1
|
Lin S, Yan C, Zhu J, Lu Y, Peng X. Nucleation and Growth of Monodisperse CdTe and CdTe/ZnSe Core/shell Nanocrystals: Roles of Cationic Precursors, Ligands, and Solvents. J Am Chem Soc 2025; 147:12962-12972. [PMID: 40178279 DOI: 10.1021/jacs.5c02597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
With CdTe nanocrystals as a model system, we discover a new synthetic strategy for control of size and size distribution of colloidal semiconductor nanocrystals in both nucleation and growth stages. Especially in the nucleation stage, an in situ-formed cadmium complex with approximately one alkanoate and one alkylphosphonate ligand enables both high-yield nucleation by reacting the reactive cadmium-carboxylate bond with Te precursors and efficient size control by immediate passivation with the close-proximity alkylphosphonate ligand from the same complex. Conversely, control on size distribution during either homoepitaxial or heteroepitaxial growth requires reactive cadmium (or zinc) alkanoates as the cationic precursors with a minimum concentration of alkylphosphonate ligands in the novel synergistic solvents. This new strategy not only yields monodisperse CdTe and CdTe/ZnSe core/shell nanocrystals with unprecedented optical quality but also provides a much-needed alternative route for synthesizing monodisperse semiconductor nanocrystals, which is commonly hindered by the growth barrier of the dense ligand monolayer.
Collapse
Affiliation(s)
- Shangxin Lin
- College of Information Science and Technology, Huaqiao University, Xiamen 361021, China
| | - Chuanzhong Yan
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhu
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Yida Lu
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Xiaogang Peng
- Zhejiang Key Laboratory of Excited-State Energy Conversion and Energy Storage, Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Qiang S, Wu F, Liu H, Zeng S, Liu S, Dai J, Zhang X, Yu J, Liu YT, Ding B. Integration of high strength, flexibility, and room-temperature plasticity in ceramic nanofibers. Nat Commun 2025; 16:3265. [PMID: 40188183 PMCID: PMC11972374 DOI: 10.1038/s41467-025-58240-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/13/2025] [Indexed: 04/07/2025] Open
Abstract
The developing cutting-edge technologies involving extreme mechanical environments, such as high-frequency vibrations, mechanical shocks, or repeated twisting, require ceramic components to integrate high strength, large bending strain, and even plastic deformation, which is difficult in conventional ceramic materials. The emergence of ceramic nanofibers (CNFs) offers potential solutions; unfortunately, this desirable integration of mechanical properties in CNFs remains unrealized to date, due to challenges in precisely modulating microstructures, reducing cross-scale defects, and overcoming inherent contradictions between mechanical attributes (particularly, high strength and large deformation are often mutually exclusive). Here, we report a nucleation regulation strategy for crystalline/amorphous dual-phase CNFs, achieving an extraordinary integration of high strength, superior flexibility, and room-temperature plasticity. This advancement stems from the optimized dual-phase structure featuring reduced nanocrystal aggregation, increased internal interfaces, and the elimination of fiber defects, thus fully activating the synergistic advantages and multiple deformation mechanisms of dual-phase configurations. Using TiO2, which is typically characterized by brittleness and low strength, as the proof-of-concept model, in-situ single-nanofiber mechanical tests demonstrate excellent flexibility, strength (~1.06 GPa), strain limit (~8.44%), and room-temperature plastic deformation. These findings would provide valuable insights into the mechanical design of ceramic materials, paving the way for CNFs in extreme applications and their widespread industrialization.
Collapse
Affiliation(s)
- Siyu Qiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fan Wu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Hualei Liu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Sijuan Zeng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Shuyu Liu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jin Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiaohua Zhang
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China
| | - Yi-Tao Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai, 201620, China.
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, China.
| |
Collapse
|
3
|
Rojas-Gatjens E, Akkerman QA, Manna L, Srimath Kandada AR, Silva-Acuña C. Exciton-photocarrier interference in mixed lead-halide-perovskite nanocrystals. J Chem Phys 2024; 160:221101. [PMID: 38856052 DOI: 10.1063/5.0203982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024] Open
Abstract
The use of semiconductor nanocrystals in scalable quantum technologies requires characterization of the exciton coherence dynamics in an ensemble of electronically isolated crystals in which system-bath interactions are nevertheless strong. In this communication, we identify signatures of Fano-like interference between excitons and photocarriers in the coherent two-dimensional photoluminescence excitation spectral lineshapes of mixed lead-halide perovskite nanocrystals in dilute solution. Specifically, by tuning the femtosecond-pulse spectrum, we show such interference in an intermediate coupling regime, which is evident in the coherent lineshape when simultaneously exciting the exciton and the free-carrier band at higher energy. We conclude that this interference is an intrinsic effect that will be consequential in the quantum dynamics of the system and will thus dictate decoherence dynamics, with consequences in their application in quantum technologies.
Collapse
Affiliation(s)
- Esteban Rojas-Gatjens
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA
- School of Physics, Georgia Institute of Technology, 837 State St. NW, Atlanta, Georgia 30332, USA
| | - Quinten A Akkerman
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry Department, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Ajay Ram Srimath Kandada
- Department of Physics and Center for Functional Materials, Wake Forest University, 2090 Eure Drive, Winston-Salem, North Carolina 27109, USA
| | - Carlos Silva-Acuña
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, Georgia 30332, USA
- School of Physics, Georgia Institute of Technology, 837 State St. NW, Atlanta, Georgia 30332, USA
- Institut Courtois & Département de Physique, Université de Montréal, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec H2V 0B3, Canada
| |
Collapse
|
4
|
Brosseau P, Jasrasaria D, Ghosh A, Seiler H, Palato S, Kambhampati P. Two-Dimensional Electronic Spectroscopy Reveals Dynamics within the Bright Fine Structure of CdSe Quantum Dots. J Phys Chem Lett 2024; 15:1702-1707. [PMID: 38316135 DOI: 10.1021/acs.jpclett.3c03378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Semiconductor quantum dots are characterized by a discrete excitonic structure featuring coarse as well as fine structure. The lowest fine structure states have splittings into bright-dark states which are now well confirmed by single dot spectroscopy. In contrast, the splitting of the lowest coarse exciton into bright-bright fine structure states has not been observed nor the dynamics between these states. Here, we use the unique combination of time and energy resolution of two-dimensional electronic spectroscopy to directly observe the fine structure splittings into a bright-bright doublet. These splittings are strongly size dependent, with population relaxation on the <100 fs time scale.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | - Dipti Jasrasaria
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720-1460, United States
| | - Arnab Ghosh
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | - Helene Seiler
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | - Samuel Palato
- Department of Chemistry, McGill University, Montreal H3A 0G4, Canada
| | | |
Collapse
|
5
|
Hetherington CV, Mohan T M N, Tilluck RW, Beck WF, Levine BG. Origin of Vibronic Coherences During Carrier Cooling in Colloidal Quantum Dots. J Phys Chem Lett 2023; 14:11651-11658. [PMID: 38109055 DOI: 10.1021/acs.jpclett.3c02384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Recent two-dimensional electronic spectroscopy experiments [Tilluck et al. J. Phys. Chem. Lett. 2021, 12 (39), 9677-9683] indicate the creation of coherent vibronic wavepackets in the first femtoseconds of hot carrier cooling in hexadecylamine-passivated CdSe quantum dots. Here we present a quantum chemical study of the origin of these coherences in a CdSe nanocrystal. We find that coherent wavepacket motions along vibrational coordinates with alkylamine character promote nonradiative relaxation through conical intersections between the exciton states of the inorganic core. Electronic excitations in the core are found to pass energy to the vibrations of the ligands via two distinct mechanisms: excitation of core phonon modes that are coupled to the ligand vibrations and direct excitation of ligand vibrations by delocalization of the exciton onto the ligands, both of which naturally arise within a photochemical framework based on many-electron potential energy surfaces. If these findings are demonstrated to be general, vibronic coherences may be leveraged to control photophysical outcomes in colloidal quantum dots.
Collapse
Affiliation(s)
- Caitlin V Hetherington
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University Stony Brook, New York 11733 United States
| | - Nila Mohan T M
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 United States
| | - Ryan W Tilluck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824 United States
| | - Benjamin G Levine
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University Stony Brook, New York 11733 United States
| |
Collapse
|
6
|
Lei H, Liu S, Li J, Li C, Qin H, Peng X. Band-Edge Energy Levels of Dynamic Excitons in Cube-Shaped CdSe/CdS Core/Shell Nanocrystals. ACS NANO 2023; 17:21962-21972. [PMID: 37901990 DOI: 10.1021/acsnano.3c08377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
An electron-hole pair in a cube-shaped CdSe/CdS core/shell nanocrystal exists in the form of dynamic excitons across the strongly and weakly confined regimes under ambient temperatures. Photochemical doping is applied to distinguish the band-edge electron and hole levels, confirming an effective mass model with universal constants. Reduction of the optical bandgap upon epitaxy of the CdS shells is caused by lowering the band-edge electron level and barely affecting the band-edge hole level. Similar shifts of the electron levels, yet retaining the hole levels, can switch the order in energy of the three lowest-energy transitions. Thermal distribution of 1-4 electrons among the two thermally accessible electron levels follows number-counting statistics, instead of Fermi-Dirac distribution.
Collapse
Affiliation(s)
- Haixin Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shaojie Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chuyue Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
7
|
Bi Y, Cao S, Yu P, Du Z, Wang Y, Zheng J, Zou B, Zhao J. Reducing Emission Linewidth of Pure-Blue ZnSeTe Quantum Dots through Shell Engineering toward High Color Purity Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303247. [PMID: 37420332 DOI: 10.1002/smll.202303247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/19/2023] [Indexed: 07/09/2023]
Abstract
High color purity blue quantum dot light-emitting diodes (QLEDs) have great potential applications in the field of ultra-high-definition display. However, the realization of eco-friendly pure-blue QLEDs with a narrow emission linewidth for high color purity remains a significant challenge. Herein, a strategy for fabricating high color purity and efficient pure-blue QLEDs based on ZnSeTe/ZnSe/ZnS quantum dots (QDs) is presented. It is found that by finely controlling the internal ZnSe shell thickness of the QDs, the emission linewidth can be narrowed by reducing the exciton-longitudinal optical phonon coupling and trap states in the QDs. Additionally, the regulation of the QD shell thickness can suppress the Förster energy transfer between QDs in the QLED emission layer, which will help to reduce the emission linewidth of the device. As a result, the fabricated pure-blue (452 nm) ZnSeTe QLED with ultra-narrow electroluminescence linewidth (22 nm) exhibit high color purity with the Commission Internationale de l'Eclairage chromatic coordinates of (0.148, 0.042) and considerable external quantum efficiency (18%). This work provides a demonstration of the preparation of pure-blue eco-friendly QLEDs with both high color purity and efficiency, and it is believed that it will accelerate the application process of eco-friendly QLEDs in ultra-high-definition displays.
Collapse
Affiliation(s)
- Yuhe Bi
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Sheng Cao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Peng Yu
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Zhentao Du
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Yunjun Wang
- Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), Suzhou, 215123, China
| | - Jinju Zheng
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, 315211, China
| | - Bingsuo Zou
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| | - Jialong Zhao
- School of Physical Science and Technology, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning, 530004, China
| |
Collapse
|
8
|
Nguyen HA, Dixon G, Dou FY, Gallagher S, Gibbs S, Ladd DM, Marino E, Ondry JC, Shanahan JP, Vasileiadou ES, Barlow S, Gamelin DR, Ginger DS, Jonas DM, Kanatzidis MG, Marder SR, Morton D, Murray CB, Owen JS, Talapin DV, Toney MF, Cossairt BM. Design Rules for Obtaining Narrow Luminescence from Semiconductors Made in Solution. Chem Rev 2023. [PMID: 37311205 DOI: 10.1021/acs.chemrev.3c00097] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Solution-processed semiconductors are in demand for present and next-generation optoelectronic technologies ranging from displays to quantum light sources because of their scalability and ease of integration into devices with diverse form factors. One of the central requirements for semiconductors used in these applications is a narrow photoluminescence (PL) line width. Narrow emission line widths are needed to ensure both color and single-photon purity, raising the question of what design rules are needed to obtain narrow emission from semiconductors made in solution. In this review, we first examine the requirements for colloidal emitters for a variety of applications including light-emitting diodes, photodetectors, lasers, and quantum information science. Next, we will delve into the sources of spectral broadening, including "homogeneous" broadening from dynamical broadening mechanisms in single-particle spectra, heterogeneous broadening from static structural differences in ensemble spectra, and spectral diffusion. Then, we compare the current state of the art in terms of emission line width for a variety of colloidal materials including II-VI quantum dots (QDs) and nanoplatelets, III-V QDs, alloyed QDs, metal-halide perovskites including nanocrystals and 2D structures, doped nanocrystals, and, finally, as a point of comparison, organic molecules. We end with some conclusions and connections, including an outline of promising paths forward.
Collapse
Affiliation(s)
- Hao A Nguyen
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Grant Dixon
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Florence Y Dou
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Shaun Gallagher
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Stephen Gibbs
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Dylan M Ladd
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Emanuele Marino
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy
| | - Justin C Ondry
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - James P Shanahan
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Stephen Barlow
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David S Ginger
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - David M Jonas
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Seth R Marder
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Daniel Morton
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Christopher B Murray
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jonathan S Owen
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Dmitri V Talapin
- Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United States
| | - Michael F Toney
- Department of Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Brandi M Cossairt
- Department of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| |
Collapse
|
9
|
Park J, Kim T, Kim D. Charge Injection and Energy Transfer of Surface-Engineered InP/ZnSe/ZnS Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1159. [PMID: 37049253 PMCID: PMC10096696 DOI: 10.3390/nano13071159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Surface passivation is a critical aspect of preventing surface oxidation and improving the emission properties of nanocrystal quantum dots (QDs). Recent studies have demonstrated the critical role of surface ligands in determining the performance of QD-based light-emitting diodes (QD-LEDs). Herein, the underlying mechanism by which the capping ligands of InP/ZnSe/ZnS QDs influence the brightness and lifetime of the QD-LEDs is investigated. The electrochemical results demonstrate that highly luminescent InP/ZnSe/ZnS QDs exhibit modulated charge injection depending on the length of the surface ligand chains: short alkyl chains on the ligands are favorable for charge transport to the QDs. In addition, the correlation between the spectroscopic and XRD analyses suggests that the length of the ligand chain tunes the ligand-ligand coupling strength, thereby controlling the inter-QD energy transfer dynamics. The present findings shed new light on the crucial role of surface ligands for InP/ZnSe/ZnS QD-LED applications.
Collapse
Affiliation(s)
- Jumi Park
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Taehee Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Dongho Kim
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Division of Energy Materials, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| |
Collapse
|
10
|
Brosseau P, Seiler H, Palato S, Sonnichsen C, Baker H, Socie E, Strandell D, Kambhampati P. Perturbed free induction decay obscures early time dynamics in two-dimensional electronic spectroscopy: The case of semiconductor nanocrystals. J Chem Phys 2023; 158:084201. [PMID: 36859087 DOI: 10.1063/5.0138252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Two-dimensional electronic spectroscopy (2DES) has recently been gaining popularity as an alternative to the more common transient absorption spectroscopy due to the combination of high frequency and time resolution of 2DES. In order to advance the reliable analysis of population dynamics and to optimize the time resolution of the method, one has to understand the numerous field matter interactions that take place at an early and negative time. These interactions have historically been discussed in one-dimensional spectroscopy as coherent artifacts and have been assigned to both resonant and non-resonant system responses during or before the pulse overlap. These coherent artifacts have also been described in 2DES but remain less well-understood due to the complexity of 2DES and the relative novelty of the method. Here, we present 2DES results in two model nanocrystal samples, CdSe and CsPbI3. We demonstrate non-resonant signals due to solvent response during the pulse overlap and resonant signals, which we assign to perturbed free induction decay (PFID), both before and during the pulse overlap. The simulations of the 2DES response functions at early and negative time delays reinforce the assignment of the negative time delay signals to PFID. Modeling reveals that the PFID signals will severely distort the initial picture of the resonant population dynamics. By including these effects in models of 2DES spectra, one is able to push forward the extraction of early time dynamics in 2DES.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Hélène Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Samuel Palato
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Colin Sonnichsen
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Harry Baker
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Etienne Socie
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Dallas Strandell
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0G4, Canada
| | | |
Collapse
|
11
|
Barclay MS, Chowdhury AU, Biaggne A, Huff JS, Wright ND, Davis PH, Li L, Knowlton WB, Yurke B, Pensack RD, Turner DB. Probing DNA structural heterogeneity by identifying conformational subensembles of a bicovalently bound cyanine dye. J Chem Phys 2023; 158:035101. [PMID: 36681650 DOI: 10.1063/5.0131795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DNA is a re-configurable, biological information-storage unit, and much remains to be learned about its heterogeneous structural dynamics. For example, while it is known that molecular dyes templated onto DNA exhibit increased photostability, the mechanism by which the structural dynamics of DNA affect the dye photophysics remains unknown. Here, we use femtosecond, two-dimensional electronic spectroscopy measurements of a cyanine dye, Cy5, to probe local conformations in samples of single-stranded DNA (ssDNA-Cy5), double-stranded DNA (dsDNA-Cy5), and Holliday junction DNA (HJ-DNA-Cy5). A line shape analysis of the 2D spectra reveals a strong excitation-emission correlation present in only the dsDNA-Cy5 complex, which is a signature of inhomogeneous broadening. Molecular dynamics simulations support the conclusion that this inhomogeneous broadening arises from a nearly degenerate conformer found only in the dsDNA-Cy5 complex. These insights will support future studies on DNA's structural heterogeneity.
Collapse
Affiliation(s)
- Matthew S Barclay
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Azhad U Chowdhury
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Austin Biaggne
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Jonathan S Huff
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Nicholas D Wright
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Paul H Davis
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Lan Li
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - William B Knowlton
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Bernard Yurke
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Ryan D Pensack
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| | - Daniel B Turner
- Micron School for Materials Science and Engineering, Boise State University, Boise, Idaho 83725, USA
| |
Collapse
|
12
|
Lv L, Liu S, Li J, Lei H, Qin H, Peng X. Synthesis of Weakly Confined, Cube-Shaped, and Monodisperse Cadmium Chalcogenide Nanocrystals with Unexpected Photophysical Properties. J Am Chem Soc 2022; 144:16872-16882. [PMID: 36067446 DOI: 10.1021/jacs.2c05151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Zinc-blende CdSe, CdS, and CdSe/CdS core/shell nanocrystals with a structure-matched shape (cube-shaped, edge length ≤30 nm) are synthesized via a universal scheme. With the edge length up to five times larger than exciton diameter of the bulk semiconductors, the nanocrystals exhibit novel properties in the weakly confined size regime, such as near-unity single exciton and biexciton photoluminescence (PL) quantum yields, single-nanocrystal PL nonblinking, mixed PL decay dynamics of exciton and free carriers with sub-microsecond monoexponential decay lifetime, and stable yet extremely narrow PL full width at half maximum (FWHM < 0.1 meV) at 1.8 K. Their monodisperse edge length, shape, and facet structure enable demonstration of unexpected yet size-dependent PL properties at room temperature, including unusually broad and abnormally size-dependent PL FWHM (∼100 meV), nonmonotonic size dependence of PL peak energy, and dual-peak single-exciton PL. Calculations suggest that these unusual properties should be originated from the band-edge electron/hole states of the dynamic-exciton, whose exciton binding energy is too small to hold the photogenerated electron-hole pair as a bonded Wannier exciton in a weakly confined nanocrystal.
Collapse
Affiliation(s)
- Liulin Lv
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Shaojie Liu
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiongzhao Li
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haixin Lei
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Haiyan Qin
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Peng
- Key Laboratory of Excited-State Materials of Zhejiang Province, and Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
13
|
Wang Z, Hedse A, Amarotti E, Lenngren N, Žídek K, Zheng K, Zigmantas D, Pullerits T. Beating signals in CdSe quantum dots measured by low-temperature 2D spectroscopy. J Chem Phys 2022; 157:014201. [DOI: 10.1063/5.0089798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Advances in ultrafast spectroscopy can provide access to dynamics involving nontrivial quantum correlations and their evolutions. In coherent 2D spectroscopy, the oscillatory time dependence of a signal is a signature of such quantum dynamics. Here we study such beating signals in electronic coherent 2D spectroscopy of CdSe quantum dots (CdSe QDs) at 77 K. The beating signals are analyzed in terms of their positive and negative Fourier components. We conclude that the beatings originate from coherent LO-phonons of CdSe QDs. No evidence for the quantum dot size dependence of the LO-phonon frequency was identified.
Collapse
Affiliation(s)
- Zhengjun Wang
- Division of Chemical Physics, Lund Univeristy, Sweden
| | | | | | | | - Karel Žídek
- TOPTEC Research Center, Institute of Plasma Physics Czech Academy of Sciences, Czech Republic
| | - Kaibo Zheng
- Department of Chemical Physics, Lund University, Sweden
| | | | - Tonu Pullerits
- Department of Chemical Physics, Lund University Faculty of Science, Sweden
| |
Collapse
|
14
|
Zhu C, Marczak M, Feld L, Boehme SC, Bernasconi C, Moskalenko A, Cherniukh I, Dirin D, Bodnarchuk MI, Kovalenko MV, Rainò G. Room-Temperature, Highly Pure Single-Photon Sources from All-Inorganic Lead Halide Perovskite Quantum Dots. NANO LETTERS 2022; 22:3751-3760. [PMID: 35467890 PMCID: PMC9101069 DOI: 10.1021/acs.nanolett.2c00756] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/28/2022] [Indexed: 05/08/2023]
Abstract
Attaining pure single-photon emission is key for many quantum technologies, from optical quantum computing to quantum key distribution and quantum imaging. The past 20 years have seen the development of several solid-state quantum emitters, but most of them require highly sophisticated techniques (e.g., ultrahigh vacuum growth methods and cryostats for low-temperature operation). The system complexity may be significantly reduced by employing quantum emitters capable of working at room temperature. Here, we present a systematic study across ∼170 photostable single CsPbX3 (X: Br and I) colloidal quantum dots (QDs) of different sizes and compositions, unveiling that increasing quantum confinement is an effective strategy for maximizing single-photon purity due to the suppressed biexciton quantum yield. Leveraging the latter, we achieve 98% single-photon purity (g(2)(0) as low as 2%) from a cavity-free, nonresonantly excited single 6.6 nm CsPbI3 QDs, showcasing the great potential of CsPbX3 QDs as room-temperature highly pure single-photon sources for quantum technologies.
Collapse
Affiliation(s)
- Chenglian Zhu
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Malwina Marczak
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Leon Feld
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Simon C. Boehme
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Caterina Bernasconi
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Anastasiia Moskalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Ihor Cherniukh
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Dmitry Dirin
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maryna I. Bodnarchuk
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Maksym V. Kovalenko
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Gabriele Rainò
- Institute
of Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, CH-8093 Zürich, Switzerland
- Laboratory
for Thin Films and Photovoltaics, Empa −
Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
15
|
Wang L, Bai J, Zhang T, Huang X, Hou T, Xu B, Li D, Li Q, Jin X, Wang Y, Zhang X, Song Y. Controlling the emission linewidths of alloy quantum dots with asymmetric strain. J Colloid Interface Sci 2022; 624:287-295. [DOI: 10.1016/j.jcis.2022.05.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022]
|
16
|
Kang S, Han S, Kang Y. First-Principles Calculations of Luminescence Spectra of Real-Scale Quantum Dots. ACS MATERIALS AU 2022; 2:103-109. [PMID: 36855768 PMCID: PMC9888616 DOI: 10.1021/acsmaterialsau.1c00034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The luminescence line shape is an important feature of semiconductor quantum dots (QDs) and affects performance in various optical applications. Here, we report a first-principles method to predict the luminescence spectrum of thousands of atom QDs. In our approach, neural network potential calculations are combined with density functional theory calculations to describe exciton-phonon coupling (EPC). Using the calculated EPC, the luminescence spectrum is evaluated within the Franck-Condon approximation. Our approach results in the luminescence line shape for an InP/ZnSe core/shell QD (3406 atoms) that exhibits excellent agreement with the experiments. From a detailed analysis of EPC, we reveal that the coupling of both acoustic and optical phonons to an exciton are important in determining the spectral line shapes of core/shell QDs, which is in contrast with previous studies. On the basis of the present simulation results, we provide guidelines for designing high-performance core/shell QDs with ultrasharp emission spectra.
Collapse
Affiliation(s)
- Sungwoo Kang
- Department
of Materials Science and Engineering and Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Korea
| | - Seungwu Han
- Department
of Materials Science and Engineering and Research Institute of Advanced
Materials, Seoul National University, Seoul 08826, Korea
| | - Youngho Kang
- Department
of Materials Science and Engineering, Incheon
National University, Incheon 22012, Korea
| |
Collapse
|
17
|
Wang Z, Lenngren N, Amarotti E, Hedse A, Žídek K, Zheng K, Zigmantas D, Pullerits T. Excited States and Their Dynamics in CdSe Quantum Dots Studied by Two-Color 2D Spectroscopy. J Phys Chem Lett 2022; 13:1266-1271. [PMID: 35089715 PMCID: PMC8842281 DOI: 10.1021/acs.jpclett.1c04110] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Quantum dots (QDs) form a promising family of nanomaterials for various applications in optoelectronics. Understanding the details of the excited-state dynamics in QDs is vital for optimizing their function. We apply two-color 2D electronic spectroscopy to investigate CdSe QDs at 77 K within a broad spectral range. Analysis of the electronic dynamics during the population time allows us to identify the details of the excitation pathways. The initially excited high-energy electrons relax with the time constant of 100 fs. Simultaneously, the states at the band edge rise within 700 fs. Remarkably, the excited-state absorption is rising with a very similar time constant of 700 fs. This makes us reconsider the earlier interpretation of the excited-state absorption as the signature of a long-lived trap state. Instead, we propose that this signal originates from the excitation of the electrons that have arrived in the conduction-band edge.
Collapse
Affiliation(s)
- Zhengjun Wang
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Nils Lenngren
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- ELI
Beamlines, Institute of Physics, Czech Academy
of Sciences, v.v.i., Za Radnicí 835, 252 41 Dolní Břežany, Czech
Republic
| | - Edoardo Amarotti
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Albin Hedse
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Karel Žídek
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Regional
Center for Special Optics and Optoelectronic Systems (TOPTEC), Institute of Plasma Physics of the Czech Academy of
Sciences, 270 00 Prague 8, Czech Republic
| | - Kaibo Zheng
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
- Department
of Chemistry, Technical University of Denmark, DK-2800 Kongens
Lyngby, Denmark
| | - Donatas Zigmantas
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Tõnu Pullerits
- Division
of Chemical Physics and NanoLund, Lund University, P.O. Box 124, 22100 Lund, Sweden
| |
Collapse
|
18
|
Biswas S, Kim J, Zhang X, Scholes GD. Coherent Two-Dimensional and Broadband Electronic Spectroscopies. Chem Rev 2022; 122:4257-4321. [PMID: 35037757 DOI: 10.1021/acs.chemrev.1c00623] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over the past few decades, coherent broadband spectroscopy has been widely used to improve our understanding of ultrafast processes (e.g., photoinduced electron transfer, proton transfer, and proton-coupled electron transfer reactions) at femtosecond resolution. The advances in femtosecond laser technology along with the development of nonlinear multidimensional spectroscopy enabled further insights into ultrafast energy transfer and carrier relaxation processes in complex biological and material systems. New discoveries and interpretations have led to improved design principles for optimizing the photophysical properties of various artificial systems. In this review, we first provide a detailed theoretical framework of both coherent broadband and two-dimensional electronic spectroscopy (2DES). We then discuss a selection of experimental approaches and considerations of 2DES along with best practices for data processing and analysis. Finally, we review several examples where coherent broadband and 2DES were employed to reveal mechanisms of photoinitiated ultrafast processes in molecular, biological, and material systems. We end the review with a brief perspective on the future of the experimental techniques themselves and their potential to answer an even greater range of scientific questions.
Collapse
Affiliation(s)
- Somnath Biswas
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - JunWoo Kim
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Xinzi Zhang
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08 544, United States
| |
Collapse
|
19
|
Tilluck RW, Mohan T M N, Hetherington CV, Leslie CH, Sil S, Frazier J, Zhang M, Levine BG, Van Patten PG, Beck WF. Vibronic Excitons and Conical Intersections in Semiconductor Quantum Dots. J Phys Chem Lett 2021; 12:9677-9683. [PMID: 34590846 DOI: 10.1021/acs.jpclett.1c02630] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface defects and organic surface-capping ligands affect the photoluminescence properties of semiconductor quantum dots (QDs) by altering the rates of competing nonradiative relaxation processes. In this study, broadband two-dimensional electronic spectroscopy reveals that absorption of light by QDs prepares vibronic excitons, excited states derived from quantum coherent mixing of the core electronic and ligand vibrational states. Rapidly damped coherent wavepacket motions of the ligands are observed during hot-carrier cooling, with vibronic coherence transferred to the photoluminescent state. These findings suggest a many-electron, molecular theory for the electronic structure of QDs, which is supported by calculations of the structures of conical intersections between the exciton potential surfaces of a small ammonia-passivated model CdSe nanoparticle.
Collapse
Affiliation(s)
- Ryan W Tilluck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Nila Mohan T M
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Caitlin V Hetherington
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11733, United States
| | - Chase H Leslie
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Sourav Sil
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jared Frazier
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Mengliang Zhang
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Benjamin G Levine
- Institute for Advanced Computational Science and Department of Chemistry, Stony Brook University, Stony Brook, New York 11733, United States
| | - P Gregory Van Patten
- Department of Chemistry, Middle Tennessee State University, Murfreesboro, Tennessee 37132, United States
| | - Warren F Beck
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
20
|
Sonnichsen C, Brosseau P, Reid C, Kambhampati P. OPA-driven hollow-core fiber as a tunable, broadband source for coherent multidimensional spectroscopy. OPTICS EXPRESS 2021; 29:28352-28358. [PMID: 34614968 DOI: 10.1364/oe.431988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Despite the impressive abilities of coherent multi-dimensional spectroscopy (CMDS), its' implementation is limited due to the complexity of continuum generation and required phase stability between the pump pulse pair. In light of this, we have implemented a system producing sub-10 fs pulses with tunable central wavelength. Using a commercial OPA to drive a hollow-core fiber, the system is extremely simple. Output pulse energies lie in the 40-80 μJ range, more than sufficient for transmission through the pulse shaping optics and beam splitters necessary for CMDS. Power fluctuations are minimal, mode quality is excellent, and spectral phase is well behaved at the output. To demonstrate the strength of this source, we measure the two-dimensional spectrum of CdSe quantum dots over a range of population times and find clean signals and clear phonon vibrations. This combination of OPA and hollow-core fiber provides a substantial extension to the capabilities of CMDS.
Collapse
|
21
|
Vonk SW, Heemskerk BAJ, Keitel RC, Hinterding SOM, Geuchies JJ, Houtepen AJ, Rabouw FT. Biexciton Binding Energy and Line width of Single Quantum Dots at Room Temperature. NANO LETTERS 2021; 21:5760-5766. [PMID: 34133188 PMCID: PMC8283756 DOI: 10.1021/acs.nanolett.1c01556] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/12/2021] [Indexed: 05/20/2023]
Abstract
Broadening of multiexciton emission from colloidal quantum dots (QDs) at room temperature is important for their use in high-power applications, but an in-depth characterization has not been possible until now. We present and apply a novel spectroscopic method to quantify the biexciton line width and biexciton binding energy of single CdSe/CdS/ZnS colloidal QDs at room temperature. In our method, which we term "cascade spectroscopy", we select emission events from the biexciton cascade and reconstruct their spectrum. The biexciton has an average emission line width of 86 meV on the single-QD scale, similar to that of the exciton. Variations in the biexciton repulsion (Eb = 4.0 ± 3.1 meV; mean ± standard deviation of 15 QDs) are correlated with but are more narrowly distributed than variations in the exciton energy (10.0 meV standard deviation). Using a simple quantum-mechanical model, we conclude that inhomogeneous broadening in our sample is primarily due to variations in the CdS shell thickness.
Collapse
Affiliation(s)
- Sander
J. W. Vonk
- Debye
Institute, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Bart A. J. Heemskerk
- Debye
Institute, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Robert C. Keitel
- Optical
Materials Engineering Laboratory, ETH Zurich, Leonhardstrasse 21, 8092 Zurich, Switzerland
| | | | - Jaco J. Geuchies
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Arjan J. Houtepen
- Optoelectronic
Materials Section, Faculty of Applied Sciences, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Freddy T. Rabouw
- Debye
Institute, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
- Email for F.T.R.:
| |
Collapse
|
22
|
Exciton-Related Raman Scattering, Interband Absorption and Photoluminescence in Colloidal CdSe/CdS Core/Shell Quantum Dots Ensemble. NANOMATERIALS 2021; 11:nano11051274. [PMID: 34066214 PMCID: PMC8151553 DOI: 10.3390/nano11051274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/20/2023]
Abstract
By using the numerical discretization method within the effective-mass approximation, we have theoretically investigated the exciton-related Raman scattering, interband absorption and photoluminescence in colloidal CdSe/CdS core/shell quantum dots ensemble. The interband optical absorption and photoluminescence spectra have been revealed for CdSe/CdS quantum dots, taking into account the size dispersion of the ensemble. Numerical calculation of the differential cross section has been presented for the exciton-related Stokes–Raman scattering in CdSe/CdS quantum dots ensemble with different mean sizes.
Collapse
|
23
|
Liu A, Nagamine G, Bonato LG, Almeida DB, Zagonel LF, Nogueira AF, Padilha LA, Cundiff ST. Toward Engineering Intrinsic Line Widths and Line Broadening in Perovskite Nanoplatelets. ACS NANO 2021; 15:6499-6506. [PMID: 33769788 DOI: 10.1021/acsnano.0c09244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Perovskite nanoplatelets possess extremely narrow absorption and emission line widths, which are crucial characteristics for many optical applications. However, their underlying intrinsic and extrinsic line-broadening mechanisms are poorly understood. Here, we apply multidimensional coherent spectroscopy to determine the homogeneous line broadening of colloidal perovskite nanoplatelet ensembles. We demonstrate a dependence of not only their intrinsic line widths but also of various broadening mechanisms on platelet geometry. We find that decreasing nanoplatelet thickness by a single monolayer results in a 2-fold reduction of the inhomogeneous line width and a 3-fold reduction of the intrinsic homogeneous line width to the sub-millielectronvolts regime. In addition, our measurements suggest homogeneously broadened exciton resonances in two-layer (but not necessarily three-layer) nanoplatelets at room-temperature.
Collapse
Affiliation(s)
- Albert Liu
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Gabriel Nagamine
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Luiz G Bonato
- Instituto de Quimica, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Diogo B Almeida
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Luiz F Zagonel
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Ana F Nogueira
- Instituto de Quimica, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Lazaro A Padilha
- Instituto de Fisica Gleb Wataghin, Universidade Estadual de Campinas, Campinas, Sao Paulo 13083-970, Brazil
| | - Steven T Cundiff
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Mueller S, Lüttig J, Brenneis L, Oron D, Brixner T. Observing Multiexciton Correlations in Colloidal Semiconductor Quantum Dots via Multiple-Quantum Two-Dimensional Fluorescence Spectroscopy. ACS NANO 2021; 15:4647-4657. [PMID: 33577282 DOI: 10.1021/acsnano.0c09080] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Correlations between excitons, that is, electron-hole pairs, have a great impact on the optoelectronic properties of semiconductor quantum dots and thus are relevant for applications such as lasers and photovoltaics. Upon multiphoton excitation, these correlations lead to the formation of multiexciton states. It is challenging to observe these states spectroscopically, especially higher multiexciton states, because of their short lifetimes and nonradiative decay. Moreover, solvent contributions in experiments with coherent signal detection may complicate the analysis. Here we employ multiple-quantum two-dimensional (2D) fluorescence spectroscopy on colloidal CdSe1-xSx/ZnS alloyed core/shell quantum dots. We selectively map the electronic structure of multiexcitons and their correlations by using two- and three-quantum 2D spectroscopy, conducted in a simultaneous measurement. Our experiments reveal the characteristics of biexcitons and triexcitons such as transition dipole moments, binding energies, and correlated transition energy fluctuations. We determine the binding energies of the first six biexciton states by simulating the two-quantum 2D spectrum. By analyzing the line shape of the three-quantum 2D spectrum, we find strong correlations between biexciton and triexciton states. Our method contributes to a more comprehensive understanding of multiexcitonic species in quantum dots and other semiconductor nanostructures.
Collapse
Affiliation(s)
- Stefan Mueller
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Julian Lüttig
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Luisa Brenneis
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Dan Oron
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Tobias Brixner
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| |
Collapse
|
25
|
Collini E, Gattuso H, Levine RD, Remacle F. Ultrafast fs coherent excitonic dynamics in CdSe quantum dots assemblies addressed and probed by 2D electronic spectroscopy. J Chem Phys 2021; 154:014301. [DOI: 10.1063/5.0031420] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- Elisabetta Collini
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Hugo Gattuso
- Theoretical Physical Chemistry, RU MOLSYS, University of Liège, Allée du 6 Août 11, B4000 Liège, Belgium
| | - R. D. Levine
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - F. Remacle
- Theoretical Physical Chemistry, RU MOLSYS, University of Liège, Allée du 6 Août 11, B4000 Liège, Belgium
- The Fritz Haber Research Center for Molecular Dynamics and Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
26
|
Brosseau P, Palato S, Seiler H, Baker H, Kambhampati P. Fifth-order two-quantum absorptive two-dimensional electronic spectroscopy of CdSe quantum dots. J Chem Phys 2020; 153:234703. [PMID: 33353320 DOI: 10.1063/5.0021381] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-quantum variants of two-dimensional electronic spectroscopy (2DES) have previously been used to characterize multi-exciton interactions in molecules and semiconductor nanostructures though many implementations are limited by phasing procedures or non-resonant signals. We implement 2DES using phase-cycling to simultaneously measure one-quantum and two-quantum spectra in colloidal CdSe quantum dots. In the pump-probe geometry, fully absorptive spectra are automatically acquired by measuring the sum of the rephasing and nonrephasing signals. Fifth-order two-quantum spectroscopy allows for direct access to multi-exciton states that may be obscured in excited state absorption signals due to population relaxation or third-order two-quantum spectra due to the non-resonant response.
Collapse
Affiliation(s)
- Patrick Brosseau
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Samuel Palato
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Hélène Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - Harry Baker
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | | |
Collapse
|
27
|
Huang X, Chen L, Zhang C, Qin Z, Yu B, Wang X, Xiao M. Inhomogeneous Biexciton Binding in Perovskite Semiconductor Nanocrystals Measured with Two-Dimensional Spectroscopy. J Phys Chem Lett 2020; 11:10173-10181. [PMID: 33197186 DOI: 10.1021/acs.jpclett.0c03153] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Perovskite semiconductor nanocrystals have emerged as an excellent family of materials for optoelectronic applications, where biexciton interaction is essential for optical gain generation and quantum light emission. However, the strength of biexciton interaction remains highly controversial due to the entangled spectral features of the exciton- and biexciton-related transitions in conventional measurement approaches. Here, we tackle the limitation by using polarization-dependent two-dimensional electronic spectroscopy and quantify the excitation energy-dependent biexciton binding energy at cryogenic temperatures. The biexciton binding energy increases with excitation energy, which can be modeled as a near inverse-square size dependence in the effective mass approximation considering the quantum confinement effect. The spectral line width for the exciton-biexciton transition is much broader than that for the ground state to exciton transition, suggesting weakly correlated broadening between these transitions. These inhomogeneity effects should be carefully considered for the future demonstration of optoelectronic applications relying on coherent exciton-biexciton interactions.
Collapse
Affiliation(s)
- Xinyu Huang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Lan Chen
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhengyuan Qin
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Buyang Yu
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China
- Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
28
|
Lv L, Li J, Wang Y, Shu Y, Peng X. Monodisperse CdSe Quantum Dots Encased in Six (100) Facets via Ligand-Controlled Nucleation and Growth. J Am Chem Soc 2020; 142:19926-19935. [PMID: 33185104 DOI: 10.1021/jacs.0c06914] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Zinc-blende CdSe quantum dots (QDs) encased in six equal (100) facets are synthesized in a noncoordinating solvent. Their monodispersed size, unique facet structure, and single crystallinity render the narrowest ensemble photoluminescence for CdSe QDs (full width at half-maximum being 52 meV). The nucleation stage can selectively form small-size CdSe QDs (≤3 nm) as seeds suited for the growth of cube-shaped QDs by reducing the concentration of cadmium carboxylates (Cd(RCOO)2) as the sole source of ligands. While resulting in poorly controlled nucleation, chloride-ion ligands introduced in the form of soluble CdClx(RCOO)1-x (x = 0.1∼0.2) would thermodynamically stabilize the cadmium-terminated (100) facets yet kinetically accelerate the deposition of selenium ions onto the (100) facets. Results suggest that it is fully feasible to synthesize QDs simultaneously with monodisperse size and surface structure through ligand-controlled nucleation and growth.
Collapse
Affiliation(s)
- Liulin Lv
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Jiongzhao Li
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yonghong Wang
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Yufei Shu
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Xiaogang Peng
- Center for Chemistry of Novel & High-Performance Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Jeffries WR, Park K, Vaia RA, Knappenberger KL. Resolving Electron-Electron Scattering in Plasmonic Nanorod Ensembles Using Two-Dimensional Electronic Spectroscopy. NANO LETTERS 2020; 20:7722-7727. [PMID: 32931697 DOI: 10.1021/acs.nanolett.0c03272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The use of two-dimensional electronic spectroscopy (2DES) to study electron-electron scattering dynamics in plasmonic gold nanorods is described. The 2DES resolved the time-dependent plasmon homogeneous line width Γh(t), which was sensitive to changes in Fermi-level carrier densities. This approach was effective because electronic excitation accelerated plasmon dephasing, which broadened Γh. Analysis of Γh(t) indicated plasmon coherence times were decreased by 20-50%, depending on excitation conditions. Electron-electron scattering rates of approximately 0.01 fs-1 were obtained by fitting the time-dependent Γh broadening; rates increased quadratically with both excitation pulse energy and frequency. This rate dependence agreed with Fermi-liquid theory-based predictions. Hot electron thermalization through electron-phonon scattering resulted in Γh narrowing. To our knowledge, this is the first use of the plasmon Γh(t) to isolate electron-electron scattering dynamics in colloidal metal nanoparticles. These results illustrate the effectiveness of 2DES for studying hot electron dynamics of solution-phase plasmonic ensembles.
Collapse
Affiliation(s)
- William R Jeffries
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Kyoungweon Park
- Air Force Research Laboratory, 2941 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Richard A Vaia
- Air Force Research Laboratory, 2941 Hobson Way, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
30
|
Shu Y, Lin X, Qin H, Hu Z, Jin Y, Peng X. Quantum Dots for Display Applications. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004857] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Yufei Shu
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Xing Lin
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Haiyan Qin
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Zhuang Hu
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Yizheng Jin
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| | - Xiaogang Peng
- Center for Chemistry of High-Performance & Novel Materials Department of Chemistry Zhejiang University Hangzhou 310027 People's Republic of China
| |
Collapse
|
31
|
Shu Y, Lin X, Qin H, Hu Z, Jin Y, Peng X. Quantum Dots for Display Applications. Angew Chem Int Ed Engl 2020; 59:22312-22323. [PMID: 32421230 DOI: 10.1002/anie.202004857] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Indexed: 12/19/2022]
Abstract
This article offers a materials-chemistry perspective for colloidal quantum dots (QDs) in the field of display, including QD-enhanced liquid-crystal-display (QD-LCD) and QD-based light-emitting-diodes (QLEDs) display. The rapid successes of QDs for display in the past five years are not accidental but have a deep root in both maturity of their synthetic chemistry and their unique chemical, optical, and optoelectronic properties. This article intends to discuss the natural match of QD emitters for display and chemical means to eventually bring about their full potential.
Collapse
Affiliation(s)
- Yufei Shu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xing Lin
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Haiyan Qin
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zhuang Hu
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Yizheng Jin
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiaogang Peng
- Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, People's Republic of China
| |
Collapse
|
32
|
Forde A, Fagan JA, Schaller RD, Thomas SA, Brown SL, Kurtti MB, Petersen RJ, Kilin DS, Hobbie EK. Brightly Luminescent CsPbBr 3 Nanocrystals through Ultracentrifugation. J Phys Chem Lett 2020; 11:7133-7140. [PMID: 32787334 DOI: 10.1021/acs.jpclett.0c01936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Using a combination of density-gradient and analytical ultracentrifugation, we studied the photophysical profile of CsPbBr3 nanocrystal (NC) suspensions by separating them into size-resolved fractions. Ultracentrifugation drastically alters the ligand profile of the NCs, which necessitates postprocessing to restore colloidal stability and enhance quantum yield (QY). Rejuvenated fractions show a 50% increase in QY compared to no treatment and a 30% increase with respect to the parent. Our results demonstrate how the NC environment can be manipulated to improve photophysical performance, even after there has been a measurable decline in the response. Size separation reveals blue-emitting fractions, a narrowing of photoluminescence spectra in comparison to the parent, and a crossover from single- to stretched-exponential relaxation dynamics with decreasing NC size. As a function of edge length, L, our results confirm that the photoluminescence peak energy scales a L-2, in agreement with the simplest picture of quantum confinement.
Collapse
Affiliation(s)
- Aaron Forde
- Materials & Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Jeffrey A Fagan
- National Institute of Standards & Technology, Gaithersburg, Maryland 20899, United States
| | - Richard D Schaller
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Center for Nanoscale Materials, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Salim A Thomas
- Materials & Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Samuel L Brown
- Materials & Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Matthew B Kurtti
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Reed J Petersen
- Department of Physics, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dmitri S Kilin
- Department of Chemistry & Biochemistry, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Erik K Hobbie
- Materials & Nanotechnology Program, North Dakota State University, Fargo, North Dakota 58108, United States
- Department of Coatings & Polymeric Materials, North Dakota State University, Fargo, North Dakota 58108, United States
| |
Collapse
|
33
|
Le P, Vaidya R, Smith LD, Han Z, Zahid MU, Winter J, Sarkar S, Chung HJ, Perez-Pinera P, Selvin PR, Smith AM. Optimizing Quantum Dot Probe Size for Single-Receptor Imaging. ACS NANO 2020; 14:8343-8358. [PMID: 32525656 PMCID: PMC7872344 DOI: 10.1021/acsnano.0c02390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Quantum dots (QDs) are nanocrystals with bright fluorescence and long-term photostability, attributes particularly beneficial for single-molecule imaging and molecular counting in the life sciences. The size of a QD nanocrystal determines its physicochemical and photophysical properties, both of which dictate the success of imaging applications. Larger nanocrystals typically have better optical properties, with higher brightness, red-shifted emission, reduced blinking, and greater stability. However, larger nanocrystals introduce molecular-labeling biases due to steric hindrance and nonspecific binding. Here, we systematically analyze the impact of nanocrystal size on receptor labeling in live and fixed cells. We designed three (core)shell QDs with red emission (600-700 nm) and crystalline sizes of 3.2, 5.5, and 8.3 nm. After coating with the same multidentate polymer, hydrodynamic sizes were 9.2 nm (QD9.2), 13.3 nm (QD13.3), and 17.4 nm (QD17.4), respectively. The QDs were conjugated to streptavidin and applied as probes for biotinylated neurotransmitter receptors. QD9.2 exhibited the highest labeling specificity for receptors in the narrow synaptic cleft (∼20-30 nm) in living neurons. However, for dense receptor labeling for molecular counting in live and fixed HeLa cells, QD13.3 yielded the highest counts. Nonspecific binding rose sharply for hydrodynamic sizes larger than 13.3 nm, with QD17.4 exhibiting particularly diminished specificity. Our comparisons further highlight needs to continue engineering the smallest QDs to increase single-molecule intensity, suppress blinking frequency, and inhibit nonspecific labeling in fixed and permeabilized cells. These results lay a foundation for designing QD probes with further reduced sizes to achieve unbiased labeling for quantitative and single-molecule imaging.
Collapse
Affiliation(s)
- Phuong Le
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rohit Vaidya
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Lucas D Smith
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Zhiyuan Han
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Mohammad U Zahid
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jackson Winter
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Suresh Sarkar
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hee Jung Chung
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Pablo Perez-Pinera
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, Urbana, Illinois 61801 United States
| | - Paul R Selvin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Departments of Physics and the Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Andrew M Smith
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Carle Illinois College of Medicine, Urbana, Illinois 61801, United States
- Cancer Center at Illinois, Urbana, Illinois 61801 United States
| |
Collapse
|
34
|
Abstract
The microscopic origin and timescale of the fluctuations of the energies of electronic states has a significant impact on the properties of interest of electronic materials, with implication in fields ranging from photovoltaic devices to quantum information processing. Spectroscopic investigations of coherent dynamics provide a direct measurement of electronic fluctuations. Modern multidimensional spectroscopy techniques allow the mapping of coherent processes along multiple time or frequency axes and thus allow unprecedented discrimination between different sources of electronic dephasing. Exploiting modern abilities in coherence mapping in both amplitude and phase, we unravel dissipative processes of electronic coherences in the model system of CdSe quantum dots (QDs). The method allows the assignment of the nature of the observed coherence as vibrational or electronic. The expected coherence maps are obtained for the coherent longitudinal optical (LO) phonon, which serves as an internal standard and confirms the sensitivity of the technique. Fast dephasing is observed between the first two exciton states, despite their shared electron state and common environment. This result is contrary to predictions of the standard effective mass model for these materials, in which the exciton levels are strongly correlated through a common size dependence. In contrast, the experiment is in agreement with ab initio molecular dynamics of a single QD. Electronic dephasing in these materials is thus dominated by the realistic electronic structure arising from fluctuations at the atomic level rather than static size distribution. The analysis of electronic dephasing thereby uniquely enables the study of electronic fluctuations in complex materials.
Collapse
|
35
|
Kang S, Kim Y, Jang E, Kang Y, Han S. Fundamental Limit of the Emission Linewidths of Quantum Dots: An Ab Initio Study of CdSe Nanocrystals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22012-22018. [PMID: 32298076 DOI: 10.1021/acsami.0c02904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The emission linewidth of a semiconducting nanocrystal (NC) significantly affects its performance in light-emitting applications, but its fundamental limit is still elusive. Herein, we analyze the exciton-phonon coupling (EPC) from Huang-Rhys (HR) factors using ab initio calculations and compute emission line shapes of CdSe NCs. When surface traps are absent, acoustic modes are found to dominate EPC. The computed linewidths are mainly determined by the size of NCs, being largely insensitive to the shape and crystal structure. Linewidths obtained in this work are much smaller than most measurements on homogeneous linewidths, but they are consistent with a CdSe/CdxZn1-xSe (core/shell) NC [Park, Y.-S.; Lim, J.; Klimov, V. I. Nat. Mater. 2019 18, 249-255]. Based on this comparison, it is concluded that the large linewidths in most experiments originated from internal fields by surface (or interface) traps or quasi-type II band alignment that amplifies EPC. Thus, the present results on NCs with ideal passivation provide the fundamental minimum of homogeneous linewidths, indicating that only the CdSe/CdxZn1-xSe NC has achieved this limit through well-controlled synthesis of shell structures. To further verify the role of internal fields, we model NCs with charged surface defects. We find that the internal field significantly increases HR factors and linewidths, in reasonable agreement with experiments on single cores. By revealing the fundamental limit of the emission linewidths of quantum dots, this work will pave the way for engineering quantum dots with an ultrasharp spectrum.
Collapse
Affiliation(s)
- Sungwoo Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Yongwook Kim
- Inorganic Material Lab, Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-do 16678, Korea
| | - Eunjoo Jang
- Inorganic Material Lab, Samsung Advanced Institute of Technology, Samsung Electronics, Gyeonggi-do 16678, Korea
| | - Youngho Kang
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Korea
| | - Seungwu Han
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
36
|
Palato S, Seiler H, Baker H, Sonnichsen C, Brosseau P, Kambhampati P. Investigating the electronic structure of confined multiexcitons with nonlinear spectroscopies. J Chem Phys 2020; 152:104710. [DOI: 10.1063/1.5142180] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- S. Palato
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| | - H. Seiler
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| | - H. Baker
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| | - C. Sonnichsen
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| | - P. Brosseau
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| | - P. Kambhampati
- Department of Chemistry, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada
| |
Collapse
|
37
|
Interference among Multiple Vibronic Modes in Two-Dimensional Electronic Spectroscopy. MATHEMATICS 2020. [DOI: 10.3390/math8020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Vibronic coupling between electronic and vibrational states in molecules plays a critical role in most photo-induced phenomena. Many key details about a molecule’s vibronic coupling are hidden in linear spectroscopic measurements, and therefore nonlinear optical spectroscopy methods such as two-dimensional electronic spectroscopy (2D ES) have become more broadly adopted. A single vibrational mode of a molecule leads to a Franck–Condon progression of peaks in a 2D spectrum. Each peak oscillates as a function of the waiting time, and Fourier transformation can produce a spectral slice known as a ‘beating map’ at the oscillation frequency. The single vibrational mode produces a characteristic peak structure in the beating map. Studies of single modes have limited utility, however, because most molecules have numerous vibrational modes that couple to the electronic transition. Interactions or interference among the modes may lead to complicated peak patterns in each beating map. Here, we use lineshape-function theory to simulate 2D ES arising from a system having multiple vibrational modes. The simulations reveal that the peaks in each beating map are affected by all of the vibrational modes and therefore do not isolate a single mode, which was anticipated.
Collapse
|
38
|
Do TN, Khyasudeen MF, Nowakowski PJ, Zhang Z, Tan HS. Measuring Ultrafast Spectral Diffusion and Correlation Dynamics by Two-Dimensional Electronic Spectroscopy. Chem Asian J 2019; 14:3992-4000. [PMID: 31595651 DOI: 10.1002/asia.201900994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Indexed: 11/07/2022]
Abstract
The frequency fluctuation correlation function (FFCF) measures the spectral diffusion of a state's transition while the frequency fluctuation cross-correlation function (FXCF) measures the correlation dynamics between the transitions of two separate states. These quantities contain a wealth of information on how the chromophores or excitonic states interact and couple with its environment and with each other. We summarize the experimental implementations and theoretical considerations of using two-dimensional electronic spectroscopy to characterize FFCFs and FXCFs. Applications can be found in systems such as the chlorophyll pigment molecules in light-harvesting complexes and CdSe nanomaterials.
Collapse
Affiliation(s)
- Thanh Nhut Do
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - M Faisal Khyasudeen
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore.,Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Paweł J Nowakowski
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - Zhengyang Zhang
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| | - Howe-Siang Tan
- Disivion of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21, Nanyang Link, 637371, Singapore
| |
Collapse
|
39
|
Liu A, Almeida DB, Bae WK, Padilha LA, Cundiff ST. Simultaneous Existence of Confined and Delocalized Vibrational Modes in Colloidal Quantum Dots. J Phys Chem Lett 2019; 10:6144-6150. [PMID: 31556615 DOI: 10.1021/acs.jpclett.9b02474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coupling to phonon modes is a primary mechanism of excitonic dephasing and energy loss in semiconductors. However, low-energy phonons in colloidal quantum dots and their coupling to excitons are poorly understood because their experimental signatures are weak and usually obscured by the unavoidable inhomogeneous broadening of colloidal dot ensembles. We use multidimensional coherent spectroscopy at cryogenic temperatures to extract the homogeneous nonlinear optical response of excitons in a CdSe/CdZnS core/shell colloidal quantum dot ensemble. A comparison to the simulation provides evidence that the observed lineshapes arise from the coexistence of confined and delocalized vibrational modes, both of which couple strongly to excitons in CdSe/CdZnS colloidal quantum dots.
Collapse
Affiliation(s)
- Albert Liu
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Diogo B Almeida
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Wan-Ki Bae
- SKKU Advanced Institute of Nano Technology , Sungkyunkwan University , Suwon , 16419 Gyeonggi , Republic of Korea
| | - Lazaro A Padilha
- Instituto de Fisica "Gleb Wataghin" , Universidade de Campinas , Campinas , 13083-970 Sao Paulo , Brazil
| | - Steven T Cundiff
- Department of Physics , University of Michigan , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
40
|
Li L, Zhang M, Rowell N, Kreouzis T, Fan H, Yu Q, Huang W, Chen X, Yu K. Identifying Clusters and/or Small-Size Quantum Dots in Colloidal CdSe Ensembles with Optical Spectroscopy. JOURNAL OF PHYSICAL CHEMISTRY LETTERS 2019; 10:6399-6408. [PMID: 31593476 DOI: 10.1021/acs.jpclett.9b02439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well-known that optical absorption and photoluminescence (PL) provide information that is sensitive to the size and size distribution of colloidal binary semiconductor quantum dots (QDs). To explore the nature of reaction products, clusters, and/or small-size QDs, we show that it is important to perform as well photoluminescence excitation (PLE) spectroscopy. For two non-hot-injection reactions of cadmium oleate (Cd(OA)2) and selenium (Se) in 1-octadecene (ODE), we show that sequentially extracted products displayed a similar apparent red shift in both absorption and PL with a full width at half-maximum (fwhm) of ∼30 nm. We demonstrate that one reaction (with the presence of diphenyl phosphine (HPPh2)) produced multiple types of clusters (with slightly different optical properties) in one ensemble, while the other reaction (without HPPh2) yielded primarily small-size QDs. Our findings provide evidence for the probable existence of clusters within small-size CdSe QD products, the existence of which complicates the size determination of small-size CdSe QDs.
Collapse
Affiliation(s)
- Lijia Li
- Engineering Research Center in Biomaterials , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| | - Meng Zhang
- Institute of Atomic and Molecular Physics , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| | - Nelson Rowell
- Metrology Research Centre, National Research Council Canada , Ottawa , Ontario K1A 0R6 , Canada
| | - Theo Kreouzis
- School of Physics and Astronomy , Queen Mary University of London , London E1 4NS , United Kingdom
| | - Hongsong Fan
- Engineering Research Center in Biomaterials , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| | - Qiyu Yu
- College of Materials Science and Engineering , Sichuan University of Science and Engineering , Zigong 643000 , China.,State Key Laboratory of Polymer Materials Engineering , Chengdu , Sichuan 610065 , People's Republic of China
| | - Wen Huang
- Laboratory of Ethnopharmacology, West China School of Medicine, West China Hospital , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| | - Xiaoqin Chen
- Engineering Research Center in Biomaterials , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China
| | - Kui Yu
- Engineering Research Center in Biomaterials , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China.,Institute of Atomic and Molecular Physics , Sichuan University , Chengdu , Sichuan 610065 , People's Republic of China.,State Key Laboratory of Polymer Materials Engineering , Chengdu , Sichuan 610065 , People's Republic of China
| |
Collapse
|
41
|
Azzaro MS, Le AK, Wang H, Roberts ST. Ligand-Enhanced Energy Transport in Nanocrystal Solids Viewed with Two-Dimensional Electronic Spectroscopy. J Phys Chem Lett 2019; 10:5602-5608. [PMID: 31475832 DOI: 10.1021/acs.jpclett.9b02040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We examine CdSe NCs functionalized with the exciton-delocalizing ligand phenyldithiocarbamate (PDTC) using two-dimensional electronic spectroscopy (2DES). PDTC forms hybrid molecular orbitals with CdSe's valence band that relax hole spatial confinement and create potential for enhanced exciton migration in NC solids. We find PDTC broadens the intrinsic line width of individual NCs in solution by ∼30 meV, which we ascribe to modulation of NC band edge states by ligand motion. In PDTC-exchanged solids, photoexcited excitons are mobile and rapidly move to low-energy NC sites over ∼30 ps. We also find placing excitons into high-energy states can accelerate their rate of migration by over an order of magnitude, which we attribute to enhanced spatial delocalization of these states that improves inter-NC wave function overlap. Our work demonstrates that NC surface ligands can actively facilitate inter-NC energy transfer and highlights principles to consider when designing ligands for this application.
Collapse
Affiliation(s)
- Michael S Azzaro
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Aaron K Le
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Honghao Wang
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Sean T Roberts
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
42
|
Watson BR, Doughty B, Calhoun TR. Energetics at the Surface: Direct Optical Mapping of Core and Surface Electronic Structure in CdSe Quantum Dots Using Broadband Electronic Sum Frequency Generation Microspectroscopy. NANO LETTERS 2019; 19:6157-6165. [PMID: 31368312 DOI: 10.1021/acs.nanolett.9b02201] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Understanding and controlling the electronic structure of nanomaterials is the key to tailoring their use in a wide range of practical applications. Despite this need, many important electronic states are invisible to conventional optical measurements and are typically identified indirectly based on their inferred impact on luminescence properties. This is especially common and important in the study of nanomaterial surfaces and their associated defects. Surface trap states play a crucial role in photophysical processes yet remain remarkably poorly understood. Here we demonstrate for the first time that broadband electronic sum frequency generation (eSFG) microspectroscopy can directly map the optically bright and dark states of nanoparticles, including the elusive below gap states. This new approach is applied to model cadmium selenide (CdSe) quantum dots (QDs), where the energies of surface trap states have eluded direct optical characterization for decades. Our eSFG measurements show clear signatures of electronic transitions both above the band gap, which we assign to previously reported one- and two-photon transitions associated with the CdSe core, as well as broad spectral signatures below the band gap that are attributed to surface states. In addition to the core states, this analysis reveals two distinct distributions of below gap states, providing the first direct optical measurement of both shallow and deep surface states on this system. Finally, chemical modification of the surfaces via oxidation results in the relative increase in the signals originating from the surface states. Overall, our eSFG experiments provide an avenue to directly map the entirety of the QD core and surface electronic structure, which is expected to open up opportunities to study how these materials are grown in situ and how surface states can be controlled to tune functionality.
Collapse
Affiliation(s)
- Brianna R Watson
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| | - Benjamin Doughty
- Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | - Tessa R Calhoun
- Department of Chemistry , University of Tennessee , Knoxville , Tennessee 37996 , United States
| |
Collapse
|
43
|
Liu A, Almeida DB, Bae WK, Padilha LA, Cundiff ST. Non-Markovian Exciton-Phonon Interactions in Core-Shell Colloidal Quantum Dots at Femtosecond Timescales. PHYSICAL REVIEW LETTERS 2019; 123:057403. [PMID: 31491330 DOI: 10.1103/physrevlett.123.057403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/21/2019] [Indexed: 06/10/2023]
Abstract
We perform two-dimensional coherent spectroscopy on CdSe/CdZnS core-shell colloidal quantum dots at cryogenic temperatures. In the two-dimensional spectra, sidebands due to electronic coupling with CdSe lattice LO-phonon modes are observed to have evolutions deviating from the exponential dephasing expected from Markovian spectral diffusion, which is instantaneous and memoryless. Comparison to simulations provides evidence that LO-phonon coupling induces energy-gap fluctuations on the finite timescales of nuclear motion. The femtosecond resolution of our technique probes exciton dynamics directly on the timescales of phonon coupling in nanocrystals.
Collapse
Affiliation(s)
- A Liu
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - D B Almeida
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - W K Bae
- SKKU Advanced Institute of Nano Technology, Sungkyunkwan University, Gyeonggi 16419, Republic of Korea
| | - L A Padilha
- Instituto de Fisica "Gleb Wataghin," Universidade Estadual de Campinas, 13083-970 Campinas, Sao Paulo, Brazil
| | - S T Cundiff
- Physics Department, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
44
|
Carbery WP, Pinto-Pacheco B, Buccella D, Turner DB. Resolving the Fluorescence Quenching Mechanism of an Oxazine Dye Using Ultrabroadband Two-Dimensional Electronic Spectroscopy. J Phys Chem A 2019; 123:5072-5080. [DOI: 10.1021/acs.jpca.9b03632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- William P. Carbery
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Brismar Pinto-Pacheco
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Daniela Buccella
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| | - Daniel B. Turner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003, United States
| |
Collapse
|
45
|
Zhao W, Qin Z, Zhang C, Wang G, Huang X, Li B, Dai X, Xiao M. Optical Gain from Biexcitons in CsPbBr 3 Nanocrystals Revealed by Two-dimensional Electronic Spectroscopy. J Phys Chem Lett 2019; 10:1251-1258. [PMID: 30811208 DOI: 10.1021/acs.jpclett.9b00524] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Perovskite semiconductor nanocrystals (NCs) exhibit highly efficient optical gain, which is promising for laser applications. However, the intrinsic mechanism of optical gain in perovskite NCs, particularly whether more than one exciton per NCs is required, remains poorly understood. Here, we use two-dimensional electronic spectroscopy to resonantly probe the interplay between near-band-edge transitions during the buildup of optical gain in CsPbBr3 NCs. We find compelling evidence to conclude that optical gain in CsPbBr3 NCs is generated through stimulated emission from strongly interacting biexcitons. The threshold is largely determined by the competition between stimulated emission from biexcitons and excited-state absorption from single exciton to biexciton states. The findings in this work may guide future explorations of NC materials with low-threshold optical gain.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Physics , Tsinghua University , Beijing 100084 , China
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Zhengyuan Qin
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Guodong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Xinyu Huang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Bin Li
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
| | - Xingcan Dai
- Department of Physics , Tsinghua University , Beijing 100084 , China
| | - Min Xiao
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures , Nanjing University , Nanjing 210093 , China
- Department of Physics , University of Arkansas , Fayetteville , Arkansas 72701 , United States
| |
Collapse
|
46
|
Kearns NM, Jones AC, Kunz MB, Allen RT, Flach JT, Zanni MT. Two-Dimensional White-Light Spectroscopy Using Supercontinuum from an All-Normal Dispersion Photonic Crystal Fiber Pumped by a 70 MHz Yb Fiber Oscillator. J Phys Chem A 2019; 123:3046-3055. [DOI: 10.1021/acs.jpca.9b02206] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Nicholas M. Kearns
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew C. Jones
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Miriam Bohlmann Kunz
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ryan T. Allen
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jessica T. Flach
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Martin T. Zanni
- Department of Chemistry, University of Wisconsin—Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
47
|
Forde A, Inerbaev T, Hobbie EK, Kilin DS. Excited-State Dynamics of a CsPbBr3 Nanocrystal Terminated with Binary Ligands: Sparse Density of States with Giant Spin–Orbit Coupling Suppresses Carrier Cooling. J Am Chem Soc 2019; 141:4388-4397. [DOI: 10.1021/jacs.8b13385] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | - Talgat Inerbaev
- Sobolev Institute of Geology and Mineralogy SB RAS, Novosibirsk 630090, Russia
- National University of Science and Technology MISIS, 4 Leninskiy pr., Moscow 119049, Russian Federation
- L. N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | | | | |
Collapse
|
48
|
Seiler H, Palato S, Kambhampati P. Investigating exciton structure and dynamics in colloidal CdSe quantum dots with two-dimensional electronic spectroscopy. J Chem Phys 2018; 149:074702. [PMID: 30134703 DOI: 10.1063/1.5037223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Two-Dimensional Electronic Spectroscopy (2DES) is performed on CdSe colloidal quantum dots. These experiments reveal new observations on exciton structure and dynamics in quantum dots, expanding upon prior transient absorption measurements of excitonics in these systems. The 2DES method enables the separation of line broadening mechanisms, thereby better revealing the excitonic lineshapes and biexcitonic interactions. 2DES enables more information rich spectral probing of coherent phonons and their coupling to excitons. The data show spectral modulations and drifts, with differences based upon whether one monitors the excitation energy (E1) or emission energy (E3). These measurements reveal both homogeneous and inhomogeneous broadenings, as well as static and dynamic line broadening. The longitudinal optical phonon modulates the dynamic absorption spectrum both in energy and linewidth. These experiments enable measurement of hot exciton cooling with improved resolution in energy and time. These 2DES results are consistent with prior excitonic state-resolved transient absorption measurements, albeit with the addition of contributions due to coherent phonons. Finally these 2DES experiments enable disentangling of coupling versus relaxation contributions to the signals, further offering a test of electronic structure theory.
Collapse
Affiliation(s)
- H Seiler
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - S Palato
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| | - P Kambhampati
- Department of Chemistry, McGill University, Montreal, Quebec H3A 0B8, Canada
| |
Collapse
|
49
|
Sciortino A, Gazzetto M, Buscarino G, Popescu R, Schneider R, Giammona G, Gerthsen D, Rohwer EJ, Mauro N, Feurer T, Cannizzo A, Messina F. Disentangling size effects and spectral inhomogeneity in carbon nanodots by ultrafast dynamical hole-burning. NANOSCALE 2018; 10:15317-15323. [PMID: 30069566 DOI: 10.1039/c8nr02953a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Carbon nanodots (CDs) are a novel family of nanomaterials exhibiting unique optical properties. In particular, their bright and tunable fluorescence redefines the paradigm of carbon as a "black" material and is considered very appealing for many applications. While the field keeps growing, understanding CDs fundamental properties and relating them to their variable structures becomes more and more critical. Two crucial problems concern the effect of size on the electronic structure of CDs, and to what extent their optical properties are influenced by structural disorder. Furthermore, it remains largely unclear whether traditional concepts borrowed from the photo-physics of semiconductor quantum dots can be applied to any type of CDs. We used femtosecond optical hole burning to address the excited-state properties of a family of CDs with the specific structure of β-C3N4. The experiments provide compelling evidence of the dramatic effects of structural heterogeneity on the optical spectra, and reveal the remarkably simple pattern of the electronic transitions of these CDs, normally obscured by disorder. Moreover, the data conclusively clarify the different effects of the nanometric size and of the disordered surface structure on the fluorescence tunability, ruling out for these CDs any quantum confinement effect comparable to semiconductor quantum dots.
Collapse
Affiliation(s)
- Alice Sciortino
- Dipartimento di Fisica e Chimica, Università degli Studi di Palermo, Via Archirafi 36, 90123 Palermo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Righetto M, Bolzonello L, Volpato A, Amoruso G, Panniello A, Fanizza E, Striccoli M, Collini E. Deciphering hot- and multi-exciton dynamics in core-shell QDs by 2D electronic spectroscopies. Phys Chem Chem Phys 2018; 20:18176-18183. [PMID: 29961782 PMCID: PMC6044327 DOI: 10.1039/c8cp02574f] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
2D electronic spectroscopy maps acquired in different configurations unveil intraband hot carrier cooling and interband multi-exciton recombination dynamics.
Although the harnessing of multiple and hot excitons is a prerequisite for many of the groundbreaking applications of semiconductor quantum dots (QDs), the characterization of their dynamics through conventional spectroscopic techniques is cumbersome. Here, we show how a careful analysis of 2DES maps acquired in different configurations (BOXCARS and pump–probe geometry) allows the tracking and visualization of intraband Auger relaxation mechanisms, driving the hot carrier cooling, and interband bi- and tri-exciton recombination dynamics. The results obtained on archetypal core–shell CdSe/ZnS QDs suggest that, given the global analysis of the resulting datasets, 2D electronic spectroscopy techniques can successfully and efficiently dispel the intertwined dynamics of fast and ultrafast recombination processes in nanomaterials. Hence, we propose this analysis scheme to be used in future research on novel quantum confined systems.
Collapse
Affiliation(s)
- Marcello Righetto
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, I-35131 Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|