1
|
Zheng X, Zhang K, Zhao X, Zhou J, Shen H, Kong J, Guo Y. Achieving High-Yield Conversion of Janus Transition Metal Dichalcogenides on Diverse Substrates. ACS NANO 2025; 19:20744-20752. [PMID: 40454605 DOI: 10.1021/acsnano.5c02687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Janus transition metal dichalcogenides (TMDCs) with intrinsic broken mirror symmetry and vertical dipole moment provide an additional degree of freedom to manipulate material symmetry down to atomic-layer thickness. However, despite advances in synthesis strategies, fundamental understanding of this atomic substitution process remains limited, which has impeded their implementation in advanced devices. Here, by using a room-temperature atomic-layer substitution (RT-ALS) strategy, we systematically investigate the critical factors facilitating the high-yield conversion of Janus TMDCs on diverse substrates. Combining Raman spectroscopy probes, X-ray photoelectron spectroscopy (XPS) measurements, and density functional theory (DFT) calculations, we demonstrate that substrates with enhanced electron doping or larger surface polarity substantially benefit the conversion of Janus TMDCs reaching a near-unity yield. Intriguingly, the strong affinity between Janus TMDCs and substrates (e.g., Au) brings about abnormal Raman spectroscopic phenomena. These findings highlight the significance of substrates in achieving the reliable synthesis of Janus two-dimensional materials with improved homogeneity on various substrates. In addition, this takes us one step closer to utilizing Janus TMDCs as a versatile platform in next-generation optoelectronic devices, sensors, and quantum technologies.
Collapse
Affiliation(s)
- Xueqiu Zheng
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China
| | - Kunyan Zhang
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Xiantuo Zhao
- Center for Alloy Innovation and Design, State Key Laboratory of Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jian Zhou
- Center for Alloy Innovation and Design, State Key Laboratory of Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hongzhi Shen
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou 310030, China
| | - Jing Kong
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yunfan Guo
- Key Laboratory of Excited-State Materials of Zhejiang Province, Department of Chemistry, State Key Laboratory of Silicon and Advanced Semiconductor Materials, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
2
|
Yu M, Moses IA, Reinhart WF, Law S. Multimodal Machine Learning Analysis of GaSe Molecular Beam Epitaxy Growth Conditions. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40434265 DOI: 10.1021/acsami.5c02891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Autonomous synthesis platforms integrating machine learning with in situ diagnostics have the potential to revolutionize thin-film growth by enabling real-time process optimization and reducing the need for manual tuning. However, their application to molecular beam epitaxy (MBE) remains underdeveloped. Here, we present a machine learning-guided framework for MBE growth of GaSe films, leveraging reflection high-energy electron diffraction (RHEED) as an in situ diagnostic alongside ex situ characterization via X-ray diffraction and atomic force microscopy. Unsupervised learning on RHEED patterns reveals a well-defined boundary between high- and low-quality samples, capturing physically meaningful features. Mutual information analysis shows a strong correlation between RHEED embeddings and rocking curve full-width at half-maximum (fwhm), while the correlation with AFM root-mean-square (RMS) roughness is weak. Among key growth conditions, growth rate most strongly influences fwhm, whereas the Se/Ga flux ratio primarily affects RMS roughness and the RHEED embeddings. Supervised learning models trained to predict fwhm and RMS roughness demonstrate moderate accuracy, with significant improvement achieved by incorporating RHEED embeddings. Furthermore, anomaly detection via residual analysis in supervised learning aligns well with unsupervised classification from RHEED, reinforcing the reliability of the predictive models. This study establishes a data-driven framework for machine learning-assisted MBE, paving the way for real-time process control and accelerated optimization of thin-film synthesis.
Collapse
Affiliation(s)
- Mingyu Yu
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Isaiah A Moses
- Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16827, United States
| | - Wesley F Reinhart
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16827, United States
- Institute for Computational and Data Science, Pennsylvania State University, University Park, Pennsylvania 16827, United States
| | - Stephanie Law
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16827, United States
| |
Collapse
|
3
|
Liu S, Wei W, Zhao D, Zhang X, Tang Z, Ju L, Kou L. Polarization-Driven Control of Dynamically Tunable Solar-to-Hydrogen Conversion and On-Demand Water Splitting in 2D Janus-Ferroelectric Heterojunctions. Inorg Chem 2025. [PMID: 40425510 DOI: 10.1021/acs.inorgchem.5c01422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
van der Waals heterostructures improve carrier efficiency via band engineering and interfacial design, surpassing traditional photocatalytic material limitations. However, their intrinsic electric fields are limited by work function differences, and carrier accumulation weakens field effects. Two-dimensional ferroelectric heterostructures leverage spontaneous polarization and dynamic tunability to optimize carrier transport and photocatalytic water-splitting kinetics. This study combines Janus MSSe (M = W, Mo) with α-In2Se3 monolayers to create a spontaneously polarized heterojunction. Through polarization switching (P↑ or P↓) and the synergistic effects of interlayer polarization and built-in electric fields, band alignment and carrier transport are regulated. In α-In2Se3/MSSe (M = W, Mo), P↓ suppresses photogenerated carrier migration, reducing the solar-to-hydrogen (STH) efficiency, while P↑ accelerates it, boosting the STH efficiency. Furthermore, introducing vacancies and adjusting polarization enable flexible regulation of reaction efficiency and controllable initiation and termination of water-splitting reaction. Our work introduces a novel methodology for controlling the dynamics of photogenerated carriers through the application of polarization-induced electric fields, thereby advancing the practical implementation of polarized photocatalysts in sustainable energy production and environmental remediation technologies.
Collapse
Affiliation(s)
- Shuli Liu
- School of Physics and Electric Engineering, Anyang Normal University, Anyang455000, China
| | - Wei Wei
- School of Physics and Electric Engineering, Anyang Normal University, Anyang455000, China
| | - Dongqiu Zhao
- School of Physics and Electric Engineering, Anyang Normal University, Anyang455000, China
| | - Xiwei Zhang
- School of Physics and Electric Engineering, Anyang Normal University, Anyang455000, China
| | - Zhenjie Tang
- School of Physics and Electric Engineering, Anyang Normal University, Anyang455000, China
| | - Lin Ju
- School of Physics and Electric Engineering, Anyang Normal University, Anyang455000, China
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
4
|
Meng X, Hu W, Yang J. Intrinsic Electric Fields Promote Delocalized Interlayer Excitons in Janus In 2SSe Moiré Bilayers. J Phys Chem Lett 2025:5272-5280. [PMID: 40388223 DOI: 10.1021/acs.jpclett.5c01078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The moiré potential in van der Waals (vdW) moiré superlattices is well-established to significantly influence electronic structures and optical excitations. When Janus monolayers are employed to construct twisted bilayers, an additional degree of freedom─the out-of-plane Janus field─is introduced alongside the moiré potential, leading to modifications in both electronic and optical properties. While these two effects have been individually investigated in prior studies on excitons, the behavior of excitons under the simultaneous presence of both effects remained unexplored. In this study, we investigate, for the first time, the interplay between these two effects in twisted Janus In2SSe. Our results demonstrate that the band structures and excitonic properties can be significantly modulated through variations in stacking sequences and intrinsic dipole orientations. This work provides a framework for the precise control of emission energy, exciton characteristics, and the spatial distribution of moiré excitons. We predict the coexistence of intrinsic Janus field-induced interlayer excitons and moiré potential-driven moiré excitons in twisted bilayer Janus In2SSe. These findings not only elucidate the interaction between Janus fields and moiré potentials but also introduce a novel, multifaceted strategy for exciton manipulation.
Collapse
Affiliation(s)
- Xinyong Meng
- School of Future Technology, Hefei National Laboratory, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei 230026, China
| | - Wei Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of the Ministry of Education for Mathematical Foundations and Applications of Digital Technology, and Anhui Center for Applied Mathematics, University of Science and Technology of China, Hefei 230026, China
| | - Jinlong Yang
- State Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
5
|
Cheng WN, Duan R, Niu M, Han X, Huang S, Liang Y, Zhao J, Liu Z, Qiao J, Zhao X. Atomically Unveiling the Phase Evolution in Weakly Coupled Layered Transition-Metal Phosphorus Trichalcogenide by Chalcogen Doping. NANO LETTERS 2025; 25:6244-6252. [PMID: 40183297 DOI: 10.1021/acs.nanolett.5c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
The stacking configuration significantly influences the properties of van der Waals (vdW) layered magnets by dictating crystallographic and magnetic symmetries. Transition-metal phosphorus trichalcogenides (MPX3, X = S, Se) intrinsically exhibit diverse stacking polytypes, being an optimal platform for magnetic phase engineering. Unlike MX2, where chalcogen doping has a minimal impact on stacking, MPX3 allows stacking control via elemental substitution. However, the atomic-scale mechanisms governing stacking variations remain unclear. Using scanning transmission electron microscopy (STEM) and density functional theory (DFT) calculations, we reveal that in 3d transition metal MPX3, tuning the S/Se ratio induces a transition from the C2/m to R3̅ phase due to modified interlayer S-S/Se-Se and P-P interactions. In contrast, stacking control becomes challenging for 4d CdPX3, due to relatively weak interlayer coupling. These insights provide a stacking basis for stacking polytypes in MPX3, paving the way for tuning magnetic couplings via stackingtronics.
Collapse
Affiliation(s)
- Wing Ni Cheng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Ruihuan Duan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Mengmeng Niu
- School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science & Department of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Song Huang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Yu Liang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jun Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore
| | - Jingsi Qiao
- School of Integrated Circuits and Electronics & Advanced Research Institute of Multidisciplinary Science & Department of Physics, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Yang C, Lin Q, Sato Y, Gao Y, Zheng Y, Wang T, Ma Y, Dai W, Li W, Maruyama M, Okada S, Suenaga K, Maruyama S, Xiang R. Janus MoSSe Nanotubes on 1D SWCNT-BNNT van der Waals Heterostructure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412454. [PMID: 40178056 DOI: 10.1002/smll.202412454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Indexed: 04/05/2025]
Abstract
Two-dimensional (2D) Janus transition metal dichalcogenide (TMDC) layers with broken mirror symmetry exhibit giant Rashba splitting and unique excitonic behavior. For their one-dimensional (1D) counterparts, the Janus nanotubes possess curvature, which introduces an additional degree of freedom to break the structural symmetry. This can potentially enhance these effects or even give rise to novel properties. Moreover, Janus MSSe nanotubes (M = W, Mo), with diameters surpassing 40 Å and Se positioned externally consistently demonstrate lower energy states compared to their Janus monolayer counterparts. However, there are limited studies on the preparation of Janus nanotubes, due to the synthesis challenge and limited sample quality. In this study, we first synthesized MoS2 nanotubes on single-walled carbon nanotube (SWCNT) and boron nitride nanotube (BNNT) heterostructures and then explored the growth of Janus MoSSe nanotubes from MoS2 nanotubes at room temperature with the assistance of H2 plasma. The successful formation of the Janus structure is confirmed by Raman spectroscopy, and atomic structure and elemental distribution of the grown samples are further characterized by advanced electronic microscopy. The synthesis of Janus MoSSe nanotubes based on SWCNT-BNNT heterostructures paves the way for further exploration of novel properties in Janus TMDC nanotubes.
Collapse
Affiliation(s)
- Chunxia Yang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Qingyun Lin
- Center of Electron Microscopy, State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Material Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yuta Sato
- Nanomaterials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan
| | - Yanlin Gao
- Department of Physics, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Yongjia Zheng
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tianyu Wang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yicheng Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wanyu Dai
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Wenbin Li
- School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Mina Maruyama
- Department of Physics, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Susumu Okada
- Department of Physics, Graduate School of Science and Technology, University of Tsukuba, Tsukuba, 305-8571, Japan
| | - Kazu Suenaga
- SANKEN (The Institute of Scientific and Industrial Research), The University of Osaka, 567-0047, Osaka, Japan
| | - Shigeo Maruyama
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Rong Xiang
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
7
|
Kim G, Lee J, Seok H, Kang T, Lee M, Choi H, Son S, Cho J, Lee D, Son S, Hwang H, Shin H, Han S, Woo G, Ollier A, Kim YJ, Fang L, Lee S, Han G, Jung GE, Lee Y, Kim HU, Park J, Heinrich A, Jang WJ, Kwon SJ, Kim T. Stochastically Broken Inversion Symmetry of Van der Waals Topological Insulator for Nanoscale Physically Unclonable Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419927. [PMID: 39967349 DOI: 10.1002/adma.202419927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/21/2025] [Indexed: 02/20/2025]
Abstract
Owing to the exotic state of quantum matter, topological insulators have emerged as a significant platform for new-generation functional devices. Among these topological insulators, tetradymites have received significant attention because of their van der Waals (vdW) structures and inversion symmetries. Although this inversion symmetry completely blocks exotic quantum phenomena, it should be broken down to facilitate versatile topological functionalities. Recently, a Janus structure is suggested for asymmetric out-of-plane lattice structures, terminating the heterogeneous atoms at two sides of the vdW structure. However, the synthesis of Janus structures has not been achieved commercially because of the imprecise control of the layer-by-layer growth, high-temperature synthesis, and low yield. To overcome these limitations, plasma sulfurization of vdW topological insulators has been presented, enabling stochastic inversion asymmetry. To take practical advantage of the random lattice distortion, physically unclonable functions (PUFs) have been suggested as applications of vdW Janus topological insulators. The sulfur dominance is experimentally demonstrated via X-ray photoelectron spectroscopy, hysteresis variation, cross-sectional transmission electron microscopy, and adhesion energy variation. In conclusion, it is envisioned that the vdW Janus topological insulators can provide an extendable encryption platform for randomized lattice distortion, offering on-demand stochastic inversion asymmetry via a single-step plasma sulfurization.
Collapse
Affiliation(s)
- Gunhyoung Kim
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jinhyoung Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, South Korea
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
| | - Hyunho Seok
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Taewoo Kang
- School of Chemical Engineering, Sungkyunkwan University, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Minyoung Lee
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul, 08826, South Korea
| | - Hyunbin Choi
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sihoon Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jinill Cho
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, South Korea
| | - Dongho Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, South Korea
| | - Seowoo Son
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hosin Hwang
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Hyelim Shin
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Sujeong Han
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Gunhoo Woo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Alexina Ollier
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, South Korea
| | - Yeon-Ji Kim
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, South Korea
| | - Lei Fang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
| | - Seunghwan Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, South Korea
| | - Gyuho Han
- Park Systems Corporation, 109, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, South Korea
| | - Goo-Eun Jung
- Park Systems Corporation, 109, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, South Korea
| | - Youngi Lee
- Park Systems Corporation, 109, Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, South Korea
| | - Hyeong-U Kim
- Semiconductor Manufacturing Research Center, Korea Institute of Machinery and Materials (KIMM), Daejeon, 34103, South Korea
- Nano-Mechatronics, KIMM Campus, University of Science & Technology (UST), Daejeon, 34113, South Korea
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul, 08826, South Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, South Korea
| | - Andreas Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, South Korea
| | - Won-Jun Jang
- Center for Quantum Nanoscience, Institute for Basic Science (IBS), Seoul, 03760, South Korea
- Department of Physics, Ewha Womans University, Seoul, 03760, South Korea
| | - Seok Joon Kwon
- School of Chemical Engineering, Sungkyunkwan University, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Taesung Kim
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon-si, Gyeonggi-do, 16419, South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Science and Technology, Sungkyunkwan University, Suwon, 16419, South Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
8
|
Zhu Q, Chen E, Fan K, Tang J, Zhan R, Wong KS, Chen Z, Wan X, Chen K. Robust Plasma-Assisted Growth of 2D Janus Transition Metal Dichalcogenides and Their Enhanced Photoluminescent Properties. SMALL METHODS 2025; 9:e2401310. [PMID: 39463046 DOI: 10.1002/smtd.202401310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/19/2024] [Indexed: 10/29/2024]
Abstract
Janus transition metal dichalcogenides (TMDs) are a novel class of 2D materials with unique mirror asymmetry. Plasma-assisted synthesis at room temperature is favored for producing Janus TMDs due to its energy efficiency and prevention of alloying. However, current methods require stringent control over growth conditions, risking defects or unintended materials. A robust plasma-assisted (RPA) synthesis strategy is introduced, incorporating a built-in tube with a suitable inner diameter into the plasma-assisted system. This innovation creates a mild, uniform plasma atmosphere, allowing for broader variations in growth parameters without significantly affecting Janus MoSSe's morphology and characteristics. This approach simplifies the synthesis process and enhances the success rate of Janus TMD production. Additionally, methods are explored to enhance the photoluminescence (PL) of Janus MoSSe. Releasing MoSSe from the growth substrate and annealing it removes strain and unintentional doping, improving PL performance. MoSSe on hexagonal boron nitride (h-BN) flakes after annealing shows a 32-fold increase in PL intensity. Bis(trifluoromethane) sulfonimide (TFSI) treatment of MoSSe results in a remarkable 70-fold increase in PL intensity, a 2.5-fold extension in exciton lifetime, and quantum yield (QY) reaching up to ≈31.2%. These findings provide critical insights for optimizing the luminescence properties of 2D Janus materials, advancing Janus optoelectronics.
Collapse
Affiliation(s)
- Qing Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Enzi Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Kezhou Fan
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, 999077, China
| | - Junhao Tang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Runze Zhan
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Kam Sing Wong
- Department of Physics and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, 999077, China
| | - Zefeng Chen
- School of Electronic and Information Engineering, South China Normal University, Guangzhou, Guangdong, 510620, P. R. China
| | - Xi Wan
- Engineering Research Center of IoT Technology Applications (Ministry of Education), School of Integrated Circuits, Jiangnan University, Wuxi, 214122, P. R. China
| | - Kun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology and Guangdong Province Key Laboratory of Display Material, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
9
|
Wu CL, Sayyad MY, Sailus RE, Dey D, Xie J, Hays P, Kopaczek J, Ou Y, Susarla S, Esqueda IS, Botana AS, Tongay SA. Metallic 2D Janus SNbSe layers driven by a structural phase change. NANOSCALE 2025; 17:7801-7812. [PMID: 39935297 DOI: 10.1039/d4nr04059g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The discovery of two-dimensional (2D) Janus materials has ignited significant research interest, particularly for their distinct properties diverging from their classical 2D transition metal dichalcogenide (TMD) counterparts. While semiconducting 2D Janus TMDs have been demonstrated, examples of metallic Janus layers are still rather limited. Here, we address this gap by experimentally synthesizing and characterizing metallic Janus layers, focusing on SNbSe and SeNbS, derived from monolayer NbS2 and NbSe2 using a plasma-assisted technique. Our results show that Nb-based 2D Janus layers form after 1H-to-1T phase transition, marking a phase transition-induced formation of Janus layers. Our comprehensive spectroscopy and microscopy studies, including Z-contrast high angle annular dark field scanning transmission electron microscopy, reveal the phononic and structural properties during Janus SeNbS formation and establish their energetic stability. Density functional theory (DFT) simulations provide insights into the phononic and electronic properties of these materials, shedding light on their potential for diverse applications. Overall, our results demonstrate the realization of niobium-based Janus metals and expand the library of metallic Janus layers.
Collapse
Affiliation(s)
- Cheng-Lun Wu
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA.
| | - Mohammad Y Sayyad
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA.
| | - Renee E Sailus
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA.
| | - Dibyendu Dey
- Department of Physics, Arizona State University, Arizona 85287, USA
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamilnadu 603203, India
| | - Jing Xie
- Electrical Computer and Energy Engineering, Arizona State University, Arizona 85287, USA
| | - Patrick Hays
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA.
| | - Jan Kopaczek
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA.
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Yunbo Ou
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA.
| | - Sandhya Susarla
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA.
| | - Ivan S Esqueda
- Electrical Computer and Energy Engineering, Arizona State University, Arizona 85287, USA
| | - Antia S Botana
- Department of Physics, Arizona State University, Arizona 85287, USA
| | - Seth A Tongay
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287, USA.
| |
Collapse
|
10
|
Picker J, Ghorbani-Asl M, Schaal M, Kretschmer S, Otto F, Gruenewald M, Neumann C, Fritz T, Krasheninnikov AV, Turchanin A. Atomic Structure and Electronic Properties of Janus SeMoS Monolayers on Au(111). NANO LETTERS 2025; 25:3330-3336. [PMID: 39963021 PMCID: PMC11869296 DOI: 10.1021/acs.nanolett.4c06543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025]
Abstract
Janus SeMoS monolayers (MLs) are synthetic 2D materials with unique electronic properties, as theory predicts, but their experimental exploration has been hindered by the low quality of the samples. Here we report a synthesis of high-quality Janus MLs on gold substrates by thermal exchange reaction taking place at the ML/Au(111) interface. The synthesized Janus SeMoS MLs were characterized by complementary techniques, and insights into the topography and electronic properties of the system were obtained. Specifically, due to the lattice mismatch with the Au(111), a moiré pattern with a periodicity of 2.9 nm was observed. A precise experimental determination of the lattice constant of Janus SeMoS of 3.22 ± 0.01 Å was obtained, and the measured spin-orbit splitting at the K point of the valence band was found to be 170 ± 15 meV, matching well the results of the density functional theory calculations.
Collapse
Affiliation(s)
- Julian Picker
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Mahdi Ghorbani-Asl
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Maximilian Schaal
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Silvan Kretschmer
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Felix Otto
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Marco Gruenewald
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Christof Neumann
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Torsten Fritz
- Institute
of Solid State Physics, Friedrich Schiller
University Jena, 07743 Jena, Germany
- Abbe
Center of Photonics, Friedrich Schiller
University Jena, 07745 Jena, Germany
| | - Arkady V. Krasheninnikov
- Institute
of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Andrey Turchanin
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
- Abbe
Center of Photonics, Friedrich Schiller
University Jena, 07745 Jena, Germany
| |
Collapse
|
11
|
Gupta S, Zhang JJ, Lei J, Yu H, Liu M, Zou X, Yakobson BI. Two-Dimensional Transition Metal Dichalcogenides: A Theory and Simulation Perspective. Chem Rev 2025; 125:786-834. [PMID: 39746214 DOI: 10.1021/acs.chemrev.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) are a promising class of functional materials for fundamental physics explorations and applications in next-generation electronics, catalysis, quantum technologies, and energy-related fields. Theory and simulations have played a pivotal role in recent advancements, from understanding physical properties and discovering new materials to elucidating synthesis processes and designing novel devices. The key has been developments in ab initio theory, deep learning, molecular dynamics, high-throughput computations, and multiscale methods. This review focuses on how theory and simulations have contributed to recent progress in 2D TMDs research, particularly in understanding properties of twisted moiré-based TMDs, predicting exotic quantum phases in TMD monolayers and heterostructures, understanding nucleation and growth processes in TMD synthesis, and comprehending electron transport and characteristics of different contacts in potential devices based on TMD heterostructures. The notable achievements provided by theory and simulations are highlighted, along with the challenges that need to be addressed. Although 2D TMDs have demonstrated potential and prototype devices have been created, we conclude by highlighting research areas that demand the most attention and how theory and simulation might address them and aid in attaining the true potential of 2D TMDs toward commercial device realizations.
Collapse
Affiliation(s)
- Sunny Gupta
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jun-Jie Zhang
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- School of Physics, Southeast University, Nanjing 211189 China
| | - Jincheng Lei
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Henry Yu
- Quantum Simulation Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Mingjie Liu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center & Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Boris I Yakobson
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
12
|
Al-Qurashi O, Soliman KA, Lgaz H, Safi Z, Wazzan N. First principle calculations of Janus 2D-TiSSe as an anodic electrode in batteries of lithium, sodium, and magnesium ions. J Mol Model 2024; 30:405. [PMID: 39556288 DOI: 10.1007/s00894-024-06198-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/28/2024] [Indexed: 11/19/2024]
Abstract
CONTEXT In recent years, rechargeable batteries have received considerable attention as a way to improve energy storage efficiency. Anodic (negative) electrodes based on Janus two-dimensional (2D) monolayers are among the most promising candidates. In this effort, the adsorption and diffusion of these Li, Na, and Mg ions on and through Janus 2D-TiSSe as anodic material was investigated by means of periodic DFT-D3 calculations. Electrochemical parameters were computed and compared. The diffusion barrier energies for migration of ions in monolayer TiSSe in three different potential directions were determined. Furthermore, the electronic properties and Mulliken charge analysis and plots of CDD were employed to investigate the interaction between ions and their surrounding surface. Our results show that the adsorption ability of TiSSe surface up to 32 metal ions falls in the following order: Li+ > Na+ > Mg2+. The maximum storage capacity is 337.37 mAh/g for Li/Na ion and 674.75 mAh/g for Mg ion. The average open-circuit voltage is 1.39, 0.93, and 0.73 V for Li, Na, and Mg ions, respectively. Lastly, the minimum diffusion barriers follow the order Li+ < Na+ < Mg2+. The structural, energetic, and thermal stability of clean Janus surface and its saturated adsorbed systems was proved by MD simulations. In addition, we compared the obtained electrochemical parameters to those reported by other researchers. This comprehensive approach demonstrates valuable insights, furthering our understanding of TiSSe's behavior and its suitability for use in MIBs. METHODS DFT calculations were applied with projector augmented plane waves (PAWs)/PBE functional. A two-dimensional (2D) monolayer TiSSe surface was built with a 4 × 4 supercell. The energy cutoff of plane waves was set to 400 eV. The DFT-D3 model has been used to incorporate van der Waals interactions. A geometric relaxation process was conducted using Monhkorst-Pack 8 × 8 × 1 in reciprocal space. The relaxation and electronic calculations were carried out using the Vienna Ab initio Simulation Package (VASP). Using the transition state (TS) search algorithm implemented in the Dmol3 module, linear synchronous transition and quadratic synchronous transit tools were utilized to find the minimum energy paths.
Collapse
Affiliation(s)
- Ohoud Al-Qurashi
- Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia.
| | - Kamal A Soliman
- Department of Chemistry, Faculty of Science, Benha University, P.O. Box 13518, Benha, Egypt.
| | - Hassane Lgaz
- Innovative Durable Building and Infrastructure Research Center, Center for Creative Convergence Education, Hanyang University ERICA, 55 Hanyangdaehak-Ro, Sangrok-Gu, Gyeonggi-Do, Ansan-Si, 15588, South Korea
| | - Zaki Safi
- Chemistry Department, Faculty of Science, Al Azhar University-Gaza, P.O. Box 1277, Gaza, Palestine
| | - Nuha Wazzan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 42805, 21589, Jeddah, Saudi Arabia.
| |
Collapse
|
13
|
Szałowski K. Janus Monolayer of 1T-TaSSe: A Computational Study. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4591. [PMID: 39336331 PMCID: PMC11433230 DOI: 10.3390/ma17184591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024]
Abstract
Materials exhibiting charge density waves are attracting increasing attention owing to their complex physics and potential for applications. In this paper, we present a computational, first principles-based study of the Janus monolayer of 1T-TaSSe transition metal dichalcogenide. We extensively compare the results with those obtained for parent compounds, TaS2 and TaSe2 monolayers, with confirmed presence of 13×13 charge density waves. The structural and electronic properties of the normal (undistorted) phase and distorted phase with 13×13 periodic lattice distortion are discussed. In particular, for a normal phase, the emergence of dipolar moment due to symmetry breaking is demonstrated, and its sensitivity to an external electric field perpendicular to the monolayer is investigated. Moreover, the appearance of imaginary energy phonon modes suggesting structural instability is shown. For the distorted phase, we predict the presence of a flat, weakly dispersive band related to the appearance of charge density waves, similar to the one observed in parent compounds. The results suggest a novel platform for studying charge density waves in two-dimensional transition metal dichalcogenides.
Collapse
Affiliation(s)
- Karol Szałowski
- Department of Solid State Physics, Faculty of Physics and Applied Informatics, University of Lodz, Ulica Pomorska 149/153, 90-236 Lodz, Poland
| |
Collapse
|
14
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
15
|
Harris SB, Biswas A, Yun SJ, Roccapriore KM, Rouleau CM, Puretzky AA, Vasudevan RK, Geohegan DB, Xiao K. Autonomous Synthesis of Thin Film Materials with Pulsed Laser Deposition Enabled by In Situ Spectroscopy and Automation. SMALL METHODS 2024; 8:e2301763. [PMID: 38678523 DOI: 10.1002/smtd.202301763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/10/2024] [Indexed: 05/01/2024]
Abstract
Autonomous systems that combine synthesis, characterization, and artificial intelligence can greatly accelerate the discovery and optimization of materials, however platforms for growth of macroscale thin films by physical vapor deposition techniques have lagged far behind others. Here this study demonstrates autonomous synthesis by pulsed laser deposition (PLD), a highly versatile synthesis technique, in the growth of ultrathin WSe2 films. By combing the automation of PLD synthesis and in situ diagnostic feedback with a high-throughput methodology, this study demonstrates a workflow and platform which uses Gaussian process regression and Bayesian optimization to autonomously identify growth regimes for WSe2 films based on Raman spectral criteria by efficiently sampling 0.25% of the chosen 4D parameter space. With throughputs at least 10x faster than traditional PLD workflows, this platform and workflow enables the accelerated discovery and autonomous optimization of the vast number of materials that can be synthesized by PLD.
Collapse
Affiliation(s)
- Sumner B Harris
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Arpan Biswas
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Seok Joon Yun
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kevin M Roccapriore
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Christopher M Rouleau
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Rama K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - David B Geohegan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
16
|
Liu Z, Sun Z, Qu X, Nie K, Yang Y, Li B, Chong S, Yin Z, Huang W. Solution-Processable Microstructuring of 1T'-Phase Janus MoSSe Monolayers for Boosted Hydrogen Production. J Am Chem Soc 2024; 146:23252-23264. [PMID: 39120959 DOI: 10.1021/jacs.4c05692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Janus monolayers of transition metal dichalcogenides (TMDs) offer versatile applications due to their tunable polymorphisms. While previous studies focused on conventional 2H-phase Janus monolayers, the scalable synthesis of an unconventional 1T' phase remains challenging. We present a novel solution strategy for fabricating Janus 1T'-MoOSe and MoSSe monolayers by growing sandwiched Se-Mo-O/S shells onto Au nanocores. The Janus Au@1T'-MoSSe catalyst exhibits superior electrocatalytic hydrogen evolution reaction (HER) activity compared to 1T'-MoS2, -MoSe2, and -MoOSe, attributed to its unique electronic structure and intrinsic strain. Remarkably, photoexciting the nanoplasmonic Au cores further enhances the HER via a localized surface plasmon (LSP) effect that drives hot electron injection into surface sulfur vacancies of 1T'-MoSSe monolayer shells, accelerating proton reduction. This synergistic activation of anion vacancies by internal strain and external light-induced Au LSPs, coupled with our scalable synthesis, provides a pathway for developing tailorable polymorphic Janus TMDs for specific applications.
Collapse
Affiliation(s)
- Zhengqing Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zhehao Sun
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Xiaoyan Qu
- Frontier Institute of Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kunkun Nie
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Yawei Yang
- Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education, International Center for Dielectric Research, and Shaanxi Engineering Research Center of Advanced Energy Materials and Devices, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Binjie Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Shaokun Chong
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University, Xi'an 710129, China
| |
Collapse
|
17
|
Mehdipour H, Kratzer P, Tafreshi SS, Prezhdo O. Accelerated Electron-Hole Separation at the Organic-Inorganic Anthracene/Janus MoSSe Interface. J Phys Chem Lett 2024; 15:7878-7884. [PMID: 39058559 PMCID: PMC11318028 DOI: 10.1021/acs.jpclett.4c01774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Organic light-absorbing materials with two-dimensional semiconductor layers as contact electrodes are promising for efficient and flexible low-cost solar cells. Considering anthracene as an absorber and a MoSSe Janus monolayer, we use non-adiabatic molecular dynamics to show that electron transfer from anthracene to MoSSe is faster on the Se side than the S side. The transfer from anthracene to MoS2 and MoSe2 monolayers takes intermediate times. As a rule, we find that a shorter adsorption distance produces a stronger donor-acceptor coupling. The smaller distance on the Se side is rationalized by the attractive force between the intrinsic dipole moment of the Janus structure and that of the molecule induced due to adsorption. Quantum coherence also affects the transfer time. The study provides detailed insights into adsorption of molecules on Janus structures and the resulting electronic and electron vibrational interactions. The results suggest that the dipole interaction plays an important role in the thermodynamic stability, alignment of electronic levels, and electron vibrational dynamics.
Collapse
Affiliation(s)
- Hamid Mehdipour
- Faculty
of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Peter Kratzer
- Faculty
of Physics, University of Duisburg-Essen, 47057 Duisburg, Germany
| | - Saeedeh S. Tafreshi
- Department
of Chemistry, Amirkabir University of Technology, 350 Hafez Avenue, Valiasr Square, 1591634311 Tehran, Iran
| | - Oleg Prezhdo
- Department
of Chemistry and Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
18
|
Sayyad M, Kopaczek J, Gilardoni CM, Chen W, Xiong Y, Yang S, Watanabe K, Taniguchi T, Kudrawiec R, Hautier G, Atatüre M, Tongay SA. The Defects Genome of Janus Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403583. [PMID: 38743929 DOI: 10.1002/adma.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/02/2024] [Indexed: 05/16/2024]
Abstract
2D Janus Transition Metal Dichalcogenides (TMDs) have attracted much interest due to their exciting quantum properties arising from their unique two-faced structure, broken-mirror symmetry, and consequent colossal polarization field within the monolayer. While efforts are made to achieve high-quality Janus monolayers, the existing methods rely on highly energetic processes that introduce unwanted grain-boundary and point defects with still unexplored effects on the material's structural and excitonic properties Through high-resolution scanning transmission electron microscopy (HRSTEM), density functional theory (DFT), and optical spectroscopy measurements; this work introduces the most encountered and energetically stable point defects. It establishes their impact on the material's optical properties. HRSTEM studies show that the most energetically stable point defects are single (VS and VSe) and double chalcogen vacancy (VS -VSe), interstitial defects (Mi), and metal impurities (MW) and establish their structural characteristics. DFT further establishes their formation energies and related localized bands within the forbidden band. Cryogenic excitonic studies on h-BN-encapsulated Janus monolayers offer a clear correlation between these structural defects and observed emission features, which closely align with the results of the theory. The overall results introduce the defect genome of Janus TMDs as an essential guideline for assessing their structural quality and device properties.
Collapse
Affiliation(s)
- Mohammed Sayyad
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, AZ 85287, USA
| | - Jan Kopaczek
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Carmem M Gilardoni
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Weiru Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Yihuang Xiong
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Shize Yang
- Aberration Corrected Electron Microscopy Core, Yale University, New Haven, CT 06516, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Robert Kudrawiec
- Department of Semiconductor Materials Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wybrzeże Stanisława Wyspiańskiego 27, Wroclaw, 50-370, Poland
| | - Geoffroy Hautier
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA
| | - Mete Atatüre
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Seth Ariel Tongay
- Materials Science and Engineering, School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona, AZ 85287, USA
| |
Collapse
|
19
|
Xie H, Huang Z, Zhao Y, Huang H, Li G, Gu Z, Zeng S. Strong electron-phonon coupling and multigap superconductivity in 2H/1T Janus MoSLi monolayer. J Chem Phys 2024; 160:234707. [PMID: 38904407 DOI: 10.1063/5.0210968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/03/2024] [Indexed: 06/22/2024] Open
Abstract
Two-dimensional (2D) Janus transition metal dichalcogenides MXY manifest novel physical properties owing to the breaking of out-of-plane mirror symmetry. Recently, the 2H phase of MoSH has been demonstrated to possess intrinsic superconductivity, whereas the 1T phase exhibits a charge density waves state. In this paper, we have systematically studied the stability and electron-phonon interaction characteristics of MoSLi. Our results have shown that both the 2H and 1T phases of MoSLi are stable, as indicated by the phonon spectrum and the ab initio molecular dynamics. However, the 1T phase exhibits an electron-phonon coupling constant that is twice as large as that of the 2H phase. In contrast to MoSH, the 1T phase of MoSLi exhibits intrinsic superconductivity. By employing the ab initio anisotropic Migdal-Eliashberg formalism, we have revealed the two-gap superconducting nature of 1T-MoSLi, with a transition temperature (Tc) of 14.8 K. The detailed analysis indicates that the superconductivity in 1T-MoSLi primarily originates from the interplay between the vibration of the phonon modes in the low-frequency region and the dz2 orbital. These findings provide a fresh perspective on superconductivity within Janus structures.
Collapse
Affiliation(s)
- Hongmei Xie
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Zhijing Huang
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Yinchang Zhao
- Department of Physics, Yantai University, Yantai 264005, China
| | - Hao Huang
- Advanced Copper Industry College, Jiangxi University of Science and Technology, Yingtan 335000, China
| | - Geng Li
- China Rare Earth Group Research Institute, Ganzhou, Jiangxi 341000, China
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou, Jiangxi 341000, China
| | - Zonglin Gu
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| | - Shuming Zeng
- College of Physics Science and Technology, Yangzhou University, Jiangsu 225009, China
| |
Collapse
|
20
|
Ahmed D, Muhammad N, Ding ZJ. Metallic CoSb and Janus Co 2AsSb monolayers as promising anode materials for metal-ion batteries. Phys Chem Chem Phys 2024; 26:17191-17204. [PMID: 38853749 DOI: 10.1039/d4cp00480a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Structural symmetry breaking plays a pivotal role in fine-tuning the properties of nano-layered materials. Here, based on the first-principles approaches we propose a Janus monolayer of metallic CoSb by breaking the out-of-plane structural symmetry. Specifically, within the CoSb monolayer by replacing the top-layer 'Sb' with 'As' atoms entirely, the Janus Co2AsSb monolayer can be formed, whose structure is confirmed via structural optimization and ab initio molecular dynamics simulations. Notably, the Janus Co2AsSb monolayer demonstrates stability at an elevated temperature of 1200 K, surpassing the stability of the CoSb monolayer, which remains stable only up to 900 K. We propose that both the CoSb and Janus Co2AsSb monolayers could serve as capable anode materials for power-driven metal-ion batteries, owing to their substantial theoretical capacity and robust binding strength. The theoretical specific capacities for Li/Na reach up to 1038.28/1186.60 mA h g-1 for CoSb, while Janus Co2AsSb demonstrates a marked improvement in electrochemical storage capacity of 3578.69/2215.38 mA h g-1 for Li/Na, representing a significant leap forward in this domain. The symmetry-breaking effect upgrades the CoSb monolayer, as a more viable contender for power-driven metal-ion batteries. Furthermore, electronic structure calculations indicate a notable charge transfer that augments the metallic nature, which would boost electrical conductivity. These simulations demonstrate that the CoSb and Janus Co2AsSb monolayers have immense potential for application in the design of metal-ion battery technologies.
Collapse
Affiliation(s)
- Dildar Ahmed
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Nisar Muhammad
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| | - Z J Ding
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
21
|
Wang G, Xie W, Guo S, Chang J, Chen Y, Long X, Zhou L, Ang YS, Yuan H. Two-Dimensional GeC/MXY (M = Zr, Hf; X, Y = S, Se) Heterojunctions Used as Highly Efficient Overall Water-Splitting Photocatalysts. Molecules 2024; 29:2793. [PMID: 38930861 PMCID: PMC11206627 DOI: 10.3390/molecules29122793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Hydrogen generation by photocatalytic water-splitting holds great promise for addressing the serious global energy and environmental crises, and has recently received significant attention from researchers. In this work, a method of assembling GeC/MXY (M = Zr, Hf; X, Y = S, Se) heterojunctions (HJs) by combining GeC and MXY monolayers (MLs) to construct direct Z-scheme photocatalytic systems is proposed. Based on first-principles calculations, we found that all the GeC/MXY HJs are stable van der Waals (vdW) HJs with indirect bandgaps. These HJs possess small bandgaps and exhibit strong light-absorption ability across a wide range. Furthermore, the built-in electric field (BIEF) around the heterointerface can accelerate photoinduced carrier separation. More interestingly, the suitable band edges of GeC/MXY HJs ensure sufficient kinetic potential to spontaneously accomplish water redox reactions under light irradiation. Overall, the strong light-harvesting ability, wide light-absorption range, small bandgaps, large heterointerfacial BIEFs, suitable band alignments, and carrier migration paths render GeC/MXY HJs highly efficient photocatalysts for overall water decomposition.
Collapse
Affiliation(s)
- Guangzhao Wang
- School of Electronic Information Engineering, Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, Yangtze Normal University, Chongqing 408100, China; (W.X.); (X.L.)
| | - Wenjie Xie
- School of Electronic Information Engineering, Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, Yangtze Normal University, Chongqing 408100, China; (W.X.); (X.L.)
| | - Sandong Guo
- School of Electronic Engineering, Xi’an University of Posts and Telecommunications, Xi’an 710121, China;
| | - Junli Chang
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
| | - Ying Chen
- School of Electronic and Information Engineering, Anshun University, Anshun 561000, China;
| | - Xiaojiang Long
- School of Electronic Information Engineering, Key Laboratory of Extraordinary Bond Engineering and Advanced Materials Technology of Chongqing, Yangtze Normal University, Chongqing 408100, China; (W.X.); (X.L.)
| | - Liujiang Zhou
- School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Yee Sin Ang
- Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore 487372, Singapore
| | - Hongkuan Yuan
- School of Physical Science and Technology, Southwest University, Chongqing 400715, China;
| |
Collapse
|
22
|
Zhang W, Xia CJ, Zhao XM, Zhang GQ, Li LB, Su YH, Fang QL. First-principles studies on the electronic and contact properties of monolayer Ga 2STe-metal contacts. Phys Chem Chem Phys 2024; 26:11958-11967. [PMID: 38573215 DOI: 10.1039/d3cp06331c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Monolayer (ML) Janus III-VI compounds have attracted the use of multiple competitive platforms for future-generation functional electronics, including non-volatile memories, field effect transistors, and sensors. In this work, the electronic and interfacial properties of ML Ga2STe-metal (Au, Ag, Cu, and Al) contacts are systematically investigated using first-principles calculations combined with the non-equilibrium Green's function method. The ML Ga2STe-Au/Ag/Al contacts exhibit weak electronic orbital hybridization at the interface, while the ML Ga2STe-Cu contact exhibits strong electronic orbital hybridization. The Te surface is more conducive to electron injection than the S surface in ML Ga2STe-metal contact. Quantum transport calculations revealed that when the Te side of the ML Ga2STe is in contact with Au, Ag and Cu electrodes, p-type Schottky contacts are formed. When in contact with the Al electrode, an n-type Schottky contact is formed with an electron SBH of 0.079 eV. When the S side of ML Ga2STe is in contact with Au and Al electrodes, p-type Schottky contacts are formed, and when it is in contact with Ag and Cu electrodes, n-type Schottky contacts are formed. Our study will guide the selection of appropriate metal electrodes for constructing ML Ga2STe devices.
Collapse
Affiliation(s)
- Wanyunfei Zhang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Cai-Juan Xia
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Xu-Mei Zhao
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Guo-Qing Zhang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Lian-Bi Li
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Yao-Heng Su
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| | - Qing-Long Fang
- School of Science, Xi'an Polytechnic University, Xi'an 710048, Shaanxi, China.
| |
Collapse
|
23
|
López-Galán OA, Boll T, Nogan J, Chassaing D, Welle A, Heilmaier M, Ramos M. One-step sputtering of MoSSe metastable phase as thin film and predicted thermodynamic stability by computational methods. Sci Rep 2024; 14:7104. [PMID: 38531954 PMCID: PMC10966109 DOI: 10.1038/s41598-024-57243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
We present the fabrication of a MoS2-xSex thin film from a co-sputtering process using MoS2 and MoSe2 commercial targets with 99.9% purity. The sputtering of the MoS2 and MoSe2 was carried out using a straight and low-cost magnetron radio frequency sputtering recipe to achieve a MoS2-xSex phase with x = 1 and sharp interface formation as confirmed by Raman spectroscopy, time-of-flight secondary ion mass spectroscopy, and cross-sectional scanning electron microscopy. The sulfur and selenium atoms prefer to distribute randomly at the octahedral geometry of molybdenum inside the MoS2-xSex thin film, indicated by a blue shift in the A1g and E1g vibrational modes at 355 cm-1 and 255 cm-1, respectively. This work is complemented by computing the thermodynamic stability of a MoS2-xSex phase whereby density functional theory up to a maximum selenium concentration of 33.33 at.% in both a Janus-like and random distribution. Although the Janus-like and the random structures are in the same metastable state, the Janus-like structure is hindered by an energy barrier below selenium concentrations of 8 at.%. This research highlights the potential of transition metal dichalcogenides in mixed phases and the need for further exploration employing low-energy, large-scale methods to improve the materials' fabrication and target latent applications of such structures.
Collapse
Affiliation(s)
- Oscar A López-Galán
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany.
- Institute for Applied Materials and Materials Science (IAM-WK), Karlsruhe Institute of Technology (KIT), Engelbert-Arnold-Str. 4, 76131, Karlsruhe, Germany.
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Avenida del Charro #450 N, Ciudad Juárez, 32310, CHIH, México.
| | - Torben Boll
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - John Nogan
- Sandia National Laboratories, Center for Integrated Nanotechnologies (CINT), 1101 Eubank Bldg. SE, Albuquerque, NM, 87110, USA
| | - Delphine Chassaing
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Alexander Welle
- Karlsruhe Nano Micro Facility (KNMF), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Hermann-von Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martin Heilmaier
- Institute for Applied Materials and Materials Science (IAM-WK), Karlsruhe Institute of Technology (KIT), Engelbert-Arnold-Str. 4, 76131, Karlsruhe, Germany
| | - Manuel Ramos
- Departamento de Física y Matemáticas, Instituto de Ingeniería y Tecnología, Universidad Autónoma de Ciudad Juárez, Avenida del Charro #450 N, Ciudad Juárez, 32310, CHIH, México.
| |
Collapse
|
24
|
Liu Z, Tee SY, Guan G, Han MY. Atomically Substitutional Engineering of Transition Metal Dichalcogenide Layers for Enhancing Tailored Properties and Superior Applications. NANO-MICRO LETTERS 2024; 16:95. [PMID: 38261169 PMCID: PMC10805767 DOI: 10.1007/s40820-023-01315-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/30/2023] [Indexed: 01/24/2024]
Abstract
Transition metal dichalcogenides (TMDs) are a promising class of layered materials in the post-graphene era, with extensive research attention due to their diverse alternative elements and fascinating semiconductor behavior. Binary MX2 layers with different metal and/or chalcogen elements have similar structural parameters but varied optoelectronic properties, providing opportunities for atomically substitutional engineering via partial alteration of metal or/and chalcogenide atoms to produce ternary or quaternary TMDs. The resulting multinary TMD layers still maintain structural integrity and homogeneity while achieving tunable (opto)electronic properties across a full range of composition with arbitrary ratios of introduced metal or chalcogen to original counterparts (0-100%). Atomic substitution in TMD layers offers new adjustable degrees of freedom for tailoring crystal phase, band alignment/structure, carrier density, and surface reactive activity, enabling novel and promising applications. This review comprehensively elaborates on atomically substitutional engineering in TMD layers, including theoretical foundations, synthetic strategies, tailored properties, and superior applications. The emerging type of ternary TMDs, Janus TMDs, is presented specifically to highlight their typical compounds, fabrication methods, and potential applications. Finally, opportunities and challenges for further development of multinary TMDs are envisioned to expedite the evolution of this pivotal field.
Collapse
Affiliation(s)
- Zhaosu Liu
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Si Yin Tee
- Institute of Materials Research and Engineering, A*STAR, Singapore, 138634, Singapore
| | - Guijian Guan
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China.
| | - Ming-Yong Han
- Institute of Molecular Plus, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
25
|
Zhu Y, Chen T, Li Y, Qiao L, Ma X, Liu C, Hu T, Gao H, Ren W. Multipiezo Effect in Altermagnetic V 2SeTeO Monolayer. NANO LETTERS 2024; 24:472-478. [PMID: 38146703 DOI: 10.1021/acs.nanolett.3c04330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Strain engineering has been used as an efficient method to modulate various properties of quantum materials and electronic devices. One may establish piezo effects based on a disciplined response to the strain in multifunctional nanosystems. Inspired by a recent theoretical proposal on the interesting piezomagnetism and C-paired valley polarization in the V2Se2O monolayer, we predict a stable altermagnetic Janus monolayer V2SeTeO using density functional theory calculations. It exhibits a novel "multipiezo" effect combining piezoelectricity, piezovalley, and piezomagnetism. Most interestingly, the valley polarization and the net magnetization under strain in V2SeTeO exceed these in V2Se2O, along with the additional large piezoelectric coefficient. The "multipiezo" effect makes Janus monolayer V2SeTeO as a tantalizing material for potential applications in nanoelectronics, optoelectronics, spintronics, and valleytronics.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Taikang Chen
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Yongchang Li
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Lei Qiao
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Xiaonan Ma
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Chang Liu
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Tao Hu
- School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
| | - Heng Gao
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
| | - Wei Ren
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, International Centre of Quantum and Molecular Structures, Shanghai University, Shanghai 200444, China
- Zhejiang Laboratory, Hangzhou 311100, China
| |
Collapse
|
26
|
Zhang RS, Yin XL, Zhang YL, Jiang JW. The effect of intrinsic strain on the thermal expansion behavior of Janus MoSSe nanotubes: a molecular dynamic simulation. NANOTECHNOLOGY 2023; 35:075705. [PMID: 37976546 DOI: 10.1088/1361-6528/ad0dcb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
In this study, we conducted molecular dynamic simulations to investigate the thermal expansion behavior of Janus MoSSe nanotubes. We focused on understanding how the intrinsic strain in these nanotubes affects their thermal expansion coefficient (TEC). Interestingly, we found that Janus MoSSe nanotubes with sulfur (S) on the outer surface (MoSeS) exhibit a different intrinsic strain compared to those with selenium (Se) on the outer surface (MoSSe). In light of this observation, we explored the influence of this intrinsic strain on the TEC of the nanotubes. Our results revealed distinct trends for the TEC along the radial direction (TEC-r) and the axial direction (TEC-lx) of the MoSSe and MoSeS nanotubes. The TEC-rof MoSeS nanotubes was found to be significantly greater than that of MoSSe nanotubes. Moreover, the TEC-lxof MoSeS nanotubes was smaller than that of MoSSe nanotubes. Further analysis showed that the TEC-rof MoSeS nanotubes decreased by up to 37% as the radius increased, while that of MoSSe nanotubes exhibited a slight increase with increasing radius. On the other hand, the TEC-lxof MoSeS nanotubes increased by as much as 45% with increasing radius, whereas that of MoSSe nanotubes decreased gradually. These opposite tendencies of the TECs with respect to the radius were attributed to the presence of intrinsic strain within the nanotubes. The intrinsic strain was found to play a crucial role in inducing thermally induced bending and elliptization of the nanotubes' cross-section. These effects are considered key mechanisms through which intrinsic strain influences the TEC. Overall, our study provides valuable insights into the thermal stability of Janus nanotubes. By understanding the relationship between intrinsic strain and the thermal expansion behavior of nanotubes, we contribute to the broader understanding of these materials and their potential applications.
Collapse
Affiliation(s)
- Run-Sen Zhang
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xiang-Lei Yin
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Yu-Long Zhang
- College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Jin-Wu Jiang
- Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, People's Republic of China
| |
Collapse
|
27
|
Lin YQ, Yang Q, Wang ZQ, Geng HY, Cheng Y. Janus 2H-MXTe (M = Zr, Hf; X = S, Se) monolayers with outstanding thermoelectric properties and low lattice thermal conductivities. Phys Chem Chem Phys 2023; 25:31312-31325. [PMID: 37955953 DOI: 10.1039/d3cp04118b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Two-dimensional (2D) materials have been one of the most popular objects in the research field of thermoelectric (TE) materials and have attracted substantial attention in recent years. Inspired by the synthesized 2H-MoSSe and numerous theoretical studies, we systematically investigated the electronic, thermal, and TE properties of Janus 2H-MXTe (M = Zr and Hf; X = S and Se) monolayers by using first-principles calculations. The phonon dispersion curves and AIMD simulations confirm the thermodynamic stabilities. Moreover, Janus 2H-MXTe were evaluated as indirect band-gap semiconductors with band gaps ranging from 0.56 to 0.90 eV using the HSE06 + SOC method. To evaluate the TE performance, firstly, we calculated the temperature-dependent carrier relaxation time with acoustic phonon scattering τac, impurity scattering τimp, and polarized scattering τpol. Secondly, the calculation of lattice thermal conductivity (κl) shows that these monolayers possess relatively poor κl with values of 3.4-5.4 W mK-1 at 300 K, which is caused by the low phonon lifetime and group velocity. After computing the electronic transport properties, we found that the n-type doped Janus 2H-MXTe monolayers exhibit a high Seebeck coefficient exceeding 200 μV K-1 at 300 K, resulting in a high TE power factor. Eventually, combining the electrical and thermal conductivities, the optimal dimensionless figure of merit (zT) at 300 K (900 K) can be obtained, which is 0.94 (3.63), 0.51 (2.57), 0.64 (2.72), and 0.50 (1.98) for n-type doping of ZrSeTe, HfSeTe, ZeSTe, and HfSTe monolayers. Particularly, the ZrSeTe monolayer shows the best TE performance with the maximal zT value. These results indicate the excellent application potential of Janus 2H-MXTe (M = Zr and Hf; X = S and Se) monolayers in TE materials.
Collapse
Affiliation(s)
- Ying-Qin Lin
- College of Physics, Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, China.
| | - Qiu Yang
- College of Physics, Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, China.
| | - Zhao-Qi Wang
- College of Science, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Hua-Yun Geng
- National Key Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, CAEP, Mianyang 621900, China
| | - Yan Cheng
- College of Physics, Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
28
|
Anh NPQ, Hiep NT, Lu DV, Nguyen CQ, Hieu NN, Vi VTT. Crystal lattice and electronic and transport properties of Janus ZrSiSZ 2 (Z = N, P, As) monolayers by first-principles investigations. NANOSCALE ADVANCES 2023; 5:6705-6713. [PMID: 38024315 PMCID: PMC10662022 DOI: 10.1039/d3na00631j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
From the extending requirements for using innovative materials in advanced technologies, it is necessary to explore new materials for relevant applications. In this work, we design new two-dimensional (2D) Janus ZrSiSZ2 (Z = N, P, As) monolayers and investigate their crystal lattice and dynamic stability by using density functional theory investigations. The two stable structures of ZrSiSP2 and ZrSiSAs2 are then systematically examined for thermal, energetic, and mechanical stability, and electronic and transport properties. The calculation results demonstrate that both the ZrSiSP2 and ZrSiSAs2 monolayers have good thermal stability at room temperature and high energetic/mechanical stabilities for experimental synthesis. The studied structures are found to be in-direct semiconductors. Specifically, with moderate band-gap energies of 1.04 to 1.29 eV for visible light absorption, ZrSiSP2 and ZrSiSAs2 can be considered potential candidates for photovoltaic applications. The applied biaxial strains and external electric fields slightly change the band-gap energies of the monolayers. We also calculate the carrier mobilities for the transport properties based on the deformation potential method. Due to the lower effective masses, the carrier mobilities in the x direction are higher than those in the y direction. The carrier mobilities of the ZrSiSP2 and ZrSiSAs2 monolayers are anisotropic not only in transport directions but also for the electrons and holes. We believe that the results of our work may stimulate further studies to explore more new 2D Janus monolayers with novel properties of the MA2Z4 family materials.
Collapse
Affiliation(s)
- Nguyen P Q Anh
- Faculty of Electrical, Electronics and Materials Technology, University of Sciences, Hue University Hue 530000 Vietnam
| | - Nguyen T Hiep
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - D V Lu
- Faculty of Physics, The University of Danang - University of Science and Education Da Nang 550000 Vietnam
| | - Cuong Q Nguyen
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University Da Nang 550000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| | - Vo T T Vi
- Faculty of Basic Sciences, University of Medicine and Pharmacy, Hue University Hue 530000 Vietnam
| |
Collapse
|
29
|
Kong D, Tian F, Xu Y, Zhu S, Yu Z, Xiong L, Li P, Wei H, Zheng X, Peng M. Polarity reversal and strain modulation of Janus MoSSe/GaN polar semiconductor heterostructures. Phys Chem Chem Phys 2023; 25:30361-30372. [PMID: 37909285 DOI: 10.1039/d3cp02137h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Beyond three-dimensional (3D) architectures, polar semiconductor heterostructures are developing in the direction of two-dimensional (2D) scale with mix-dimensional integration for novel properties and multifunctional applications. Herein, we stacked 2D Janus MoSSe and 3D wurtzite GaN polar semiconductors to construct MoSSe/GaN polar heterostructures by polarity configurations. The structural stability was enhanced as binding energy changed from -0.08 eV/-0.17 eV in the N polarity to -0.24 eV/-0.42 eV in the Ga polarity. In particular, the polarity reversal of GaN in contact with Janus MoSSe not only determined the charge transfer direction but also significantly increased the electrostatic potential difference from 0.71 eV/0.78 eV in the N polarity to 3.13 eV/2.24 eV in the Ga polarity. In addition, strain modulation was further utilized to enhance interfacial polarization and tune the electronic energy band profiles of Janus MoSSe/GaN polar heterostructures. By applying in-plane biaxial strains, the AA and AA' polarity configurations induced band alignment transition from type I (tensile) to type II (compressive). As a result, both the polarity reversal and strain modulation provide effective ways for the multifunctional manipulation and facile design of Janus MoSSe/III-nitrides polar heterostructures, which broaden the Janus 2D/3D polar semiconducting devices in advanced electronics, optoelectronics, and energy harvesting applications.
Collapse
Affiliation(s)
- Delin Kong
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China.
| | - Feng Tian
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China.
| | - Yingying Xu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China.
| | - Shaoqun Zhu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China.
| | - Zetong Yu
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China.
| | - Lefeng Xiong
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China.
| | - Peipei Li
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China.
| | - Huiyun Wei
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China.
| | - Xinhe Zheng
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China.
| | - Mingzeng Peng
- Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, No. 30, Xueyuan Road, Beijing 100083, China.
| |
Collapse
|
30
|
Cai X, Chen G, Li R, Yu W, Yang X, Jia Y. Janus MoAZ 3H (A = Ge, Si; Z = N, P, As) monolayers: a new class of semiconductors exhibiting excellent photovoltaic and catalytic performances. Phys Chem Chem Phys 2023; 25:29594-29602. [PMID: 37877368 DOI: 10.1039/d3cp02622a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Due to the asymmetrical structure in the vertical direction, Janus two-dimensional (2D) monolayer (ML) materials possess some unique physical properties, holding great promise for nanoscale devices. In this paper, based on the newly discovered MoA2Z4 (A = Si, Ge; Z = N, P, As) ML, we propose a class of 2D Janus MoAZ3H ML materials with good stability and excellent mechanical properties using first-principles calculations. We demonstrate that the novel Janus MoAZ3H ML materials are all semiconductors with bandgaps ranging from 0.69 to 2.44 eV, giving rise to good absorption in the visible light region. Especially, both MoSiN3H and MoGeN3H MLs can be used as catalysts for producing hydrogen through water splitting. This catalytic property is much more efficient than that of the MoA2Z4 ML, attributed to the intrinsic electric field induced by the vertical asymmetry effectively separating electrons and holes. More importantly, the carrier mobility of the MoAZ3H ML is up to 103-104 cm2 V-1 s-1 due to the large elastic modulus or small effective mass. Additionally, the electronic properties of the MoAZ3H ML can be easily tuned by strain. Our results suggest a new strategy for designing novel 2D Janus materials, which not only expands the members in the 2D MA2Z4-based Janus family, but also provide candidates with excellent performances in photovoltaic and catalytic fields.
Collapse
Affiliation(s)
- Xiaolin Cai
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Guoxing Chen
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Rui Li
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Weiyang Yu
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Xuefeng Yang
- School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yu Jia
- Key Laboratory for Special Functional Materials of Ministry of Education, Collaborative Innovation Center of Nano Functional Materials and Applications, School of Material Science and Engineering, Henan University, Kaifeng 475004, China.
- International Laboratory for Quantum Functional Materials of Henan, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
31
|
Titze M, Poplawsky JD, Kretschmer S, Krasheninnikov AV, Doyle BL, Bielejec ES, Hobler G, Belianinov A. Measurement and Simulation of Ultra-Low-Energy Ion-Solid Interaction Dynamics. MICROMACHINES 2023; 14:1884. [PMID: 37893321 PMCID: PMC10609604 DOI: 10.3390/mi14101884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Ion implantation is a key capability for the semiconductor industry. As devices shrink, novel materials enter the manufacturing line, and quantum technologies transition to being more mainstream. Traditional implantation methods fall short in terms of energy, ion species, and positional precision. Here, we demonstrate 1 keV focused ion beam Au implantation into Si and validate the results via atom probe tomography. We show the Au implant depth at 1 keV is 0.8 nm and that identical results for low-energy ion implants can be achieved by either lowering the column voltage or decelerating ions using bias while maintaining a sub-micron beam focus. We compare our experimental results to static calculations using SRIM and dynamic calculations using binary collision approximation codes TRIDYN and IMSIL. A large discrepancy between the static and dynamic simulation is found, which is due to lattice enrichment with high-stopping-power Au and surface sputtering. Additionally, we demonstrate how model details are particularly important to the simulation of these low-energy heavy-ion implantations. Finally, we discuss how our results pave a way towards much lower implantation energies while maintaining high spatial resolution.
Collapse
Affiliation(s)
- Michael Titze
- Ion Beam Laboratory, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Jonathan D. Poplawsky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Silvan Kretschmer
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Arkady V. Krasheninnikov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
| | - Barney L. Doyle
- Ion Beam Laboratory, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Edward S. Bielejec
- Ion Beam Laboratory, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Gerhard Hobler
- Institute of Solid-State Electronics, TU Wien, Gußhausstraße 25-25a, A-1040 Wien, Austria
| | - Alex Belianinov
- Ion Beam Laboratory, Sandia National Laboratories, Albuquerque, NM 87185, USA
| |
Collapse
|
32
|
Gao J, Zhang W, Yan X, Zhang X, Wang S, Yang G. Metallic CrP 2 monolayer: potential applications in energy storage and conversion. Phys Chem Chem Phys 2023; 25:24705-24711. [PMID: 37668165 DOI: 10.1039/d3cp02917d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Phosphorus-rich compounds have emerged as a promising class of energy storage and conversion materials due to their interesting structures and electrochemical properties. Herein, we propose that a metallic CrP2 monolayer, isomorphic to 1H-phase MoS2, is a good prospect as an anode for K-ion batteries and a catalyst for hydrogen evolution through first-principles calculations. The CrP2 monolayer demonstrates not only a desirable high K storage capacity (940 mA h g-1) but also a low K-ion diffusion barrier (0.10 eV) and average open circuit voltage (0.40 V). On the other hand, its Gibbs free energy (0.02 eV)/active site density is superior/comparable to that of commercial Pt, resulting from the contribution of the lone pair electrons of the P atom. Its high structural stability and intrinsic metallicity can ensure high safety and performance during the cyclic process. These interesting properties make the CrP2 monolayer a promising multifunctional material for energy storage and conversion devices.
Collapse
Affiliation(s)
- Jiayu Gao
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Wenyuan Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xu Yan
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Xiaohua Zhang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Sheng Wang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| | - Guochun Yang
- State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
33
|
Schmeink J, Musytschuk V, Pollmann E, Sleziona S, Maas A, Kratzer P, Schleberger M. Evaluating strain and doping of Janus MoSSe from phonon mode shifts supported by ab initio DFT calculations. NANOSCALE 2023; 15:10834-10841. [PMID: 37335022 DOI: 10.1039/d3nr01978k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
With the study of Janus monolayer transition metal dichalcogenides, in which one of the two chalcogen layers is replaced by another type of chalcogen atom, research on two-dimensional materials is advancing into new areas. Yet only little is known about this new kind of material class, mainly due to the difficult synthesis. In this work, we synthesize MoSSe monolayers from exfoliated samples and compare their Raman signatures with density functional theory calculations of phonon modes that depend in a nontrivial way on doping and strain. With this as a tool, we can infer limits for the possible combinations of strain and doping levels. This reference data can be applied to all MoSSe Janus samples in order to quickly estimate their strain and doping, providing a reliable tool for future work. In order to narrow down the results for our samples further, we analyze the temperature-dependent photoluminescence spectra and time-correlated single-photon counting measurements. The lifetime of Janus MoSSe monolayers exhibits two decay processes with an average total lifetime of 1.57 ns. Moreover, we find a strong trion contribution to the photoluminescence spectra at low temperature which we attribute to excess charge carriers, corroborating our ab initio calculations.
Collapse
Affiliation(s)
- Jennifer Schmeink
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany.
| | - Vladislav Musytschuk
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany.
| | - Erik Pollmann
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany.
| | - Stephan Sleziona
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany.
| | - André Maas
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany.
| | - Peter Kratzer
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany.
| | - Marika Schleberger
- University of Duisburg-Essen, Faculty of Physics and CENIDE, 47057 Duisburg, Germany.
| |
Collapse
|
34
|
Lin YC, Torsi R, Younas R, Hinkle CL, Rigosi AF, Hill HM, Zhang K, Huang S, Shuck CE, Chen C, Lin YH, Maldonado-Lopez D, Mendoza-Cortes JL, Ferrier J, Kar S, Nayir N, Rajabpour S, van Duin ACT, Liu X, Jariwala D, Jiang J, Shi J, Mortelmans W, Jaramillo R, Lopes JMJ, Engel-Herbert R, Trofe A, Ignatova T, Lee SH, Mao Z, Damian L, Wang Y, Steves MA, Knappenberger KL, Wang Z, Law S, Bepete G, Zhou D, Lin JX, Scheurer MS, Li J, Wang P, Yu G, Wu S, Akinwande D, Redwing JM, Terrones M, Robinson JA. Recent Advances in 2D Material Theory, Synthesis, Properties, and Applications. ACS NANO 2023; 17:9694-9747. [PMID: 37219929 PMCID: PMC10324635 DOI: 10.1021/acsnano.2c12759] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Two-dimensional (2D) material research is rapidly evolving to broaden the spectrum of emergent 2D systems. Here, we review recent advances in the theory, synthesis, characterization, device, and quantum physics of 2D materials and their heterostructures. First, we shed insight into modeling of defects and intercalants, focusing on their formation pathways and strategic functionalities. We also review machine learning for synthesis and sensing applications of 2D materials. In addition, we highlight important development in the synthesis, processing, and characterization of various 2D materials (e.g., MXnenes, magnetic compounds, epitaxial layers, low-symmetry crystals, etc.) and discuss oxidation and strain gradient engineering in 2D materials. Next, we discuss the optical and phonon properties of 2D materials controlled by material inhomogeneity and give examples of multidimensional imaging and biosensing equipped with machine learning analysis based on 2D platforms. We then provide updates on mix-dimensional heterostructures using 2D building blocks for next-generation logic/memory devices and the quantum anomalous Hall devices of high-quality magnetic topological insulators, followed by advances in small twist-angle homojunctions and their exciting quantum transport. Finally, we provide the perspectives and future work on several topics mentioned in this review.
Collapse
Affiliation(s)
- Yu-Chuan Lin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Riccardo Torsi
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rehan Younas
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Christopher L Hinkle
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Albert F Rigosi
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Heather M Hill
- National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Kunyan Zhang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Shengxi Huang
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Christopher E Shuck
- A.J. Drexel Nanomaterials Institute and Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Chen Chen
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yu-Hsiu Lin
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Daniel Maldonado-Lopez
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jose L Mendoza-Cortes
- Department of Chemical Engineering & Materials Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - John Ferrier
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Swastik Kar
- Department of Physics and Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Nadire Nayir
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, Karamanoglu Mehmet University, Karaman 70100, Turkey
| | - Siavash Rajabpour
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Adri C T van Duin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Xiwen Liu
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Deep Jariwala
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jie Jiang
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Jian Shi
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Wouter Mortelmans
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Rafael Jaramillo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, United States
| | - Joao Marcelo J Lopes
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Roman Engel-Herbert
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplaz 5-7, 10117 Berlin, Germany
| | - Anthony Trofe
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Tetyana Ignatova
- Department of Nanoscience, Joint School of Nanoscience & Nanoengineering, University of North Carolina at Greensboro, Greensboro, North Carolina 27401, United States
| | - Seng Huat Lee
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhiqiang Mao
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Leticia Damian
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Yuanxi Wang
- Department of Physics, University of North Texas, Denton, Texas 76203, United States
| | - Megan A Steves
- Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94720, United States
| | - Kenneth L Knappenberger
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Zhengtianye Wang
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Stephanie Law
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - George Bepete
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiang-Xiazi Lin
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Mathias S Scheurer
- Institute for Theoretical Physics, University of Innsbruck, Innsbruck A-6020, Austria
| | - Jia Li
- Department of Physics, Brown University, Providence, Rhode Island 02906, United States
| | - Pengjie Wang
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Guo Yu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08540, United States
| | - Sanfeng Wu
- Department of Physics, Princeton University, Princeton, New Jersey 08540, United States
| | - Deji Akinwande
- Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Microelectronics Research Center, The University of Texas, Austin, Texas 78758, United States
| | - Joan M Redwing
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mauricio Terrones
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Research Initiative for Supra-Materials and Global Aqua Innovation Center, Shinshu University, Nagano 380-8553, Japan
| | - Joshua A Robinson
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Two-Dimensional Crystal Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Center for Atomically Thin Multifunctional Coatings, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
35
|
Suzuki H, Liu Y, Misawa M, Nakano C, Wang Y, Nakano R, Ishimura K, Tsuruta K, Hayashi Y. Intermediate State between MoSe 2 and Janus MoSeS during Atomic Substitution Process. NANO LETTERS 2023; 23:4533-4540. [PMID: 37155295 DOI: 10.1021/acs.nanolett.3c00972] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Janus transition metal dichalcogenides (TMDCs), with dissimilar chalcogen atoms on each side of TMDCs, have garnered considerable research attention because of the out-of-plane intrinsic polarization in monolayer TMDCs. Although a plasma process has been proposed for synthesizing Janus TMDCs based on the atomic substitution of surface atoms at room temperature, the formation dynamics and intermediate electronic states have not been completely examined. In this study, we investigated the intermediate state between MoSe2 and Janus MoSeS during plasma processing. Atomic composition analysis and atomic-scale structural observations revealed the intermediate partially substituted Janus (PSJ) structure. Combined with theoretical calculations, we successfully clarified the characteristic Raman modes in the intermediate PSJ structure. The PL exhibited discontinuous transitions that could not be explained by the theoretical calculations. These findings will contribute toward understanding the formation process and electronic-state modulation of Janus TMDCs.
Collapse
Affiliation(s)
- Hiroo Suzuki
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Faculty of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yijun Liu
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Masaaki Misawa
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Faculty of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Chiyu Nakano
- Advanced Science Research Center, Okayama University, Okayama 700-8530, Japan
| | - Yingzhe Wang
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Ryo Nakano
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kentaro Ishimura
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Kenji Tsuruta
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Faculty of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| | - Yasuhiko Hayashi
- Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
- Faculty of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
36
|
Ju L, Tang X, Zhang Y, Li X, Cui X, Yang G. Single Selenium Atomic Vacancy Enabled Efficient Visible-Light-Response Photocatalytic NO Reduction to NH3 on Janus WSSe Monolayer. Molecules 2023; 28:molecules28072959. [PMID: 37049721 PMCID: PMC10095809 DOI: 10.3390/molecules28072959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
The NO reduction reaction (NORR) toward NH3 is simultaneously emerging for both detrimental NO elimination and valuable NH3 synthesis. An efficient NORR generally requires a high degree of activation of the NO gas molecule from the catalyst, which calls for a powerful chemisorption. In this work, by means of first-principles calculations, we discovered that the NO gas molecule over the Janus WSSe monolayer might undergo a physical-to-chemical adsorption transition when Se vacancy is introduced. If the Se vacancy is able to work as the optimum adsorption site, then the interface’s transferred electron amounts are considerably increased, resulting in a clear electronic orbital hybridization between the adsorbate and substrate, promising excellent activity and selectivity for NORR. Additionally, the NN bond coupling and *N diffusion of NO molecules can be effectively suppressed by the confined space of Se vacancy defects, which enables the active site to have the superior NORR selectivity in the NH3 synthesis. Moreover, the photocatalytic NO-to-NH3 reaction is able to occur spontaneously under the potentials solely supplied by the photo-generated electrons. Our findings uncover a promising approach to derive high-efficiency photocatalysts for NO-to-NH3 conversion.
Collapse
|
37
|
Hiep NT, Anh NPQ, Phuc HV, Nguyen CQ, Hieu NN, Vi VTT. Two-dimensional Janus MGeSiP 4 (M = Ti, Zr, and Hf) with an indirect band gap and high carrier mobilities: first-principles calculations. Phys Chem Chem Phys 2023; 25:8779-8788. [PMID: 36912122 DOI: 10.1039/d3cp00188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Novel Janus materials have attracted broad interest due to the outstanding properties created by their out-of-plane asymmetry, with increasing theoretical exploration and more reports of successful fabrication in recent years. Here, we construct and explore the crystal structures, stabilities, electronic band structures, and transport properties - including carrier mobilities - of two-dimensional Janus MGeSiP4 (M = Ti, Zr, or Hf) monolayers based on density functional theory calculations. From the cohesive energies, elastic constants, and phonon dispersion calculations, the monolayers are confirmed to exhibit structural stability with high feasibility for experimental synthesis. All the structures are indirect band-gap semiconductors with calculated band-gap energies in the range of 0.77 eV to 1.01 eV at the HSE06 (Heyd-Scuseria-Ernzerhof) level. Interestingly, by applying external biaxial strain, a semiconductor to metal phase transition is observed for the three Janus structures. This suggests potential for promising applications in optoelectronic and electromechanical devices. Notably, the MGeSiP4 monolayers show directionally anisotropic carrier mobility with a high electron mobility of up to 2.72 × 103 cm2 V-1 s-1 for the ZrGeSiP4 monolayer, indicating advantages for applications in electronic devices. Hence, the presented results reveal the novel properties of the 2D Janus MGeSiP4 monolayers and demonstrate their great potential applications in nanoelectronic and/or optoelectronic devices. This investigation could stimulate further theoretical and experimental studies on these excellent materials and motivate further explorations of new members of this 2D Janus family.
Collapse
Affiliation(s)
- Nguyen T Hiep
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Nguyen P Q Anh
- Faculty of Electrical, Electronics and Materials Technology University of Sciences, Hue University, Hue, Vietnam
| | - Huynh V Phuc
- Division of Theoretical Physics, Dong Thap University, Cao Lanh 870000, Vietnam
| | - Cuong Q Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Nguyen N Hieu
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| | - Vo T T Vi
- Department of Fundamental Sciences, University of Medicine and Pharmacy, Hue University, Hue 530000, Vietnam.
| |
Collapse
|
38
|
Shahabfar S, Xia Y, Morshedsolouk MH, Mohammadi M, Naghavi SS. Synergistic effect of alloying on thermoelectric properties of two-dimensional PdPQ (Q = S, Se). Phys Chem Chem Phys 2023; 25:9617-9625. [PMID: 36943102 DOI: 10.1039/d2cp05979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Hosts of 2D materials exist, yet few allow compositional and structural tailoring as the MQ2 (M = Mo, W; Q = S, Se) family does, for which various structural superlattices have been synthesized. Using thorough first-principles calculations, we show how bonding hierarchy contributes to the structural resilience of 2D PdPQ and allows for full-range alloying of sulfur and selenium. Within the structural unit of Pd2P2Q2, the covalently-bonded [P2Q2]4- polyanions hold the structure together with their molecular-like P-P bonds while ionically bonded Pd-Qs allow the S/Se substitution. Here, the bonding hierarchy imparts superior electronic and structural features to the PdPQ monolayers. As such, the flat-and-dispersive valence band and the eight degenerate valleys of the conduction band benefit the p-type and n-type thermoelectricity of pristine PdPQ, which can be further enhanced by alloying. The high-entropy alloying synergistically suppresses the lattice heat transport from 75 to 30 W m-1 K-1 and increases the band degeneracy of PdPQ monolayers, resulting in an overall improvement in zT. Combining these features, in a naïve approach, results in a large zT approaching two for both p-type and n-type doping. However, accurate fully-fledged electron-phonon calculations rebut this promise, showing that at high temperatures, the increased electron scattering results in a stagnant power factor in the flat-and-dispersive valence band. Using a realistic first-principles scattering, we finally calculate the thermoelectric efficiency of PdPQ (Q = S, Se) and highlight the importance of an accurate estimation of electron relaxation time for thermoelectric predictions.
Collapse
Affiliation(s)
- S Shahabfar
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran.
| | - Y Xia
- Department of Mechanical and Materials Engineering, Portland State University, Portland, Oregon, 97201, USA
| | - M H Morshedsolouk
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran.
| | - M Mohammadi
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran.
| | - S Shahab Naghavi
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran.
| |
Collapse
|
39
|
Wan W, Fu B, Liu C, Ge Y, Liu Y. Two-dimensional XY ferromagnetism above room temperature in Janus monolayer V 2XN (X = P, As). Phys Chem Chem Phys 2023; 25:9311-9319. [PMID: 36920148 DOI: 10.1039/d3cp00088e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Two-dimensional (2D) XY magnets with easy magnetization planes support the nontrivial topological spin textures whose dissipationless transport is highly desirable for 2D spintronic devices. Here, we predicted that Janus monolayer V2XN (X = P, As) with a square lattice is a 2D-XY ferromagnet using first-principles calculations. Both magnetocrystalline anisotropy and magnetic shape anisotropy favor an in-plane magnetization, leading to an easy magnetization xy-plane in Janus monolayer V2XN. With the help of the Monte Carlo simulations, we observed the Berezinskii-Kosterlitz-Thouless (BKT) phase transition in monolayer V2XN with the transition temperature TBKT being above room temperature. In particular, monolayer V2AsN has a magnetic anisotropy energy (MAE) of 292.0 μeV per V atom and a TBKT of 434 K, which is larger than that of monolayer V2PN. Moreover, a tensile strain of 5% can further improve the TBKT of monolayer V2XN to be above 500 K. Our results indicated that Janus monolayer V2XN (X = P, As) can be candidate materials to realize high-temperature 2D-XY ferromagnetism for spintronics applications.
Collapse
Affiliation(s)
- Wenhui Wan
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Botao Fu
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu, China
| | - Chang Liu
- Institute for Computational Materials Science, Joint Center for Theoretical Physics (JCTP), School of Physics and Electronics, Henan University, Kaifeng, 475004, China
| | - Yanfeng Ge
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science and Technology & Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China.
| |
Collapse
|
40
|
Jiang J, Mi W. Two-dimensional magnetic Janus monolayers and their van der Waals heterostructures: a review on recent progress. MATERIALS HORIZONS 2023; 10:788-807. [PMID: 36594899 DOI: 10.1039/d2mh01362b] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A magnetic Janus monolayer, a special type of material which has asymmetric arrangements of its surface at the nanoscale, has been shown to present rather exotic properties for applications in spintronics and its intersections. This review aims to offer a comprehensive review of the emergent physical properties of magnetic Janus monolayers and their van der Waals heterostructures from a theoretical point of view. The review starts by introducing the theoretical methodologies composed of the state-of-the-art methods and the challenges and limitations in validations for the descriptions of the magnetic ground states and thermodynamic properties in magnetic materials. The built-in polarization field induced physical phenomena of magnetic Janus monolayers are then presented. The tunable electronic and magnetic properties of magnetic Janus monolayer-based van der Waals heterostructures are discussed. Finally, the conclusions and future challenges in this field are prospected. This review serves as a complete summary of the two-dimensional magnetic Janus library and emergent electronic and magnetic properties in magnetic Janus monolayers and their heterostructures, and provides guidelines for the design of electronic and spintronic devices based on Janus materials.
Collapse
Affiliation(s)
- Jiawei Jiang
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| | - Wenbo Mi
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
41
|
Guo H, Yin Y, Yu W, Robertson J, Liu S, Zhang Z, Guo Y. Quantum transport of sub-5 nm InSe and In 2SSe monolayers and their heterostructure transistors. NANOSCALE 2023; 15:3496-3503. [PMID: 36723054 DOI: 10.1039/d2nr07180k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The emerging two-dimensional (2D) semiconductors hold a promising prospect for sustaining Moore's law benefitting from the excellent device electrostatics with narrowed channel length. Here, the performance limits of sub-5 nm InSe and In2SSe metal-oxide-semiconductor field-effect transistors (MOSFETs) are explored by ab initio quantum transport simulations. The van der Waals heterostructures prepared by assembling different two-dimensional materials have emerged as a new design of artificial materials with promising physical properties. In this study, device performance was investigated utilizing InSe/In2SSe van der Waals heterostructure as the channel material. Both the monolayer and heterostructure devices can scale Moore's law down to 5 nm. A heterostructure transistor exhibits a higher on-state current and faster switching speed compared with isolated monolayer transistors. This work proves that the sub-5 nm InSe/In2SSe MOSFET can satisfy both the low power and high-performance requirements for the international technology roadmap for semiconductors in the next decade and can provide a feasible approach for enhancing device performance.
Collapse
Affiliation(s)
- Hailing Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China.
| | - Yinheng Yin
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China.
| | - Wei Yu
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China.
| | - John Robertson
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China.
| | - Sheng Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
| | - Zhaofu Zhang
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China.
| | - Yuzheng Guo
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China.
| |
Collapse
|
42
|
Harris SB, Lin YC, Puretzky AA, Liang L, Dyck O, Berlijn T, Eres G, Rouleau CM, Xiao K, Geohegan DB. Real-Time Diagnostics of 2D Crystal Transformations by Pulsed Laser Deposition: Controlled Synthesis of Janus WSSe Monolayers and Alloys. ACS NANO 2023; 17:2472-2486. [PMID: 36649648 DOI: 10.1021/acsnano.2c09952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Energetic processing methods such as hyperthermal implantation hold special promise to achieve the precision synthesis of metastable two-dimensional (2D) materials such as Janus monolayers; however, they require precise control. Here, we report a feedback approach to reveal and control the transformation pathways in materials synthesis by pulsed laser deposition (PLD) and apply it to investigate the transformation kinetics of monolayer WS2 crystals into Janus WSSe and WSe2 by implantation of Se clusters with different maximum kinetic energies (<42 eV/Se-atom) generated by laser ablation of a Se target. Real-time Raman spectroscopy and photoluminescence are used to assess the structure, composition, and optoelectronic quality of the monolayer crystal as it is implanted with well-controlled fluxes of selenium for different kinetic energies that are regulated with in situ ICCD imaging, ion probe, and spectroscopy diagnostics. First-principles calculations, XPS, and atomic-resolution HAADF STEM imaging are used to understand the intermediate alloy compositions and their vibrational modes to identify transformation pathways. The real-time kinetics measurements reveal highly selective top-layer conversion as WS2 transforms through WS2(1-x)Se2x alloys to WSe2 and provide the means to adjust processing conditions to achieve fractional and complete Janus WSSe monolayers as metastable transition states. The general approach demonstrates a real-time feedback method to achieve Janus layers or other metastable alloys of the desired composition, and a general means to adjust the structure and quality of materials grown by PLD, addressing priority research directions for precision synthesis with real-time adaptive control.
Collapse
Affiliation(s)
- Sumner B Harris
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Yu-Chuan Lin
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania16802, United States
| | - Alexander A Puretzky
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Liangbo Liang
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Ondrej Dyck
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Tom Berlijn
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Gyula Eres
- Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Christopher M Rouleau
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - Kai Xiao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| | - David B Geohegan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee37831, United States
| |
Collapse
|
43
|
NO 2 Physical-to-Chemical Adsorption Transition on Janus WSSe Monolayers Realized by Defect Introduction. Molecules 2023; 28:molecules28041644. [PMID: 36838632 PMCID: PMC9960547 DOI: 10.3390/molecules28041644] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
As is well known, NO2 adsorption plays an important role in gas sensing and treatment because it expands the residence time of compounds to be treated in plasma-catalyst combination. In this work, the adsorption behaviors and mechanism of NO2 over pristine and Se-vacancy defect-engineered WSSe monolayers have been systematically investigated using density functional theory (DFT). The adsorption energy calculation reveals that introducing Se vacancy acould result in a physical-to-chemical adsorption transition for the system. The Se vacancy, the most possible point defect, could work as the optimum adsorption site, and it dramatically raises the transferred-electron quantities at the interface, creating an obviously electronic orbital hybridization between the adsorbate and substrate and greatly improving the chemical activity and sensing sensitivity of the WSSe monolayer. The physical-to-chemical adsorption transition could meet different acquirements of gas collection and gas treatment. Our work broadens the application filed of the Janus WSSe as NO2-gas-sensitive materials. In addition, it is found that both keeping the S-rich synthetic environments and applying compression strain could make the introduction of Se vacancy easier, which provides a promising path for industrial synthesis of Janus WSSe monolayer with Se vacancy.
Collapse
|
44
|
Achieving type-II SnSSe/as van der waals heterostructure with satisfactory oxygen tolerance for optoelectronic and photovoltaic applications. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
45
|
Wan W, Zhao R, Ge Y, Liu Y. Janus V 2AsP monolayer : a ferromagnetic semiconductor with a narrow band gap, a high Curie temperature and controllable magnetic anisotropy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:065801. [PMID: 36379060 DOI: 10.1088/1361-648x/aca30c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
The search and design of two-dimensional (2D) magnetic semiconductors for spintronics applications are particularly significant. In this work, we investigated the electronic and magnetic properties of Janus structure based on Dirac half-metallic vanadium phosphide (VP) monolayer (ML) by first-principles calculations. Due to the vertical symmetry breaking, Janus V2AsP ML becomes an intrinsic ferromagnetic semiconductor with a narrow band gap of 0.21 eV. We analyzed the electronic structure and origin of the in-plane easy axis in Janus V2AsP. The electron effective mass is anisotropic and only 0.129 m0along thex-direction. The Curie temperatureTcand magnetic anisotropy energy (MAE) of Janus V2AsP reach 490 K and 178 µeV per V atom, respectively. A uniaxial tensile stainɛxof 5% can increase its band gap and MAE to 0.39 eV and 210.6 µeV per V atom while maintaining itsTcbeing above room temperature. Moreover, the direction of the easy axis can be changed between the in-planex- andy-direction by a small uniaxial tensile strainɛxof 2%. Our study can motivate further research on the design the magnetic semiconductors in Janus structures based on 2D Dirac half-metals for spintronics applications.
Collapse
Affiliation(s)
- Wenhui Wan
- State Key Laboratory of Metastable Materials Science and Technology Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Rui Zhao
- State Key Laboratory of Metastable Materials Science and Technology Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yanfeng Ge
- State Key Laboratory of Metastable Materials Science and Technology Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| | - Yong Liu
- State Key Laboratory of Metastable Materials Science and Technology Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, People's Republic of China
| |
Collapse
|
46
|
Tan HJ, Zhang HH, Li XB, Xu Y, Wei XL, Yin WJ, Liu LM. Crucial Role of Crystal Field on Determining the Evolution Process of Janus MoSSe Monolayer: A First-Principles Study. J Phys Chem Lett 2022; 13:9287-9294. [PMID: 36173671 DOI: 10.1021/acs.jpclett.2c02454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional Janus MXY materials have been successfully synthesized from their parent species by CVD, SEAR, or PLD techniques. However, their detailed evolution process and underlying atomistic mechanism are far from understood conclusively, which are prompts for further research. Here, taking Janus MoSSe as a representation, the evolution process from MoS2 is systematically investigated by first-principles calculation. The simulation shows that the lowest formation energy of MoS(2-δ)Seδ increases with selenylation ratio δ. Unexpectedly, Se atoms prefer to form a pair in next-nearest neighboring state (Se-NN-Se), eventually transferred into a growth rule of (6n + 1) during the evolution process. Particularly, it is demonstrated that the stability of the intermediate is mainly governed by the Mo 4d orbitals in different distorted triangular crystal fields, rendering a different degree of orbital splitting. Both the occupied and unoccupied Mo 4d orbitals of Se-NN-Se are farther from the Fermi level than other cases, which is clearly illustrated by d-band center theory. These findings will be helpful to understand the evolution process and the underlying atomistic mechanism of Janus MXY.
Collapse
Affiliation(s)
- Hua-Jian Tan
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Huan-Huan Zhang
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xi-Bo Li
- Department of Physics, Jinan University, Guangzhou 510632, China
| | - Ying Xu
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Xiao-Lin Wei
- Department of Physics and Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Xiangtan University, Xiangtan 411105, Hunan, China
| | - Wen-Jin Yin
- School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan 411201, China
- Key Laboratory of Intelligent Sensors and Advanced Sensing Materials of Hunan Province, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100083, China
| |
Collapse
|
47
|
Transition metal atom anchored by defective WSSe monolayer as bifunctional single atom catalyst for ORR and OER. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Xu D, Tan J, Hu H, Ouyang G. First-principles investigation of in-plane anisotropies in XYTe 4 monolayers with X = Hf, Zr, Ti and Y = Si, Ge. Phys Chem Chem Phys 2022; 24:22806-22814. [PMID: 36111982 DOI: 10.1039/d2cp03628b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In-plane anisotropic materials can introduce additional degrees of freedom while tuning their physical properties, which expand the range of opportunities for designing novel semiconductor devices and exploring distinct applications. In this work, we investigate the in-plane anisotropic electronic, elastic, transport and piezoelectric properties in a family of isostructural telluride XYTe4 (X = Hf, Zr and Ti, Y = Si and Ge) monolayers based on first-principles calculations. Six types of structures are verified to harbor direct bandgaps at the Γ point ranging between 0.98 and 1.36 eV. The orientation-dependent in-plane elastic stiffness of XYTe4 reveals the anisotropic and ultrasoft nature. Superior dielectric constants and giant switching effects are found in TiGeTe4 monolayers because of giant in-plane anisotropy. Strikingly, the piezoelectric coefficients of XSiTe4 differ by an order of magnitude along the two main directions. The strong in-plane anisotropic elastic properties of XYTe4 monolayers together with outstanding piezoelectric responses show that these structures can compete with that of transition metal dichalcogenides for applications in the field of flexible electronic devices.
Collapse
Affiliation(s)
- Degao Xu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China.
| | - Jianing Tan
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China.
| | - Huamin Hu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China.
| | - Gang Ouyang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China.
| |
Collapse
|
49
|
Gan Z, Paradisanos I, Estrada-Real A, Picker J, Najafidehaghani E, Davies F, Neumann C, Robert C, Wiecha P, Watanabe K, Taniguchi T, Marie X, Biskupek J, Mundszinger M, Leiter R, Kaiser U, Krasheninnikov AV, Urbaszek B, George A, Turchanin A. Chemical Vapor Deposition of High-Optical-Quality Large-Area Monolayer Janus Transition Metal Dichalcogenides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2205226. [PMID: 35906951 DOI: 10.1002/adma.202205226] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Indexed: 06/15/2023]
Abstract
One-pot chemical vapor deposition (CVD) growth of large-area Janus SeMoS monolayers is reported, with the asymmetric top (Se) and bottom (S) chalcogen atomic planes with respect to the central transition metal (Mo) atoms. The formation of these 2D semiconductor monolayers takes place upon the thermodynamic-equilibrium-driven exchange of the bottom Se atoms of the initially grown MoSe2 single crystals on gold foils with S atoms. The growth process is characterized by complementary experimental techniques including Raman and X-ray photoelectron spectroscopy, transmission electron microscopy, and the growth mechanisms are rationalized by first principle calculations. The remarkably high optical quality of the synthesized Janus monolayers is demonstrated by optical and magneto-optical measurements which reveal the strong exciton-phonon coupling and enable an exciton g-factor of -3.3.
Collapse
Affiliation(s)
- Ziyang Gan
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | | | - Ana Estrada-Real
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, Toulouse, 31077, France
| | - Julian Picker
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Emad Najafidehaghani
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Francis Davies
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Centre Dresden-Rossendorf, 01328, Dresden, Germany
| | - Christof Neumann
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Cedric Robert
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, Toulouse, 31077, France
| | - Peter Wiecha
- LAAS-CNRS, Université de Toulouse, Toulouse, 31400, France
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, 305-0044, Japan
| | - Xavier Marie
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, Toulouse, 31077, France
| | - Johannes Biskupek
- Central Facility of Electron Microscopy, Electron Microscopy Group of Material Science, University of Ulm, D-89081, Ulm, Germany
| | - Manuel Mundszinger
- Central Facility of Electron Microscopy, Electron Microscopy Group of Material Science, University of Ulm, D-89081, Ulm, Germany
| | - Robert Leiter
- Central Facility of Electron Microscopy, Electron Microscopy Group of Material Science, University of Ulm, D-89081, Ulm, Germany
| | - Ute Kaiser
- Central Facility of Electron Microscopy, Electron Microscopy Group of Material Science, University of Ulm, D-89081, Ulm, Germany
| | - Arkady V Krasheninnikov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Centre Dresden-Rossendorf, 01328, Dresden, Germany
- Department of Applied Physics, Aalto University, Aalto, 00076, Finland
| | - Bernhard Urbaszek
- Université de Toulouse, INSA-CNRS-UPS, LPCNO, Toulouse, 31077, France
- Department of Physics, Technische Universität Darmstadt, 64289, Darmstadt, Germany
| | - Antony George
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
- Abbe Center of Photonics, 07745, Jena, Germany
| | - Andrey Turchanin
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743, Jena, Germany
- Abbe Center of Photonics, 07745, Jena, Germany
| |
Collapse
|
50
|
Guo JX, Wu SY, Zhang GJ, Qiu QH, Guo TH. Single Ni atom embedded Janus WSSe monolayer as a cost-effective electrocatalyst for oxygen evolution reaction. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|