1
|
Dong JX, Zhang SM, Zhang YL, Fan YJ, Li YL, Su M, Wang ZG, Shen SG, Gao ZF, Wei Q, Xia F. Precisely Manipulating Steric Hindrance Effect on DNA Walker for Tunable Detection of MicroRNA Using Enzymatic Strand Displacement Amplification. Anal Chem 2024; 96:14471-14479. [PMID: 39185581 DOI: 10.1021/acs.analchem.4c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The spatial constraints imposed by the DNA structure have significant implications for the walking efficiency of three-dimensional DNA walkers. However, accurately quantifying and manipulating steric hindrance remains a challenging task. This study presents a steric hindrance-controlled DNA walker utilizing an enzymatic strand displacement amplification (ESDA) strategy for detecting microRNA-21 (miR-21) with tunable dynamic range and sensitivity. The steric hindrance of the DNA walker was precisely manipulated by varying the length of empty bases from 6.5 Å to 27.4 Å at the end of the track strand and adjusting the volumetric dimensions of the hairpin structure from 9.13 nm3 to 26.2 nm3 at the terminus of the single-foot DNA walking strand. This method demonstrated a tunable limit of detection for miR-21 ranging from 3.6 aM to 35.6 nM, along with a dynamic range from ∼100-fold to ∼166 000-fold. Impressively, it exhibited successful identification of cancer cells and clinical serum samples with high miR-21 expression. The proposed novel strategy not only enables tunable detection of miRNA through the regulation of steric hindrance but also achieves accurate and quantitative analysis of the steric hindrance effect, promising broader applications in personalized medicine, early disease detection, and drug development.
Collapse
Affiliation(s)
- Jiang Xue Dong
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Sai Mei Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Yi Lin Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Ya Jie Fan
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Yan Lei Li
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Ming Su
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Zhen Guang Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shi Gang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
- Engineering Research Center of Ecological Safety and Conservation in Beijing-Tianjin-Hebei (Xiong'an New Area) of MOE, Baoding 071002, P. R. China
| | - Zhong Feng Gao
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Fan Xia
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
2
|
Wu Y, Wang GA, Yang Q, Li F. Native Characterization of Noncanonical Nucleic Acid Thermodynamics via Programmable Dynamic DNA Chemistry. J Am Chem Soc 2024; 146:18041-18049. [PMID: 38899479 DOI: 10.1021/jacs.4c04721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Folding thermodynamics, quantitatively described using parameters such as ΔGfold°, ΔHfold°, and ΔSfold°, is essential for characterizing the stability and functionality of noncanonical nucleic acid structures but remains difficult to measure at the molecular level. Leveraging the programmability of dynamic deoxyribonucleic acid (DNA) chemistry, we introduce a DNA-based molecular tool capable of performing a free energy shift assay (FESA) that directly characterizes the thermodynamics of noncanonical DNA structures in their native environments. FESA operates by the rational design of a reference DNA probe that is energetically equivalent to a target noncanonical nucleic acid structure in a series of toehold-exchange reactions, yet is structurally incapable of folding. As a result, a free energy shift (ΔΔGrxn°) is observed when plotting the reaction yield against the free energy of each toehold-exchange. We mathematically demonstrated that ΔGfold°, ΔHfold°, and ΔSfold° of the analyte can be calculated based on ΔΔGrxn°. After validating FESA using six DNA hairpins by comparing the measured ΔGfold°, ΔHfold°, and ΔSfold° values against predictions made by NUPACK software, we adapted FESA to characterize noncanonical nucleic acid structures, encompassing DNA triplexes, G-quadruplexes, and aptamers. This adaptation enabled the successful characterization of the folding thermodynamics for these complex structures under various experimental conditions. The successful development of FESA marks a paradigm shift and a technical advancement in characterizing the thermodynamics of noncanonical DNA structures through molecular tools. It also opens new avenues for probing fundamental chemical and biophysical questions through the lens of molecular engineering and dynamic DNA chemistry.
Collapse
Affiliation(s)
- Yuqin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Guan Alex Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Qianfan Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| | - Feng Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
- Department of Chemistry, Centre for Biotechnology, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
3
|
Xia L, Chen J, Hou X, Zhou R, Cheng N. Construction of a streptavidin-based dual-localized DNAzyme walker for disease biomarker detection. Chem Commun (Camb) 2024; 60:5848-5851. [PMID: 38752318 DOI: 10.1039/d4cc00912f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A dual-localized DNAzyme walker (dlDW) was constructed by utilizing multiple split DNAzymes with probes, and their substrates are separately localized on streptavidin and AuNPs, serving as walking pedals and tracks, respectively. Based on dlDW, biosensing platform was successfully constructed and showed great potential application in clinical disease diagnosis.
Collapse
Affiliation(s)
- Lingying Xia
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Junbo Chen
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rongxing Zhou
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Nansheng Cheng
- Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
4
|
Ma C, Li S, Zeng Y, Lyu Y. DNA-Based Molecular Machines: Controlling Mechanisms and Biosensing Applications. BIOSENSORS 2024; 14:236. [PMID: 38785710 PMCID: PMC11117991 DOI: 10.3390/bios14050236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The rise of DNA nanotechnology has driven the development of DNA-based molecular machines, which are capable of performing specific operations and tasks at the nanoscale. Benefitting from the programmability of DNA molecules and the predictability of DNA hybridization and strand displacement, DNA-based molecular machines can be designed with various structures and dynamic behaviors and have been implemented for wide applications in the field of biosensing due to their unique advantages. This review summarizes the reported controlling mechanisms of DNA-based molecular machines and introduces biosensing applications of DNA-based molecular machines in amplified detection, multiplex detection, real-time monitoring, spatial recognition detection, and single-molecule detection of biomarkers. The challenges and future directions of DNA-based molecular machines in biosensing are also discussed.
Collapse
Affiliation(s)
- Chunran Ma
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Shiquan Li
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Yuqi Zeng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
| | - Yifan Lyu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China; (C.M.); (S.L.); (Y.Z.)
- Furong Laboratory, Changsha 410082, China
| |
Collapse
|
5
|
Du L, Yang P, Xia L, Hu C, Yang F, Chen J, Hou X. Heteromultivalent DNA Enhances the Assembly Yield of Hybrid Nanoparticles and Facilitates Dynamic Disassembly for Bioanalysis Using ICP-MS. Anal Chem 2024; 96:7194-7203. [PMID: 38656822 DOI: 10.1021/acs.analchem.4c00774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
To obtain enhanced physical and biological properties, various nanoparticles are typically assembled into hybrid nanoparticles through the binding of multiple homologous DNA strands to their complementary counterparts, commonly referred to as homomultivalent assembly. However, the poor binding affinity and limited controllability of homomultivalent disassembly restrict the assembly yield and dynamic functionality of the hybrid nanoparticles. To achieve a higher binding affinity and flexible assembly choice, we utilized the paired heteromultivalency DNA to construct hybrid nanoparticles and demonstrate their excellent assembly characteristics and dynamic applications. Specifically, through heteromultivalency, DNA-functionalized magnetic beads (MBs) and gold nanoparticles (AuNPs) were efficiently assembled. By utilizing ICP-MS, the assembly efficiency of AuNPs on MBs was directly monitored, enabling quantitative analysis and optimization of heteromultivalent binding events. As a result, the enhanced assembly yield is primarily attributed to the fact that heteromultivalency allows for the maximization of effective DNA probes on the surface of nanoparticles, eliminating steric hindrance interference. Subsequently, with external oligonucleotides as triggers, it was revealed that the disassembly mechanism of hybrid nanoparticles was initiated, which was based on an increased local concentration rather than toehold-mediated displacement of paired heteromultivalency DNA probes. Capitalizing on these features, an output platform was then established based on ICP-MS signals that several Boolean operations and analytical applications can be achieved by simply modifying the design sequences. The findings provide new insights into DNA biointerface interaction, with potential applications to complex logic operations and the construction of large DNA nanostructures.
Collapse
Affiliation(s)
- Lijie Du
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Peng Yang
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Lingying Xia
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Changjia Hu
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Fengyi Yang
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Junbo Chen
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiandeng Hou
- Analytical & Testing Centre, Sichuan University, Chengdu, Sichuan 610064, China
- Key Laboratory of Green Chemistry and Technology of MOE, and College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
6
|
Zhong X, Hua J, Shi M, He Y, Huang Y, Wang B, Zhang L, Zhao S, Hou L, Liang H. Self-Feedback DNAzyme Motor for Cascade-Amplified Imaging of mRNA in Live Cells and In Vivo. ACS Sens 2024; 9:1280-1289. [PMID: 38456635 DOI: 10.1021/acssensors.3c02174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
DNA motors have attracted extensive interest in biosensing and bioimaging. However, the amplification capacity of the existing DNA motor systems is limited since the products from the walking process are unable to feedback into the original DNA motor systems. As a result, the sensitivities of such systems are limited in the contexts of biosensing and bioimaging. In this study, we report a novel self-feedback DNAzyme motor for the sensitive imaging of tumor-related mRNA in live cells and in vivo with cascade signal amplification capacity. Gold nanoparticles (AuNPs) are modified with hairpin-locked DNAzyme walker and track strands formed by hybridizing Cy5-labeled DNA trigger-incorporated substrate strands with assistant strands. Hybridization of the target mRNA with the hairpin strands activates DNAzyme and promotes the autonomous walking of DNAzyme on AuNPs through DNAzyme-catalyzed substrate cleavage, resulting in the release of many Cy5-labeled substrate segments containing DNA triggers and the generation of an amplified fluorescence signal. Moreover, each released DNA trigger can also bind with the hairpin strand to activate and operate the original motor system, which induces further signal amplification via a feedback mechanism. This motor exhibits a 102-fold improvement in detection sensitivity over conventional DNAzyme motors and high selectivity for target mRNA. It has been successfully applied to distinguish cancer cells from normal cells and diagnose tumors in vivo based on mRNA imaging. The proposed DNAzyme motor provides a promising paradigm for the amplified detection and sensitive imaging of low-abundance biomolecules in vivo.
Collapse
Affiliation(s)
- Xiaohong Zhong
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jing Hua
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Ming Shi
- Department of Chemistry and Pharmacy, Guilin Normal College, Guilin 541001, China
| | - Yifang He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yong Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Beilei Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Liangliang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Li Hou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| |
Collapse
|
7
|
Hu M, Li X, Wu JN, Yang M, Wu T. DNAzyme-Based Dissipative DNA Strand Displacement for Constructing Temporal Logic Gates. ACS NANO 2024; 18:2184-2194. [PMID: 38193385 DOI: 10.1021/acsnano.3c09506] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Toehold-mediated DNA strand displacement is the foundation of dynamic DNA nanotechnology, encompassing a wide range of tools with diverse functions, dynamics, and thermodynamic properties. However, a majority of these tools are limited to unidirectional reactions driven by thermodynamics. In response to the growing field of dissipative DNA nanotechnology, we present an approach: DNAzyme-based dissipative DNA strand displacement (D-DSD), which combines the principles of dynamic DNA nanotechnology and dissipative DNA nanotechnology. D-DSD introduces circular and dissipative characteristics, distinguishing it from the unidirectional reactions observed in conventional strand displacement. We investigated the reaction mechanism of D-DSD and devised temporal control elements. By substituting temporal components, we designed two distinct temporal AND gates using fewer than 10 strands, eliminating the need for complex network designs. In contrast to previous temporal logic gates, our temporal storage is not through dynamics control or cross-inhibition but through autoregressive storage, a more modular and scalable approach to memory storage. D-DSD preserves the fundamental structure of toehold-mediated strand displacement, while offering enhanced simplicity and versatility.
Collapse
Affiliation(s)
- Minghao Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaolong Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jia-Ni Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Mengyao Yang
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
8
|
Wang X, Mu X, Li J, Liu G, Zhao S, Tian J. A novel nanoparticle surface-constrained CRISPR-Cas12a 3D DNA walker-like nanomachines for sensitive and stable miRNAs detection. Anal Chim Acta 2023; 1251:340950. [PMID: 36925314 DOI: 10.1016/j.aca.2023.340950] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/10/2023]
Abstract
The CRISPR-Cas system has broad prospects as a new type of nucleic acid signal amplification technology based on the trans-cleavage activity of Cas12a to single-stranded DNA, but the trans-cleavage reaction efficiency is relatively low in solution. In order to overcome this negative factor, a new 3D DNA nanomachine whose CRISPR-Cas12a is limited to the surface of nanoparticles is used for sensitive and stable detection of miRNA. By loading Cas12a activator onto spherical nucleic acid (SNA), the CRISPR-Cas12a activator system on the surface of Au nanoparticles (AuNPs) acts as a walker to carry out continuous recognition-walking-cutting reaction on the surface of AuNPs, which enhances the trans-cleavage activity of Cas12a to SNAs. Benefiting from the confinement effect of spherical nucleic acids surface, a 3D DNA nanomachine has been developed for the detection of miRNA-21, which has achieved high sensitivity and accuracy, and the detection limit is able to reach 8.0 pM. This new 3D DNA walker-like nanomachine provided another insight for future bioanalysis and early clinical diagnoses of disease and liquid biopsy.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaomei Mu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jinshen Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Guang Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Shulin Zhao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Jianniao Tian
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.
| |
Collapse
|
9
|
Hu M, Hu Y, Wu T. A multifunctional monolithic interfacial sensor based on gold nanoparticle. Talanta 2023; 259:124546. [PMID: 37062087 DOI: 10.1016/j.talanta.2023.124546] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 04/18/2023]
Abstract
The spatial and temporal uneven distribution of complex biochemical reactions creates the diversity of biological systems. And the microenvironment confers fine regulation of these reactions, a stunning example of which is liquid-liquid phase separation (LLPS). LLPS can form a separate compartment without the physical separation formed by conventional membrane structures, and the reactions within the interface have specific reaction dynamics. Inspired by this, we report an interfacial sensor based on gold nanoparticles showing that interfacial factors have similar properties operating in natural biological environments and sensors. It repels molecules outside the interface and adjusts the DNA conformation within the interface to produce unique dynamics. The sensor adopts a modular design, allowing functional modules assembled on a single nanoparticle to avoid complex designs. We demonstrate the functionality of logical operations, using apurinic/apyrimidinic endonuclease 1 and micro RNA as inputs, showing that the sensor has the ability and potential to become a multifunctional platform with clear interface nature.
Collapse
Affiliation(s)
- Minghao Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuqiang Hu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
10
|
Shen B, Li L, Liu C, Li X, Li X, Cheng X, Wu H, Yang T, Cheng W, Ding S. Mesoporous Nanozyme-Enhanced DNA Tetrahedron Electrochemiluminescent Biosensor with Three-Dimensional Walking Nanomotor-Mediated CRISPR/Cas12a for Ultrasensitive Detection of Exosomal microRNA. Anal Chem 2023; 95:4486-4495. [PMID: 36802524 DOI: 10.1021/acs.analchem.2c05217] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Exosomal microRNAs (exomiRNAs) have emerged as ideal biomarkers for early clinical diagnostics. The accurate detection of exomiRNAs plays a crucial role in facilitating clinical applications. Herein, an ultrasensitive electrochemiluminescent (ECL) biosensor was constructed using three-dimensional (3D) walking nanomotor-mediated CRISPR/Cas12a and tetrahedral DNA nanostructures (TDNs)-modified nanoemitters (TCPP-Fe@HMUiO@Au-ABEI) for exomiR-155 detection. Initially, the 3D walking nanomotor-mediated CRISPR/Cas12a strategy could effectively convert the target exomiR-155 into amplified biological signals for improving the sensitivity and specificity. Then, TCPP-Fe@HMUiO@Au nanozymes with excellent catalytic performance were used to amplify ECL signals because of the enhanced mass transfer and increased catalytic active sites, originating from its high surface areas (601.83 m2/g), average pore size (3.46 nm), and large pore volumes (0.52 cm3/g). Meanwhile, the TDNs as the scaffold to fabricate "bottom-up" anchor bioprobes could improve the trans-cleavage efficiency of Cas12a. Consequently, this biosensor achieved the limit of detection down to 273.20 aM ranging from 1.0 fM to 1.0 nM. Furthermore, the biosensor could discriminate breast cancer patients evidently by analyzing exomiR-155, and these results conformed to that of qRT-PCR. Thus, this work provides a promising tool for early clinical diagnostics.
Collapse
Affiliation(s)
- Bo Shen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.,Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, P. R. China
| | - Li Li
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing 401147, P. R. China
| | - Changjin Liu
- Department of Laboratory Medicine, The Fifth People's Hospital of Chongqing, Chongqing 400062, P. R. China
| | - Xinmin Li
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, P. R. China
| | - Xinyu Li
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xiaoxue Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Haiping Wu
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Tiantian Yang
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P. R. China
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
11
|
Ye T, Deng B, Zhu D, Yuan M, Cao H, Hao L, Wu X, Yin F, Sun D, Zhang S, Lu Y, Xu F. Concatenated DNA Walking and Rolling Machines with Programable Interfacial Tracks for Kanamycin Detection. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
12
|
Zhang Q, Wang Y, Wang W, Min Q, Zhang JR, Zhu JJ. A Telomerase-Assisted Strategy for Regeneration of DNA Nanomachines in Living Cells. Angew Chem Int Ed Engl 2023; 62:e202213884. [PMID: 36478372 DOI: 10.1002/anie.202213884] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
DNA nanomachines have been engineered into diverse personalized devices for diagnostic imaging of biomarkers; however, the regeneration of DNA nanomachines in living cells remains challenging. Here, we report an ingenious DNA nanomachine that can implement telomerase (TE)-activated regeneration in living cells. Upon apurinic/apyrimidinic endonuclease 1 (APE1)-responsive initiation of the nanomachine, the walker of the nanomachine moves along tracks regenerated by TE, generating multiply amplified signals through which APE1 can be imaged in situ. Additionally, augmentation of the signal due to the regeneration of the nanomachines could reveal differential expression of TE in different cell lines. To the best of our knowledge, this is the first proof-of-concept demonstration of the use of biomarkers to assist in the regeneration of nanomachines in living cells. This study offers a new paradigm for the development of more applicable and efficient DNA nanomachines.
Collapse
Affiliation(s)
- Qianying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yihan Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Wenjing Wang
- State Key Laboratory of Agricultural Microbiology, College of Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China.,School of Chemistry and Life Science, Nanjing University Jinling College, Nanjing, 210089, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
13
|
Wang L, Wang K, Wang X, Niu R, Chen X, Zhu Y, Sun Z, Yang J, Liu G, Luo Y. Intelligent Dual-Lock Deoxyribonucleic Acid Automatons Boosting Precise Tumor Imaging. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3826-3838. [PMID: 36625537 DOI: 10.1021/acsami.2c20024] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
An early and accurate cancer diagnosis holds the potential to improve treatment and prognosis. Nevertheless, the complexity of the biological system limits the selectivity of existing approaches and makes tumor imaging in vivo particularly challenging. In this study, tumor-specific fluorescence imaging was achieved by building intelligent dual-lock deoxyribonucleic acid automatons (IDEAs) that employed a DNA walking system standing on ZrMOF@MnO2 multifunctional nanocomposites for controllable molecular recognition. The IDEAs exhibited significantly enhanced fluorescence signals only in the coexistence of both miRNA and GSH of tumor cells, enabling accurate distinguishing of tumor cells from healthy ones. Furthermore, the feasibility and specificity of IDEAs were also validated in vivo with tumor bearing mice successfully. This work highlights the potential of the proposed IDEA strategy for tumor-specific imaging, paving the way for successful precision diagnosis and treatment.
Collapse
Affiliation(s)
- Liu Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Kang Wang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
- College of Bioengineering, Chongqing University, Chongqing400044, P. R. China
| | - Xiaohui Wang
- Department of Oncology, Jiangjin Hospital, Chongqing University, Chongqing402260, P. R. China
| | - Ruyan Niu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
- College of Bioengineering, Chongqing University, Chongqing400044, P. R. China
| | - Xiaohui Chen
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
- College of Bioengineering, Chongqing University, Chongqing400044, P. R. China
| | - Ying Zhu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Zixin Sun
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Jichun Yang
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Guoxiang Liu
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| | - Yang Luo
- Center of Smart Laboratory and Molecular Medicine, School of Medicine, Chongqing University, Chongqing400044, P. R. China
| |
Collapse
|
14
|
Gao J, Gao L, Tang Y, Li F. Homogeneous protein assays mediated by dynamic DNA nanotechnology. CAN J CHEM 2022. [DOI: 10.1139/cjc-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Driven by recent advances in DNA nanotechnology, analytical methods have been greatly improved for designing simple and homogeneous assays for proteins. The translation from target proteins to DNA outputs dramatically enhances the sensitivity of protein assays. More importantly, the protein-responsive DNA nanotechnology has offered diverse assay mechanisms, allowing flexible assay designs and high sensitivity without the need for sophisticated operational procedures. This review will focus on the design principles and mechanistic insight of analytical assays mediated by protein-responsive DNA nanotechnology, which will serve a general guide for assay design and applications.
Collapse
Affiliation(s)
- Jiajie Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Lu Gao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Yanan Tang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ONL2S 3A1, Canada
| |
Collapse
|
15
|
Tian R, Yin B, Liu D, Liu Q, Chen S, Li M, Wang L, Zhou S, Wang D. Highly sensitive α-hemolysin nanopore detection of MUC1 based on 3D DNA walker. Anal Chim Acta 2022; 1223:340193. [DOI: 10.1016/j.aca.2022.340193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
|
16
|
Competition-Induced Binding Spherical Nucleic AcidFluorescence Amplifier for the Detection of Di (2-ethylhexyl) Phthalate in the Aquatic Environment. NANOMATERIALS 2022; 12:nano12132196. [PMID: 35808031 PMCID: PMC9268500 DOI: 10.3390/nano12132196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 02/01/2023]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is a toxic plasticizer and androgen antagonist. Its accumulation in water exceeds national drinking water standards and it must be continuously and effectively regulated. Currently, methods used to detect DEHP are still unsatisfactory because they usually have limited detection sensitivity and require complex operating procedures. A competition-induced fluorescence detection method was developed for the selective detection of DEHP in an aquatic environment. An aptamer with walking function was used as the recognition element for DEHP, and its quantification was induced by competition to change the fluorescence signal. The detection range was 0.01~100 µg/L, and the detection limit was 1.008 μg/L. This high-sensitivity DEHP detection capability and simplified process facilitates real-time fields and other monitoring tasks.
Collapse
|
17
|
Chen Y, Meng X, Lu H, Dong H. Engineering DNA walkers for bioanalysis: A review. Anal Chim Acta 2022; 1209:339339. [PMID: 35569865 DOI: 10.1016/j.aca.2021.339339] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 11/19/2022]
Abstract
Considerable advances have been made in the design, modularization, functionalization, and regulation of DNA nanostructures over the past 40 years. These advances have accelerated the development of DNA nanomachines such as DNA walkers, dynamic nanomachines with walking feet, tracks, and driven forces, which have highly sensitive detection and signal amplification abilities that can be applied to various bioanalytical contexts and therapeutic strategies. Here, we describe a rational design of the nano-bio interface, the kinetics of DNA walkers and the strategies for improving their efficiency and sensitivity. We also outline the various bioanalytic and imaging applications to which DNA walkers have been applied, such as electrochemical and optical measurements, when integrated with other simulation and activation tools. Finally, we compare the performances of novel DNA walker-based strategies for bioanalysis and propose a method to improve DNA walker design.
Collapse
Affiliation(s)
- Yuchao Chen
- Research Center for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China
| | - Xiangdan Meng
- Research Center for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China.
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China.
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, School of Chemical and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing, 100083, China; Marshall Laboratory of Biomedical Engineering, School of Biomedical Engineering, Health Science Centre, Shenzhen University, Shenzhen, 518071, China.
| |
Collapse
|
18
|
Zhang XP, Xu W, Wang JH, Shu Y. MnO 2/DNAzyme-mediated ratiometric fluorescence assay of acetylcholinesterase. Analyst 2022; 147:4008-4013. [DOI: 10.1039/d2an01180h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A ratiometric fluorescent probe (MnO2/DNAzyme) is constructed. In the presence of AChE, the product thiocholine reduces MnO2 to Mn2+. The released H1 strands hybridizes with H2 strands to activate DNAzyme and cause cleavage of DNA-F signal probe.
Collapse
Affiliation(s)
- Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wang Xu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
19
|
Yang P, Zhou R, Kong C, Fan L, Dong C, Chen J, Hou X, Li F. Stimuli-Responsive Three-Dimensional DNA Nanomachines Engineered by Controlling Dynamic Interactions at Biomolecule-Nanoparticle Interfaces. ACS NANO 2021; 15:16870-16877. [PMID: 34596378 DOI: 10.1021/acsnano.1c07598] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Stimuli-responsive nanomachines are attractive tools for biosensing, imaging, and drug delivery. Herein, we demonstrate that the orientation of macromolecules and subsequent dynamic interactions at the biomolecule-nanoparticle (bio-nano) interfaces can be rationally controlled to engineer stimuli-responsive DNA nanomachines. The success of this design principle was demonstrated by engineering a series of antibody-responsive DNA walkers capable of moving persistently on a three-dimensional track made of DNA functionalized gold nanoparticles. We show that drastically different responses to antibodies could be achieved using DNA walkers of identical sequences but with varying number or sites of modifications. We also show that multiple interfacial factors could be combined to engineer stimuli-responsive DNA nanomachines with high sensitivity and modularity. The potential of our strategy for practical uses was finally demonstrated for the amplified detection of antibodies and small molecules in both buffer and human serum samples. Unlike many DNA-based nanomachines, the performance of which could be significantly hindered by the matrix of serum, our system shows a matrix-enhanced sensitivity as a result of the engineering approach at the bio-nano interface.
Collapse
Affiliation(s)
- Peng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China, 610064
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| | - Rongxing Zhou
- Biliary Surgical Department of West China Hospital, Sichuan University, Chengdu, Sichuan, China, 610064
| | - Chuipeng Kong
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China, 610064
| | - Li Fan
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, China, 030006
| | - Chuan Dong
- Institute of Environmental Science, College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, Shanxi, China, 030006
| | - Junbo Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China, 610064
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China, 610064
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, China, 610064
- Department of Chemistry, Centre for Biotechnology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1
| |
Collapse
|
20
|
Zhai F, Guan Y, Zhu B, Chen S, He R. Intraparticle and Interparticle Transferable DNA Walker Supported by DNA Micelles for Rapid Detection of MicroRNA. Anal Chem 2021; 93:12346-12352. [PMID: 34469684 DOI: 10.1021/acs.analchem.1c02104] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Synthetic DNA walkers are artificially designed DNA self-assemblies with the capability of performing quasi-mechanical movement at the micro/nanoscale and have shown extensive promise in biosensing, intracellular imaging, and drug delivery. However, DNA walkers are usually constructed by covalently or coordinately binding DNA strands specifically to hard surfaces, thereby greatly limiting their movement efficiency. Herein, we report an intraparticle and interparticle transferable DNA walker (dynamic micelle-supported DNA walker, DM-walker) constructed by immobilizing walking tracks and walking arms onto the corona of DNA micelles according to the principle of Watson-Crick base pairing. The DNAzyme-powered walking arm can drive the intraparticle and interparticle movements of the DM-walker due to the fact that the dynamic structure of the DNA micelle helps overcome the spatial barrier between the arms and tracks in the system, resulting in high walking efficiency. Moreover, the whole DM-walker can be constructed by self-assembly, getting rid of the tedious process and low efficiency of fixing DNA strands on hard surfaces. Taking miRNA-10b as a model target, the DM-walker demonstrates high walking efficiency (reaction duration of 20 min) and high sensitivity (LOD of 87 pM). The proposed DM-walker provides an avenue to develop novel DNA walkers on dynamic interfaces and holds great potential in clinical diagnosis.
Collapse
Affiliation(s)
- Fuheng Zhai
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yufei Guan
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Binbing Zhu
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shuai Chen
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ronghuan He
- Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
21
|
Qing M, Fan Y, Chen SL, Luo HQ, Li NB. 'Plug and play' microelectrode assisted with Y-motif-mediated primer-free cyclic signal amplification for sensitive quantitation of DNA methyltransferase activity. Biosens Bioelectron 2021; 192:113487. [PMID: 34256263 DOI: 10.1016/j.bios.2021.113487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 07/04/2021] [Indexed: 11/18/2022]
Abstract
DNA methyltransferase (MTase), modulating the level of genomic DNA methylation, harbors both a pharmacological target for clinical therapy and a potential biomarker for genetic disorders and tumorigenesis. Typical homogeneous electrochemical approaches, employing solution phase probes, have been considered simple, efficient, and economical method, yet these architectures usually require electroactive molecules labeling, rely on weak electrostatic adsorption interaction, and possess low sensitivity. For circumventing the above drawbacks, herein, we devise a 'plug and play' microelectrode featuring microminiaturization, rapid response time and enhanced mass transport to quantify MTase activity through monitoring the variation of diffusion current of methylene blue (MB) induced by the less-mobile G-quadruplex framework. By coupling the unique signal-transduction approach with Y-motif-mediated primer-free cyclic signal amplification (YPCSA), the miniaturized biosensor possesses low detection limit (down to 2.5 × 10-4 U mL-1), high specificity, good stability and satisfying reusability, and has been successfully applied to the screening of MTase inhibitors, holding great potential in clinical diagnosis and pharmacological research.
Collapse
Affiliation(s)
- Min Qing
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yi Fan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Sheng Liang Chen
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Hong Qun Luo
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| | - Nian Bing Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
22
|
Qing M, Chen SL, Sun Z, Fan Y, Luo HQ, Li NB. Universal and Programmable Rolling Circle Amplification-CRISPR/Cas12a-Mediated Immobilization-Free Electrochemical Biosensor. Anal Chem 2021; 93:7499-7507. [PMID: 33980009 DOI: 10.1021/acs.analchem.1c00805] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of a sensing platform with high sensitivity and specificity, especially programmability and universal applicability, for the detection of clinically relevant molecules is highly valuable for disease monitoring and confirmation but remains a challenge. Here, for the first time, we introduce the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system into an immobilization-free electrochemical biosensing platform for sensitively and specifically detecting the disease-related nucleic acids and small molecules. In this strategy, a modular rolling circle amplification (RCA) is designed to transform and amplify the target recognition event into the universal trigger DNA strand that is used as the trigger to activate the deoxyribonuclease activity of CRISPR/Cas12a for further signal amplification. The cleavage of the target-activated blocker probe allows the methylene blue-labeled reporter probes to be captured by the reduced graphene oxide-modified electrode, leading to an obviously increased electrochemical signal. We only need to simply tune the sequence for target recognition in RCA components, and this strategy can be flexibly applied to the highly sensitive and specific detection of microRNAs, Parvovirus B19 DNA, and adenosine-5'-triphosphate and the calculated limit of detection is 0.83 aM, 0.52 aM, and 0.46 pM, respectively. In addition, we construct DNA logic circuits (YES, NOT, OR, AND) of DNA inputs to experimentally demonstrate the modularity and programmability of the stimuli-responsive RCA-CRISPR/Cas12a system. This work broadens the application of the CRISPR/Cas12a system to the immobilization-free electrochemical biosensing platform and provides a new thinking for developing a robust tool for clinical diagnosis.
Collapse
Affiliation(s)
- Min Qing
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing 400715, P. R. China
| | - Sheng Liang Chen
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing 400715, P. R. China
| | - Zhe Sun
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing 400715, P. R. China
| | - Yi Fan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing 400715, P. R. China
| | - Nian Bing Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, School of Chemistry and Chemical Engineering, Southwest University, Tiansheng Road, BeiBei District, Chongqing 400715, P. R. China
| |
Collapse
|
23
|
Xu M, Tang D. Recent advances in DNA walker machines and their applications coupled with signal amplification strategies: A critical review. Anal Chim Acta 2021; 1171:338523. [PMID: 34112433 DOI: 10.1016/j.aca.2021.338523] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/13/2021] [Accepted: 04/13/2021] [Indexed: 02/08/2023]
Abstract
DNA walkers, a type of dynamic nanomachines, have become the subject of burgeoning research in the field of biology. These walkers are powered by driving forces based on strand displacement reactions, protein enzyme/DNAzyme reactions and conformational transitions. With the unique properties of high directionality, flexibility and efficiency, DNA walkers move progressively and autonomously along multiple dimensional tracks, offering abundant and promising applications in biosensing, material assembly and synthesis, and early cancer diagnosis. Notably, DNA walkers identified as signal amplifiers can be combined with various amplification approaches to enhance signal transduction and amplify biosensor sensing signals. Herein, we systematically and comprehensively review the walking principles of various DNA walkers and the recent progress on multiple dimensional tracks by presenting representative examples and an insightful discussion. We also summarized and categorized the diverse signal amplification strategies with which DNA walkers have coupled. Finally, we outline the challenges and future trends of DNA walker machines in emerging analytical fields.
Collapse
Affiliation(s)
- Mingdi Xu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou 350108, People's Republic of China; Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| | - Dianping Tang
- Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
24
|
Hsiao JC, Buryska T, Kim E, Howes PD, deMello AJ. Tuning DNA-nanoparticle conjugate properties allows modulation of nuclease activity. NANOSCALE 2021; 13:4956-4970. [PMID: 33629698 DOI: 10.1039/d0nr08668a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enzyme-nanoparticle interactions can give rise to a range of new phenomena, most notably significant enzymatic rate enhancement. Accordingly, the careful study and optimization of such systems is likely to give rise to advanced biosensing applications. Herein, we report a systematic study of the interactions between nuclease enzymes and oligonucleotide-coated gold nanoparticles (spherical nucleic acids, SNAs), with the aim of revealing phenomena worthy of evolution into functional nanosystems. Specifically, we study two nucleases, an exonuclease (ExoIII) and an endonuclease (Nt.BspQI), via fluorescence-based kinetic experiments, varying parameters including enzyme and substrate concentrations, and nanoparticle size and surface coverage in non-recycling and a recycling formats. We demonstrate the tuning of nuclease activity by SNA characteristics and show that the modular units of SNAs can be leveraged to either accelerate or suppress nuclease kinetics. Additionally, we observe that the enzymes are capable of cleaving restriction sites buried deep in the oligonucleotide surface layer and that enzymatic rate enhancement occurs in the target recycling format but not in the non-recycling format. Furthermore, we demonstrate a new SNA phenomenon, we term 'target stacking', whereby nucleic acid hybridization efficiency increases as enzyme cleavage proceeds during the beginning of a reaction. This investigation provides important data to guide the design of novel SNAs in biosensing and in vitro diagnostic applications.
Collapse
Affiliation(s)
- Jeff C Hsiao
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Tomas Buryska
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Eunjung Kim
- Division of Bioengineering and Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Philip D Howes
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland.
| |
Collapse
|
25
|
Qi Y, Zhai Y, Fan W, Ren W, Li Z, Liu C. Click Chemistry-Actuated Digital DNA Walker Confined on a Single Particle toward Absolute MicroRNA Quantification. Anal Chem 2020; 93:1620-1626. [DOI: 10.1021/acs.analchem.0c04073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yan Qi
- Key Laboratory of Applied Surface and Colloid Chemistry, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Ministry of Education, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Yuqing Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Ministry of Education, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Wenjiao Fan
- Key Laboratory of Applied Surface and Colloid Chemistry, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Ministry of Education, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Ministry of Education, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Zhengping Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Ministry of Education, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Ministry of Education, Shaanxi Normal University, Xi’an 710119, Shaanxi Province, P. R. China
| |
Collapse
|
26
|
Li W, Rong Y, Wang J, Li T, Wang Z. MnO2 switch-bridged DNA walker for ultrasensitive sensing of cholinesterase activity and organophosphorus pesticides. Biosens Bioelectron 2020; 169:112605. [DOI: 10.1016/j.bios.2020.112605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/15/2020] [Accepted: 09/07/2020] [Indexed: 12/25/2022]
|
27
|
An integrated fluorescence biosensor for microRNA detection based on exponential amplification reaction-triggered three-dimensional bipedal DNA walkers. Anal Chim Acta 2020; 1143:157-165. [PMID: 33384113 DOI: 10.1016/j.aca.2020.11.043] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/22/2022]
Abstract
Sensitive and specific miRNA detection is essential for the early cancer diagnosis. In this work, we design a fluorescent microRNA biosensor based on exponential amplification reaction (EXPAR) and nicking endonuclease-powered three-dimensional (3-D) bipedal DNA walkers (BDW). Target microRNA initiates EXPAR with the help of polymerase and nicking endonuclease to generate the large number of BDW in solution. The newly generated BDW can be continuously assembled onto polystyrene microsphere track co-modified with fluorescence-labeled DNA strand. Thus, in the presence of nicking endonuclease, the walking machine is activated to produce enhanced fluorescent signal in the supernatant. Besides, we prove that BDW holds the faster walking speed than single-legged DNA walker (SDW) based on comparative study. Under optimal conditions, the proposed amplification method owns a wide linear range from 10 fM to 5 nM with a detection limit down to 5.2 fM. The reaction time of the assay takes about 70 min. The combination of enzyme-assisted EXPAR in solution and enzyme-powered BDW on particle significantly increases the signal amplification efficiency and improves the detection sensitivity. Therefore, our method has enormous potential for the application of BDW-related biosensors.
Collapse
|
28
|
Yang X, Liu W, Chan DCH, Ahmed SU, Wang H, Wang Z, Nemr CR, Kelley SO. Fluorescent Droplet Cytometry for On-Cell Phenotype Tracking. J Am Chem Soc 2020; 142:14805-14809. [PMID: 32786736 DOI: 10.1021/jacs.0c05276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Profiling the heterogeneous phenotypes of live cancer cells is a key capability that requires single-cell analysis. However, acquiring information at the single-cell level for live cancer cells is challenging when small collections of cells are being targeted. Here, we report single-cell analysis for low abundance cells enabled by fluorescent droplet cytometry (FDC), an approach that uses a biomarker-specific enzymatic fluorescent assay carried out using a droplet microfluidic platform. FDC utilizes DNA-functionalized antibodies in droplets to achieve specific on-cell target detection and enables characterization and profiling of live cancer cells with single-cell resolution based on their surface phenotype. Using this approach, we achieve live-cell phenotypic profiling of multiple surface markers acquired with small (<40 cells) collections of cells.
Collapse
Affiliation(s)
- Xiaolong Yang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada
| | - Wenhan Liu
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | - Darren Chi-Hang Chan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada
| | - Sharif U Ahmed
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada
| | - Hansen Wang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada
| | - Zongjie Wang
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,The Edward S. Rogers Sr., Department of Electrical & Computer Engineering, University of Toronto, Toronto, ON M5S 3G4, Canada
| | - Carine R Nemr
- Department of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 3H4, Canada
| | - Shana O Kelley
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON M5S3M2, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada.,Department of Chemistry, Faculty of Arts and Science, University of Toronto, Toronto, ON M5S 3H4, Canada
| |
Collapse
|
29
|
Yin Y, Chen G, Gong L, Ge K, Pan W, Li N, Machuki JO, Yu Y, Geng D, Dong H, Gao F. DNAzyme-Powered Three-Dimensional DNA Walker Nanoprobe for Detection Amyloid β-Peptide Oligomer in Living Cells and in Vivo. Anal Chem 2020; 92:9247-9256. [PMID: 32536153 DOI: 10.1021/acs.analchem.0c01592] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amyloid β-peptide oligomer (AβO) is widely acknowledged as the promising biomarker for the diagnosis of Alzheimer's disease (AD). In this work, we designed a three-dimensional (3D) DNA walker nanoprobe for AβO detection and real-time imaging in living cells and in vivo. The presence of AβO triggered the DNAzyme walking strand to cleave the fluorophore (TAMRA)-labeled substrate strand modified on the gold nanoparticle (AuNP) surface and release TAMRA-labeled DNA fragment, resulting in the recovery of fluorescent signal. The entire process was autonomous and continuous, without external fuel strands or protease, and finally produced plenty of TAMRA fluorescence, achieving signal amplification effect. The nanoprobe enabled the quantitative detection of AβO in vitro, and the limit of detection was 22.3 pM. Given the good biocompatibility of 3D DNA walker nanoprobe, we extended this enzyme-free signal amplification method to real-time imaging of AβO. Under the microscope, nanoprobe accurately located and visualized the distribution of AβO in living cells. Moreover, in vivo imaging results showed that our nanoprobe could be used to effectively distinguish the AD mice from the wild-type mice. This nanoprobe with the advantages of great sensitivity, high specificity, and convenience, provides an outstanding prospect for AD's early diagnosis development.
Collapse
Affiliation(s)
- Yiming Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Guofang Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Ling Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Kezhen Ge
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Wenzhen Pan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Na Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Jeremiah Ong'achwa Machuki
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| | - Deqin Geng
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China.,Department of Neurology, Affiliated Hospital of Xuzhou Medical University, Jiangsu 221002, P. R. China
| | - Haifeng Dong
- Research Center for Bioengineering and Sensing Technology, University of Science & Technology Beijing, 30 Xueyuan Road, 100083 Beijing, China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, 221004 Xuzhou, China
| |
Collapse
|
30
|
Abstract
The detection of biomarkers is critical for enabling early disease diagnosis, monitoring the progression, and tracking the effectiveness of therapeutic intervention. Plasmonic sensors exhibit a broad range of analytical capabilities, from the rapid generation of colorimetric readouts to single-molecule sensitivity in ultralow sample volumes, which have led to their increased exploration in bioanalysis and point-of-care applications. This perspective presents selected accounts of recent developments on the different types of plasmonic sensing platforms, the pervasive challenges, and outlook on the pathway to translation. We highlight the sensing of upcoming biomarkers, including microRNA, circulating tumor cells, exosomes, and cell-free DNA, and discuss the opportunity of utilizing plasmonic nanomaterials and tools for biomarker detection beyond biofluids, such as in tissues, organs, and disease sites. The integration of plasmonic biosensors with established and upcoming technologies of instrumentation, sample pretreatment, and data analysis will help realize their translation to clinical settings for improving healthcare and enhancing the quality of life.
Collapse
Affiliation(s)
- Nicole Cathcart
- Department of Chemistry, York University, 4700 Keele Street Toronto, Ontario, Canada M3J 1P3
| | - Jennifer I L Chen
- Department of Chemistry, York University, 4700 Keele Street Toronto, Ontario, Canada M3J 1P3
| |
Collapse
|
31
|
Yang P, Li Y, Mason SD, Chen F, Chen J, Zhou R, Liu J, Hou X, Li F. Concentric DNA Amplifier That Streamlines In-Solution Biorecognition and On-Particle Biocatalysis. Anal Chem 2020; 92:3220-3227. [PMID: 31957445 DOI: 10.1021/acs.analchem.9b04964] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Colloidal nanoparticle biosensors capable of on-particle biocatalysis are powerful tools for amplified detection of biomolecules. The development and practical uses of such concentric amplifiers can be complicated because of the on-particle biorecognition that involves varying interfacial factors at the biomolecule-nanoparticle interfaces. Herein, we reason that a nanoparticle biosensor equipped with an in-solution biorecognition element may be better fabricated, predicted, controlled, and performed. The in-solution biorecognition shall also be streamlined with the on-particle biocatalysis so that the overall analytical and kinetic performance is not compromised. As a testbed, we introduce a concentric DNA amplifier driven by an enzyme-powered three-dimensional DNA nanomachine, where a DNA walker can be instantly assembled onto a spherical nucleic acid (SNA) track through a polyadenosine anchor. As such, the free DNA walker can participate in reactions in a homogeneous solution before assembling to the SNA track. The instant and stable assembly enabled by both adsorption and complementary base pairing also ensures rapid on-particle biocatalysis. We demonstrate that the in-solution biorecognition effectively eliminates the binding hindrance encountered by the on-particle biorecognition and thus significantly reduced energy barriers for the detection of nucleic acids and proteins. Because of the in-solution biorecognition, our system can also be plugged readily into complex DNA strand displacement networks for rapid signal amplification.
Collapse
Affiliation(s)
- Peng Yang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre , Sichuan University , 29 Wangjiang Road , Chengdu , Sichuan 610064 , China.,Department of Chemistry, Centre for Biotechnology , Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada.,Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Yongya Li
- Department of Chemistry, Centre for Biotechnology , Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| | - Sean D Mason
- Department of Chemistry, Centre for Biotechnology , Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| | - Fangfang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre , Sichuan University , 29 Wangjiang Road , Chengdu , Sichuan 610064 , China.,Department of Chemistry, Centre for Biotechnology , Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| | - Junbo Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre , Sichuan University , 29 Wangjiang Road , Chengdu , Sichuan 610064 , China
| | - Rongxing Zhou
- Biliary Surgical Department of West China Hospital , Sichuan University , Chengdu , Sichuan 610064 , China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology , University of Waterloo , Waterloo , Ontario N2L 3G1 , Canada
| | - Xiandeng Hou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre , Sichuan University , 29 Wangjiang Road , Chengdu , Sichuan 610064 , China
| | - Feng Li
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Analytical & Testing Centre , Sichuan University , 29 Wangjiang Road , Chengdu , Sichuan 610064 , China.,Department of Chemistry, Centre for Biotechnology , Brock University , 1812 Sir Isaac Brock Way , St. Catharines , Ontario L2S 3A1 , Canada
| |
Collapse
|
32
|
Li Z, Wang Y, Zhu J, Zhang Y, Zhang W, Zhou M, Luo C, Li Z, Cai B, Gui S, He Z, Sun J. Emerging well-tailored nanoparticulate delivery system based on in situ regulation of the protein corona. J Control Release 2020; 320:1-18. [PMID: 31931050 DOI: 10.1016/j.jconrel.2020.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/12/2022]
Abstract
The protein corona significantly changes the nanoparticle (NP) identity both physicochemically and biologically, and in situ regulation of specific plasma protein adsorption on NP surfaces has emerged as a promising strategy for disease-targeting therapy. In the past decade, great progress in protein corona regulation has been achieved via surface chemistry-based nanomedicine development. This review first outlines the latest advances in bio-nano interactions, with special attention to factors that influence the protein corona, including NP physicochemical properties, the biological environment and the duration time. Second, NP surface chemistry strategies designed to inhibit and regulate protein corona formation are highlighted, with special emphasis on albumin, transferrin, apolipoprotein (apo) E, vascular endothelial growth factor (VEGF) and retinol binding protein 4 (RBP4). Finally, the current techniques used to characterize the protein corona are briefly discussed.
Collapse
Affiliation(s)
- Zhenbao Li
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China.
| | - Yongqi Wang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China
| | - Jiaojiao Zhu
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China
| | - Yachao Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China
| | - Wenjing Zhang
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China
| | - Mei Zhou
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Cong Luo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zegeng Li
- The First Affiliated Hospital of Anhui University of traditional Chinese Medicine, Anhui 230038, China
| | - Biao Cai
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Shuangying Gui
- College of Pharmacy, Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230012, China; Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Province, China.
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
33
|
Yang XJ, Cui MR, Li XL, Chen HY, Xu JJ. A self-powered 3D DNA walker with programmability and signal-amplification for illuminating microRNA in living cells. Chem Commun (Camb) 2020; 56:2135-2138. [DOI: 10.1039/c9cc09039h] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We construct a target-triggered, self-powered 3D DNA walker for achieving intracellular signal amplification and sensitive imaging analysis of microRNAs.
Collapse
Affiliation(s)
- Xue-Jiao Yang
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Mei-Rong Cui
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Xiang-Ling Li
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
- China
| |
Collapse
|
34
|
Liu C, Hu Y, Pan Q, Yi J, Zhang J, He M, He M, Nie C, Chen T, Chu X. A photocontrolled and self-powered bipedal DNA walking machine for intracellular microRNA imaging. Chem Commun (Camb) 2020; 56:3496-3499. [DOI: 10.1039/d0cc00017e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A photocontrolled and self-powered bipedal DNA walking machine for intracellular microRNA imaging has been reported.
Collapse
|