1
|
Abdelsalam A, Boroujerdi A, Soliman ERS. Metabolomic evaluation of selenium seed priming on mitigating lead stress toxicity in Vicia faba plants. BMC PLANT BIOLOGY 2025; 25:491. [PMID: 40240979 PMCID: PMC12004563 DOI: 10.1186/s12870-025-06453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 03/24/2025] [Indexed: 04/18/2025]
Abstract
BACKGROUND Persistent lead contamination and the absence of natural remediation elements exacerbate the long-term toxicity of plants. Nevertheless, it has been consistently shown that selenium has a protective effect against heavy metal toxicity in plants. Consequently, it is imperative to identify the metabolic pathways that selenium employs to enhance the resistance of plants to lead stress. This study aimed to investigate the metabolomic alterations induced by selenium priming of Vicia faba seeds to enhance their tolerance to lead stress. RESULTS Selenium seed priming significantly improved the growth parameter and mitigated the adverse growth consequences observed under lead stress. Nuclear magnetic resonance-based metabolomic analysis identified 58 metabolites in the polar extracts of the shoots, with the metabolites composed of amino acids (40%), carboxylic acids (12%), fatty acids (11%), carbohydrates (5%), alkaloids (5%), and phenols (4%). The addition of Pb facilitated the biosynthesis of unique metabolites, including 2-methylglutarate, 3-methyladipate, and epinephrine, which were absent in control and selenium-treated samples. Conversely, 4-aminobutyrate and 2-methylglutarate were entirely absent in Pb samples. Selenium-treated plants accumulated trigonelline and AMP at levels 1.4 and 6.0 times, respectively, more than the control samples. Selenium-primed plants exposed to lead stress exhibited higher levels of asparagine, tryptophan, and xanthine compared to other treatments. As determined by both enrichment analysis and pathway analysis, the most significantly altered pathways were alanine, aspartate, and glutamate metabolism; aminoacyl-tRNA biosynthesis; and valine, leucine, and isoleucine biosynthesis pathways. CONCLUSION The results demonstrate the crucial role of selenium priming in enhancing the growth and lead stress resistance of Vicia faba plants by significantly altering the concentrations of key metabolites and metabolic pathways, particularly those involved in amino acid metabolism, offering a promising strategy for improving plant resilience to heavy metal contamination.
Collapse
Affiliation(s)
- Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt.
| | - Arezue Boroujerdi
- Chemistry Department, Claflin University, Orangeburg, SC, 29115, USA
| | - Elham R S Soliman
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, 11795, Egypt.
| |
Collapse
|
2
|
Wu J, Li L, Chen M, Liu M, Zeng M, Tu W. Metabolomic interpretation of bacterial and fungal contribution to per- and polyfluoroalkyl substances interface migration in waterlogged paddy fields. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125580. [PMID: 39730035 DOI: 10.1016/j.envpol.2024.125580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 12/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely distributed in paddy soils, and their multi-phase partitioning in soil fractions was proved to be strongly interact with soil microbial community composition and functions. Despite this, soil bacterial and fungal metabolic molecular effects on PFAS water-soil interface migration in waterlogged paddy fields still remain unclear. This study integrated soil untargeted metabolomics with microbial amplicon sequencing to elucidate soil metabolic modulations of 15 PFAS interface release. Inhibition of bacterial and fungal metabolic activity both significantly altered PFAS cross-media translocation (p < 0.05). Gemmatimonadota, Desulfobacterota, Acidobacteriota, Actinobacteriota, and Bacteroidota were vital bacterial taxa affecting PFAS transport, while Basidiobolomycota and Chytridiomycota were vital fungal taxa. Fungi regulated PFAS migration more (R2 = 0.379-0.526) than bacteria (R2 = 0.021-0.030) due to the higher metabolic stability of stochastic-dominated fungi than deterministic-dominated bacteria. At the water-soil interface, the amino acid-like dissolved organic matter (Tyrosine and Tryptophan) contributed most (48.5-58.6 %) to the PFAS multiphase distribution. Untargeted metabolomics further clarified that fungal amino acid-like metabolites, including Phosphoenolpyruvate and Methionine, were key triggers stimulating Tyrosine and Tryptophan biosynthesis (p < 0.001), which were vital in modulating PFAS interface translocation (p < 0.001). These results provide novel insights into soil microbial metabolites' participation in PFAS water-soil interface migration, benefiting PFAS pollution control and agricultural security risk assessment in waterlogged paddy ecosystems.
Collapse
Affiliation(s)
- Jianyi Wu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Lingxuan Li
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Miao Chen
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meiyu Liu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Meijuan Zeng
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Wenqing Tu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
3
|
Yu H, Liu S, Zhang D, Hu R, Chen P, Liu H, Zhou Q, Tan W, Hu N, He Z, Ding D, Yan Q. Specific Enrichment of arsM-Carrying Microorganisms with Nitrogen Fixation and Dissimilatory Nitrate Reduction Function Enhances Arsenic Methylation in Plant Rhizosphere Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1647-1660. [PMID: 39810418 DOI: 10.1021/acs.est.4c10242] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Plants can recruit microorganisms to enhance soil arsenic (As) removal and nitrogen (N) turnover, but how microbial As methylation in the rhizosphere is affected by N biotransformation is not well understood. Here, we used acetylene reduction assay, arsM gene amplicon, and metagenome sequencing to evaluate the influence of N biotransformation on As methylation in the rhizosphere of Vetiveria zizanioides, a potential As hyperaccumulator. V. zizanioides was grown in mining soils (MS) and artificial As-contaminated soils (AS) over two generations in a controlled pot experiment. Results showed that the content of dimethylarsinic acid in the rhizosphere was significantly positively correlated with the rate of N fixation and the activity of nitrite reductase. The As-methylating species (e.g., Flavisolibacter and Paraflavitalea) were significantly enriched in the root-associated compartments in the second generation of MS and AS. Notably, higher abundance of genes involved in N fixation (nifD, nifK) and dissimilatory nitrate reduction to ammonium (narG/H, nirB/D/K/S) was detected in the second generation of MS than in the first generation. The metabolic pathway analysis further demonstrated that N fixing-stimulative and DNRA-stimulative As-methylating species could provide ammonium to enhance the synthesis of S-adenosyl-l-methionine, serving as methyl donors for soil As methylation. This study highlights two important N conversion-stimulative As-methylating pathways and has important implications for enhancing phytoremediation in As-contaminated soils.
Collapse
Affiliation(s)
- Huang Yu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Shengwei Liu
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, U.K
| | - Dandan Zhang
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Ruiwen Hu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Pubo Chen
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Huanping Liu
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Qiang Zhou
- College of Biology and Environmental Sciences, Jishou University, Xiangxi Tujia and Miao Autonomous Prefecture 416000, China
| | - Wenfa Tan
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Zhili He
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| | - Dexin Ding
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang 421001, China
| | - Qingyun Yan
- Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Observation and Research Station for Marine Ranching in Lingdingyang Bay, China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Zhuhai 519082, China
| |
Collapse
|
4
|
Li G, Tang Y, Xie H, Iqbal B, Wang Y, Dong K, Zhao X, Kim HJ, Du D, Xiao C. Combined Impact of Canada Goldenrod Invasion and Soil Microplastic Contamination on Seed Germination and Root Development of Wheat: Evaluating the Legacy of Toxicity. PLANTS (BASEL, SWITZERLAND) 2025; 14:181. [PMID: 39861534 PMCID: PMC11768274 DOI: 10.3390/plants14020181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
The concurrent environmental challenges of invasive species and soil microplastic contamination increasingly affect agricultural ecosystems, yet their combined effects remain underexplored. This study investigates the interactive impact of the legacy effects of Canada goldenrod (Solidago canadensis L.) invasion and soil microplastic contamination on wheat (Triticum aestivum L.) seed germination and root development. We measured wheat seed germination and root growth parameters by utilizing a controlled potted experiment with four treatments (control, S. canadensis legacy, microplastics, and combined treatment). The results revealed that the legacy effects of S. canadensis and microplastic contamination affected wheat seed germination. The effects of different treatments on wheat seedling properties generally followed an "individual treatment enhances, and combined treatment suppresses" pattern, except for root biomass. Specifically, the individual treatment promoted wheat seedling development. However, combined treatment significantly suppressed root development, decreasing total root length and surface area by 23.85% and 31.86%, respectively. These findings demonstrate that while individual treatments may promote root development, their combined effects are detrimental, indicating a complex interaction between these two environmental stressors. The study highlights the need for integrated soil management strategies to mitigate the combined impacts of invasive species and microplastic contamination on crop productivity and ecosystem health.
Collapse
Affiliation(s)
- Guanlin Li
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yi Tang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
| | - Hongliang Xie
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Babar Iqbal
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
| | - Yanjiao Wang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (G.L.); (Y.T.); (H.X.); (Y.W.)
| | - Ke Dong
- Division of Bio Convergence, Kyonggi University, Suwon 16227, Republic of Korea
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea;
| | - Hyun-Jun Kim
- Department of Forest Resources, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Daolin Du
- Jingjiang College, Institute of Environment and Ecology, School of Environment and Safety Engineering, School of Emergency Management, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| |
Collapse
|
5
|
Charagh S, Wang H, Wang J, Raza A, Hui S, Cao R, Zhou L, Tang S, Hu P, Hu S. Leveraging multi-omics tools to comprehend responses and tolerance mechanisms of heavy metals in crop plants. Funct Integr Genomics 2024; 24:194. [PMID: 39441418 DOI: 10.1007/s10142-024-01481-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Extreme anthropogenic activities and current farming techniques exacerbate the effects of water and soil impurity by hazardous heavy metals (HMs), severely reducing agricultural output and threatening food safety. In the upcoming years, plants that undergo exposure to HM might cause a considerable decline in the development as well as production. Hence, plants have developed sophisticated defensive systems to evade or withstand the harmful consequences of HM. These mechanisms comprise the uptake as well as storage of HMs in organelles, their immobilization via chemical formation by organic chelates, and their removal using many ion channels, transporters, signaling networks, and TFs, amid other approaches. Among various cutting-edge methodologies, omics, most notably genomics, transcriptomics, proteomics, metabolomics, miRNAomics, phenomics, and epigenomics have become game-changing approaches, revealing information about the genes, proteins, critical metabolites as well as microRNAs that govern HM responses and resistance systems. With the help of integrated omics approaches, we will be able to fully understand the molecular processes behind plant defense, enabling the development of more effective crop protection techniques in the face of climate change. Therefore, this review comprehensively presented omics advancements that will allow resilient and sustainable crop plants to flourish in areas contaminated with HMs.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, 310006, China.
| |
Collapse
|
6
|
Xu L, Xie W, Dai H, Wei S, Skuza L, Li J, Shi C, Zhang L. Effects of combined microplastics and heavy metals pollution on terrestrial plants and rhizosphere environment: A review. CHEMOSPHERE 2024; 358:142107. [PMID: 38657695 DOI: 10.1016/j.chemosphere.2024.142107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/08/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Microplastics (MPs) can enter the soil environment through industry, agricultural production and daily life sources. Their interaction with heavy metals (HMs) poses a significant threat to a variety of terrestrial ecosystems, including agricultural ones, thereby affecting crop quality and threatening human health. This review initially addresses the impact of single and combined contamination with MPs and HMs on soil environment, including changes in soil physicochemical properties, microbial community structure and diversity, fertility, enzyme activity and resistance genes, as well as alterations in heavy metal speciation. The article further explores the effects of this pollution on the growth characteristics of terrestrial plants, such as plant biomass, antioxidant systems, metabolites and photosynthesis. In general, the combined contaminants tend to significantly affect soil environment and terrestrial plant growth, i.e., the impact of combined contaminants on plants weight ranged from -87.5% to 4.55%. Similarities and differences in contamination impact levels stem from the variations in contaminant types, sizes and doses of contaminants and the specific plant growth environments. In addition, MPs can not only infiltrate plants directly, but also significantly affect the accumulation of HMs in terrestrial plants. The heavy metals concentration in plants under the treatment of MPs were 70.26%-36.80%. The co-occurrence of these two pollution types can pose a serious threat to crop productivity and safety. Finally, this study proposes suggestions for future research aiming to address current gaps in knowledge, raises awareness about the impact of combined MPs + HMs pollution on plant growth and eco-environmental security.
Collapse
Affiliation(s)
- Lei Xu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Wenjun Xie
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China.
| | - Huiping Dai
- College of Biological Science & Engineering, Shaanxi Province Key Laboratory of Bio-resources, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C, State Key Laboratory of Biological Resources and Ecological Environment Jointly Built By Qinba Province and Ministry, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Shuhe Wei
- Key Laboratory of Pollution Ecology and Environment Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Lidia Skuza
- Institute of Biology, Centre for Molecular Biology and Biotechnology, University of Szczecin, Szczecin, 71-415, Poland
| | - Jianan Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Cailing Shi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| | - Lichang Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, 266520, China
| |
Collapse
|
7
|
Na Nagara V, Sarkar D, Neve S, Saleh H, Boufadel M, Giri S, Datta R. Repurposing spent biomass of vetiver grass used for stormwater treatment to generate biochar and ethanol. CHEMOSPHERE 2024; 358:142196. [PMID: 38692362 DOI: 10.1016/j.chemosphere.2024.142196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Stormwater pollution is a key factor contributing to water quality degradation, posing substantial environmental and human health risks. Although stormwater retention ponds, also referred to as wet ponds, are commonly implemented to alleviate stormwater challenges by reducing peak flow and removing suspended solids, their effectiveness in removing heavy metals and nutrients is limited. This study evaluated the performance of floating treatment platforms (FTPs) featuring vetiver grass (Chrysopogon zizanioides), a non-invasive, nutrient- and metal-accumulating perennial grass, in removing heavy metals (Cu, Pb, and Zn) and nutrients (P and N) in stormwater retention ponds. Furthermore, the potential for utilizing the spent vetiver biomass for generating biochar and bioethanol was investigated. The study was conducted in a greenhouse setup under simulated wet and dry weather conditions using pond water collected from a retention pond in Stafford Township, New Jersey, USA. Two FTPs with vetiver (vegetated FTPs) were compared with two FTPs without vetiver (non-vegetated FTPs), which served as controls. Results showed that the removal of heavy metals and nutrients by the FTPs with vetiver was significantly higher (p < 0.05) than the FTPs without vetiver. Notably, vetiver showed resilience to stormwater pollutants and hydroponic conditions, displaying no visible stress symptoms. The biochar and bioethanol generated from the spent vetiver exhibited desirable yield and quality, without raising concerns regarding pollutant leaching, indicated by very low TCLP and SPLP concentrations. This study provides compelling evidence that the implementation of vetiver-based FTPs offers a cost-effective and environment-friendly solution for mitigating stormwater pollution in retention ponds. Furthermore, the utilization of vetiver biomass for biofuel and biochar production supports clean production and fostering circular economy efforts.
Collapse
Affiliation(s)
- Viravid Na Nagara
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA.
| | - Sameer Neve
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Hadeer Saleh
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| | - Michel Boufadel
- Center for Natural Resources, Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA
| | - Subhasis Giri
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| |
Collapse
|
8
|
Han YH, Li YX, Chen X, Zhang H, Zhang Y, Li W, Liu CJ, Chen Y, Ma LQ. Arsenic-enhanced plant growth in As-hyperaccumulator Pteris vittata: Metabolomic investigations and molecular mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171922. [PMID: 38522532 DOI: 10.1016/j.scitotenv.2024.171922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The first-known As-hyperaccumulator Pteris vittata is efficient in As uptake and translocation, which can be used for phytoremediation of As-contaminated soils. However, the underlying mechanisms of As-enhanced plant growth are unknown. We used untargeted metabolomics to investigate the potential metabolites and associated metabolic pathways regulating As-enhanced plant growth in P. vittata. After 60 days of growth in an MS-agar medium containing 15 mg kg-1 As, P. vittata biomass was 33-34 % greater than the no-As control. Similarly, the As contents in P. vittata roots and fronds were 272 and 1300 mg kg-1, considerably greater than the no-As control. Univariate and multivariate analyses based on electrospray ionization indicate that As exposure changed the expression of 1604 and 1248 metabolites in positive and negative modes. By comparing with the no-As control, As exposure significantly changed the expression of 14 metabolites including abscisic acid, d-glucose, raffinose, stachyose, chitobiose, xylitol, gibberellic acids, castasterone, citric acid, riboflavin-5-phosphate, ubiquinone, ubiquinol, UDP-glucose, and GDP-glucose. These metabolites are involved in phytohormone synthesis, energy metabolism, and sugar metabolism and may all potentially contribute to regulating As-enhanced plant growth in P. vittata. Our data provide clues to understanding the metabolic regulations of As-enhanced plant growth in P. vittata, which helps to enhance its phytoremediation efficiency of As-contaminated soils.
Collapse
Affiliation(s)
- Yong-He Han
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yi-Xi Li
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Xian Chen
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yong Zhang
- Fujian Key Laboratory of Pollution Control and Resource Reuse, College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yanshan Chen
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China.
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
9
|
Zhou Q, Li X, Zheng X, Zhang X, Jiang Y, Shen H. Metabolomics reveals the phytotoxicity mechanisms of foliar spinach exposed to bulk and nano sizes of PbCO 3. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133097. [PMID: 38113737 DOI: 10.1016/j.jhazmat.2023.133097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/21/2023]
Abstract
PbCO3 is an ancient raw material for Pb minerals and continues to pose potential risks to the environment and human health through mining and industrial processes. However, the specific effects of unintentional PbCO3 discharge on edible plants remain poorly understood. This study unravels how foliar application of PbCO3 induces phytotoxicity by potentially influencing leaf morphology, photosynthetic pigments, oxidative stress, and metabolic pathways related to energy regulation, cell damage, and antioxidant defense in Spinacia oleracea L. Additionally, it quantifies the resultant human health risks. Plants were foliarly exposed to PbCO3 nanoparticles (NPs) and bulk products (BPs), as well as Pb2+ at 0, 5, 10, 25, 50, and 100 mg·L-1 concentrations once a day for three weeks. The presence and localization of PbCO3 NPs inside the plant cells were confirmed by TEM-EDS analysis. The maximum accumulation of total Pb was recorded in the root (2947.77 mg·kg-1 DW for ion exposure), followed by the shoot (942.50 mg·kg-1 DW for NPs exposure). The results revealed that PbCO3 and Pb2+ exposure had size- and dose-dependent inhibitory effects on spinach length, biomass, and photosynthesis attributes, inducing impacts on the antioxidase activity of CAT, membrane permeability, and nutrient elements absorption and translocation. Pb2+ exhibited pronounced toxicity in morphology and chlorophyll; PbCO3 BP exposure accumulated the most lipid peroxidation products of MDA and H2O2; and PbCO3 NPs triggered the largest cell membrane damage. Furthermore, PbCO3 NPs at 10 and 100 mg·L-1 induced dose-dependent metabolic reprogramming in spinach leaves, disturbing the metabolic mechanisms related to amino acids, antioxidant defense, oxidative phosphorylation, fatty acid cycle, and the respiratory chain. The spinach showed a non-carcinogenic health risk hierarchy: Pb2+ > PbCO3 NPs > PbCO3 BPs, with children more vulnerable than adults. These findings enhance our understanding of PbCO3 particle effects on food security, emphasizing the need for further research to minimize their impact on human dietary health.
Collapse
Affiliation(s)
- Qishang Zhou
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China; MRC Centre for Environment and Health, Environmental Research Group, School of Public Health, Imperial College London, 80 Wood Lane, London W12 0BZ, UK.
| | - Xueming Zheng
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - Yueheng Jiang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| | - He Shen
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, Xi'an, Shaanxi 710062, PR China; International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi 710062, PR China
| |
Collapse
|
10
|
Hu M, Huang Y, Liu L, Ren L, Li C, Yang R, Zhang Y. The effects of Micro/Nano-plastics exposure on plants and their toxic mechanisms: A review from multi-omics perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133279. [PMID: 38141304 DOI: 10.1016/j.jhazmat.2023.133279] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/05/2023] [Accepted: 12/13/2023] [Indexed: 12/25/2023]
Abstract
In recent years, plastic pollution has become a global environmental problem, posing a potential threat to agricultural ecosystems and human health, and may further exacerbate global food security problems. Studies have revealed that exposure to micro/nano-plastics (MPs/NPs) might cause various aspects of physiological toxicities, including plant biomass reduction, intracellular oxidative stress burst, photosynthesis inhibition, water and nutrient absorption reduction, cellular and genotoxicity, seed germination retardation, and that the effects were closely related to MP/NP properties (type, particle size, functional groups), exposure concentration, exposure duration and plant characteristics (species, tissue, growth stage). Based on a brief review of the physiological toxicity of MPs/NPs to plant growth, this paper comprehensively reviews the potential molecular mechanism of MPs/NPs on plant growth from perspectives of multi-omics, including transcriptome, metabolome, proteome and microbiome, thus to reveal the role of MPs/NPs in plant transcriptional regulation, metabolic pathway reprogramming, protein translational and post-translational modification, as well as rhizosphere microbial remodeling at multiple levels. Meanwhile, this paper also provides prospects for future research, and clarifies the future research directions and the technologies adopted.
Collapse
Affiliation(s)
- Mangu Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yongxiang Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Lin Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong 510640, China
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chengyong Li
- School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Shenzhen Institute of Guangdong Ocean University, Shenzhen 518108, China
| | - Rongchao Yang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Yueqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China.
| |
Collapse
|
11
|
Wu G, Hou Q, Zhan M, Zhang H, Lv X, Xu Y. Metabolome regulation and restoration mechanism of different varieties of rice (Oryza sativa L.) after lindane stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169839. [PMID: 38184248 DOI: 10.1016/j.scitotenv.2023.169839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/08/2024]
Abstract
There is a lack of studies on the ability of plants to metabolize chlorinated organic pollutants (COPs) and the dynamic expression changes of metabolic molecules during degradation. In this study, hybrid rice Chunyou 927 (CY) and Zhongzheyou 8 (ZZY), traditional rice subsp. Indica Baohan 1 (BH) and Xiangzaoxian 45 (XZX), and subsp. Japonica Yangjing 687 (YJ) and Longjing 31 (LJ) were stressed by a typical COPs of lindane and then transferred to a lindane-free culture to incubate for 9 days. The cumulative concentrations in the roots of BH, XZX, CY, ZZY, YJ and LJ were 71.46, 65.42, 82.06, 80.11, 47.59 and 56.10 mg·kg-1, respectively. And the degradation ratios on day 9 were 87.89 %, 86.92 %, 94.63 %, 95.49 %, 72.04 % and 82.79 %, respectively. On the 0 day after the release of lindane stress, the accumulated lindane inhibited the normal physiological activities of rice by affecting lipid metabolism in subsp. Indica BH, amino acid metabolism and synthesis and nucleotide metabolism in hybrid CY. Carbohydrate metabolism of subsp. Japonica YJ also was inhibited, but with low accumulation of lindane, YJ regulated amino acid metabolism to resist stress. With the degradation of lindane in rice, the amino acid metabolism of BH and CY, which had high degradation ratios on day 9, was activated to compound biomolecules required for the organism to recover from the damage. Amino acid metabolism and carbohydrate metabolism were disturbed and inhibited mainly in YJ with low degradation ratios. This study provides the difference of the metabolic capacity of the metabolic capacity of different rice varieties to lindane, and changes at the molecular level and metabolic response mechanism of rice during the metabolism of lindane.
Collapse
Affiliation(s)
- Guangqi Wu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Qian Hou
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Mengqi Zhan
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Haoyu Zhang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yan Xu
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
12
|
Wu X, Yin S, Liu Y, Zhu Y, Jiang T, Liang S, Bian S, Cao Y, Wang G, Yang J. Molecular mechanisms and physiological responses of rice leaves co-exposed to submicron-plastics and cadmium: Implication for food quality and security. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132957. [PMID: 37948783 DOI: 10.1016/j.jhazmat.2023.132957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/26/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
The effects of co-exposure to aged submicron particles (aSMPs) and Cd as model contaminants on rice leaves via the foliar route were investigated. Thirty-day-old rice seedlings grown in soil were exposed to Cd (nitrate) through foliar spraying at concentrations of 1, 10, 50, 100, and 500 μM, with or without aSMP at a rate of 30 μg d-1. It was observed that Cd translocated from leaves to roots via stems even without co-exposure to SMP. Co-exposure can reduce cadmium levels in leaves. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) analysis confirmed a significant reduction (29.3 - 77.9%) in Cadmium accumulation in the leaves of rice plants during co-exposure. Exposure to Cd resulted in physiological, transcriptomic, and metabolomic changes in rice leaves, disrupting 28 metabolism pathways, and impacting crop yield and quality. Exposure to both Cd and aSMPs can interfere with the Cd distribution in plants. Rice leaves exposed solely to Cd exhibit higher toxicity and Cd accumulation, compared to those co-exposed to Cd and aSMPs. The accumulation of Cd in plant leaves is enhanced with aSMPs, which may lead to more pronounced gene expression regulation and changes in metabolic pathways, compared to Cd exposure. Our study found that the independent Cd exposure group had higher Cd accumulation and toxicity in rice leaves compared to the combined exposure of Cd and aSMPs. We hypothesize that aged negatively charged SMPs can capture Cd and reduce its exposure in the free state while jointly inhibiting Cd-induced oxidative and chloroplast damage, thereby reducing the potential risk of Cd exposure in rice plants.
Collapse
Affiliation(s)
- Xiang Wu
- School of Environmental Science & Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China; School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Shanshan Yin
- Toxicological Center, Universiteit Antwerpen, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Yao Liu
- College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, Hubei 430065, China
| | - Yuwei Zhu
- School of Environmental Science & Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Timing Jiang
- School of Environmental Science & Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Shijie Bian
- School of Environmental Science & Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China
| | - Yaowu Cao
- School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Guojing Wang
- School of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China.
| |
Collapse
|
13
|
Li H, Rao Z, Sun G, Wang M, Yang Y, Zhang J, Li H, Pan M, Wang JJ, Chen XW. Root chemistry and microbe interactions contribute to metal(loid) tolerance of an aromatic plant - Vetiver grass. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132648. [PMID: 37783142 DOI: 10.1016/j.jhazmat.2023.132648] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 07/03/2023] [Accepted: 09/26/2023] [Indexed: 10/04/2023]
Abstract
Aromatic plants, such as vetiver grass (Chrysopogon zizanioides), possess strong abilities to resist environmental stresses. However, whether such abilities stem from the interaction between specific chemical characteristics and the associated microbes in roots and rhizosphere remains unclear. We conducted pot experiments to analyze stress-tolerant parameters, organic compounds, and bacterial communities in roots and rhizosphere of vetiver under typical metal(loid) stress [cadmium (Cd), arsenic (As), or Cd + As] over time. The results showed that the vetiver displayed limited toxic symptoms in terms of oxidative stress-antioxidant balance and chlorophyll content. The root low-molecular-weight organic acids (LMWOAs), fatty acids, and sterols were highly sensitive to growth stage (increased from the 4-month to the 8-month stage), and less sensitive to metal(loid) stress. The sugar contents in the rhizosphere soils also notably increased over time. Such endo and rhizosphere chemical changes strongly correlated with and enriched the functional bacteria including Streptomyces, which can resist stress and promote plant growth. The compound-bacteria interaction highly depended on growth stage. Vetiver demonstrated a progressive adaptation to stresses through metabolite modulation and cellular defense reinforcement. Our study evidenced that vetiver shapes the interaction between organic compounds and bacterial community in the root-soil interface and provides notable stress-resistant functions.
Collapse
Affiliation(s)
- Huishan Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zuomin Rao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guodong Sun
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengke Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanxi Yang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Junwen Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hui Li
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Min Pan
- School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong, China
| | - Jun-Jian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Xun Wen Chen
- Guangdong Provincial Research Centre for Environment Pollution Control and Remediation Materials, Department of Ecology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
14
|
Iqbal B, Zhao X, Khan KY, Javed Q, Nazar M, Khan I, Zhao X, Li G, Du D. Microplastics meet invasive plants: Unraveling the ecological hazards to agroecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167756. [PMID: 37832681 DOI: 10.1016/j.scitotenv.2023.167756] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The objective of this study was to assess the combined impact of environmental microplastic pollution and biological invasion which represent critical global eco-environmental challenges. The invasion of Solidago canadensis L. and soil microplastic contamination in the agroecosystem pose severe hazards to soil and plant ecology and human health. Oryza sativa L. (rice) was examined after individual and combined exposure to Solidago canadensis L. invasion (SI) and soil polyethylene microplastic contamination (MPc). Comparing the individual and combination treatments to the control, leaf biomass decreased, with varying changes in carbon, nitrogen, and phosphorus. Antioxidant enzyme activity and reactive oxygen species levels were significantly reduced following SI exposure and increased following the combined treatment (SI × MP). In contrast, ascorbate peroxidase and catalase activities were reduced after the combined treatment. Due to the confluence of various abiotic stressors, the combined treatment had a higher impact on leaf metabolites than the singular SI and MPc treatments. However, in comparison, the combined treatment significantly influenced the metabolic profile. In conclusion, the interaction between SI and MPc resulted in significant metabolic alterations. These changes were characterized by shifts in metabolite pools influenced by antioxidant enzyme activities and nutrient content, ultimately enhancing defense mechanisms within rice crops. Consequently, these stressors threaten the food safety, sustainability, and agricultural output of crops. The co-exposure of invasive plants and microplastics sheds light on the bio-ecological risks associated with microplastics in staple foods and offers valuable insights into the phytotoxicity of invasive plants in the presence of polyethylene microplastics.
Collapse
Affiliation(s)
- Babar Iqbal
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China
| | - Xiaoxun Zhao
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Kiran Yasmin Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Qaiser Javed
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Mudasir Nazar
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Ismail Khan
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China
| | - Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Guanlin Li
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, People's Republic of China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, People's Republic of China.
| | - Daolin Du
- School of Emergency Management, School of Environment and Safety Engineering, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang 212013, People's Republic of China.
| |
Collapse
|
15
|
Wu E, Wang K, Liu Z, Wang J, Yan H, Zhu X, Zhu X, Chen B. Metabolic and Microbial Profiling of Soil Microbial Community under Per- and Polyfluoroalkyl Substance (PFAS) Stress. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21855-21865. [PMID: 38086098 DOI: 10.1021/acs.est.3c07020] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent significant stress to organisms and are known to disrupt microbial community structure and function. Nevertheless, a detailed knowledge of the soil microbial community responding to PFAS stress at the metabolism level is required. Here we integrated UPLC-HRMS-based metabolomics data with 16S rRNA and ITS amplicon data across soil samples collected adjacent to a fluoropolymer production facility to directly identify the biochemical intermediates in microbial metabolic pathways and the interactions with microbial community structure under PFAS stress. A strong correlation between metabolite and microbial diversity was observed, which demonstrated significant variations in soil metabolite profiles and microbial community structures along with the sampling locations relative to the facility. Certain key metabolites were identified in the metabolite-PFAS co-occurrence network, functioning on microbial metabolisms including lipid metabolism, amino acid metabolism, and secondary metabolite biosynthesis. These results provide novel insights into the impacts of PFAS contamination on soil metabolomes and microbiomes. We suggest that soil metabolomics is an informative and useful tool that could be applied to reinforce the chemical evidence on the disruption of microbial ecological traits.
Collapse
Affiliation(s)
- Enhui Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Zhengzheng Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, People's Republic of China
| | - Jing Wang
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, People's Republic of China
| | - Huicong Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiangyu Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
| | - Xiaomin Zhu
- College of Resources and Environment, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, People's Republic of China
- Innovation Center of Yangtze River Delta, Zhejiang University, Haining, Zhejiang 311400, People's Republic of China
| |
Collapse
|
16
|
Zhang S, Zhao B, Zhang X, Wu F, Zhao Q. The Metabolomics Response of Solanum melongena L. Leaves to Various Forms of Pb. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2911. [PMID: 37999265 PMCID: PMC10675538 DOI: 10.3390/nano13222911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 11/25/2023]
Abstract
Due to activities like mining and smelting, lead (Pb) enters the atmosphere in various forms in coarse and fine particles. It enters plants mainly through leaves, and goes up the food chain. In this study, PbXn (nano-PbS, mic-PbO and PbCl2) was applied to eggplant (Solanum melongena L.) leaves, and 379 differential metabolites were identified and analyzed in eggplant leaves using liquid chromatography-mass spectrometry. Multivariate statistical analysis revealed that all three Pb treatments significantly altered the metabolite profile. Compared with nano-PbS, mic-PbO and PbCl2 induced more identical metabolite changes. However, the alterations in metabolites related to the TCA cycle and pyrimidine metabolism, such as succinic acid, citric acid and cytidine, were specific to PbCl2. The number of differential metabolites induced by mic-PbO and PbCl2 was three times that of nano-PbS, even though the amount of nano-PbS absorbed by leaves was ten times that of PbO and seven times that of PbCl2. This suggests that the metabolic response of eggplant leaves to Pb is influenced by both concentration and form. This study enhances the current understanding of plants' metabolic response to Pb, and demonstrates that the metabolomics map provides a more comprehensive view of a plant's response to specific metals.
Collapse
Affiliation(s)
- Siyu Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
| | - Bing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejiao Zhang
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Qing Zhao
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (S.Z.); (B.Z.); (X.Z.)
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
17
|
Xu Q, Qiu W, Lin T, Yang Y, Jiang Y. Cadmium tolerance in Elodea canadensis Michx: Subcellular distribution and metabolomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114905. [PMID: 37060802 DOI: 10.1016/j.ecoenv.2023.114905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
The aquatic plant Elodea canadensis is considered a good candidate for ecotoxicological investigations. Cadmium (Cd) is a widespread contaminant in aquatic systems. In this study, to better elucidate the underlying tolerance mechanism and molecular impact of environmentally relevant Cd concentration in aquatic plants, subcellular distribution, chemical forms, and gas chromatography-mass spectrometry-based non-targeted metabolomics profiles were comprehensively analyzed in E. canadensis subjected to 0 and 10 µM Cd treatment for 5 d. Subcellular fractionation analysis of Cd-containing leaves showed that 67% of Cd was compartmentalized in cell wall followed by the soluble fraction (24 %) and organelles (9 %). The majority of Cd (90 %) was found in the extraction using 1 M NaCl. Metabolomic analysis using unsupervised principal component analyses and a supervised partial least squares discriminant analysis revealed clear differences in metabolic profiles between the two groups, demonstrating the metabolic effects of Cd. The 155 identified compounds altered by Cd were mainly from primary metabolism, including sugars, amino acids, organic acids, and their derivatives. Secondary metabolites such as polyphenols and phenolamides were also detected. The massive up-regulation of metabolites, including trehalose, proline, sarcosine, nicotianamine, putrescine, α-ketoglutaric acid, citric acid, and phytol might represent a detoxification mechanism. These findings highlighted the mechanistic strategies that E. canadensis employs to defend against Cd toxicity.
Collapse
Affiliation(s)
- Qinsong Xu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wenjing Qiu
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Tinting Lin
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yeyuping Yang
- College of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| |
Collapse
|
18
|
Wang M, Xiao Y, Li Y, Liu J. Optimistic effects of galaxolide and polystyrene microplastic stress on the physio-biochemical characteristics and metabolic profiles of an ornamental plant. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:350-360. [PMID: 36739842 DOI: 10.1016/j.plaphy.2023.01.062] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Galaxolide (HHCB) and polystyrene (PS) microplastics or nanoplastics have been widely recognized as emerging pollutants. However, very few efforts have been made to remove these contaminants from the environment using eco-friendly materials such as plant materials. Therefore, this study sought to investigate the physiological and biochemical effects and tolerance mechanisms of Mirabilis jalapa L. upon exposure to HHCB and PS. Our findings demonstrated that this ornamental plant was tolerant to HHCB and PS exposure. HHCB treatment increased antioxidant enzyme activity. However, superoxide dismutase (SOD) activity increased by 206.85% when the plants were treated with 0.5 mg L-1 HHCB alone, whereas co-exposure to 0.5 mg L-1 HHCB and 500 nm PS increased SOD activity by 93.82%. Contaminant exposure also affected photosynthetic parameters such as stomatal conductance and transpiration rate. In contrast, net photosynthetic rate and photosynthetic pigment content were not significantly affected. HHCB aggregated heavily in the roots of the plant. Moreover, 500 nm PS could be absorbed by the root and transported to the shoot, and 5 μm PS would be transferred to the shoot under the carrying effect of HHCB. Co-exposure to HHCB and PS significantly changed the glyoxylate and dicarboxylate metabolism, alanine, aspartate, and glutamate metabolism, and glycine, serine, and threonine metabolism pathways, thus affecting carbohydrate synthesis and energy metabolism in M. jalapa. These results provide a basis for the development of HHCB and PS remediation strategies using M. jalapa, an ornamental plant that is not only tolerant to organic contaminants but can also beautify the environment.
Collapse
Affiliation(s)
- Mingzhu Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yufang Xiao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yun Li
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianv Liu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), China; College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
19
|
Li G, Li J, Zhang H, Li J, Jia L, Zhou S, Wang Y, Sun J, Tan M, Shao J. ASSVd infection inhibits the vegetative growth of apple trees by affecting leaf metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1137630. [PMID: 36909405 PMCID: PMC9998556 DOI: 10.3389/fpls.2023.1137630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Apple scar skin viroid (ASSVd) can infect apple trees and cause scar skin symptoms. However, the associated physiological mechanisms are unclear in young saplings. In this study, ASSVd-infected and control 'Odysso' and 'Tonami' apple saplings were examined to clarify the effects of ASSVd on apple tree growth and physiological characteristics as well as the leaf metabolome. The results indicated that leaf ASSVd contents increased significantly after grafting and remained high in the second year. Leaf size, tree height, stem diameter, branch length, and leaf photosynthetic efficiency decreased significantly in viroid-infected saplings. In response to the ASSVd infection, the chlorophyll a and b contents decreased significantly in 'Odysso', but were unchanged in 'Tonami'. Moreover, the N, P, K, Fe, Mn, and Ca contents decreased significantly in the leaves of viroid-infected 'Odysso' or 'Tonami'. Similarly, the CAT and POD contents decreased significantly in the viroid-infected saplings, but the SOD content increased in the viroid-infected 'Tonami' saplings. A total of 15 and 40 differentially abundant metabolites were respectively identified in the metabolome analyses of 'Odysso' and 'Tonami' leaves. Specifically, in the viroid-infected 'Odysso' and 'Tonami' samples, the L-2-aminobutyric acid, 6″-O-malonyldaidzin, and D-xylose contents increased, while the coumarin content decreased. These metabolites are related to the biosynthesis of isoflavonoids and phenylpropanoids as well as the metabolism of carbohydrates and amino acids. These results imply that ASSVd affects apple sapling growth by affecting physiological characteristics and metabolism of apple leaves. The study data may be useful for future investigations on the physiological mechanisms underlying apple tree responses to ASSVd.
Collapse
Affiliation(s)
- Guofang Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jinghong Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - He Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jiuyang Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Linguang Jia
- Changli Institute of Pomology, Hebei Academy of Agricultural and Forestry Science, Changli, China
| | - Shiwei Zhou
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanan Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jianshe Sun
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ming Tan
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jianzhu Shao
- College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
20
|
Roy T, Dey TK, Jamal M. Microplastic/nanoplastic toxicity in plants: an imminent concern. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:27. [PMID: 36279030 PMCID: PMC9589797 DOI: 10.1007/s10661-022-10654-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/10/2022] [Indexed: 05/04/2023]
Abstract
The toxic impact of microplastics/nanoplastics (MPs/NPs) in plants and the food chain has recently become a top priority. Several research articles highlighted the impact of MPs/NPs on the aquatic food chain; however, very little has been done in the terrestrial ecosystem. A number of studies revealed that MPs/NPs uptake and subsequent translocation in plants alter plant morphological, physiological, biochemical, and genetic properties to varying degrees. However, there is a research gap regarding MPs/NPs entry into plants, associated factors influencing phytotoxicity levels, and potential remediation plans in terms of food safety and security. To address these issues, all sources of MPs/NPs intrusion in agroecosystems should be revised to avoid these hazardous materials with special consideration as preventive measures. Furthermore, this review focuses on the routes of accumulation and transmission of MPs/NPs into plant tissues, related aspects influencing the intensity of plant stress, and potential solutions to improve food quality and quantity. This paper also concludes by providing an outlook approach of applying exogenous melatonin and introducing engineered plants that would enhance stress tolerance against MPs/NPs. In addition, an overview of inoculation of beneficial microorganisms and encapsulated enzymes in soil has been addressed, which would make the degradation of MPs/NPs faster.
Collapse
Affiliation(s)
- Tapati Roy
- Department of Agronomy, Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Thuhin K Dey
- Department of Leather Engineering, Faculty of Mechanical Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh
| | - Mamun Jamal
- Department of Chemistry, Faculty of Civil Engineering, Khulna University of Engineering & Technology, Khulna, 9203, Bangladesh.
- Micropastics Solution Ltd., Incubation Centre, KUET Business Park, Khulna, Bangladesh.
| |
Collapse
|
21
|
Zhang F, Peng J, Rong Y, Sun S, Zheng Y. Removal of atrazine from submerged soil using vetiver grass ( Chrysopogon zizanioides L.). INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:670-678. [PMID: 35900126 DOI: 10.1080/15226514.2022.2103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The long-term widespread application of atrazine poses significant threats to the eco-environment and human health. To investigate the potential of vetiver (Chrysopogon zizanioides L.) for phytoremediation of the environmental media contaminated by atrazine, an indoor incubation experiment was conducted in submerged soil over 30 days. Results showed that the chlorophyll level of the vetiver was not significantly affected by exposure to atrazine. Vetiver could take up and accumulate atrazine from submerged soil and peaked around the 20th day with a concentration of 1.0 mg kg-1 in leaf. The metabolites Hydroxyatrazine (HA), deethylatrazine (DEA), Deisopropylatrazine (DIA), and didealkylatrazine (DDA) were detected in the leaf on the 30th day, indicating vetiver could degrade atrazine inside the leaf tissue. The atrazine removal rate in the vetiver planted and unplanted jars were 69.72 and 60.29%, respectively, indicating that 9.43% higher atrazine removal was achieved in the presence of vetiver (p < 0.05). The atrazine dissipation in the submerged soil followed first-order kinetics, the degradation constant was 0.066, and the half-life of atrazine dissipation was shortened by 6.86 days in the presence of vetiver. The present study suggests that vetiver can take up atrazine from submerged soil and accumulate in the leaf, which could then degrade in the leaf.Novelty statement: Although the fate of atrazine in agricultural soils has been extensively investigated through various experiments, little is known about the effect of vetiver grass on atrazine dissipation from submerged soil. With the identification of soil-leaf transportation and four metabolites in vetiver leaf and soils, significantly accelerated atrazine dissipation from the submerged soil was achieved in the presence of vetiver. Particularly, the formation of less toxic dealkylated products in the leaf indicated vetiver is a promising grass for atrazine removal from submerged soil.
Collapse
Affiliation(s)
- Faming Zhang
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
| | - Jiansong Peng
- Forest City Research Institute, Southwest Forestry University, Kunming, China
| | - Yuhong Rong
- Faculty of Landscape Architecture, Southwest Forestry University, Kunming, China
| | - Shixian Sun
- National Plateau Wetlands Research Center, Southwest Forestry University, Kunming, China
| | - Yi Zheng
- Faculty of Plant Protection, Yunnan Agricultural University, Kunming, China
- Department of President Office, Yunnan Open University, Kunming, China
| |
Collapse
|
22
|
Li SQ, Li GD, Peng KM, Yang LH, Huang XF, Lu LJ, Liu J. The combined effect of Diversispora versiformis and sodium bentonite contributes on the colonization of Phragmites in cadmium-contaminated soil. CHEMOSPHERE 2022; 293:133613. [PMID: 35032512 DOI: 10.1016/j.chemosphere.2022.133613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
To promote the colonization of Phragmites in Cd polluted, nutrient deprived and structural damaged soil, the combined remediation using chemical and microbial modifiers were carried out in potting experiments. The co-application of Diversispora versiformis and sodium bentonite significantly improved the soil structure and phosphorus utilization of the plant, while decreasing the content of cadmium bound by diethylenetriaminepentaacetic acid by 77.72%. As a result, the Phragmites height, tillers, and photosynthetic capacity were increased by 71.60%, 38.37%, and 17.54%, respectively. Further analysis suggested the co-application increased the abundance of phosphorus-releasing microbial communities like Pseudomonassp. and Gemmatimonadetes. Results of rhizosphere metabolites also proved that the signal molecule of lysophosphatidylcholine regulated the phosphorus fixation and utilization by the plant. This work finds composite modifiers are effective in the colonization of Phragmites in Cd contaminated soil by decreasing the bioavailable Cd, increasing the abundance of functional microbial communities and regulating the phosphorus fixation.
Collapse
Affiliation(s)
- Shuang-Qiang Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Gen-Dong Li
- Inner Mongolia Hetao Irrigation District Water Conservancy Development Center, Bayan Nur, 015000, China
| | - Kai-Ming Peng
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Heng Yang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Xiang-Feng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Li-Jun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, 200092, China; Frontiers Science Center for Intelligent Autonomous Systems, Shanghai, 201210, China.
| |
Collapse
|
23
|
Khan KY, Ali B, Zhang S, Stoffella PJ, Shi S, Xia Q, Cui X, Ali Z, Guo Y. Phytotoxic effects on chloroplast and UHPLC-HRMS based untargeted metabolomic responses in Allium tuberosum Rottler ex Sprengel (Chinese leek) exposed to antibiotics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 234:113418. [PMID: 35304336 DOI: 10.1016/j.ecoenv.2022.113418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Introduction of antibiotics into agricultural fields poses serious health risks to humans. This study investigated the uptake of antibiotics, their effects on metabolic pathways, and chloroplast structure changes of Allium tuberosum exposed to norfloxacin (NFL), oxytetracycline (OTC), and tetracycline (TC). Among all the antibiotic treatments, the highest accumulation of antibiotics in roots (4.15 mg/kg) and leaves (0.29 mg/kg) was TC, while in bulbs it was NFL (5.94 mg/kg). OTC was with the lowest accumulation in roots: 0.19 mg/kg, bulbs: 0.18 mg/kg, and leaves: 0.11 mg/kg. The number of mitochondira and the number of plastoglobulli increased. The chloroplast structure was disturbed under the stress of NFL, OTC, and TC. Disturbance in the chloroplast ultrastructure leads to altered chlorophyll fluorescence variables. Simultaneously, metabolomic profiling of leaves demonstrated that NFL stress regulated more of metabolic pathways than OTC and TC. Differences in metabolic pathways among the antibiotic treatments showed that each antibiotic has different impact even under the same experimental conditions. TC and NFL have more toxic effects than OTC antibiotic. Metabolic variations induced by antibiotics stress highlighted pools of metabolites that affect the metabolic activities, chlorophyll fluorescence, ultrastructural adjustments, and stimulate defensive impact in A. tubersoum. These findings provide an insight of metabolic destabilization as well as metabolic changes in defensive mechanism and stress response of A. tuberosum to different antibiotics.
Collapse
Affiliation(s)
- Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Barkat Ali
- The Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Agricultural Research Centre, 44000 Islamabad, Pakistan
| | - Shuang Zhang
- The Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Peter Joseph Stoffella
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, United States
| | - Shiyu Shi
- Dalian Chem Data Solution Information Technology Co. Ltd, Dalian 116000, China
| | - Qian Xia
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Zeshan Ali
- Plant Physiology Program, Crop Sciences Institute, National Agricultural Research Centre, Park Road, PO 45500, Islamabad, Pakistan
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
24
|
Du S, Lu Q, Liu L, Wang Y, Li J. Rhodococcus qingshengii facilitates the phytoextraction of Zn, Cd, Ni, and Pb from soils by Sedum alfredii Hance. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127638. [PMID: 34801314 DOI: 10.1016/j.jhazmat.2021.127638] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The enhanced heavy metal (HM) phytoextraction efficiency of hyperaccumulating plants via plant-growth-promoting microbes has been proposed as an effective strategy to remove HMs from contaminated soil. Nevertheless, it remains unclear whether catabolizing the abscisic acid (ABA) in hyperaccumulating plants via rhizobacteria can facilitate HM phytoextraction. In the present study, a hyperaccumulator, Sedum alfredii Hance, inoculated with an ABA-catabolizing bacterium Rhodococcus qingshengii, showed higher concentrations of Zn, Cd, Ni, and Pb in the contaminated paddy-grown plant shoots by 35%, 63%, 49%, and 49%, and in plants grown in mine soils by 112%, 105%, 46%, and 49%, respectively, than in the controlbacteria-free plants. However, no significant changes were observed in Cu content between these plants. Furthermore, parameters indicating phytoremediation potential, including the translocation factor (TF) and bioconcentration factor (BCF), revealed that bacterial inoculation could markedly increase the efficacy of Zn, Cd, Ni, and Pb phytoextraction from the soil. Notably, the bioavailabilities of HMs in soils were not influenced by R. qingshengii; however, the expression of transporters related to the uptake of these HMs, including SaIRT1, SaZIP1, SaZIP2, SaZIP3, SaNramp1, SaNramp3, SaNramp6, SaHMA2, and SaHMA3, was upregulated. These findings indicate that R. qingshengii inoculation could increase the HM-uptake ability of plants by catabolizing ABA and may provide a promising strategy for enhancing the phytoremediation efficacy in HM-contaminated soils.
Collapse
Affiliation(s)
- Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China.
| | - Qi Lu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention Technology, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Jiaxin Li
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| |
Collapse
|
25
|
Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F, Zhang C, Chen H, Zhuang W, Varshney RK. Advances in "Omics" Approaches for Improving Toxic Metals/Metalloids Tolerance in Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:794373. [PMID: 35058954 PMCID: PMC8764127 DOI: 10.3389/fpls.2021.794373] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/22/2021] [Indexed: 05/17/2023]
Abstract
Food safety has emerged as a high-urgency matter for sustainable agricultural production. Toxic metal contamination of soil and water significantly affects agricultural productivity, which is further aggravated by extreme anthropogenic activities and modern agricultural practices, leaving food safety and human health at risk. In addition to reducing crop production, increased metals/metalloids toxicity also disturbs plants' demand and supply equilibrium. Counterbalancing toxic metals/metalloids toxicity demands a better understanding of the complex mechanisms at physiological, biochemical, molecular, cellular, and plant level that may result in increased crop productivity. Consequently, plants have established different internal defense mechanisms to cope with the adverse effects of toxic metals/metalloids. Nevertheless, these internal defense mechanisms are not adequate to overwhelm the metals/metalloids toxicity. Plants produce several secondary messengers to trigger cell signaling, activating the numerous transcriptional responses correlated with plant defense. Therefore, the recent advances in omics approaches such as genomics, transcriptomics, proteomics, metabolomics, ionomics, miRNAomics, and phenomics have enabled the characterization of molecular regulators associated with toxic metal tolerance, which can be deployed for developing toxic metal tolerant plants. This review highlights various response strategies adopted by plants to tolerate toxic metals/metalloids toxicity, including physiological, biochemical, and molecular responses. A seven-(omics)-based design is summarized with scientific clues to reveal the stress-responsive genes, proteins, metabolites, miRNAs, trace elements, stress-inducible phenotypes, and metabolic pathways that could potentially help plants to cope up with metals/metalloids toxicity in the face of fluctuating environmental conditions. Finally, some bottlenecks and future directions have also been highlighted, which could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Javaria Tabassum
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zainab Zahid
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shanza Bashir
- School of Civil and Environmental Engineering (SCEE), Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Rutwik Barmukh
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Rao Sohail Ahmad Khan
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Fernando Barbosa
- Department of Clinical Analysis, Toxicology and Food Sciences, University of Sao Paulo, Ribeirão Preto, Brazil
| | - Chong Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Hua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Weijian Zhuang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | - Rajeev K. Varshney
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
26
|
Khan KY, Ali B, Zhang S, Stoffella PJ, Yuan S, Xia Q, Qu H, Shi Y, Cui X, Guo Y. Effects of antibiotics stress on growth variables, ultrastructure, and metabolite pattern of Brassica rapa ssp. chinensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146333. [PMID: 34030384 DOI: 10.1016/j.scitotenv.2021.146333] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 05/28/2023]
Abstract
Antibiotics frequently contaminate agricultural fields and through plant uptake enter into the food chain. This study aimed to explore the effects of antibiotics; tetracycline (TC), oxytetracycline (OTC) and norfloxacin (NF) on the growth, cell ultrastructure, and metabolite pattern of Brassica rapa ssp. chinensis. Oxytetracycline accumulated more than other antibiotics followed by TC and NF. Plant growth, chlorophyll fluorescence, and antioxidant activities were negatively affected under all antibiotic treatments. Ultrastructural investigation of mesophyll of leaves performed by transmission electron microscopy indicated that antibiotic stress caused the changes in thylakoid orientation, number of plastoglobuli, and starch grains. Identification of functional groups through Fourier transform infrared analysis indicated that carboxyl group, carbonate and ammonium ions are involved in the adsorption of antibiotics. The metabolic profiling of B. rapa leaves demonstrated that all of the antibiotics treatments distorted phenylalanine, tyrosine and tryptophan biosynthesis, d-glutamine and d-glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine metabolism and TCA cycle. Metabolic alterations as a result of antibiotics stress provide insights of metabolites that affect the physiological changes attributed to antibiotic stress. These results will improve the understanding of antibiotic contamination effects on plants.
Collapse
Affiliation(s)
- Kiran Yasmin Khan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Barkat Ali
- The Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; National Agricultural Research Centre, 44000 Islamabad, Pakistan
| | - Shuang Zhang
- National Agricultural Research Centre, 44000 Islamabad, Pakistan
| | - Peter Joseph Stoffella
- Indian River Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Fort Pierce, FL 34945, United States
| | - Shan Yuan
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Qian Xia
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Hongjun Qu
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yu Shi
- Dalian Chem Data Solution Information Technology Co. Ltd, Dalian 116000, China
| | - Xiaoqiang Cui
- School of Environmental Science and Engineering/Tianjin Key Lab of Biomass Waste Utilization, Tianjin University, Tianjin 300072, China
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education, Jiangnan University, Wuxi 214122, China; University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
27
|
Lian J, Liu W, Meng L, Wu J, Chao L, Zeb A, Sun Y. Foliar-applied polystyrene nanoplastics (PSNPs) reduce the growth and nutritional quality of lettuce (Lactuca sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116978. [PMID: 33780844 DOI: 10.1016/j.envpol.2021.116978] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 05/23/2023]
Abstract
Currently, there is a lack of information about the influence of foliar-applied nanoplastics on crop growth and nutritional quality. To fill the knowledge gap, soil-grown lettuces (Lactuca sativa L.) were foliar-exposed to polystyrene nanoplastics (PSNPs) at 0, 0.1 and 1 mg/L for one month. Foliar exposure to PSNPs significantly decreased the dry weight, height, and leaf area of lettuce by 14.3%-27.3%, 24.2%-27.3%, and 12.7%-19.2%, respectively, compared with the control. Similarly, plant pigment content (chlorophyll a, b and carotenoid) was considerably reduced (9.1%, 8.7%, 12.5%) at 1 mg/L PSNPs. However, the significant increase in electrolyte leakage rate (18.6%-25.5%) and the decrease in total antioxidant capacity (12.4%-26%) were the key indicators of oxidative stress in lettuce leaves, demonstrating the phytotoxicity of PSNPs by foliar exposure. In addition, the remarkable reduction in micronutrients and essential amino acids demonstrated a decrease in nutritional quality of lettuce caused by PSNPs. Besides, SEM and TEM analysis indicated the possible absorption of PSNPs through leaves stoma and the translocation downwards to plant roots. This study provides new information about the interaction of airborne NPs with plants. It also warns against atmospheric NPs pollution that the adverse effects of airborne NPs on crop production and food quality should be assessed as a matter of urgency.
Collapse
Affiliation(s)
- Jiapan Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Key Laboratory of Environmental Remediation and Ecosystem Health, Ministry of Education (MOE), College of Environmental and Resources Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Lingzuo Meng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Jiani Wu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Lei Chao
- College of Municipal and Environmental Engineering, Shenyang Jianzhu University, Shenyang, 110168, China
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE)/Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuebing Sun
- Key Laboratory of Original Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| |
Collapse
|
28
|
Removal of Antibiotics and Nutrients by Vetiver Grass ( Chrysopogon zizanioides) from a Plug Flow Reactor Based Constructed Wetland Model. TOXICS 2021; 9:toxics9040084. [PMID: 33921009 PMCID: PMC8071396 DOI: 10.3390/toxics9040084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/29/2022]
Abstract
Overuse of antibiotics has resulted in widespread contamination of the environment and triggered antibiotic resistance in pathogenic bacteria. Conventional wastewater treatment plants (WWTPs) are not equipped to remove antibiotics. Effluents from WWTPs are usually the primary source of antibiotics in aquatic environments. There is an urgent need for cost-effective, environment-friendly technologies to address this issue. Along with antibiotics, nutrients (nitrogen and phosphorus) are also present in conventional WWTP effluents at high concentrations, causing environmental problems like eutrophication. In this study, we tested vetiver grass in a plug flow reactor-based constructed wetland model in a greenhouse setup for removing antibiotics ciprofloxacin (CIP) and tetracycline (TTC), and nutrients, N and P, from secondary wastewater effluent. The constructed wetland was designed based on a previous batch reaction kinetics study and reached a steady-state in 7 days. The measured concentrations of antibiotics were generally consistent with the modeling predictions using first-order reaction kinetics. Vetiver grass significantly (p < 0.05) removed 93% and 97% of CIP and TTC (initial concentrations of 10 mg/L), simultaneously with 93% and 84% nitrogen and phosphorus, respectively. Results show that using vetiver grass in constructed wetlands could be a viable green technology for the removal of antibiotics and nutrients from wastewater.
Collapse
|
29
|
Wang F, Fan Y, Tang H, Dai Y, Liang W. Physiological Responses and Phytotoxicities of Lythrum salicaria to Decabromodiphenyl Ether (BDE-209). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:575-582. [PMID: 33528602 DOI: 10.1007/s00128-020-03097-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Decabromodiphenyl ether (BDE-209), a member of a major group of brominated flame retardants, is detected in aquatic environments at considerable levels and induces physiological and toxic effects on aquatic plants. In this study, the physiological responses induced by and the toxic effects of BDE-209 at different concentrations (0, 0.2, 0.5 and 1.0 mg L-1) in Lythrum salicaria were examined. OJIP transient curves indicated that BDE-209 treatment negatively affected photosystem II (PSII) grouping. Additionally, the results showed that BDE-209 inhibited seedling development and elevated reactive oxygen species (ROS), phosphorylated histone H2AX (γ-H2AX), malondialdehyde (MDA) levels and antioxidative enzyme activities in the roots and shoots of L. salicaria. The results revealed that BDE-209 exposure contributed to ROS accumulation, which was considered as the probable toxicity mechanism. The current results provided an insight into the development of L. salicaria with high BDE-209 tolerance.
Collapse
Affiliation(s)
- Feihua Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Yaocheng Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10039, People's Republic of China
| | - Haibin Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 10039, People's Republic of China
| | - Yanran Dai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China
| | - Wei Liang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, People's Republic of China.
| |
Collapse
|
30
|
Fu S, Xue S, Chen J, Shang S, Xiao H, Zang Y, Tang X. Effects of Different Short-Term UV-B Radiation Intensities on Metabolic Characteristics of Porphyra haitanensis. Int J Mol Sci 2021; 22:ijms22042180. [PMID: 33671697 PMCID: PMC7927003 DOI: 10.3390/ijms22042180] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/03/2022] Open
Abstract
The effects of ultraviolet (UV) radiation, particularly UV-B on algae, have become an important issue as human-caused depletion of the protecting ozone layer has been reported. In this study, the effects of different short-term UV-B radiation on the growth, physiology, and metabolism of Porphyra haitanensis were examined. The growth of P. haitanensis decreased, and the bleaching phenomenon occurred in the thalli. The contents of total amino acids, soluble sugar, total protein, and mycosporine-like amino acids (MAAs) increased under different UV-B radiation intensities. The metabolic profiles of P. haitanensis differed between the control and UV-B radiation-treated groups. Most of the differential metabolites in P. haitanensis were significantly upregulated under UV-B exposure. Short-term enhanced UV-B irradiation significantly affected amino acid metabolism, carbohydrate metabolism, glutathione metabolism, and phenylpropane biosynthesis. The contents of phenylalanine, tyrosine, threonine, and serine were increased, suggesting that amino acid metabolism can promote the synthesis of UV-absorbing substances (such as phenols and MAAs) by providing precursor substances. The contents of sucrose, D-glucose-6-phosphate, and beta-D-fructose-6-phosphate were increased, suggesting that carbohydrate metabolism contributes to maintain energy supply for metabolic activity in response to UV-B exposure. Meanwhile, dehydroascorbic acid (DHA) was also significantly upregulated, denoting effective activation of the antioxidant system. To some extent, these results provide metabolic insights into the adaptive response mechanism of P. haitanensis to short-term enhanced UV-B radiation.
Collapse
Affiliation(s)
- Shimei Fu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
| | - Song Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
| | - Shuai Shang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou 256600, China;
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
| | - Yu Zang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266000, China
- Correspondence: (Y.Z.); (X.T.)
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266000, China; (S.F.); (S.X.); (J.C.); (H.X.)
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266000, China
- Correspondence: (Y.Z.); (X.T.)
| |
Collapse
|
31
|
RoyChowdhury A, Mukherjee P, Panja S, Datta R, Christodoulatos C, Sarkar D. Evidence for Phytoremediation and Phytoexcretion of NTO from Industrial Wastewater by Vetiver Grass. Molecules 2020; 26:molecules26010074. [PMID: 33375266 PMCID: PMC7796298 DOI: 10.3390/molecules26010074] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
The use of insensitive munitions such as 3-nitro-1,2,4-triazol-5-one (NTO) is rapidly increasing and is expected to replace conventional munitions in the near future. Various NTO treatment technologies are being developed for the treatment of wastewater from industrial munition facilities. This is the first study to explore the potential phytoremediation of industrial NTO-wastewater using vetiver grass (Chrysopogon zizanioides L.). Here, we present evidence that vetiver can effectively remove NTO from wastewater, and also translocated NTO from root to shoot. NTO was phytotoxic and resulted in a loss of plant biomass and chlorophyll. The metabolomic analysis showed significant differences between treated and control samples, with the upregulation of specific pathways such as glycerophosphate metabolism and amino acid metabolism, providing a glimpse into the stress alleviation strategy of vetiver. One of the mechanisms of NTO stress reduction was the excretion of solid crystals. Scanning electron microscopy (SEM), electrospray ionization mass spectrometry (ESI-MS), and Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the presence of NTO crystals in the plant exudates. Further characterization of the exudates is in progress to ascertain the purity of these crystals, and if vetiver could be used for phytomining NTO from industrial wastewater.
Collapse
Affiliation(s)
- Abhishek RoyChowdhury
- Environmental Science and Natural Resources Program, School of Science, Navajo Technical University, Crownpoint, NM 87313, USA;
| | - Pallabi Mukherjee
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (P.M.); (S.P.)
| | - Saumik Panja
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (P.M.); (S.P.)
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA;
| | | | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA; (P.M.); (S.P.)
- Correspondence: ; Tel.: +1-201-2168028
| |
Collapse
|
32
|
Wu X, Liu Y, Yin S, Xiao K, Xiong Q, Bian S, Liang S, Hou H, Hu J, Yang J. Metabolomics revealing the response of rice (Oryza sativa L.) exposed to polystyrene microplastics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115159. [PMID: 32663678 DOI: 10.1016/j.envpol.2020.115159] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/25/2020] [Accepted: 06/30/2020] [Indexed: 05/23/2023]
Abstract
Large amounts of microplastics accumulate in the agricultural soil. Microplastics would stress the crops but the underlying mechanism remains unclear. Herein, a laboratory exposure and field trials were carried out to investigate the response of rice (Oryza sativa L. II You. 900) to stress induced by polystyrene microplastics (PS-MPs) using a metabolomic approach. After laboratory exposure for 21 days, the decreases in shoot biomass of rice exposed to low, medium and high doses of PS-MPs were 13.1% (CV = 4.1%), 18.8% (CV = 3.7%), and 40.3% (CV = 9.2%), respectively, while the antioxidant enzymes showed an inverted upper-U shape when exposed to PS-MPs. A total of 24 samples from three exposure dose levels were included in the metabolic analysis. The metabolites of 12 amino acids, 16 saccharides, 26 organic acids and 17 others (lipids and polyols) in leaves decreased after the exposure to both 50 mg L-1 and 250 mg L-1 PS-MPs doses with hydroponically-cultured. The inhibition of perturbed biological pathway causes the biosynthesis of amino acids, nucleic acids, fatty acids and some secondary metabolites decreased which indicate that the energy expenditure exceeded the substance accumulation. In order to further validate the effects of PS-MPs on rice leaves obtained from the laboratory-scale experiments, a field-trial experiment was conducted. After 142 days of cultivation in farmland, the results with a maximum of 25.9% lower biomass in the crops exposed with PS-MPs. As such, the presence of PS-MPs may affect rice production by altering the metabolic systems of rice. Long-term exposure of PS-MPs to rice might be a potential risk to rice safety and quality.
Collapse
Affiliation(s)
- Xiang Wu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Yao Liu
- College of Environmental and Biological Engineering, Wuhan Technology and Business University, Wuhan, Hubei, 430065, China
| | - Shanshan Yin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Keke Xiao
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Qiao Xiong
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Shijie Bian
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Sha Liang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Huijie Hou
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jingping Hu
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China
| | - Jiakuan Yang
- School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Wuhan, Hubei, 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China.
| |
Collapse
|
33
|
Lian J, Wu J, Zeb A, Zheng S, Ma T, Peng F, Tang J, Liu W. Do polystyrene nanoplastics affect the toxicity of cadmium to wheat (Triticum aestivum L.)? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114498. [PMID: 33618453 DOI: 10.1016/j.envpol.2020.114498] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 05/23/2023]
Abstract
There has been an increase on the research of microplastics (<5 mm in diameter) as carriers for toxic chemicals to evaluate their risks for human health and environment, but only few works focused on nanoplastics (1 nm-1000 nm in diameter) interacting with pre-existing contaminants such as heavy metals. It is still unclear whether polystyrene nanoplastics (PSNPs) could affect the toxicity of cadmium to wheat (Triticum aestivum L.). Here, we assessed the impact of polystyrene nanoplastics (0, 10 mg/L) on the Cd (0, 20 μM) toxicity to wheat grown in 25% Hoagland solution for three weeks. We found that the presence of PSNPs could partially reduce Cd contents in leaves and alleviate Cd toxicity to wheat, which might be due to weakened adsorption capacity of PSNPs affected by ionic strength. In addition, PSNPs have little effect on catalase (CAT), peroxidase (POD) activities, except for decreasing superoxide dismutase (SOD) activity, which suggested that antioxidant defense systems might not be the main mechanism to reduce the oxidative damage induced by Cd in wheat. Electron paramagnetic resonance (EPR) analysis showed that PSNPs could accelerate the formation of long-lived radicals in leaves after exposure to Cd. Notably, our metabolomics profiling further indicated that the simultaneously elevated carbohydrate and amino acid metabolisms induced by PSNPs could partly alleviate Cd toxicity to wheat. Nevertheless, the present study provides important implications for the toxicological interaction and future risk assessment of co-contamination of nanoplastics and heavy metals in the environment.
Collapse
Affiliation(s)
- Jiapan Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Jiani Wu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Shunan Zheng
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Ting Ma
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Feihu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| |
Collapse
|
34
|
Sha S, Hu D, Hu K, Cheng M, Zhang W, Xu Q. Metabolic modifications to Ni excess in L. minor: Role of organic-, amino- and fatty acid profiles. CHEMOSPHERE 2020; 251:126366. [PMID: 32145575 DOI: 10.1016/j.chemosphere.2020.126366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
In this study, the effects of excess nickel (Ni) (100 μM and 200 μM) on growth, antioxidant production, fatty acid, organic and amino acids profiles were examined in Lemna minor L. After 7 days of Ni treatment, chlorosis, growth inhibition and ROS overproduction were observed, accompanied by Ni accumulation. Interestingly, decreased malondialdehyde (MDA) levels were recorded in fronds upon Ni exposure. Fatty acid profiles in Ni-treated L. minor were characterized by increases in saturated- and decreases in unsaturated fatty acids. Ni excess increased the activities of antioxidant enzymes such as superoxide dismutase (SOD), guiacol peroxidase (GPX), and glutathione reductase (GR), and non-enzymatic antioxidants such as glutathione (GSH) and ascorbic acid (AsA); however, deactivation of ascorbate peroxidase (APX) and catalase (CAT) activities were also observed. Disruption of amino acid metabolism in Ni-exposed fronds was evidenced by the accumulation of cysteine, arginine, threonine, valine, isoleucine, leucine, lysine and phenylalanine, as well as reduced levels of tyrosine, alanine, aspartate and proline. Approximately 299%-396%, 139%-254% and 56%-97% concentration increments in citric, malic and oxalic acids, respectively, were concomitantly observed with significant decreases in tartaric, acetic, and fumaric acids in fronds subjected to Ni stress. Taken together, these results indicated that Ni stress induced negative effects on plant physiological, biochemical and morphological processes; however, it is likely that the coordination of metabolites and antioxidants may ameliorate the damaging effects of Ni accumulation.
Collapse
Affiliation(s)
- Sha Sha
- College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Dan Hu
- College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Kaijie Hu
- College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Menghua Cheng
- College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wei Zhang
- College of Life Science, Nanjing Normal University, Nanjing, 210023, China
| | - Qinsong Xu
- College of Life Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
35
|
Wu B, He T, Wang Z, Qiao S, Wang Y, Xu F, Xu H. Insight into the mechanisms of plant growth promoting strain SNB6 on enhancing the phytoextraction in cadmium contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121587. [PMID: 31744727 DOI: 10.1016/j.jhazmat.2019.121587] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/22/2019] [Accepted: 10/31/2019] [Indexed: 05/08/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) assisted accumulator has been proposed as a phytoextraction method to clean cadmium (Cd) in contaminated soil, while the mechanisms were few studied regrading PGPR-soil-accumulator as an assemble. In this study, we revealed the possible mechanisms of the plant growth-promotion strain SNB6 on enhancing the Cd phytoextration of vetiver grass by the analysis of the whole genome of SNB6, soil biochemical properties and plant growth response. Results showed that SNB6 encoded numerous genes needed for Cd tolerance, Cd mobilization and plant growth promotion. SNB6 increased HOAc-extractable Cd that showed a positive correlation with Cd uptake in accumulator. In addition, SNB6 improved the biochemical activities (bioavailability of nutritional substances, bacterial count, soil respiration and enzyme activity) in rhizosphere soil. Moreover, the antioxidative enzymes activities of accumulator were significantly enhanced by SNB6. Consequently, SNB6 promoted Cd uptake and biomass of accumulator, thus enhancing the Cd phytoextraction. The maximum Cd extractions in root, stem and leaf reached to 289.47 mg/kg, 88.33 mg/kg and 59.38 mg/kg, respectively. Meanwhile, the total biomass of accumulator was increased by 9.68-45.99% in SNB6 treatment. These findings could be conducive to the understanding the mechanisms of PGPR on enhancing the Cd phytoextraction of accumulator.
Collapse
Affiliation(s)
- Bin Wu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Tingting He
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Ziru Wang
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Suyu Qiao
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Ying Wang
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Fei Xu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
36
|
Lu Q, Weng Y, You Y, Xu Q, Li H, Li Y, Liu H, Du S. Inoculation with abscisic acid (ABA)-catabolizing bacteria can improve phytoextraction of heavy metal in contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113497. [PMID: 31733960 DOI: 10.1016/j.envpol.2019.113497] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/18/2019] [Accepted: 10/25/2019] [Indexed: 05/18/2023]
Abstract
Promotion of plant capacity for accumulation of heavy metals (HMs) is one of the key strategies in enhancing phytoremediation in contaminated soils. Here we report that, Rhodococcus qingshengii, an abscisic acid (ABA)-catabolizing bacteria, clearly boosts levels of Cd, Zn, and Ni in wild-type Arabidopsis by 47, 24, and 30%, respectively, but no increase in Cu was noted, when compared with non-inoculated Arabidopsis plants in contaminated growth substrate. Furthermore, when compared with wild-type plants, R.qingshengii-induced increases in Cd, Zn, and Ni concentrations were more pronounced in abi1/hab1/abi2 (ABA-sensitive mutant) strains of Arabidopsis, whereas little effect was observed in snrk2.2/2.3 (ABA insensitive mutant). This demonstrates that metabolizing ABA might be indispensable for R. qingshengii to improve metal accumulation in plants. Bacterial inoculation significantly elevated the expression of Cd, Zn, and Ni-related transporters; whereas the transcript levels of Cu transporters remained unchanged. This result may be a reasonable explanation for why the uptake of Cd, Zn, and Ni in plants was stimulated by bacterial inoculation, while no effect was observed on Cu levels. From our results, we clearly demonstrate that R. qingshengii can increase the accumulation of Cd, Zn, and Ni in plants via an ABA-mediated HM transporters-associated mechanism. Metabolizing ABA in the plants by ABA-catabolizing bacterial inoculation might be an alternative strategy to improve phytoremediation efficiency in HMs contaminated soil.
Collapse
Affiliation(s)
- Qi Lu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yineng Weng
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yue You
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Qianru Xu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Haiyue Li
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Yuan Li
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shaoting Du
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China.
| |
Collapse
|
37
|
Kiiskila JD, Li K, Sarkar D, Datta R. Metabolic response of vetiver grass (Chrysopogon zizanioides) to acid mine drainage. CHEMOSPHERE 2020; 240:124961. [PMID: 31574433 DOI: 10.1016/j.chemosphere.2019.124961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
Acid mine drainage (AMD) is a sulfuric discharge containing metals and particulates that can spread to nearby water sources, imposing toxicity and physical stress to living things. We have shown that vetiver grass (Chrysopogon zizanioides) is capable of tolerating and treating AMD-impacted water from the abandoned Tab-Simco mining site from southern Illinois, though little is known about its tolerance mechanisms. We conducted metabolomic analyses of vetiver shoots and roots after relatively short- and long-term periods of exposure to Tab-Simco AMD. The metabolic shift of vetiver shoots was dramatic with longer-term AMD exposure, including upregulation of amino acid and glutathione metabolism, cellular respiration and photosynthesis pathways, with downregulation of phosphorylated metabolites. Meanwhile, the roots demonstrated drastic downregulation of phospholipids and phosphorylated metabolites, cellular respiration, glyoxylate metabolism, and amino acid metabolism. Vetiver accumulated ornithine and oxaloacetate in the shoots, which could function for nitrogen storage and various intracellular functions, respectively. Organic acids and glutathione were secreted from the roots for rhizospheric metal-chelation, whereas phosphorylated metabolites were recycled for phosphorus. These findings reveal AMD-induced metabolic shifts in vetiver grass, which are seemingly unique in comparison to independent abiotic stresses reported previously.
Collapse
Affiliation(s)
- Jeffrey D Kiiskila
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA
| | - Kefeng Li
- School of Medicine, University of California, San Diego, CA, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, USA.
| |
Collapse
|
38
|
Han T, Liang Y, Wu Z, Zhang L, Liu Z, Li Q, Chen X, Guo W, Jiang L, Pan F, Ge S, Mi Z, Liu Z, Huang H, Li X, Zhou J, Li Y, Wang J, Zhang Z, Tang Y, Yang L, Wu M. Effects of tetracycline on growth, oxidative stress response, and metabolite pattern of ryegrass. JOURNAL OF HAZARDOUS MATERIALS 2019; 380:120885. [PMID: 31377673 DOI: 10.1016/j.jhazmat.2019.120885] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Tetracycline is an antibiotic that frequently contaminates the environment. In this study, the growth and metabolites of ryegrass seedlings treated with tetracycline (0, 1, 10 or 100 mg/L) for 5 days were investigated. The results showed that the growth of ryegrass and the concentrations of carotenoid and chlorophyll decreased as the tetracycline concentration increased. Tetracycline increased the production of reactive oxygen species (ROS) and cell permeability and triggered mitochondrial membrane potential loss in the roots of ryegrass. The metabolic profiles of ryegrass differed between the control and tetracycline-treated groups. The contents of glucose, shikimic acid, aconitic acid, serine, lactose, phenylalanine, mannitol, galactose, gluconic acid, asparagine, and glucopyranose were positively correlated with root length and had high variable importance projection values. These compounds may have crucial functions in root extension. Tetracycline also affected aminoacyl-tRNA biosynthesis, nitrogen metabolism, and alanine, aspartate and glutamate metabolism in the roots. Tetracycline may affect root extension by regulating the synthesis/degradation of these metabolites or the activity of their biosynthetic pathways. These results provide an insight into the stress response of ryegrass to tetracycline.
Collapse
Affiliation(s)
- Tao Han
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Yueping Liang
- Key Laboratory of Crop Water Use and Regulation, Ministry of Agriculture and rural affairs/Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Zhineng Wu
- School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Li Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Zhenwei Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Qingfei Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Xuejin Chen
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Weili Guo
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Lina Jiang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Feifei Pan
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Shidong Ge
- College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China.
| | - Zhaorong Mi
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China.
| | - Zunchun Liu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Hua Huang
- School of Petroleum and Environmental Engineering, Yan'an University, Yan'an, 716000, China
| | - Xinzheng Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Junguo Zhou
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Yang Li
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Jialiang Wang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Zhen Zhang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Yingying Tang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Linru Yang
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| | - Mengdan Wu
- School of Horticulture and Landscape Architecture, Henan Institute of Science and Technology, Xinxiang, 453003, China; Henan Province Engineering Research Center of Horticultural Plant Resource Utilization and Germplasm Enhancement, Xinxiang, 453003, China
| |
Collapse
|
39
|
Wu B, Wang Z, Zhao Y, Gu Y, Wang Y, Yu J, Xu H. The performance of biochar-microbe multiple biochemical material on bioremediation and soil micro-ecology in the cadmium aged soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:719-728. [PMID: 31195280 DOI: 10.1016/j.scitotenv.2019.06.041] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 05/04/2023]
Abstract
Biochar (BC) and plant growth promoting bacteria (PGPR) have been widely applied to improve the qualities of heavy metal contaminated soil, while the synergy effect of BC and PGPR on the bioremediation of cadmium (Cd) contaminated soil was less studied. In this study, a novel PGPR strain SNB6 was isolated and then immobilized on BC as the multiple biochemical material (BCM) as well as combined with vetiver grass (Chrysopogon zizanioides L.) to form BC-PGPR-accumulator system. The promoting effects of BCM on bioremediation and soil micro-biology were comprehensively investigated. SEM and FTIR analysis indicated that the strain SNB6 was successfully fixed on BC and the functional groups between BC and SNB6 surface contributed to the immobilization effect. The BCM significantly enhanced the Cd content and bioaccumulation factor (BCF) of accumulator, about 412.35% and 403.41% higher than that of control, respectively. Meanwhile, the biomass of fresh and dry accumulator in the BCM treatment was 227.27% and 178.33% higher than that of control. In addition, the system significantly increased the proportion of HOAc-extractable Cd and soil micro-ecology. Microbial counts and soil enzyme activities in rhizosphere were both significantly improved by the interaction of BCM and C. zizanioides. Furthermore, the strain SNB6 in the rhizosphere interface was successfully colonized, and soil microbial community was evaluated to understand the microbial diversity after bioremediation. Our study indicated that the BCM could significantly enhance the bioremediation efficiency and drive the soil micro-ecology, and the BC-PGPR-accumulator system provided a feasible pathway to remediate heavy metal contaminated sites.
Collapse
Affiliation(s)
- Bin Wu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Ziru Wang
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yuxing Zhao
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yuanming Gu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Ying Wang
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Jiang Yu
- College of Architecture and environment, Sichuan University, Cheng du 610065,PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Evironment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
40
|
Cheng X, ChiQuan H, Shi Z, Chen X, Oh K, Xia L, Liu X, Xiong P, Muo Q. Effect of spent mushroom substrate on strengthening the phytoremediation potential of Ricinus communis to Cd- and Zn-polluted soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 20:1389-1399. [PMID: 30652507 DOI: 10.1080/15226514.2018.1474439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 03/31/2018] [Accepted: 04/03/2018] [Indexed: 06/09/2023]
Abstract
Phytoremediation is a kind of efficient strategy for remediating soils polluted with heavy metals. The aim of this study was to investigate the influence of spent mushroom substrate (SMS) on the phytoremediation potential of Ricinus communis in Cd- and Zn-polluted soil. We treated the soil with SMS before growing plants and analyzed the contents, distribution of heavy metals, and response of plants after growth. SMS increased the contents of Cd (5%-13%) and Zn (16%-20%) in the cell wall. This finding suggested that high amounts of Cd and Zn were absorbed and bonded to the cell wall through metabolism adaption and formed stable compounds, which reduced the damage of the heavy metal to cells. SMS also decreased the levels of superoxide dismutase, peroxidase, and catalase by 9.5%-27.7%, 8.8%-30.0% and 8.5%-28.1%, respectively. Treatment of SMS alleviated the toxicity of heavy metal in plants and increased the extracted amounts of Zn and Cd by 101%-227% and 51%-189%, respectively. Hence, SMS treatment could reduce the toxicity of heavy metals to plants and strengthen the phytoremediation potential.
Collapse
Affiliation(s)
- Xue Cheng
- a College of Environmental and Chemical Engineering , Shanghai University , Shanghai , China
- b Shanghai Key Laboratory of Bio-Energy Crops , Shanghai University , Shanghai , China
| | - He ChiQuan
- a College of Environmental and Chemical Engineering , Shanghai University , Shanghai , China
- b Shanghai Key Laboratory of Bio-Energy Crops , Shanghai University , Shanghai , China
| | - Zhengchi Shi
- b Shanghai Key Laboratory of Bio-Energy Crops , Shanghai University , Shanghai , China
| | - Xueping Chen
- a College of Environmental and Chemical Engineering , Shanghai University , Shanghai , China
| | - Kokyo Oh
- c Center for Environmental Science in Saitama , Saitama , Japan
| | - Liang Xia
- a College of Environmental and Chemical Engineering , Shanghai University , Shanghai , China
| | - Xiaoyan Liu
- a College of Environmental and Chemical Engineering , Shanghai University , Shanghai , China
| | - Pengpeng Xiong
- b Shanghai Key Laboratory of Bio-Energy Crops , Shanghai University , Shanghai , China
| | - Qiong Muo
- d Guizhou Institute of Prataculture , Guiyang , Guizhou , China
| |
Collapse
|
41
|
Chen J, Li K, Le XC, Zhu L. Metabolomic analysis of two rice (Oryza sativa) varieties exposed to 2, 2', 4, 4'-tetrabromodiphenyl ether. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 237:308-317. [PMID: 29499574 DOI: 10.1016/j.envpol.2018.02.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are toxic chemicals widely distributed in the environment, but few studies are available on their potential toxicity to rice at metabolic level. Therefore we exposed ten rice (Oryza sativa) varieties to 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), a predominant congener of PBDEs, in hydroponic solutions with different concentrations. Two varieties that showed different biological effects to BDE-47, YY-9 and LJ-7, were screened as sensitive and tolerant varieties according to changes of morphological and physiological indicators. Metabolic research was then conducted using gas chromatography-mass spectrometry combined with diverse analyses. Results showed that LJ-7 was more active in metabolite profiles and adopted more effective antioxidant defense machinery to protect itself against oxidative damages induced by BDE-47 than YY-9. For LJ-7, the contents of 13 amino acids and 24 organic acids, especially l-glutamic acid, beta-alanine, glycolic acid and glyceric acid were up-regulated significantly which contributed to scavenging reactive oxygen species. In the treatment of 500 μg/L BDE-47, the contents of these four metabolites increased by 33.6-, 19.3-, 10.6- and 10.2-fold, respectively. The levels of most saccharides (such as d-glucose, lactulose, maltose, sucrose and d-cellobiose) also increased by 1.7-12.4 fold which promoted saccharide-related biosynthesis metabolism. Elevation of tricarboxylic acid cycle and glyoxylate and dicarboxylate metabolism enhanced energy-producing processes. Besides, the contents of secondary metabolites, chiefly polyols and glycosides increased significantly to act on defending oxidative stress induced by BDE-47. In contrast, the levels of most metabolites decreased significantly for YY-9, especially those of 13 amino acids (by 0.9%-67.1%) and 19 organic acids (by 7.8%-70.0%). The positive metabolic responses implied LJ-7 was tolerant to BDE-47, while the down-regulation of most metabolites indicated the susceptible nature of YY-9. Since metabolic change might affect the yield and quality of rice, this study can provide useful reference for rice cultivation in PBDEs-polluted areas.
Collapse
Affiliation(s)
- Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Kelun Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - X Chris Le
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
42
|
Luo Z, Ma J, Chen F, Li X, Zhang S. Effects of Pb Smelting on the Soil Bacterial Community near a Secondary Lead Plant. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15051030. [PMID: 29783785 PMCID: PMC5982069 DOI: 10.3390/ijerph15051030] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/13/2018] [Accepted: 05/17/2018] [Indexed: 02/08/2023]
Abstract
Secondary lead smelting is a widespread industrial activity which has exacerbated Pb or Cd contamination of soil and water across the world. Soil physicochemical properties, soil enzyme activities, heavy metal concentrations, and bacterial diversity near a secondary lead plant in Xuzhou, China were examined in this study. The results showed that secondary lead smelting activities influenced nearby soils. Soil acidification decreased one order of magnitude, with a mean value of 7.3. Soil organic matter also showed a downward trend, while potassium and nitrogen appeared to accumulate. Soil urease and protease activity increased in samples with greater heavy metal pollution, but overall the soil microbial biodiversity decreased. Soil heavy metal concentration-especially Pb and Cd-greatly exceeded the concentrations of Chinese Environmental Quality Standard for Soils (GB 15618-1995). Some environmental factors-such as pH, organic matter, enzyme activity, and the concentration of heavy metals-significantly affected bacterial diversity: compared with the control site, the Chao1 estimator decreased about 50%, while the Shannon diversity index dropped approximately 20%. Moreover, some genera have significant relationships with heavy metal concentration-such as Ramlibacter with Zn and Steroidobacter with Cd-which might act as bio-indicators for soil remediation. These results will provide a new insight in the future for reclaiming soil contaminants caused by secondary lead smelting.
Collapse
Affiliation(s)
- Zhanbin Luo
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
| | - Jing Ma
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
- Amap, Inra, Cnrs, Ird, Cirad, University of Montpellier, 34090 Montpellier, France.
| | - Fu Chen
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
| | - Xiaoxiao Li
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
| | - Shaoliang Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221008, Jiangsu, China.
| |
Collapse
|
43
|
Li K, Chen J, Zhu L. The phytotoxicities of decabromodiphenyl ether (BDE-209) to different rice cultivars (Oryza sativa L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:692-699. [PMID: 29339338 DOI: 10.1016/j.envpol.2017.12.079] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 11/13/2017] [Accepted: 12/22/2017] [Indexed: 06/07/2023]
Abstract
Decabromodiphenyl ether (BDE-209), as a major component of brominated flame retardants, has been detected in the agricultural soil in considerable amount. Given that BDE-209 is toxic, ubiquitous and persistent, BDE-209 might induce toxic effects on rice cultivars planted in contaminated soil. A comparative study was conducted on phytotoxicities and GC-MS based antioxidant-related metabolite levels to investigate the differences of phytotoxicities of BDE-209 to rice cultivars in Yangtze River Delta of China. Rice seedlings were treated with BDE-209 at 0, 10, 50, 100 and 500 μg/L in a hydroponic setup. Results showed that BDE-209-induced phytotoxicites were cultivar-dependent and that the antioxidant defense systems in the cultivars were disturbed differently. Among the three selected cultivars (Jiayou 5, Lianjing 7 and Yongyou 9), Jiayou 5 and Lianjing 7 displayed lower toxic effects than Yongyou 9 in terms of the growth inhibition, lipid peroxidation and DNA damage. The increases of antioxidant enzymes were significantly higher in Jiayou 5 and Lianjing 7 than those in Yongyou 9. Multivariate analysis of antioxidant-related metabolites in the three cultivars indicated that l-tryptophan and l-valine were the most important ones among 10 metabolites responsible for the separation of cultivars. The up-regulation of l-tryptophan and l-valine were likely plant strategies to increase their tolerance. The current results provided an insight into the development of rice cultivars with higher BDE-209 tolerance.
Collapse
Affiliation(s)
- Kelun Li
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Jie Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
44
|
Pidatala VR, Li K, Sarkar D, Wusirika R, Datta R. Comparative metabolic profiling of vetiver (Chrysopogon zizanioides) and maize (Zea mays) under lead stress. CHEMOSPHERE 2018; 193:903-911. [PMID: 29874765 DOI: 10.1016/j.chemosphere.2017.11.087] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 10/28/2017] [Accepted: 11/17/2017] [Indexed: 05/19/2023]
Abstract
Lead (Pb) contamination of residential soils in United States is attributed to use of Pb based paints prior to 1978 and their deterioration and accumulation in surface soils. Exposure to Pb due to ingestion and inhalation of Pb laden soil and dust causes neurological disorders, renal disorders, developmental and behavioral problems, particularly in children under the age of six. Vetiver grass is one of the leading choices for Pb remediation due to its ability to hyperaccumulate Pb, in addition to high biomass. In order to understand the effect of Pb on vetiver metabolic pathways, we compared the global metabolic changes in vetiver with that of maize, a Pb susceptible plant under Pb stress. Vetiver showed massive increase in levels of key metabolites in response to Pb, including amino acids, organic acids and coenzymes. Maize showed very modest increase in some of the same metabolites, and no change in others. The results provide the first indication of the difference in metabolic response of the hyperaccumulator, vetiver to lead stress as compared to maize.
Collapse
Affiliation(s)
- Venkataramana R Pidatala
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Kefeng Li
- School of Medicine, University of California, San Diego, San Diego, CA 92103, USA
| | - Dibyendu Sarkar
- Department of Civil, Environmental and Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Ramakrishna Wusirika
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Rupali Datta
- Department of Biological Sciences, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| |
Collapse
|
45
|
Yin J, Wu B, Zhang XX, Xian Q. Comparative toxicity of chloro- and bromo-nitromethanes in mice based on a metabolomic method. CHEMOSPHERE 2017; 185:20-28. [PMID: 28683333 DOI: 10.1016/j.chemosphere.2017.06.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
Halonitromethanes (HNMs) as one typical class of nitrogenous disinfection byproducts have been widely found in drinking water. In vitro test found HNMs could induce higher cytotoxicity and genotoxicity than trihalomethanes and haloacetic acids. However, data on toxic effect from in vivo experiment is limited. In this study, bromonitromethane (BNM), bromochloronitromethane (BCNM) and trichloronitromethane (TCNM) were chosen as target HNMs, and exposed to mice for 30 d. Hepatic toxicity and serum metabolic profiles were determined to reveal toxic effects and mechanisms of the three HNMs. Results showed the three HNMs significantly decreased relative liver weight, indicating liver is one of the target organs. Further, the three HNMs exposure damaged hepatic antioxidant defense system, and increased oxidative DNA damage. Nuclear magnetic resonance based metabolomics analysis found amino acid metabolism and carbohydrate metabolism were disturbed by HNMs exposure. Some metabolites in these metabolisms are related to oxidative stress and damage. Combined with above results, BNM had the highest toxicity, followed by BCNM and TCNM, indicating bromo-HNMs had higher toxicity than chloro-HNMs. Induction of oxidative stress is one of the toxicity mechanisms of HNMs. This study firstly provides the insight into in vivo toxicity of HNMs and their underlying mechanisms based on metabolomics methods, which is very useful for their health risk assessment in drinking water.
Collapse
Affiliation(s)
- Jinbao Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
46
|
Hurtado C, Parastar H, Matamoros V, Piña B, Tauler R, Bayona JM. Linking the morphological and metabolomic response of Lactuca sativa L exposed to emerging contaminants using GC × GC-MS and chemometric tools. Sci Rep 2017; 7:6546. [PMID: 28747703 PMCID: PMC5529569 DOI: 10.1038/s41598-017-06773-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/16/2017] [Indexed: 02/05/2023] Open
Abstract
The occurrence of contaminants of emerging concern (CECs) in irrigation waters (up to low μg L-1) and irrigated crops (ng g-1 in dry weight) has been reported, but the linkage between plant morphological changes and plant metabolomic response has not yet been addressed. In this study, a non-targeted metabolomic analysis was performed on lettuce (Lactuca sativa L) exposed to 11 CECs (pharmaceuticals, personal care products, anticorrosive agents and surfactants) by irrigation. The plants were watered with different CEC concentrations (0-50 µg L-1) for 34 days under controlled conditions and then harvested, extracted, derivatised and analysed by comprehensive two-dimensional gas chromatography coupled to a time-of-flight mass spectrometer (GC × GC-TOFMS). The resulting raw data were analysed using multivariate curve resolution (MCR) and partial least squares (PLS) methods. The metabolic response indicates that exposure to CECs at environmentally relevant concentrations (0.05 µg L-1) can cause significant metabolic alterations in plants (carbohydrate metabolism, the citric acid cycle, pentose phosphate pathway and glutathione pathway) linked to changes in morphological parameters (leaf height, stem width) and chlorophyll content.
Collapse
Affiliation(s)
- Carlos Hurtado
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Hadi Parastar
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| | - Víctor Matamoros
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Benjamín Piña
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Romà Tauler
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain
| | - Josep M Bayona
- Department of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona, 18-26, E-08034, Barcelona, Spain.
| |
Collapse
|
47
|
Zhao L, Ortiz C, Adeleye AS, Hu Q, Zhou H, Huang Y, Keller AA. Metabolomics to Detect Response of Lettuce (Lactuca sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9697-707. [PMID: 27483188 DOI: 10.1021/acs.est.6b02763] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
There has been an increasing influx of nanopesticides into agriculture in recent years. Understanding the interaction between nanopesticides and edible plants is crucial in evaluating the potential impact of nanotechnology on the environment and agriculture. Here we exposed lettuce plants to Cu(OH)2 nanopesticides (1050-2100 mg/L) through foliar spray for one month. Inductively coupled plasma-mass spectrometry (ICP-MS) results indicate that 97-99% (1353-2501 mg/kg) of copper was sequestered in the leaves and only a small percentage (1-3%) (17.5-56.9 mg/kg) was translocated to root tissues through phloem loading. Gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS) based metabolomics combined with partial least squares-discriminant analysis (PLS-DA) multivariate analysis revealed that Cu(OH)2 nanopesticides altered metabolite levels of lettuce leaves. Tricarboxylic (TCA) cycle and a number of amino acid-related biological pathways were disturbed. Some antioxidant levels (cis-caffeic acid, chlorogenic acid, 3,4-dihydroxycinnamic acid, dehydroascorbic acid) were significantly decreased compared to the control, indicating that oxidative stress and a defense response occurred. Nicotianamine, a copper chelator, increased by 12-27 fold compared to the control, which may represent a detoxification mechanism. The up-regulation of polyamines (spermidine and putrescine) and potassium may mitigate oxidative stress and enhance tolerance. The data presented here provide a molecular-scale perspective on the response of plants to copper nanopesticides.
Collapse
Affiliation(s)
- Lijuan Zhao
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Cruz Ortiz
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Adeyemi S Adeleye
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Qirui Hu
- Neuroscience Research Institute, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Hongjun Zhou
- Neuroscience Research Institute and Molecular, Cellular and Developmental Biology, University of California Santa Barbara , Santa Barbara, California 93106, United States
| | - Yuxiong Huang
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California , Santa Barbara, California 93106-5131, United States
- University of California , Center for Environmental Implications of Nanotechnology, Santa Barbara, California United States
| |
Collapse
|