1
|
Zhang S, Hao Y, Hao S, Lu X, Zhou J, Fan C, Liu J, Hao G. Wafer-scale synthesis of transition metal dichalcogenides and van der Waals heterojunctions. NANOTECHNOLOGY 2025; 36:232004. [PMID: 40378854 DOI: 10.1088/1361-6528/add9a9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/16/2025] [Indexed: 05/19/2025]
Abstract
Two-dimensional materials, as a promising class of emerging materials, are expected to overcome the technical bottlenecks of silicon-based device miniaturization and enable the continuation of 'Moore's Law' due to their unique physical and chemical properties. Notably, transition metal dichalcogenides (TMDs) and heterojunctions have demonstrated unprecedented potential applications in novel electronic and optoelectronic devices. In recent years, breakthroughs have been continuously made in the preparation techniques and growth strategies of wafer-scale TMDs and heterostructures. Therefore, it is essential to systematically and comprehensively summarize the latest progress in wafer-scale synthesis. In this article, the preparation techniques and strategies of wafer-scale TMDs and heterojunctions are classified and summarized. Firstly, various wafer-scale synthesis techniques are described and the advantages and disadvantages of each technique in wafer-level preparation are compared. On this basis, the synthesis strategies derived from chemical vapor deposition are introduced and discussed comprehensively. Finally, we discuss the challenges and prospects associated with the preparation of wafer-scale materials and propose some feasible solutions.
Collapse
Affiliation(s)
- Shiwei Zhang
- School of Physics and Optoelectronics and Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Yulong Hao
- School of Physics and Optoelectronics and Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
- College of Physics and Technology & Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Shijie Hao
- School of Physics and Optoelectronics and Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Xuemei Lu
- School of Physics and Optoelectronics and Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Jie Zhou
- School of Physics and Optoelectronics and Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Chen Fan
- School of Physics and Optoelectronics and Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Jun Liu
- College of Physics and Technology & Guangxi Key Laboratory of Nuclear Physics and Technology, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Guolin Hao
- School of Physics and Optoelectronics and Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, People's Republic of China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
| |
Collapse
|
2
|
Liu M, Cui T, Feng J, Wu Y, Bi J, Aierken A, Liu X, Wang GG, Liu Z. Low-Temperature Growth of Centimeter-Sized 2D PdSe 2 by Self-Limiting Liquid-Phase Edge Epitaxy. J Am Chem Soc 2025; 147:9122-9133. [PMID: 39801053 DOI: 10.1021/jacs.4c11531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Two-dimensional (2D) PdSe2 atomic crystals hold great potential for optoelectronic applications due to their bipolar electrical characteristics, tunable bandgap, high electron mobility, and exceptional air stability. Nevertheless, the scalable synthesis of large-area, high-quality 2D PdSe2 crystals using chemical vapor deposition (CVD) remains a significant challenge. Here, we present a self-limiting liquid-phase edge-epitaxy (SLE) low-temperature growth method to achieve high-quality, centimeter-sized PdSe2 films with single-crystal domain areas exceeding 30 μm. The SLE growth mechanism, clarified by theoretical calculations and time-of-flight secondary ion mass spectrometry (ToF-SIMS), reveals that hydrogen ions on the precursor surface inhibit vertical growth while promoting lateral growth. The as-grown PdSe2 few-layer exhibits a surface roughness of 1.20 nm and an average conductivity of 1.67 × 10-6 S/m, demonstrating their smoothness and uniformity. Temperature-dependent electrical measurements and transfer characteristic curves confirm the orthorhombic PdSe2's bipolar semiconductor behavior. The photodetector based on few-layer PdSe2 films exhibit excellent optoelectronic performance in the 405-1650 nm wavelength range, achieving a responsivity of 6262.37 A W-1, a detectivity of ∼1012 Jones under 1064 nm illumination, and a fast response time of 37.1 μs, making them highly suitable for broadband photodetection applications. This work provides valuable insights into the scalable synthesis of PdSe2 few-layers and establishes a foundation for the development of PdSe2-based integrated functional devices.
Collapse
Affiliation(s)
- Mingqiang Liu
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Tianhao Cui
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Junwei Feng
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Yao Wu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jinshun Bi
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Abuduwayiti Aierken
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Xuefei Liu
- School of Physics and Electronic Science, Guizhou Normal University, Guiyang 550025, China
- School of Integrated Circuits, Guizhou Normal University, Guiyang 550025, China
| | - Gui-Gen Wang
- Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
3
|
Wang J, Peng Y, Zhou T, Fu J, Quan W, Cheng Y, Ding H, Zhang Y. Direct Syntheses of 2D Noble Transition Metal Dichalcogenides Toward Electronics, Optoelectronics, and Electrocatalysis-Related Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2407233. [PMID: 39924733 DOI: 10.1002/smll.202407233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 01/26/2025] [Indexed: 02/11/2025]
Abstract
2D noble transition metal dichalcogenides (nTMDCs, PdX2 and PtX2, where X═S, Se, Te) have emerged as a new class of 2D materials, owing to their unique puckered pentagonal structure in 2D PdS2 and PdSe2, largely tunable band structures or band gaps with decreasing the layer thickness at the 2D limit, strong interlayer interactions, superior optoelectronic properties, high edge catalytic properties, etc. Directly synthesizing 2D nTMDCs domains or thin films with large-area uniformity, tunable thickness, and high crystalline quality is the premise for exploring these salient properties and developing a wide range of applications. Hereby, this review summarizes recent progress in the direct syntheses and characterizations of 2D nTMDCs, mainly focusing on the thermally assisted conversion (TAC) and chemical vapor deposition (CVD) methods, by using various metal and chalcogen-contained precursors. Meanwhile, the applications of directly synthesized 2D nTMDCs in various fields, such as high-performance field effect transistors (FETs), broadband photodetectors, superior catalysts in hydrogen evolution reactions, and ultra-sensitive piezo resistance sensors, are also discussed. Finally, challenges and prospects regarding the direct syntheses of high-quality 2D nTMDCs and their applications in next-generation electronic and optoelectronic devices, as well as novel catalysts beyond noble metals are overviewed.
Collapse
Affiliation(s)
- Jialong Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - You Peng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Tong Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Jiatian Fu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wenzhi Quan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Yujin Cheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Haoxuan Ding
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
4
|
Liu Z, Wang Y, Zhang Y, Sun S, Zhang T, Zeng YJ, Hu L, Zhuge F, Lu B, Pan X, Ye Z. Harnessing Defects in SnSe Film via Photo-Induced Doping for Fully Light-Controlled Artificial Synapse. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410783. [PMID: 39648576 DOI: 10.1002/adma.202410783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Indexed: 12/10/2024]
Abstract
2D-layered materials are recognized as up-and-coming candidates to overcome the intrinsic physical limitation of silicon-based devices. Herein, the coexistence of positive persistent photoconductivity (PPPC) and negative persistent photoconductivity (NPPC) in SnSe thin films prepared by pulsed laser deposition provides an excellent avenue for engineering novel devices. It is determined that surface oxygen is co-regulated by physisorption and chemisorption, and the NPPC is attributed to the photo-controllable oxygen desorption behavior. The dominant behavior of chemisorption induces high stability, while physisorption provides room for adjusting NPPC. A simple fully light-modulated artificial synaptic device based on SnSe film is constructed to operate various synaptic plasticity and reversible modulation of conductance by applying 430 and 255 nm illuminations. A three-layer artificial neural network structure with a high accuracy of 95.33% to recognize handwritten digital images is implemented based on the device. Furthermore, the pressure-related cognition response of humans while climbing and the foraging and recognition behaviors of anemonefish are mimicked. This work demonstrates the potential of 2D-layered materials for developing neuromorphic computing and simulating biological behaviors without additional treatment. Furthermore, the one-step method for preparation is highly adaptable and expected to realize large-area growth and integration of SnSe-based devices.
Collapse
Affiliation(s)
- Zihui Liu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yao Wang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yumin Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Shuyi Sun
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Tao Zhang
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Kunming Institute of Physics, Kunming, Yunnan Province, 650223, P. R. China
| | - Yu-Jia Zeng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Lingxiang Hu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Fei Zhuge
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Bin Lu
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Xinhua Pan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
| | - Zhizhen Ye
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Cyrus Tang Center for Sensor Materials and Applications, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou, 325006, China
| |
Collapse
|
5
|
Yang F, Huang X, Su C, Song EH, Liu BX, Xiao BB. 2D Transition Metal Chalcogenides (TMDs) for Electrocatalytic Hydrogen Evolution Reaction: A Review. Chemphyschem 2024:e202400640. [PMID: 39467256 DOI: 10.1002/cphc.202400640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Indexed: 10/30/2024]
Abstract
Since the MoS2 synthesis, the family of two-dimensional transition metal chalcogenides (TMDs) have been intensively explored theoretically and experimentally. TMDs endowed with adjustable electronic, physical and chemical properties lead to increasing interest in the application of energy storage, molecule detection and catalysis. In the mini review, we present a forward-looking summary of 2D TMDs in hydrogen evolution electrocatalysis, including synthesis methods, hydrogen evolution performance, and optimization strategies. This review will deepen the fundamental understanding of the physical-chemical properties of TMDs with different phases and contribute unveil the universal principle among electronic configuration, atomic arrangement, physical and chemical property for the material design.
Collapse
Affiliation(s)
- Fei Yang
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Xu Huang
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Chao Su
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Er-Hong Song
- The State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Bing-Xia Liu
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Bei-Bei Xiao
- School of Energy and Power Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| |
Collapse
|
6
|
Ross RD, Lee K, Quintana Cintrón GJ, Xu K, Sheng H, Schmidt JR, Jin S. Stable Pentagonal Layered Palladium Diselenide Enables Rapid Electrosynthesis of Hydrogen Peroxide. J Am Chem Soc 2024; 146:15718-15729. [PMID: 38818811 DOI: 10.1021/jacs.4c00875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Electrosynthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e- ORR) is promising for various practical applications, such as wastewater treatment. However, few electrocatalysts are active and selective for 2e- ORR yet are also resistant to catalyst leaching under realistic operating conditions. Here, a joint experimental and computational study reveals active and stable 2e- ORR catalysis in neutral media over layered PdSe2 with a unique pentagonal puckered ring structure type. Computations predict active and selective 2e- ORR on the basal plane and edge of PdSe2, but with distinct kinetic behaviors. Electrochemical measurements of hydrothermally synthesized PdSe2 nanoplates show a higher 2e- ORR activity than other Pd-Se compounds (Pd4Se and Pd17Se15). PdSe2 on a gas diffusion electrode can rapidly accumulate H2O2 in buffered neutral solution under a high current density. The electrochemical stability of PdSe2 is further confirmed by long device operational stability, elemental analysis of the catalyst and electrolyte, and synchrotron X-ray absorption spectroscopy. This work establishes a new efficient and stable 2e- ORR catalyst at practical current densities and opens catalyst designs utilizing the unique layered pentagonal structure motif.
Collapse
Affiliation(s)
- R Dominic Ross
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kwanpyung Lee
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Gerardo J Quintana Cintrón
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kaylin Xu
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Hongyuan Sheng
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - J R Schmidt
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department of Chemistry, University of Wisconsin─Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
7
|
Lyu X, Li Y, Li X, Liu X, Xiao J, Xu W, Jiang P, Yang H, Wu C, Hu X, Peng LY, Gong Q, Yang S, Gao Y. Layer-dependent ultrafast carrier dynamics of PdSe 2 investigated by photoemission electron microscopy. NANOSCALE 2024. [PMID: 38656387 DOI: 10.1039/d4nr00281d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
For atomically thin two-dimensional materials, variations in layer thickness can result in significant changes in the electronic energy band structure and physicochemical properties, thereby influencing the carrier dynamics and device performance. In this work, we employ time- and energy-resolved photoemission electron microscopy to reveal the ultrafast carrier dynamics of PdSe2 with different layer thicknesses. We find that for few-layer PdSe2 with a semiconductor phase, an ultrafast hot carrier cooling on a timescale of approximately 0.3 ps and an ultrafast defect trapping on a timescale of approximately 1.3 ps are unveiled, followed by a slower decay of approximately tens of picoseconds. However, for bulk PdSe2 with a semimetal phase, only an ultrafast hot carrier cooling and a slower decay of approximately tens of picoseconds are observed, while the contribution of defect trapping is suppressed with the increase of layer number. Theoretical calculations of the electronic energy band structure further confirm the transition from a semiconductor to a semimetal. Our work demonstrates that TR- and ER-PEEM with ultrahigh spatiotemporal resolution and wide-field imaging capability has great advantages in revealing the intricate details of ultrafast carrier dynamics of nanomaterials.
Collapse
Affiliation(s)
- Xiaying Lyu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Yaolong Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Xiaofang Li
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Xiulan Liu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Jingying Xiao
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Weiting Xu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| | - Pengzuo Jiang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
| | - Hong Yang
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chengyin Wu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoyong Hu
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Liang-You Peng
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qihuang Gong
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shengxue Yang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| | - Yunan Gao
- State Key Laboratory for Mesoscopic Physics & Department of Physics, Collaborative Innovation Center of Quantum Matter and Frontiers Science Center for Nano-optoelectronics, Beijing Academy of Quantum Information Sciences, Peking University, Beijing 100871, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
8
|
Yan Q, Kar S, Chowdhury S, Bansil A. The Case for a Defect Genome Initiative. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303098. [PMID: 38195961 DOI: 10.1002/adma.202303098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/12/2023] [Indexed: 01/11/2024]
Abstract
The Materials Genome Initiative (MGI) has streamlined the materials discovery effort by leveraging generic traits of materials, with focus largely on perfect solids. Defects such as impurities and perturbations, however, drive many attractive functional properties of materials. The rich tapestry of charge, spin, and bonding states hosted by defects are not accessible to elements and perfect crystals, and defects can thus be viewed as another class of "elements" that lie beyond the periodic table. Accordingly, a Defect Genome Initiative (DGI) to accelerate functional defect discovery for energy, quantum information, and other applications is proposed. First, major advances made under the MGI are highlighted, followed by a delineation of pathways for accelerating the discovery and design of functional defects under the DGI. Near-term goals for the DGI are suggested. The construction of open defect platforms and design of data-driven functional defects, along with approaches for fabrication and characterization of defects, are discussed. The associated challenges and opportunities are considered and recent advances towards controlled introduction of functional defects at the atomic scale are reviewed. It is hoped this perspective will spur a community-wide interest in undertaking a DGI effort in recognition of the importance of defects in enabling unique functionalities in materials.
Collapse
Affiliation(s)
- Qimin Yan
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Swastik Kar
- Department of Physics, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - Sugata Chowdhury
- Department of Physics and Astrophysics, Howard University, Washington, DC 20059, USA
| | - Arun Bansil
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
9
|
Sovizi S, Angizi S, Ahmad Alem SA, Goodarzi R, Taji Boyuk MRR, Ghanbari H, Szoszkiewicz R, Simchi A, Kruse P. Plasma Processing and Treatment of 2D Transition Metal Dichalcogenides: Tuning Properties and Defect Engineering. Chem Rev 2023; 123:13869-13951. [PMID: 38048483 PMCID: PMC10756211 DOI: 10.1021/acs.chemrev.3c00147] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023]
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) offer fascinating opportunities for fundamental nanoscale science and various technological applications. They are a promising platform for next generation optoelectronics and energy harvesting devices due to their exceptional characteristics at the nanoscale, such as tunable bandgap and strong light-matter interactions. The performance of TMD-based devices is mainly governed by the structure, composition, size, defects, and the state of their interfaces. Many properties of TMDs are influenced by the method of synthesis so numerous studies have focused on processing high-quality TMDs with controlled physicochemical properties. Plasma-based methods are cost-effective, well controllable, and scalable techniques that have recently attracted researchers' interest in the synthesis and modification of 2D TMDs. TMDs' reactivity toward plasma offers numerous opportunities to modify the surface of TMDs, including functionalization, defect engineering, doping, oxidation, phase engineering, etching, healing, morphological changes, and altering the surface energy. Here we comprehensively review all roles of plasma in the realm of TMDs. The fundamental science behind plasma processing and modification of TMDs and their applications in different fields are presented and discussed. Future perspectives and challenges are highlighted to demonstrate the prominence of TMDs and the importance of surface engineering in next-generation optoelectronic applications.
Collapse
Affiliation(s)
- Saeed Sovizi
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Shayan Angizi
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| | - Sayed Ali Ahmad Alem
- Chair in
Chemistry of Polymeric Materials, Montanuniversität
Leoben, Leoben 8700, Austria
| | - Reyhaneh Goodarzi
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | | | - Hajar Ghanbari
- School of
Metallurgy and Materials Engineering, Iran
University of Science and Technology (IUST), Narmak, 16846-13114, Tehran, Iran
| | - Robert Szoszkiewicz
- Faculty of
Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Abdolreza Simchi
- Department
of Materials Science and Engineering and Institute for Nanoscience
and Nanotechnology, Sharif University of
Technology, 14588-89694 Tehran, Iran
- Center for
Nanoscience and Nanotechnology, Institute for Convergence Science
& Technology, Sharif University of Technology, 14588-89694 Tehran, Iran
| | - Peter Kruse
- Department
of Chemistry and Chemical Biology, McMaster
University, Hamilton, Ontario L8S 4M1, Canada
| |
Collapse
|
10
|
Liang H, Ma Y, Yi H, Yao J. Emerging Schemes for Advancing 2D Material Photoconductive-Type Photodetectors. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7372. [PMID: 38068116 PMCID: PMC10707280 DOI: 10.3390/ma16237372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 11/25/2023] [Indexed: 10/16/2024]
Abstract
By virtue of the widely tunable band structure, dangling-bond-free surface, gate electrostatic controllability, excellent flexibility, and high light transmittance, 2D layered materials have shown indisputable application prospects in the field of optoelectronic sensing. However, 2D materials commonly suffer from weak light absorption, limited carrier lifetime, and pronounced interfacial effects, which have led to the necessity for further improvement in the performance of 2D material photodetectors to make them fully competent for the numerous requirements of practical applications. In recent years, researchers have explored multifarious improvement methods for 2D material photodetectors from a variety of perspectives. To promote the further development and innovation of 2D material photodetectors, this review epitomizes the latest research progress in improving the performance of 2D material photodetectors, including improvement in crystalline quality, band engineering, interface passivation, light harvesting enhancement, channel depletion, channel shrinkage, and selective carrier trapping, with the focus on their underlying working mechanisms. In the end, the ongoing challenges in this burgeoning field are underscored, and potential strategies addressing them have been proposed. On the whole, this review sheds light on improving the performance of 2D material photodetectors in the upcoming future.
Collapse
Affiliation(s)
| | | | | | - Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China; (H.L.); (Y.M.); (H.Y.)
| |
Collapse
|
11
|
Ahmad W, Wu J, Zhuang Q, Neogi A, Wang Z. Research Process on Photodetectors based on Group-10 Transition Metal Dichalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207641. [PMID: 36658722 DOI: 10.1002/smll.202207641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Rapidly evolving group-10 transition metal dichalcogenides (TMDCs) offer remarkable electronic, optical, and mechanical properties, making them promising candidates for advanced optoelectronic applications. Compared to most TMDCs semiconductors, group-10-TMDCs possess unique structures, narrow bandgap, and influential physical properties that motivate the development of broadband photodetectors, specifically infrared photodetectors. This review presents the latest developments in the fabrication of broadband photodetectors based on conventional 2D TMDCs. It mainly focuses on the recent developments in group-10 TMDCs from the perspective of the lattice structure and synthesis techniques. Recent progress in group-10 TMDCs and their heterostructures with different dimensionality of materials-based broadband photodetectors is provided. Moreover, this review accounts for the latest applications of group-10 TMDCs in the fields of nanoelectronics and optoelectronics. Finally, conclusions and outlooks are summarized to provide perspectives for next-generation broadband photodetectors based on group-10 TMDCs.
Collapse
Affiliation(s)
- Waqas Ahmad
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jiang Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Qiandong Zhuang
- Physics Department, Lancaster University, Lancaster, LA14YB, UK
| | - Arup Neogi
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhiming Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
12
|
Luo W, Oyedele AD, Mao N, Puretzky A, Xiao K, Liang L, Ling X. Excitation-Dependent Anisotropic Raman Response of Atomically Thin Pentagonal PdSe 2. ACS PHYSICAL CHEMISTRY AU 2022; 2:482-489. [PMID: 36465836 PMCID: PMC9706783 DOI: 10.1021/acsphyschemau.2c00007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 06/17/2023]
Abstract
The group-10 noble-metal dichalcogenides have recently emerged as a promising group of two-dimensional materials due to their unique crystal structures and fascinating physical properties. In this work, the resonance enhancement of the interlayer breathing mode (B1) and intralayer Ag 1 and Ag 3 modes in atomically thin pentagonal PdSe2 were studied using angle-resolved polarized Raman spectroscopy with 13 excitation wavelengths. Under the excitation energies of 2.33, 2.38, and 2.41 eV, the Raman intensities of both the low-frequency breathing mode B1 and high-frequency mode Ag 1 of all the thicknesses are the strongest when the incident polarization is parallel to the a axis of PdSe2, serving as a fast identification of the crystal orientation of few-layer PdSe2. We demonstrated that the intensities of B1, Ag 1, and Ag 3 modes are the strongest with the excitation energies between 2.18 and 2.38 eV when the incident polarization is parallel to PdSe2 a axis, which arises from the resonance enhancement caused by the absorption. Our investigation reveals the underlying interplay of the anisotropic electron-phonon and electron-photon interactions in the Raman scattering process of atomically thin PdSe2. It paves the way for future applications on PdSe2-based optoelectronics.
Collapse
Affiliation(s)
- Weijun Luo
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Akinola D. Oyedele
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
- Bredesen
Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Nannan Mao
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Alexander Puretzky
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Kai Xiao
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Liangbo Liang
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Xi Ling
- Department
of Chemistry, Boston University, Boston, Massachusetts 02215, United States
- Division
of Materials Science and Engineering, Boston
University, Boston, Massachusetts 02215, United States
- The Photonics
Center, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
13
|
Su X, Dong Z, Wu J, Chi D, Loh XJ. Celebrating 25 Years of IMRE: Research Highlights on Nanomaterials and Nanotechnologies. ACS NANO 2022; 16:11492-11497. [PMID: 35904455 DOI: 10.1021/acsnano.2c06830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The Institute of Materials Research and Engineering (IMRE) is a research institute of the Science and Engineering Research Council (SERC), Agency for Science, Technology and Research (A*STAR). IMRE was established in September 1997. Over the past 25 years, IMRE has developed core competencies and interdisciplinary teams for material development from fundamental discoveries to industrial translation. Currently, with over 400 researchers and state-of-the-art research facilities, IMRE conducts world class research in important material and material technology fields, including polymer composites, optical materials, electronic materials, soft materials, structural materials, energy materials, biomaterials, quantum technologies, as well as advanced characterization. As a material-centered research institute in Singapore, IMRE has played important roles in pushing science boundaries and developing cutting-edge technologies. One of the key strategies is to partner international organizations, research institutes, and industry to fulfill its vision to be a leading research institute to accelerate materials research, moving from "Made in Singapore" toward "Created in Singapore".
Collapse
Affiliation(s)
- Xiaodi Su
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Department of Chemistry, National University of Singapore, 9 Engineering Drive 1, Singapore 117543
| | - Zhaogang Dong
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117576
| | - Jing Wu
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
| | - Dongzhi Chi
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore 138634
| |
Collapse
|
14
|
Kirubasankar B, Won YS, Adofo LA, Choi SH, Kim SM, Kim KK. Atomic and structural modifications of two-dimensional transition metal dichalcogenides for various advanced applications. Chem Sci 2022; 13:7707-7738. [PMID: 35865881 PMCID: PMC9258346 DOI: 10.1039/d2sc01398c] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/18/2022] [Indexed: 12/14/2022] Open
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) and their heterostructures have attracted significant interest in both academia and industry because of their unusual physical and chemical properties. They offer numerous applications, such as electronic, optoelectronic, and spintronic devices, in addition to energy storage and conversion. Atomic and structural modifications of van der Waals layered materials are required to achieve unique and versatile properties for advanced applications. This review presents a discussion on the atomic-scale and structural modifications of 2D TMDs and their heterostructures via post-treatment. Atomic-scale modifications such as vacancy generation, substitutional doping, functionalization and repair of 2D TMDs and structural modifications including phase transitions and construction of heterostructures are discussed. Such modifications on the physical and chemical properties of 2D TMDs enable the development of various advanced applications including electronic and optoelectronic devices, sensing, catalysis, nanogenerators, and memory and neuromorphic devices. Finally, the challenges and prospects of various post-treatment techniques and related future advanced applications are addressed.
Collapse
Affiliation(s)
- Balakrishnan Kirubasankar
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Department of Chemistry, Sookmyung Women's University Seoul 14072 South Korea
| | - Yo Seob Won
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Laud Anim Adofo
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Soo Ho Choi
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| | - Soo Min Kim
- Department of Chemistry, Sookmyung Women's University Seoul 14072 South Korea
| | - Ki Kang Kim
- Department of Energy Science, Sungkyunkwan University Suwon 16419 South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University Suwon 16419 South Korea
| |
Collapse
|
15
|
Li Y, Chen S, Yu Z, Li S, Xiong Y, Pam ME, Zhang YW, Ang KW. In-Memory Computing using Memristor Arrays with Ultrathin 2D PdSeO x /PdSe 2 Heterostructure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201488. [PMID: 35393702 DOI: 10.1002/adma.202201488] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/23/2022] [Indexed: 06/14/2023]
Abstract
In-memory computing based on memristor arrays holds promise to address the speed and energy issues of the classical von Neumann computing system. However, the stochasticity of ions' transport in conventional oxide-based memristors imposes severe intrinsic variability, which compromises learning accuracy and hinders the implementation of neural network hardware accelerators. Here, these challenges are addressed using a low-voltage memristor array based on an ultrathin PdSeOx /PdSe2 heterostructure switching medium realized by a controllable ultraviolet (UV)-ozone treatment. A distinctively different ions' transport mechanism is revealed in the heterostructure that can confine the formation of conductive filaments, leading to a remarkable uniform switching with low set and reset voltage variability values of 4.8% and -3.6%, respectively. Moreover, convolutional image processing is further implemented using various crossbar kernels that achieve a high recognition accuracy of ≈93.4% due to the highly linear and symmetric analog weight update as well as multiple conductance states, manifesting its potential beyond von Neumann computing.
Collapse
Affiliation(s)
- Yesheng Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Department of Microstructure, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Shuai Chen
- Institute for High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Zhigen Yu
- Institute for High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Sifan Li
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yao Xiong
- Department of Physics, School of Science, Wuhan University of Technology, Wuhan, 430070, China
| | - Mer-Er Pam
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
| | - Yong-Wei Zhang
- Institute for High Performance Computing, A*STAR, 1 Fusionopolis Way, Singapore, 138632, Singapore
| | - Kah-Wee Ang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Singapore, 138634, Singapore
| |
Collapse
|
16
|
Carbon-Coatings Improve Performance of Li-Ion Battery. NANOMATERIALS 2022; 12:nano12111936. [PMID: 35683790 PMCID: PMC9182804 DOI: 10.3390/nano12111936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023]
Abstract
The development of lithium-ion batteries largely relies on the cathode and anode materials. In particular, the optimization of cathode materials plays an extremely important role in improving the performance of lithium-ion batteries, such as specific capacity or cycling stability. Carbon coating modifying the surface of cathode materials is regarded as an effective strategy that meets the demand of Lithium-ion battery cathodes. This work mainly reviews the modification mechanism and method of carbon coating, and summarizes the recent progress of carbon coating on some typical cathode materials (LiFePO4, LiMn2O4, LiCoO2, NCA (LiNiCoAlO2) and NCM (LiNiMnCoO2)). In addition, the limitations of the carbon coating on the cathode are also introduced. Suggestions on improving the effectiveness of carbon coating for future study are also presented.
Collapse
|
17
|
Li Z, Li D, Wang H, Xu X, Pi L, Chen P, Zhai T, Zhou X. Universal p-Type Doping via Lewis Acid for 2D Transition-Metal Dichalcogenides. ACS NANO 2022; 16:4884-4891. [PMID: 35171569 DOI: 10.1021/acsnano.2c00513] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing spatially controlled and universal p-type doping of transition-metal dichalcogenides (TMDs) is critical for optoelectronics. Here, a facile and universal p-doping strategy via Sn4+ ions exchanging is proposed and the p-doping of PdSe2 is demonstrated systematically as the example. The polarity of PdSe2 can be modulated from n-type to bipolar and p-type precisely by changing the concentration of SnCl4 solution. The modulation effectively reduces the electron concentration and improves the work function by ∼72 meV. In addition, the solution-processable route makes the spatially controlled doping possible, which is demonstrated by constructing the lateral PdSe2 p-n homojunction with rectification behavior and photovoltaic effect. This p-doping method has been further proved in modulating various TMDs including WSe2, WS2, ReSe2, MoSe2, MoTe2, and PtSe2. This spatially controlled and universal method based on Sn atoms substitution realizes p-type doping of TMDs.
Collapse
Affiliation(s)
- Zexin Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Dongyan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Haoyun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xiang Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Lejing Pi
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ping Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Xing Zhou
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
18
|
Li J, Liang D, Liu G, Jia B, Cao J, Hao J, Lu P. Defect induced electrocatalytic hydrogen properties of pentagonal PdX 2 (X = S, Se). RSC Adv 2021; 11:38478-38485. [PMID: 35493256 PMCID: PMC9043911 DOI: 10.1039/d1ra07466k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Searching for catalysts of hydrogen evolution reaction (HER) that can replace Pt is critical. Here, we investigated the HER electrocatalytic activity of pentagonal PdS2 (penta-PdS2) and PdSe2 (penta-PdSe2) by first-principles calculations. Three types of vacancies (VS/Se, VPd, DVS/Se) were constructed to activate the inert basal planes of PdS2 and PdSe2. The results show that S/Se and Pd vacancies significantly improve HER performance, and the Gibbs free energy (ΔG H) of systems can be further regulated by vacancy concentration. Particularly, PdS2 with 2.78% VS, 50% VPd and PdSe2 with 12.5% VSe display the optimal ΔG H value and the highest exchange current density. Further analysis of charge transfer and band structures were described that the introduce of vacancies efficiently regulates the electronic properties, resulting in the diminution of bandgap, and accelerates the charge transfer, thereby contributing to an enhanced electron environment for HER process. Our results provide a theoretical guidance for the applications of pentagonal transition-metal dichalcogenides as catalysts of hydrogen evolution reaction.
Collapse
Affiliation(s)
- Jingjing Li
- State Key Laboratory of Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Dan Liang
- State Key Laboratory of Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Gang Liu
- State Key Laboratory of Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Baonan Jia
- State Key Laboratory of Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Jingyu Cao
- State Key Laboratory of Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications Beijing 100876 China
| | - Jinbo Hao
- School of Science, Xi'an University of Architecture and Technology Xi'an 710055 Shaanxi China
| | - Pengfei Lu
- State Key Laboratory of Information Photonics and Optical Communications, School of Electronic Engineering, Beijing University of Posts and Telecommunications Beijing 100876 China
| |
Collapse
|
19
|
Fu C, Xiao YT, Xing Y, Tong XW, Wang J, Zhang ZX, Wang L, Wu D, Luo LB. Filterless Discrimination of Wavelengths in the Range from Ultraviolet to Near-Infrared Light Using Two PdSe 2/Thin Si/PdSe 2 Heterojunction Photodetectors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43273-43281. [PMID: 34469096 DOI: 10.1021/acsami.1c12885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, we present a wavelength sensor that is capable of distinguishing the spectrum in the range from ultraviolet (UV) to near-infrared (NIR) light. The filterless device is composed of two horizontally stacking PdSe2/20 μm Si/PdSe2 heterojunction photodetectors with a photovoltaic (PV) behavior, which makes it possible for the device to work at 0 bias voltage. Due to the relatively small thickness of Si and the wavelength-dependent absorption coefficient, the two PdSe2/20 μm Si/PdSe2 photodetectors according to theoretical simulation display a sharp contrast in distribution of the photoabsorption rate. As a result, the photocurrents of both photodetectors evolve in completely different ways with increasing wavelengths, leading to a monotonic decrease in the photocurrent ratio from 6800 to 22 when the wavelength gradually increases from 265 to 1050 nm. The corresponding relationship between both the photocurrent ratio and wavelength can be easily described by the monotonic function, which can help to precisely determine the wavelength in the range from 265 to 1050 nm, with an average relative error less than ±1.6%. It is also revealed that by slightly revising the monotonic function, the wavelength in other different temperatures can also be estimated.
Collapse
Affiliation(s)
- Can Fu
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Yu-Tian Xiao
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Yue Xing
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Xiao-Wei Tong
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Jiang Wang
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Zhi-Xiang Zhang
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Li Wang
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| | - Di Wu
- School of Physics and Microelectronics, and Key Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052, China
| | - Lin-Bao Luo
- School of Microelectronics, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
20
|
Zhu R, Gao Z, Liang Q, Hu J, Wang JS, Qiu CW, Wee ATS. Observation of Anisotropic Magnetoresistance in Layered Nonmagnetic Semiconducting PdSe 2. ACS APPLIED MATERIALS & INTERFACES 2021; 13:37527-37534. [PMID: 34333972 DOI: 10.1021/acsami.1c10500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anisotropy in crystals usually has remarkable consequences in two-dimensional (2D) materials, for example, black phosphorus, PdSe2, and SnS, arising from different lattice periodicities along different crystallographic directions. Electrical anisotropy has been successfully demonstrated in 2D materials, but anisotropic magnetoresistance in 2D materials is rarely studied. Herein, we report anisotropic magnetoresistance in layered nonmagnetic semiconducting PdSe2 flakes. Anisotropic magnetoresistance along the two crystalline axes under a perpendicular magnetic field is demonstrated, and the magnetoresistance along the a-axis is apparently different from the magnetoresistance along the b-axis. The magnetoresistance can also be flexibly tuned by applying a gate voltage, leveraging the semiconductor properties of PdSe2. The computed anisotropic electronic density of states and electronic mobility with ab initio density functional calculations support the anisotropic and measured magnetoresistance. Our findings advance the understanding of magnetoresistance in anisotropic transition-metal dichalcogenides and pave the way for potential applications in anisotropic spintronic devices.
Collapse
Affiliation(s)
- Rui Zhu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Zhibin Gao
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qijie Liang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Songshan Lake Materials Laboratory, Songshan Lake Mat Lab, Dongguan 523808, China
| | - Junxiong Hu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Jian-Sheng Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Cheng-Wei Qiu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Andrew Thye Shen Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
21
|
He Q, Chen G, Wang Y, Liu X, Xu D, Xu X, Liu Y, Bao J, Wang X. CsPbX 3 -ITO (X = Cl, Br, I) Nano-Heterojunctions: Voltage Tuned Positive to Negative Photoresponse. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101403. [PMID: 34106510 DOI: 10.1002/smll.202101403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/06/2021] [Indexed: 06/12/2023]
Abstract
All-Inorganic perovskite CsPbX3 (X = Cl, Br, I) quantum dots (QDs) have attracted tremendous attention in the past few years for their appealing performance in optoelectronic applications. Major properties of CsPbX3 QDs include the positive photoconductivity (PPC) and the defect tolerance of the in-band trap states. Here it is reported that when hybridizing CsPbX3 QDs with indium tin oxide (ITO) nanocrystals to form CsPbX3 -ITO nano-heterojunctions (NHJs), a voltage tuned photoresponse-from PPC to negative photoconductivity (NPC) transform-is achieved in lateral drain-source structured ITO/CsPbX3 -ITO-NHJs/ITO devices. A model combining exciton, charge separation, transport, and most critical the voltage driven electron filling of the in-band trap states with drain-source voltage (VDS ) above a threshold, is proposed to understand this unusual PPC-NPC transform mechanism, which is different from that of any known nanomaterial system. This finding exhibits potentials for developing devices such as photodetectors, optoelectronic switches, and memories.
Collapse
Affiliation(s)
- Qiqian He
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Gaoyu Chen
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Yongkai Wang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Xiaoyu Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Danting Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Xiangxing Xu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Ying Liu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Jianchun Bao
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210046, P. R. China
| | - Xun Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing, Beijing, 100084, P. R. China
| |
Collapse
|
22
|
Wang Q, Wee ATS. Upconversion Photovoltaic Effect of WS 2/2D Perovskite Heterostructures by Two-Photon Absorption. ACS NANO 2021; 15:10437-10443. [PMID: 34009945 DOI: 10.1021/acsnano.1c02782] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photovoltaic devices work by converting sunlight energy into electric energy. The efficiency of current photovoltaic devices, however, is significantly limited by the transmission loss of photons with energies below the bandgap of channel semiconductors, which can be circumvented by photon energy upconversion. Energy upconversion has been widely employed to improve the efficiency of traditional solar cells. However, the employment of energy upconversion in two-dimensional (2D) heterostructure photovoltaic devices has not been investigated yet. Here, we report the upconversion photovoltaic effect of WS2 monolayer/(C6H5C2H4NH3)2PbI4 (PEPI) 2D perovskite heterostructures by below-bandgap two-photon absorption via a virtual intermediate state. An open circuit voltage of 0.37 V and short circuit current of 7.4 pA are obtained with a photoresponsivity of 771 pA/W and current on/off ratio of 130:1. This work demonstrates that upconversion by two-photon absorption may potentially be a strategy for boosting the efficiency of 2D material-based photovoltaic devices by virtue of the absorption of photons below the bandgap energy of channel semiconductors.
Collapse
Affiliation(s)
- Qixing Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Block S14, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
23
|
Wang Y, Pang J, Cheng Q, Han L, Li Y, Meng X, Ibarlucea B, Zhao H, Yang F, Liu H, Liu H, Zhou W, Wang X, Rummeli MH, Zhang Y, Cuniberti G. Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics. NANO-MICRO LETTERS 2021; 13:143. [PMID: 34138389 PMCID: PMC8203759 DOI: 10.1007/s40820-021-00660-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/11/2021] [Indexed: 05/07/2023]
Abstract
The rapid development of two-dimensional (2D) transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties. In particular, palladium diselenide (PdSe2) with a novel pentagonal structure and unique physical characteristics have recently attracted extensive research interest. Consequently, tremendous research progress has been achieved regarding the physics, chemistry, and electronics of PdSe2. Accordingly, in this review, we recapitulate and summarize the most recent research on PdSe2, including its structure, properties, synthesis, and applications. First, a mechanical exfoliation method to obtain PdSe2 nanosheets is introduced, and large-area synthesis strategies are explained with respect to chemical vapor deposition and metal selenization. Next, the electronic and optoelectronic properties of PdSe2 and related heterostructures, such as field-effect transistors, photodetectors, sensors, and thermoelectric devices, are discussed. Subsequently, the integration of systems into infrared image sensors on the basis of PdSe2 van der Waals heterostructures is explored. Finally, future opportunities are highlighted to serve as a general guide for physicists, chemists, materials scientists, and engineers. Therefore, this comprehensive review may shed light on the research conducted by the 2D material community.
Collapse
Affiliation(s)
- Yanhao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China.
| | - Qilin Cheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China
| | - Xue Meng
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, 01062, Dresden, Germany
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co. Ltd., Xinwai Street 2, Beijing, 100088, People's Republic of China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Haiyun Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China.
- State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, 250100, People's Republic of China.
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China
| | - Xiao Wang
- Shenzhen Institutes of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, People's Republic of China
| | - Mark H Rummeli
- College of Energy Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, People's Republic of China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, 41-819, Zabrze, Poland
- Institute for Complex Materials, IFW Dresden 20 Helmholtz Strasse, 01069, Dresden, Germany
- Institute of Environmental Technology VŠB-Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33, Czech Republic
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
24
|
Wang Q, Wee ATS. Photoluminescence upconversion of 2D materials and applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:223001. [PMID: 33784662 DOI: 10.1088/1361-648x/abf37f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Photoluminescence (PL) upconversion is a phenomenon involving light-matter interactions, where the energy of emitted photons is higher than that of the incident photons. PL upconversion is an intriguing process in two-dimensional materials and specifically designed 2D heterostructures, which have potential upconversion applications in optoelectronic devices, bioimaging, and semiconductor cooling. In this review, we focus on the recent advances in photoluminescence upconversion in two-dimensional materials and their heterostructures. We discuss the upconversion mechanisms, applications, and future outlook of upconversion in two-dimensional materials.
Collapse
Affiliation(s)
- Qixing Wang
- Max Planck Institute for Solid State Research, Stuttgart D-70569, Germany
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| |
Collapse
|
25
|
Tao WL, Zhao YQ, Zeng ZY, Chen XR, Geng HY. Anisotropic Thermoelectric Materials: Pentagonal PtM 2 (M = S, Se, Te). ACS APPLIED MATERIALS & INTERFACES 2021; 13:8700-8709. [PMID: 33556242 DOI: 10.1021/acsami.0c19460] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We here report a new pentagonal network structure of the PtM2 (M = S, Se, Te) monolayers with the P21/c (no. 14) space group. The electronic structure and thermoelectric properties of the pentagonal PtM2 monolayers are calculated through the VASP and BoltzTraP codes. We verify their dynamic and thermodynamic stabilities by calculating their phonon spectra and simulating ab initio molecular dynamics. It is found that the new material belongs to the medium-wide indirect band gap semiconductors from the PBE and HSE06 methods. At 300 K, the lattice thermal conductivities (Kl) of the pentagonal PtTe2 in the x and y directions are the smallest among these three materials, being 1.77 and 5.17 W/m K, respectively. The anisotropic zT values (2.60/1.14) in the x/y direction of the pentagonal PtTe2 at 300 K are much greater than those of the pentagonal PtSe2 (1.75/0.82) and the pentagonal PtS2 (0.58/0.16) at 300 K. Importantly, the p-type pentagonal PtTe2 also has excellent thermoelectric properties at 600 K, with a zT value of 5.03 in the x direction, indicating that the p-type pentagonal PtTe2 has a good application potential in the thermoelectric field.
Collapse
Affiliation(s)
- Wang-Li Tao
- College of Physics, Sichuan University, Chengdu 610064, China
| | - Ying-Qin Zhao
- College of Physics, Sichuan University, Chengdu 610064, China
| | - Zhao-Yi Zeng
- College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 400047, China
| | - Xiang-Rong Chen
- College of Physics, Sichuan University, Chengdu 610064, China
| | - Hua-Yun Geng
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, Mianyang 621900, China
| |
Collapse
|
26
|
Liang Q, Zhang Q, Zhao X, Liu M, Wee ATS. Defect Engineering of Two-Dimensional Transition-Metal Dichalcogenides: Applications, Challenges, and Opportunities. ACS NANO 2021; 15:2165-2181. [PMID: 33449623 DOI: 10.1021/acsnano.0c09666] [Citation(s) in RCA: 135] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Atomic defects, being the most prevalent zero-dimensional topological defects, are ubiquitous in a wide range of 2D transition-metal dichalcogenides (TMDs). They could be intrinsic, formed during the initial sample growth, or created by postprocessing. Despite the majority of TMDs being largely unaffected after losing chalcogen atoms in the outermost layer, a spectrum of properties, including optical, electrical, and chemical properties, can be significantly modulated, and potentially invoke applicable functionalities utilized in many applications. Hence, controlling chalcogen atomic defects provides an alternative avenue for engineering a wide range of physical and chemical properties of 2D TMDs. In this article, we review recent progress on the role of chalcogen atomic defects in engineering 2D TMDs, with a particular focus on device performance improvements. Various approaches for creating chalcogen atomic defects including nonstoichiometric synthesis and postgrowth treatment, together with their characterization and interpretation are systematically overviewed. The tailoring of optical, electrical, and magnetic properties, along with the device performance enhancement in electronic, optoelectronic, chemical sensing, biomedical, and catalytic activity are discussed in detail. Postformation dynamic evolution and repair of chalcogen atomic defects are also introduced. Finally, we offer our perspective on the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Qijie Liang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Qian Zhang
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Xiaoxu Zhao
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore
| | - Meizhuang Liu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
27
|
Wang Q, Zhang Q, Luo X, Wang J, Zhu R, Liang Q, Zhang L, Yong JZ, Yu Wong CP, Eda G, Smet JH, Wee ATS. Optoelectronic Properties of a van der Waals WS 2 Monolayer/2D Perovskite Vertical Heterostructure. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45235-45242. [PMID: 32924427 DOI: 10.1021/acsami.0c14398] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Two-dimensional (2D) Ruddlesden-Popper perovskites have been demonstrated to possess great potential for optical and optoelectronic devices. Because they exhibit better ambient stability than three-dimensional (3D) perovskites, they have been considered as potential substitutes for 3D perovskites as light absorbing layers to improve the photoresponsivity of monolayer transition metal dichalcogenide (TMDC)-based photodetectors. Investigation of the optoelectronic properties of TMDC monolayer/2D perovskite vertical heterostructures is however at an early stage. Here, we address the photovoltaic effect and the photodetection performance in tungsten disulfide (WS2) monolayer/2D perovskite (C6H5C2H4NH3)2PbI4 (PEPI) vertical heterostructures. A vertical device geometry with separate graphene contacts to both heterointerface constituents acted as a photovoltaic device and self-driven photodetector. The photovoltaic device exhibited an open circuit voltage of -0.57 V and a short circuit current of 41.6 nA. A photoresponsivity of 0.13 mA/W at the WS2/PEPI heterointerface was achieved, which was signified by a factor of 5 compared to that from the individual WS2 region. The current on/off ratio of the self-driven photodetector was approximately 1500. The photoresponsivity and external quantum efficiency of the self-driven photodetector were estimated to be 24.2 μA/W and 5.7 × 10-5, respectively. This work corroborates that 2D perovskites are promising light absorbing layers in optoelectronic devices with a TMDC-based heterointerface.
Collapse
Affiliation(s)
- Qixing Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- Max Planck Institute for Solid State Research, Stuttgart D-70569, Germany (current position)
| | - Qi Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Xin Luo
- State Key Laboratory of Optoelectronic Materials and Technologies, Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, P.R. China
| | - Junyong Wang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Rui Zhu
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Qijie Liang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Zhang
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Justin Zhou Yong
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
| | - Calvin Pei Yu Wong
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore
| | - Goki Eda
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Block S14, 6 Science Drive 2, Singapore 117546, Singapore
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Jurgen H Smet
- Max Planck Institute for Solid State Research, Stuttgart D-70569, Germany (current position)
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore
- Centre for Advanced 2D Materials, National University of Singapore, Block S14, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
28
|
Tai KL, Chen J, Wen Y, Park H, Zhang Q, Lu Y, Chang RJ, Tang P, Allen CS, Wu WW, Warner JH. Phase Variations and Layer Epitaxy of 2D PdSe 2 Grown on 2D Monolayers by Direct Selenization of Molecular Pd Precursors. ACS NANO 2020; 14:11677-11690. [PMID: 32809801 DOI: 10.1021/acsnano.0c04230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two-dimensional (2D) materials and van der Waals heterostructures with atomic-scale thickness provide enormous potential for advanced science and technology. However, insufficient knowledge of compatible synthesis impedes wafer-scale production. PdSe2 and Pd2Se3 are two of the noble transition-metal chalcogenides with excellent physical properties that have recently emerged as promising materials for electronics, optoelectronics, catalyst, and sensors. This research presents a feasible approach to synthesize PdSe2 and Pd2Se3 with inherently asymmetric structure on honeycomb lattice 2D monolayer substrates of graphene and MoS2. We directly deposit a molecular transition-metal precursor complex on the surface of the 2D substrates, followed by low-temperature selenization by chemical vapor flow. Parameter control leads to tuning of the material from monolayer nanocrystals with Pd2Se3 phase, to continuous few-layer PdSe2 films. Annular dark-field scanning transmission electron microscopy (ADF-STEM) reveals the structure, phase variations, and heteroepitaxy at the atomic level. PdSe2 with unconventional interlayer stacking shifts appeared as the kinetic product, whereas the bilayer PdSe2 and monolayer Pd2Se3 are the thermodynamic product. The epitaxial alignment of interlayer rotation and translation between the PdSe2 and underlying 2D substrate was also revealed by ADF-STEM. These results offer both nanoscale and atomic-level insights into direct growth of van der Waals heterostructures, as well as an innovative method for 2D synthesis by predetermined nucleation.
Collapse
Affiliation(s)
- Kuo-Lun Tai
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (R.O.C.)
| | - Jun Chen
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Yi Wen
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Hyoju Park
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
- Materials Graduate Program, Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
| | - Qianyang Zhang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Yang Lu
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Ren-Jie Chang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Peng Tang
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
| | - Christopher S Allen
- Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH, United Kingdom
- Electron Physical Sciences Imaging Center, Diamond Light Source Ltd., Didcot, Oxfordshire OX11 0DE, United Kingdom
| | - Wen-Wei Wu
- Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan (R.O.C.)
- Center for the Intelligent Semiconductor Nano-system Technology Research, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Jamie H Warner
- Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
- Materials Graduate Program, Texas Materials Institute, The University of Texas at Austin, 204 East Dean Keeton Street, Austin, Texas 78712, United States
| |
Collapse
|