audicana
- Allergy and Clinical Immunology Department, Santiago Apóstol Hospital, C/Olaguibel 29, 01004 Vitoria-Gasteiz, Basque Country, Spain.
| | | |
Collapse
|
36
|
Fanelli E, Dileo C, Di Vito M, De Giorgi C. Inducible antibacterial defence in the plant parasitic nematode Meloidogyne artiellia. Int J Parasitol 2008; 38:609-15. [DOI: 10.1016/j.ijpara.2007.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2007] [Revised: 08/29/2007] [Accepted: 09/03/2007] [Indexed: 11/15/2022]
|
37
|
Rodriguez-Mahillo AI, Gonzalez-Muñoz M, Gomez-Aguado F, Rodriguez-Perez R, Corcuera MT, Caballero ML, Moneo I. Cloning and characterisation of the Anisakis simplex allergen Ani s 4 as a cysteine-protease inhibitor. Int J Parasitol 2007; 37:907-17. [PMID: 17324433 DOI: 10.1016/j.ijpara.2007.01.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 01/16/2007] [Accepted: 01/17/2007] [Indexed: 11/18/2022]
Abstract
Anisakis simplex is a nematode that can parasitise humans who eat raw or undercooked fish containing live L3s. Larvae invading the gastrointestinal mucosa excrete/secrete proteins implicated in the pathogenesis of anisakiasis that can induce IgE mediated symptoms. Misdiagnosis of anisakiasis, due to cross-reactivity, makes it necessary to develop new diagnostic tools. Recombinant allergens have proved to be useful for diagnosis of other parasitoses. Among the Anisakis allergens, Ani s 4 was considered to be a good potential diagnostic protein because of its heat resistance and its importance in the clinical history of sensitised patients. Therefore, the objective of this study was to clone and characterise the cDNA encoding this allergen. The Ani s 4 mRNA sequence was obtained using a PCR-based strategy. The Ani s 4 amino acid sequence contained the characteristic domains of cystatins. Mature recombinant Ani s 4 was expressed in a bacterial system as a His-tagged soluble protein. The recombinant Ani s 4 inhibited the cleavage of a peptide substrate by papain with a Ki value of 20.6 nM. Immunobloting, ELISA, a commercial fluorescence-enzyme-immunoassay and a basophil activation test were used to study the allergenic properties of rAni s 4, demonstrating that the recombinant allergen contained the same IgE epitopes as the native Ani s 4, and that it was a biologically active allergen since it activated basophils from patients with allergy to A. simplex in a specific concentration-dependent manner. Ani s 4 was localised by immunohistochemical methods, using a polyclonal anti-Ani s 4 anti-serum, in both the secretory gland and the basal layer of the cuticle of A. simplex L3. In conclusion, we believe that Ani s 4 is the first nematode cystatin that is a human allergen. The resulting rAni s 4 retains all allergenic properties of the natural allergen, and can therefore be used in immunodiagnosis of human anisakiasis.
Collapse
|
38
|
Schöll I, Kalkura N, Shedziankova Y, Bergmann A, Verdino P, Knittelfelder R, Kopp T, Hantusch B, Betzel C, Dierks K, Scheiner O, Boltz-Nitulescu G, Keller W, Jensen-Jarolim E. Dimerization of the major birch pollen allergen Bet v 1 is important for its in vivo IgE-cross-linking potential in mice. THE JOURNAL OF IMMUNOLOGY 2006; 175:6645-50. [PMID: 16272319 DOI: 10.4049/jimmunol.175.10.6645] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In type I allergy, the cross-linking of membrane IgE on B lymphocytes and of cytophilic IgE on effector cells by their respective allergens are key events. For cross-linking two IgE molecules, allergens need at least two epitopes. On large molecules, these could be different epitopes in a multivalent, or identical epitopes in a symmetrical, fashion. However, the availability of epitopes may be limited on small allergens such as Bet v 1, the major birch pollen allergen. The present work analyzes whether dimerization is required for the cross-linking capacity of this allergen. In immunoblots, murine monoclonal and polyclonal human Bet v 1-specific Abs detected, besides a Bet v 1 monomer of 17 kDa, a dimer of 34 kDa. In dynamic light scattering, Bet v 1 appeared as dimers and even multimers, but a single condition could be defined where it behaved exclusively monomerically. Small-angle x-ray scattering of the monomeric and dimeric samples resulted in diagrams agreeing with the calculated models. Circular dichroism measurements indicated that the structure of Bet v 1 was preserved under monomeric conditions. Skin tests in Bet v 1-allergic mice were positive with Bet v 1 dimer, but remained negative using the monomer. Furthermore, in contrast to dimeric Bet v 1, the monomer was less capable of activating murine memory B cells for IgE production in vivo. Our data indicate that the presentation of two identical epitopes by dimerized allergens is a precondition for cross-linking of IgE on mast cells and B lymphocytes.
Collapse
Affiliation(s)
- Isabella Schöll
- Center of Physiology and Pathophysiology, University of Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Turner JD, Faulkner H, Kamgno J, Kennedy MW, Behnke J, Boussinesq M, Bradley JE. Allergen-specific IgE and IgG4 are markers of resistance and susceptibility in a human intestinal nematode infection. Microbes Infect 2005; 7:990-6. [PMID: 15961339 DOI: 10.1016/j.micinf.2005.03.036] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Accepted: 03/04/2005] [Indexed: 10/25/2022]
Abstract
IgG4 has been proposed to act as a 'blocking antibody' due to its ability to compete for the same epitopes as IgE thus preventing IgE-dependent allergic responses. IgG4 and IgE are both elevated in helminth infections and strong anti-parasite IgE responses are associated with resistance to infection. We wished to determine the relationship between anti-parasite IgG4 and IgE and Ascaris lumbricoides infection status. We examined anti-parasite responses, including antibody levels to recombinant Ascaris allergen-1A (rABA-1A), a target of serum IgE in endemic populations. Worm burden was indirectly estimated by measuring parasite egg output in a cross-sectional human population (N = 105). Levels of anti-parasite IgG4 and IgE in patients' plasma were quantified by immunoassay. Global anti-parasite antibody responses did not bear any significant relationships with intensity of Ascaris infection. Individuals who had detectable levels of IgE but not IgG4 to rABA-1A (11%) had lower average levels of infection compared with individuals who produced anti-rABA-1A IgG4 (40%) and sero-negative individuals (49%) (P = 0.008). The ratio of IgG4/IgE in rABA-1A responders positively correlated with intensity of infection (P < 0.025). IgG4 levels positively correlated with infection level in younger children (age 4-11) where average levels of infection were increasing (P = 0.038), whereas allergen specific IgE emerged as a correlate of immunity in older children and adults (age 12-36) where infection levels were decreasing (P = 0.048). Therefore, in a gastrointestinal helminth infection, differential regulation of anti-allergen antibody isotypes relate to infection level. Our results are consistent with the concept that IgG4 antibody can block IgE-mediated immunity and therefore allergic processes in humans.
Collapse
Affiliation(s)
- Joseph D Turner
- School of Biology, University of Nottingham, University Park, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Moneo I, Caballero ML, González-Muñoz M, Rodríguez-Mahillo AI, Rodríguez-Perez R, Silva A. Isolation of a heat-resistant allergen from the fish parasite Anisakis simplex. Parasitol Res 2005; 96:285-9. [PMID: 15895253 DOI: 10.1007/s00436-005-1362-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2004] [Accepted: 03/30/2005] [Indexed: 11/30/2022]
Abstract
The thermal stability of allergenic peptides from the fish parasite Anisakis simplex has not been fully elucidated. This is of special relevance for physicians who should clearly indicate if sensitized patients should avoid ingestion of raw fish only or whether well-cooked fish should also be avoided, if allergenic peptides derived from the parasite remain immunologically detectable. An allergen was purified after heating a crude parasite extract for 30 min. The allergen was further purified by an ethanol fractionation procedure followed by a reversed-phase HPLC. The N-terminal amino acid sequence was obtained. This allergen was detected by 27% of sensitized subjects. The N-terminal amino acid sequence of the 9 kDa allergen showed no similarities to other known proteins. A minor low molecular weight allergen from A. simplex is highly resistant to heating and it could therefore have significant clinical relevance.
Collapse
Affiliation(s)
- Ignacio Moneo
- Department of Immunology, Hospital Carlos III, Sinesio Delgado 10, 28029 Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
41
|
Jordanova R, Radoslavov G, Fischer P, Liebau E, Walter RD, Bankov I, Boteva R. Conformational and functional analysis of the lipid binding protein Ag-NPA-1 from the parasitic nematode Ascaridia galli. FEBS J 2004; 272:180-9. [PMID: 15634342 DOI: 10.1111/j.1432-1033.2004.04398.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ag-NPA-1 (AgFABP), a 15 kDa lipid binding protein (LBP) from Ascaridia galli, is a member of the nematode polyprotein allergen/antigen (NPA) family. Spectroscopic analysis shows that Ag-NPA-1 is a highly ordered, alpha-helical protein and that ligand binding slightly increases the ordered secondary structure content. The conserved, single Trp residue (Trp17) and three Tyr residues determine the fluorescence properties of Ag-NPA-1. Analysis of the efficiency of the energy transfer between these chromophores shows a high degree of Tyr-Trp dipole-dipole coupling. Binding of fatty acids and retinol was accompanied by enhancement of the Trp emission, which allowed calculation of the affinity constants of the binary complexes. The distance between the single Trp of Ag-NPA-1 and the fluorescent fatty acid analogue 11-[(5-dimethylaminonaphthalene-1- sulfonyl)amino]undecanoic acid (DAUDA) from the protein binding site is 1.41 nm as estimated by fluorescence resonance energy transfer. A chemical modification of the Cys residues of Ag-NPA-1 (Cys66 and Cys122) with the thiol reactive probes 5-({[(2-iodoacetyl)amino]ethyl}amino) naphthalene-1-sulfonic acid (IAEDANS) and N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD), followed by MALDI-TOF analysis showed that only Cys66 was labeled. The observed similar affinities for fatty acids of the modified and native Ag-NPA-1 suggest that Cys66 is not a part of the protein binding pocket but is located close to it. Ag-NPA-1 is one of the most abundant proteins in A. galli and it is distributed extracellularly mainly as shown by immunohistology and immunogold electron microscopy. This suggests that Ag-NPA-1 plays an important role in the transport of fatty acids and retinoids.
Collapse
Affiliation(s)
- Rositsa Jordanova
- Institute of Experimental Pathology and Parasitology, Sofia, Bulgaria
| | | | | | | | | | | | | |
Collapse
|
42
|
Vercauteren I, Geldhof P, Vercruysse J, Peelaers I, van den Broeck W, Gevaert K, Claerebout E. Vaccination with an Ostertagia ostertagi polyprotein allergen protects calves against homologous challenge infection. Infect Immun 2004; 72:2995-3001. [PMID: 15102812 PMCID: PMC387912 DOI: 10.1128/iai.72.5.2995-3001.2004] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
As an alternative to antihelminthic drugs, we are exploiting vaccination to control infections with the abomasal nematode Ostertagia ostertagi in cattle. Our focus for vaccine targets is excretory-secretory (ES) products of this parasite. One of the most abundant antigens in larval and adult Ostertagia ES products is a protein homologous to nematode polyprotein allergens. We found that the Ostertagia polyprotein allergen (OPA) is encoded by a single-copy gene. OPA comprises three or more repeated units, and only the 15-kDa subunits are found in ES products. The native antigen is localized in the intestinal cells of third-stage larvae and in the hypodermis and cuticle of fourth-stage larvae and adult parasites. Vaccination of cattle with native OPA (nOPA) in combination with QuilA resulted in protection against Ostertagia challenge infections. The geometric mean cumulative fecal egg counts in the nOPA-vaccinated animals were reduced by 60% compared to the counts in the control group during the 2-month course of the experiment. Both male and female adult worms in nOPA-vaccinated animals were significantly shorter than the worms in the control animals. In the abomasal mucus of vaccinated animals the nOPA-specific immunoglobulin G1 (IgG1) and IgG2 levels were significantly elevated compared to the levels in the control animals. Reductions in the Ostertagia egg output and the length of the adult parasites were significantly correlated with IgG1 levels. IgG2 titers were only negatively associated with adult worm length. Protected animals showed no accumulation of effector cells (mast cells, globular leukocytes, and eosinophils) in the mucosa. In contrast to the native antigen, recombinant OPA expressed in Escherichia coli did not stimulate any protection.
Collapse
Affiliation(s)
- Isabel Vercauteren
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Ghent, Belgium.
| | | | | | | | | | | | | |
Collapse
|
43
|
Despommier D. Toxocariasis: clinical aspects, epidemiology, medical ecology, and molecular aspects. Clin Microbiol Rev 2003; 16:265-72. [PMID: 12692098 PMCID: PMC153144 DOI: 10.1128/cmr.16.2.265-272.2003] [Citation(s) in RCA: 555] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Toxocariasis is caused by a series of related nematode species (ascarids) that routinely infect dogs and cats throughout the world. The eggs from these ascarids are common environmental contaminants of human habitation, due largely to the fact that many kinds of dogs and cats serve as pets, while countless others run wild throughout the streets of most urban centers. The eggs, present in dog and cat feces, become infectious within weeks after they are deposited in the local environment (e.g., sandboxes, city parks, and public beaches, etc.). Humans, particularly children, frequently ingest these eggs by accident and become infected. Infection in humans, in contrast to their definitive hosts, remains occult, often resulting in disease caused by the migrating larval stages. Visceral larva migrans (VLM) and ocular larva migrans (OLM) are two clinical manifestations that result in definable syndromes and present as serious health problems wherever they occur. Diagnosis and treatment of VLM and OLM are difficult. These issues are summarized in this review, with emphasis on the ecology of transmission and control of spread to both humans and animals through public health initiatives employing treatment of pets and environmental intervention strategies that limit the areas that dogs and cats are allowed within the confines of urban centers.
Collapse
Affiliation(s)
- Dickson Despommier
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York 10032, USA.
| |
Collapse
|
44
|
Vercauteren I, Geldhof P, Peelaers I, Claerebout E, Berx G, Vercruysse J. Identification of excretory-secretory products of larval and adult Ostertagia ostertagi by immunoscreening of cDNA libraries. Mol Biochem Parasitol 2003; 126:201-8. [PMID: 12615319 DOI: 10.1016/s0166-6851(02)00274-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Excretory-secretory (ES) products of Ostertagia ostertagi, an abomasal nematode of cattle, are considered to be important for the development and survival of the parasite within the host. To gain insight in the composition of these ES products of both larval (L3, L4) and adult life stages of Ostertagia cDNA libraries of the parasite were immunoscreened with polyclonal rabbit serum raised against these ES products. This approach led to the identification of 41 proteins, amongst which are structural proteins such as actin, kinesin and vitellogenin, housekeeping proteins such as those involved in protein folding, different metabolic pathways or mitochondrial functioning and proteins associated with stress (heat shock protein) or antioxidantia (thioredoxin peroxidase). A large number of the isolated proteins were similar to hypothetical proteins of the model nematode Caenorhabditis elegans. Because somatic proteins can be non-specifically released during in vitro culturing as nematodes deteriorate, it was checked if the isolated proteins are genuinely secreted. The amino acid sequences of the translated cDNAs were investigated for signal peptides and monospecific antibodies against the isolated proteins were purified and used to develop Western blots of ES and somatic extracts. In this manner it could be proven that 15 cDNAs code for genuine secreted proteins. The identification of these ES antigens allows to select proteins with potential protective capacities, which are targets for vaccine development.
Collapse
Affiliation(s)
- Isabel Vercauteren
- Department of Parasitology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke B-9820, Belgium.
| | | | | | | | | | | |
Collapse
|
45
|
Paterson JCM, Garside P, Kennedy MW, Lawrence CE. Modulation of a heterologous immune response by the products of Ascaris suum. Infect Immun 2002; 70:6058-67. [PMID: 12379682 PMCID: PMC130290 DOI: 10.1128/iai.70.11.6058-6067.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helminth infections are among the most potent stimulators of Th2-type immune responses and have been widely demonstrated to modify responsiveness to both nonparasite antigens and other infectious agents in a nonspecific manner in infected animals. We investigated the immunomodulatory properties of pseudocoelomic body fluid from adult Ascaris suum gastrointestinal helminths (ABF) and its defined allergen (ABA-1) by examining their effects on the immune response to a heterologous antigen, ovalbumin. Our results indicate that ABF has potent immunomodulatory activity and that the effects observed are consistent with skewing towards a Th2-type response rather than induction of anergy. Our findings show that the immunomodulatory activities of ABF are associated with components other than the major constituent and putative allergen, ABA-1. Furthermore, the allergic responses to ABA-1 are not a result of an intrinsic allergenicity of the protein but are more a reflection of the wider induction of a Th2 response by the infection. Importantly, the induction of interleukin-10 by ABF also suggests that T regulatory cells may play a role in immunomodulation of immune responses by parasitic helminths.
Collapse
Affiliation(s)
- Jacqueline C M Paterson
- Department of Molecular and Cellular Pathology, University of Dundee, Ninewells Hospital, Dundee DD1 9SY, USA
| | | | | | | |
Collapse
|
46
|
Perzanowski MS, Ng'ang'a LW, Carter MC, Odhiambo J, Ngari P, Vaughan JW, Chapman MD, Kennedy MW, Platts-Mills TAE. Atopy, asthma, and antibodies to Ascaris among rural and urban children in Kenya. J Pediatr 2002; 140:582-8. [PMID: 12032526 DOI: 10.1067/mpd.2002.122937] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate differences in the relationship between asthma and immune responses to allergens in children living in rural and urban areas of Kenya. STUDY DESIGN Children (mean age, 11 years) from Kabati (n = 136), a rural village, and Thika (n = 129), a small town, were studied by skin testing and serum immunoglobulin E (IgE) and immunoglobulin G (IgG) antibody measurement. Asthma was evaluated by symptoms, as well as spirometry before and after vigorous exercise to test for exercised-induced bronchospasm (EIB). School children from a study performed in Atlanta, Georgia, were used for comparison of anthropometric and immunologic results. RESULTS Compared with the urban area of Kenya, children living in the rural area had a lower percentage of body fat, smaller and fewer skin test responses to allergens, a higher prevalence of IgE antibodies to Ascaris (67% vs 26%) and 10-fold higher total IgE. In the urban area of Kenya, there was a strong correlation between EIB and atopy determined both by IgE antibodies (P =.02) and skin tests (P =.002). By contrast, in the rural area, none of the 13 children with EIB were skin-test positive (vs 13/109 of children without EIB). CONCLUSIONS Among the rural children, there was no association between immune responses to allergens and airway-related symptoms or reactivity. The association between asthma and atopy seen in the town of Thika may represent an important step in the increase in asthma seen both in urban Africa and in the West.
Collapse
Affiliation(s)
- Matthew S Perzanowski
- University of Virginia Asthma and Allergic Diseases Center, Health Sciences Center, Charlottesville, 22908-1355, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Imai S, Tezuka H, Furuhashi Y, Muto R, Fujita K. A factor of inducing IgE from a filarial parasite is an agonist of human CD40. J Biol Chem 2001; 276:46118-24. [PMID: 11591702 DOI: 10.1074/jbc.m104581200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Immune responses to parasitic helminth are usually characterized by quite mysterious phenomena: dominance of Th2-like immunity and antigen-nonspecific IgE secretion. We previously purified a factor from Dirofilaria immitis that induces antigen-nonspecific IgE in rats and named it DiAg. In the presence of IL-4, DiAg induces mouse B cells to secrete IgE, which is antigen-nonspecific polyclonal antibody. We investigated the biochemical characteristics of DiAg as a factor of inducing IgE in this study. Recombinant DiAg (rDiAg) with interleukin (IL)-4 induced IgE synthesis in highly purified human normal B cells in vitro cell culture systems. The addition of recombinant human soluble CD40 IgG fusion protein (rsCD40-Ig) inhibited induction of IgE synthesis by rDiAg with IL-4. Monocyte cells were stimulated with rDiAg and recombinant human soluble CD40L (rsCD40L); IL-12 and TNF-alpha were induced. The addition of rsCD40-Ig to THP-1 cells activated with rDiAg and rsCD40L inhibited the production of IL-12. rDiAg bound to the monocyte cell membrane fraction and recombinant human soluble CD40; this binding of rDiAg was competitively inhibited by addition of rsCD40L. Moreover, in CD40-deficient mice, IgE production and MLN-B cell proliferation by rDiAg were completely absent. Based on these results, we concluded that DiAg is an agonist of CD40.
Collapse
Affiliation(s)
- S Imai
- Section of Environmental Parasitology, Department of International Health Development, Division of Public Health, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo 113-8519.
| | | | | | | | | |
Collapse
|
48
|
Imai S, Tezuka H, Fujita K. A factor of inducing IgE from a filarial parasite prevents insulin-dependent diabetes mellitus in nonobese diabetic mice. Biochem Biophys Res Commun 2001; 286:1051-8. [PMID: 11527407 DOI: 10.1006/bbrc.2001.5471] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Parasitic helminth infections are characterized by eosinophilia and markedly elevated levels of circulating antigen-nonspecific immunoglobulin E (IgE), responses from which concern helminth protection. We previously purified a factor from Dirofilaria immitis that induces antigen-nonspecific IgE in mice and rats. Recombinant DiAg (rDiAg) has various biological activities. It is also known that parasitic helminth infection generates tremendous Th2 responses. The nonobese diabetic (NOD) mouse spontaneously develops Th1 cell-dependent autoimmune diabetes. Here we investigated the effects of rDiAg on the initiation and progression of this disease. rDiAg treatment of 6-week-old NOD females (the age at which insulitis typically begins) completely prevented insulitis and diabetes. Thus, rDiAg impaired the islet Ag-specific Th1 cell response in vivo, and the prevention of diabetes by rDiAg was associated with switching of the response from a Th1 to a Th2 profile. Since rDiAg clearly prevented insulitis by inhibiting the development and further accumulation of pathogenic Th1 cells to islets of Langerhans, we conclude that DiAg is a native Th2 inducer in filarial helminth and that Th1 responses are required for early events in the development of spontaneous autoimmune diabetes. In conclusion, the presence of parasitic helminth infections may play an important role as an immunomodulator in some autoimmune diseases or allergies.
Collapse
Affiliation(s)
- S Imai
- Section of Environmental Parasitology, Department of International Health Development, Graduate School, Tokyo Medical and Dental University, 1-5-45 Yushima Bunkyo-ku, Tokyo, 113-8519, Japan.
| | | | | |
Collapse
|
49
|
Abstract
Ascaris lumbricoides, the most frequent human intestinal nematode, is the causative agent of ascariasis, with an estimated worldwide prevalence of over one billion people, especially in moist tropical and subtropical regions, but also in cooler climates. Although characterised with low morbidity and mortality rates, the global prevalence of ascariasis still results in approximately 20,000 deaths annually, primarily as a consequence of intestinal obstruction. In humans, transmission usually occurs by hand-to-mouth route by way of contaminated agricultural products and food, or from dirty hands. Three phases of ascariasis may be present, namely, the pulmonary, intestinal and the complications stage. Although generally asymptomatic, heavy infestation may cause serious pulmonary disease, or partial or complete obstruction of biliary or intestinal tracts. Anthelminthic chemotherapy is required to eradicate the parasites and prevent potentially serious complications. Mebendazole, albendazole and pyrantel pamoate are the most widely used agents to treat ascariasis. Preventive chemotherapy delivered to communities in endemic regions may serve as an affordable and cost-effective strategy to reduce the prevalence and morbidity in endemic regions. Under unusual circumstances, Ascaris suum, the cause of helminthic infection in pigs, may also cause disease in humans.
Collapse
Affiliation(s)
- V St Georgiev
- National Institute of Allergy and Infectious Diseases, NIH 6700-B Rockledge Drive, Room 2102, Bethesda, MD 20892, USA.
| |
Collapse
|
50
|
Mishra A, Hogan SP, Brandt EB, Rothenberg ME. An etiological role for aeroallergens and eosinophils in experimental esophagitis. J Clin Invest 2001; 107:83-90. [PMID: 11134183 PMCID: PMC198543 DOI: 10.1172/jci10224] [Citation(s) in RCA: 456] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Eosinophil infiltration into the esophagus is observed in diverse diseases including gastroesophageal reflux and allergic gastroenteritis, but the processes involved are largely unknown. We now report an original model of experimental esophagitis induced by exposure of mice to respiratory allergen. Allergen-challenged mice develop marked levels of esophageal eosinophils, free eosinophil granules, and epithelial cell hyperplasia, features that mimic the human disorders. Interestingly, exposure of mice to oral or intragastric allergen does not promote eosinophilic esophagitis, indicating that hypersensitivity in the esophagus occurs with simultaneous development of pulmonary inflammation. Furthermore, in the absence of eotaxin, eosinophil recruitment is attenuated, whereas in the absence of IL-5, eosinophil accumulation and epithelial hyperplasia are ablated. These results establish a pathophysiological connection between allergic hypersensitivity responses in the lung and esophagus and demonstrate an etiologic role for inhaled allergens and eosinophils in gastrointestinal inflammation.
Collapse
Affiliation(s)
- A Mishra
- Division of Pulmonary Medicine, Allergy and Clinical Immunology, Department of Pediatrics, Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|