1
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Jiang Y, Wei Y, Zhou QY, Sun GQ, Fu XP, Levin N, Zhang Y, Liu WQ, Song N, Mohammed S, Davis BG, Koh MJ. Direct radical functionalization of native sugars. Nature 2024; 631:319-327. [PMID: 38898275 PMCID: PMC11236704 DOI: 10.1038/s41586-024-07548-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/09/2024] [Indexed: 06/21/2024]
Abstract
Naturally occurring (native) sugars and carbohydrates contain numerous hydroxyl groups of similar reactivity1,2. Chemists, therefore, rely typically on laborious, multi-step protecting-group strategies3 to convert these renewable feedstocks into reagents (glycosyl donors) to make glycans. The direct transformation of native sugars to complex saccharides remains a notable challenge. Here we describe a photoinduced approach to achieve site- and stereoselective chemical glycosylation from widely available native sugar building blocks, which through homolytic (one-electron) chemistry bypasses unnecessary hydroxyl group masking and manipulation. This process is reminiscent of nature in its regiocontrolled generation of a transient glycosyl donor, followed by radical-based cross-coupling with electrophiles on activation with light. Through selective anomeric functionalization of mono- and oligosaccharides, this protecting-group-free 'cap and glycosylate' approach offers straightforward access to a wide array of metabolically robust glycosyl compounds. Owing to its biocompatibility, the method was extended to the direct post-translational glycosylation of proteins.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Yi Wei
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Qian-Yi Zhou
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Guo-Quan Sun
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Xia-Ping Fu
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Nikita Levin
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Yijun Zhang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Wen-Qiang Liu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - NingXi Song
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shabaz Mohammed
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK
- Department of Chemistry, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Benjamin G Davis
- The Rosalind Franklin Institute, Harwell Science and Innovation Campus, Didcot, UK.
- Department of Pharmacology, University of Oxford, Oxford, UK.
- Department of Chemistry, University of Oxford, Oxford, UK.
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Yang J, Zhang L, Qiao W, Luo Y. Mycobacterium tuberculosis: Pathogenesis and therapeutic targets. MedComm (Beijing) 2023; 4:e353. [PMID: 37674971 PMCID: PMC10477518 DOI: 10.1002/mco2.353] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/03/2023] [Indexed: 09/08/2023] Open
Abstract
Tuberculosis (TB) remains a significant public health concern in the 21st century, especially due to drug resistance, coinfection with diseases like immunodeficiency syndrome (AIDS) and coronavirus disease 2019, and the lengthy and costly treatment protocols. In this review, we summarize the pathogenesis of TB infection, therapeutic targets, and corresponding modulators, including first-line medications, current clinical trial drugs and molecules in preclinical assessment. Understanding the mechanisms of Mycobacterium tuberculosis (Mtb) infection and important biological targets can lead to innovative treatments. While most antitubercular agents target pathogen-related processes, host-directed therapy (HDT) modalities addressing immune defense, survival mechanisms, and immunopathology also hold promise. Mtb's adaptation to the human host involves manipulating host cellular mechanisms, and HDT aims to disrupt this manipulation to enhance treatment effectiveness. Our review provides valuable insights for future anti-TB drug development efforts.
Collapse
Affiliation(s)
- Jiaxing Yang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Laiying Zhang
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| | - Wenliang Qiao
- Department of Thoracic Surgery, West China HospitalSichuan UniversityChengduSichuanChina
- Lung Cancer Center, West China HospitalSichuan UniversityChengduSichuanChina
| | - Youfu Luo
- Center of Infectious Diseases and State Key Laboratory of Biotherapy, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
4
|
Arokia Rajan MS, Thirunavukkarasu R, Joseph J, Palliyath GK, Somarathinam K, Kothandan G, Subaramaniyan K, Ullah R, Rajesh RP. Identification of the Seaweed Metabolites as Potential Anti-tubercular Agents Against Human Pantothenate synthetase: An In Silico Approach. Curr Microbiol 2023; 80:318. [PMID: 37578562 DOI: 10.1007/s00284-023-03422-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023]
Abstract
Tuberculosis is the disease which is caused due to the contagion of Mycobacterium tuberculosis. The multidrug resistance Mycobacterium tuberculosis is the main hassle in the treatment of this worldwide health threats. Pantothenate synthase is a legitimate goal for rational drug designing against Mycobacterium tuberculosis. The enzyme is most active in the presence of magnesium or manganese. Marine algal cell wall is rich in sulfated polysaccharides such as fucoidans (brown algae), κ-carrageenans (red algae), and ulvan (green algae) with various favorable biological activities such as anticoagulant, antiviral, antioxidative, anticancer, and immunomodulating activities. In this study, we have modeled binding modes of selected known anti-tubercular compounds and different solvent extract against pantothenate synthase using advanced docking program AutoDock 4.2 tool. In our current study, in silico experiments were carried out to determine if fucoidan, κ-carrageenan, and ulvan sulfated polysaccharides could be a potential target against PANc (pantothenate synthetase), with the goal of identifying potential inhibitors as anti-TB leads targeting PANc for further wet lab validation. Two bioactive compounds were docked to the Mtb pantothenate synthetase protein binding site, with docking scores ranging from - 5.57 to - 2.73. κ-carrageenan had the best pose and docking score, with a Ligand fit score of - 5.815. Ulvan did not dock with the protein. The molecular dynamics simulations were conducted with substrate and ligand bounded fucoidan and κ-carrageenan for 150 ns and the protein Mtb pantothenate synthetase showed a stable conformation in the simulation, with tight amino acid contributions binding to the ligand molecule. RMSD characterizes the conformation and stability of protein ligand complexes, with higher fluctuations indicating low stability and minimal low-level fluctuations indicating equilibration and stability. The graph for RMSF shows significant peaks due to fluctuations in active site regions and other peaks indicating the adaptation of the ligand molecule to the protein binding pocket. From the molecular dynamics study, it is clear that the compounds are having good binding affinity in the active site. The root mean square deviation, root mean square fluctuations, and radius of gyration are supportive evidences which helped us to conclude that the compounds κ-carrageenan and fucoidan are suitable lead molecules for inhibiting pantothenate synthetase. Based on these evidences, the natural compounds from seaweeds can be tested clinically either alone or in combinations against the protein, which could facilitate the designing or the synthesis of new lead molecules as drugs against the tuberculosis.
Collapse
Affiliation(s)
- Mary Shamya Arokia Rajan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, 600119, India
| | - Rajasekar Thirunavukkarasu
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, 600119, India.
| | - Jerrine Joseph
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, 600119, India
| | - Gangaraj Karyath Palliyath
- ICAR-Central Institute of Brackishwater Aquaculture, Indian Council of Agricultural Research, Chennai, 600028, India
| | - Kanagasabai Somarathinam
- Biopolymer Modelling and Protein Chemistry Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Gugan Kothandan
- Biopolymer Modelling and Protein Chemistry Laboratory, Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Kumaran Subaramaniyan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai, 600119, India
- PG and Research Department of Microbiology, Sri Sankara Arts and Science College (Autonomous), Kanchipuram, 631501, India
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, 12371, Riyadh, Saudi Arabia
| | | |
Collapse
|
5
|
Howieson VM, Zeng J, Kloehn J, Spry C, Marchetti C, Lunghi M, Varesio E, Soper A, Coyne AG, Abell C, van Dooren GG, Saliba KJ. Pantothenate biosynthesis in Toxoplasma gondii tachyzoites is not a drug target. INTERNATIONAL JOURNAL FOR PARASITOLOGY: DRUGS AND DRUG RESISTANCE 2023; 22:1-8. [PMID: 37004488 PMCID: PMC10102396 DOI: 10.1016/j.ijpddr.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/08/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Toxoplasma gondii is a pervasive apicomplexan parasite that can cause severe disease and death in immunocompromised individuals and the developing foetus. The treatment of toxoplasmosis often leads to serious side effects and novel drugs and drug targets are therefore actively sought. In 2014, Mageed and colleagues suggested that the T. gondii pantothenate synthetase, the enzyme responsible for the synthesis of the vitamin B5 (pantothenate), the precursor of the important cofactor, coenzyme A, is a good drug target. Their conclusion was based on the ability of potent inhibitors of the M. tuberculosis pantothenate synthetase to inhibit the proliferation of T. gondii tachyzoites. They also reported that the inhibitory effect of the compounds could be antagonised by supplementing the medium with pantothenate, supporting their conclusion that the compounds were acting on the intended target. Contrary to these observations, we find that compound SW314, one of the compounds used in the Mageed et al. study and previously shown to be active against M. tuberculosis pantothenate synthetase in vitro, is inactive against the T. gondii pantothenate synthetase and does not inhibit tachyzoite proliferation, despite gaining access into the parasite in situ. Furthermore, we validate the recent observation that the pantothenate synthetase gene in T. gondii can be disrupted without detrimental effect to the survival of the tachyzoite-stage parasite in the presence or absence of extracellular pantothenate. We conclude that the T. gondii pantothenate synthetase is not essential during the tachyzoite stage of the parasite and it is therefore not a target for drug discovery against T. gondii tachyzoites.
Collapse
|
6
|
Yan W, Zheng Y, Dou C, Zhang G, Arnaout T, Cheng W. The pathogenic mechanism of Mycobacterium tuberculosis: implication for new drug development. MOLECULAR BIOMEDICINE 2022; 3:48. [PMID: 36547804 PMCID: PMC9780415 DOI: 10.1186/s43556-022-00106-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), is a tenacious pathogen that has latently infected one third of the world's population. However, conventional TB treatment regimens are no longer sufficient to tackle the growing threat of drug resistance, stimulating the development of innovative anti-tuberculosis agents, with special emphasis on new protein targets. The Mtb genome encodes ~4000 predicted proteins, among which many enzymes participate in various cellular metabolisms. For example, more than 200 proteins are involved in fatty acid biosynthesis, which assists in the construction of the cell envelope, and is closely related to the pathogenesis and resistance of mycobacteria. Here we review several essential enzymes responsible for fatty acid and nucleotide biosynthesis, cellular metabolism of lipids or amino acids, energy utilization, and metal uptake. These include InhA, MmpL3, MmaA4, PcaA, CmaA1, CmaA2, isocitrate lyases (ICLs), pantothenate synthase (PS), Lysine-ε amino transferase (LAT), LeuD, IdeR, KatG, Rv1098c, and PyrG. In addition, we summarize the role of the transcriptional regulator PhoP which may regulate the expression of more than 110 genes, and the essential biosynthesis enzyme glutamine synthetase (GlnA1). All these enzymes are either validated drug targets or promising target candidates, with drugs targeting ICLs and LAT expected to solve the problem of persistent TB infection. To better understand how anti-tuberculosis drugs act on these proteins, their structures and the structure-based drug/inhibitor designs are discussed. Overall, this investigation should provide guidance and support for current and future pharmaceutical development efforts against mycobacterial pathogenesis.
Collapse
Affiliation(s)
- Weizhu Yan
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Yanhui Zheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Chao Dou
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| | - Guixiang Zhang
- grid.13291.380000 0001 0807 1581Division of Gastrointestinal Surgery, Department of General Surgery and Gastric Cancer center, West China Hospital, Sichuan University, No. 37. Guo Xue Xiang, Chengdu, 610041 China
| | - Toufic Arnaout
- Kappa Crystals Ltd., Dublin, Ireland ,MSD Dunboyne BioNX, Co. Meath, Ireland
| | - Wei Cheng
- grid.412901.f0000 0004 1770 1022Division of Respiratory and Critical Care Medicine, Respiratory Infection and Intervention Laboratory of Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, 610041 China
| |
Collapse
|
7
|
Siddique S, Radakovic ZS, Hiltl C, Pellegrin C, Baum TJ, Beasley H, Bent AF, Chitambo O, Chopra D, Danchin EGJ, Grenier E, Habash SS, Hasan MS, Helder J, Hewezi T, Holbein J, Holterman M, Janakowski S, Koutsovoulos GD, Kranse OP, Lozano-Torres JL, Maier TR, Masonbrink RE, Mendy B, Riemer E, Sobczak M, Sonawala U, Sterken MG, Thorpe P, van Steenbrugge JJM, Zahid N, Grundler F, Eves-van den Akker S. The genome and lifestage-specific transcriptomes of a plant-parasitic nematode and its host reveal susceptibility genes involved in trans-kingdom synthesis of vitamin B5. Nat Commun 2022; 13:6190. [PMID: 36261416 PMCID: PMC9582021 DOI: 10.1038/s41467-022-33769-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Plant-parasitic nematodes are a major threat to crop production in all agricultural systems. The scarcity of classical resistance genes highlights a pressing need to find new ways to develop nematode-resistant germplasm. Here, we sequence and assemble a high-quality phased genome of the model cyst nematode Heterodera schachtii to provide a platform for the first system-wide dual analysis of host and parasite gene expression over time, covering all major parasitism stages. Analysis of the hologenome of the plant-nematode infection site identified metabolic pathways that were incomplete in the parasite but complemented by the host. Using a combination of bioinformatic, genetic, and biochemical approaches, we show that a highly atypical completion of vitamin B5 biosynthesis by the parasitic animal, putatively enabled by a horizontal gene transfer from a bacterium, is required for full pathogenicity. Knockout of either plant-encoded or now nematode-encoded steps in the pathway significantly reduces parasitic success. Our experiments establish a reference for cyst nematodes, further our understanding of the evolution of plant-parasitism by nematodes, and show that congruent differential expression of metabolic pathways in the infection hologenome represents a new way to find nematode susceptibility genes. The approach identifies genome-editing-amenable targets for future development of nematode-resistant crops.
Collapse
Affiliation(s)
- Shahid Siddique
- Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Zoran S Radakovic
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
- P.H. Petersen Saatzucht Lundsgaard GmbH, D-24977, Grundhof, Germany
| | - Clarissa Hiltl
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Clement Pellegrin
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Helen Beasley
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Oliver Chitambo
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Divykriti Chopra
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Etienne G J Danchin
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Eric Grenier
- IGEPP, INRAE, Institut Agro, Université Rennes, 35650, Le Rheu, France
| | - Samer S Habash
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
- BASF Vegetable Seeds, Napoleonsweg 152, 6083, AB, Nunhem, The Netherlands
| | - M Shamim Hasan
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Julia Holbein
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
- Solynta, Dreijenlaan 2, 6703, HA, Wageningen, The Netherlands
| | - Sławomir Janakowski
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | | | - Olaf P Kranse
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Jose L Lozano-Torres
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Rick E Masonbrink
- Genome Informatics Facility, Iowa State University, Ames, IA, 50010, USA
| | - Badou Mendy
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Esther Riemer
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Unnati Sonawala
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Peter Thorpe
- Mackenzie Institute for Early Diagnosis, School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Joris J M van Steenbrugge
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Nageena Zahid
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-University of Bonn, Meckenheimer Allee 168, D-53115, Bonn, Germany
| | - Florian Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany.
| | | |
Collapse
|
8
|
Togre NS, Vargas AM, Bhargavi G, Mallakuntla MK, Tiwari S. Fragment-Based Drug Discovery against Mycobacteria: The Success and Challenges. Int J Mol Sci 2022; 23:10669. [PMID: 36142582 PMCID: PMC9500838 DOI: 10.3390/ijms231810669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of drug-resistant mycobacteria, including Mycobacterium tuberculosis (Mtb) and non-tuberculous mycobacteria (NTM), poses an increasing global threat that urgently demands the development of new potent anti-mycobacterial drugs. One of the approaches toward the identification of new drugs is fragment-based drug discovery (FBDD), which is the most ingenious among other drug discovery models, such as structure-based drug design (SBDD) and high-throughput screening. Specialized techniques, such as X-ray crystallography, nuclear magnetic resonance spectroscopy, and many others, are part of the drug discovery approach to combat the Mtb and NTM global menaces. Moreover, the primary drawbacks of traditional methods, such as the limited measurement of biomolecular toxicity and uncertain bioavailability evaluation, are successfully overcome by the FBDD approach. The current review focuses on the recognition of fragment-based drug discovery as a popular approach using virtual, computational, and biophysical methods to identify potent fragment molecules. FBDD focuses on designing optimal inhibitors against potential therapeutic targets of NTM and Mtb (PurC, ArgB, MmpL3, and TrmD). Additionally, we have elaborated on the challenges associated with the FBDD approach in the identification and development of novel compounds. Insights into the applications and overcoming the challenges of FBDD approaches will aid in the identification of potential therapeutic compounds to treat drug-sensitive and drug-resistant NTMs and Mtb infections.
Collapse
Affiliation(s)
| | | | | | | | - Sangeeta Tiwari
- Department of Biological Sciences & Border Biomedical Research Centre, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
9
|
Glockzin K, Meek TD, Katzfuss A. Characterization of adenine phosphoribosyltransferase (APRT) activity in Trypanosoma brucei brucei: Only one of the two isoforms is kinetically active. PLoS Negl Trop Dis 2022; 16:e0009926. [PMID: 35104286 PMCID: PMC8836349 DOI: 10.1371/journal.pntd.0009926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/11/2022] [Accepted: 01/22/2022] [Indexed: 11/17/2022] Open
Abstract
Human African Trypanosomiasis (HAT), also known as sleeping sickness, is a Neglected Tropical Disease endemic to 36 African countries, with approximately 70 million people currently at risk for infection. Current therapeutics are suboptimal due to toxicity, adverse side effects, and emerging resistance. Thus, both effective and affordable treatments are urgently needed. The causative agent of HAT is the protozoan Trypanosoma brucei ssp. Annotation of its genome confirms previous observations that T. brucei is a purine auxotroph. Incapable of de novo purine synthesis, these protozoan parasites rely on purine phosphoribosyltransferases to salvage purines from their hosts for the synthesis of purine monophosphates. Complete and accurate genome annotations in combination with the identification and characterization of the catalytic activity of purine salvage enzymes enables the development of target-specific therapies in addition to providing a deeper understanding of purine metabolism in T. brucei. In trypanosomes, purine phosphoribosyltransferases represent promising drug targets due to their essential and central role in purine salvage. Enzymes involved in adenine and adenosine salvage, such as adenine phosphoribosyltransferases (APRTs, EC 2.4.2.7), are of particular interest for their potential role in the activation of adenine and adenosine-based pro-drugs. Analysis of the T. brucei genome shows two putative aprt genes: APRT1 (Tb927.7.1780) and APRT2 (Tb927.7.1790). Here we report studies of the catalytic activity of each putative APRT, revealing that of the two T. brucei putative APRTs, only APRT1 is kinetically active, thereby signifying a genomic misannotation of Tb927.7.1790 (putative APRT2). Reliable genome annotation is necessary to establish potential drug targets and identify enzymes involved in adenine and adenosine-based pro-drug activation.
Collapse
Affiliation(s)
- Kayla Glockzin
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Thomas D. Meek
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (TDM); (AK)
| | - Ardala Katzfuss
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail: (TDM); (AK)
| |
Collapse
|
10
|
Barros ILE, Meneguello JE, Ghiraldi-Lopes LD, Arita GS, de Oliveira Silva JV, Ferracioli KRC, de Lima Scodro RB, Siqueira VLD, Pilau EJ, Campanerut-Sá PAZ, Cardoso RF. PanB over-representation as part of pyrazinamide action: a proteomic insight. Future Microbiol 2021; 16:1303-1308. [PMID: 34743541 DOI: 10.2217/fmb-2020-0307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Pyrazinamide (PZA) represents a milestone as a first-line antituberculosis drug due to its sterilizing activity against Mycobacterium tuberculosis. Materials & Methods: The protein changes induced by subinhibitory PZA exposure of M. tuberculosis in acidic pH were evaluated by a proteomic approach. Results: Among the 1059 M. tuberculosis proteins identified, the specific acidification in the culture medium induced the over-representation of MurF (Rv2157c), and its under-representation was induced by 12 h of PZA exposure. PanB (Rv2225) was over-represented at 24 h of PZA exposure. Conclusion: The authors highlight the over-representation of PanB in M. tuberculosis correlates of PZA action in acidic pH, reinforcing the role of the pantothenate pathway as a bacillus drug target to be explored.
Collapse
Affiliation(s)
| | - Jean Eduardo Meneguello
- Postgraduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, PR, Brazil
| | | | - Gláucia Sayuri Arita
- Postgraduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, PR, Brazil
| | | | - Katiany Rizzieri Caleffi Ferracioli
- Postgraduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, PR, Brazil.,Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, PR, Brazil
| | - Regiane Bertin de Lima Scodro
- Postgraduate Program in Health Sciences, State University of Maringá, 87020-900, PR, Brazil.,Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, PR, Brazil
| | - Vera Lucia Dias Siqueira
- Postgraduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, PR, Brazil.,Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, PR, Brazil
| | | | - Paula Aline Zanetti Campanerut-Sá
- Postgraduate Program in Health Sciences, State University of Maringá, 87020-900, PR, Brazil.,Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, PR, Brazil
| | - Rosilene Fressatti Cardoso
- Postgraduate Program in Health Sciences, State University of Maringá, 87020-900, PR, Brazil.,Postgraduate Program in Biosciences & Physiopathology, State University of Maringá, 87020-900, PR, Brazil.,Department of Clinical Analysis & Biomedicine, State University of Maringá, 87020-900, PR, Brazil
| |
Collapse
|
11
|
Abidin MZ, Saravanan T, Strauss E, Poelarends GJ. The broad amine scope of pantothenate synthetase enables the synthesis of pharmaceutically relevant amides. Org Biomol Chem 2021; 19:4515-4519. [PMID: 33913984 PMCID: PMC8150671 DOI: 10.1039/d1ob00238d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/23/2021] [Indexed: 11/30/2022]
Abstract
Pantothenate synthetase from Escherichia coli (PSE. coli) catalyzes the ATP-dependent condensation of (R)-pantoic acid and β-alanine to yield (R)-pantothenic acid (vitamin B5), the biosynthetic precursor to coenzyme A. Herein we show that besides the natural amine substrate β-alanine, the enzyme accepts a wide range of structurally diverse amines including 3-amino-2-fluoropropionic acid, 4-amino-2-hydroxybutyric acid, 4-amino-3-hydroxybutyric acid, and tryptamine for coupling to the native carboxylic acid substrate (R)-pantoic acid to give amide products with up to >99% conversion. The broad amine scope of PSE. coli enabled the efficient synthesis of pharmaceutically-relevant vitamin B5 antimetabolites with excellent isolated yield (up to 89%). This biocatalytic amide synthesis strategy may prove to be useful in the quest for new antimicrobials that target coenzyme A biosynthesis and utilisation.
Collapse
Affiliation(s)
- Mohammad Z Abidin
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. and Department of Animal Products Technology, Gadjah Mada University, Bulaksumur, Yogyakarta 55281, Indonesia
| | - Thangavelu Saravanan
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands. and School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India.
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
12
|
Butman HS, Kotzé TJ, Dowd CS, Strauss E. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Front Cell Infect Microbiol 2020; 10:605662. [PMID: 33384970 PMCID: PMC7770189 DOI: 10.3389/fcimb.2020.605662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.
Collapse
Affiliation(s)
- Hailey S. Butman
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Timothy J. Kotzé
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
13
|
Suresh A, Srinivasarao S, Khetmalis YM, Nizalapur S, Sankaranarayanan M, Gowri Chandra Sekhar KV. Inhibitors of pantothenate synthetase of Mycobacterium tuberculosis - a medicinal chemist perspective. RSC Adv 2020; 10:37098-37115. [PMID: 35521286 PMCID: PMC9057165 DOI: 10.1039/d0ra07398a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/30/2020] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB), one of the most prevalent infections, is on the rise today. Although there are drugs available in the market to combat this lethal disorder, there are several shortcomings with the current drug regimen, such as prolonged treatment period, drug resistance, high cost, etc. Hence, it is inevitable for the current researchers across the globe to embark on new strategies for TB drug discovery, which will yield highly active low cost drugs with a shorter treatment period. To achieve this, novel strategies need to be adopted to discover new drugs. Pantothenate Synthetase (PS) is one such striking drug target in Mycobacterium tuberculosis (MTB). It was observed that the pantothenate biosynthetic pathway is crucial for the pathogenicity of MTB. Pantothenate is absent in mammals and needs to be obtained from dietary sources. Hence, the pantothenate biosynthesis pathway is an impending target for emerging new therapeutics to treat TB. Worldwide, several approaches have been implemented by researchers in the quest for these inhibitors such as high-throughput screening, simulating the reaction intermediate pantoyl adenylate, use of vibrant combinatorial chemistry, hybridization approach, virtual screening of databases, inhibitors based on the crystal structure of MTB PS, etc. The present review recapitulates current developments in PS inhibitors, important analogues of numerous metabolic intermediates, and newly established inhibitors with innumerable chemical structures.
Collapse
Affiliation(s)
- Amaroju Suresh
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | - Singireddi Srinivasarao
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | - Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Medchal District Hyderabad-500078 Telangana India +91 40 66303527
| | | | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science-Pilani Pilani Campus Pilani 333031 Rajasthan India
| | | |
Collapse
|
14
|
Parker H, Lorenc R, Ruelas Castillo J, Karakousis PC. Mechanisms of Antibiotic Tolerance in Mycobacterium avium Complex: Lessons From Related Mycobacteria. Front Microbiol 2020; 11:573983. [PMID: 33101247 PMCID: PMC7554310 DOI: 10.3389/fmicb.2020.573983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/01/2020] [Indexed: 11/13/2022] Open
Abstract
Mycobacterium avium complex (MAC) species are the most commonly isolated nontuberculous mycobacteria to cause pulmonary infections worldwide. The lengthy and complicated therapy required to cure lung disease due to MAC is at least in part due to the phenomenon of antibiotic tolerance. In this review, we will define antibiotic tolerance and contrast it with persistence and antibiotic resistance. We will discuss physiologically relevant stress conditions that induce altered metabolism and antibiotic tolerance in mycobacteria. Next, we will review general molecular mechanisms underlying bacterial antibiotic tolerance, particularly those described for MAC and related mycobacteria, including Mycobacterium tuberculosis, with a focus on genes containing significant sequence homology in MAC. An improved understanding of antibiotic tolerance mechanisms can lay the foundation for novel approaches to target antibiotic-tolerant mycobacteria, with the goal of shortening the duration of curative treatment and improving survival in patients with MAC.
Collapse
Affiliation(s)
- Harley Parker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Rachel Lorenc
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jennie Ruelas Castillo
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Petros C Karakousis
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States.,Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
15
|
Makarov V, Salina E, Reynolds RC, Kyaw Zin PP, Ekins S. Molecule Property Analyses of Active Compounds for Mycobacterium tuberculosis. J Med Chem 2020; 63:8917-8955. [PMID: 32259446 DOI: 10.1021/acs.jmedchem.9b02075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tuberculosis (TB) continues to claim the lives of around 1.7 million people per year. Most concerning are the reports of multidrug drug resistance. Paradoxically, this global health pandemic is demanding new therapies when resources and interest are waning. However, continued tuberculosis drug discovery is critical to address the global health need and burgeoning multidrug resistance. Many diverse classes of antitubercular compounds have been identified with activity in vitro and in vivo. Our analyses of over 100 active leads are representative of thousands of active compounds generated over the past decade, suggests that they come from few chemical classes or natural product sources. We are therefore repeatedly identifying compounds that are similar to those that preceded them. Our molecule-centered cheminformatics analyses point to the need to dramatically increase the diversity of chemical libraries tested and get outside of the historic Mtb property space if we are to generate novel improved antitubercular leads.
Collapse
Affiliation(s)
- Vadim Makarov
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Elena Salina
- FRC Fundamentals of Biotechnology, Russian Academy of Science, Moscow 119071, Russia
| | - Robert C Reynolds
- Department of Medicine, Division of Hematology and Oncology, University of Alabama at Birmingham, NP 2540 J, 1720 Second Avenue South, Birmingham, Alabama 35294-3300, United States
| | - Phyo Phyo Kyaw Zin
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States.,Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510 Raleigh, North Carolina 27606, United States
| |
Collapse
|
16
|
Rojony R, Martin M, Campeau A, Wozniak JM, Gonzalez DJ, Jaiswal P, Danelishvili L, Bermudez LE. Quantitative analysis of Mycobacterium avium subsp . hominissuis proteome in response to antibiotics and during exposure to different environmental conditions. Clin Proteomics 2019; 16:39. [PMID: 31749666 PMCID: PMC6852889 DOI: 10.1186/s12014-019-9260-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/04/2019] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium avium subsp. hominissuis (MAH) belongs to the clinically important non-tuberculous mycobacterial group that infects immunocompromised patients and individuals with underling lung conditions. The need for prolonged therapy is a major challenge of MAH treatment, influencing the development of persistent and drug-resistant infections. The reason why bactericidal drugs take several months to eliminate MAH is unknown. To investigate MAH proteome remodeling under aerobic, anaerobic and biofilm conditions (as it is encountered in patient lungs) and identify metabolic changes potentially associated with bacterial persistent state, we performed the relative protein quantitative analysis using Tandem Mass Tag Mass Spectrometry sequencing. MAH was exposed to amikacin (4 μg/ml) and clarithromycin (16 μg/ml) under aerobic, anaerobic or biofilm condition for 24 h and the response was compared with bacterial proteomics of the corresponding conditions. Overall, 4000 proteins were identified out of 5313 MAH proteome of across all experimental groups. Numerous sets of de novo synthesized proteins belonging to metabolic pathways not evidenced in aerobic condition were found commonly enriched in both anaerobic and biofilm conditions, including pantothenate and CoA biosynthesis, glycerolipid metabolism, nitrogen metabolism and chloroalkene degradation, known to be associated with bacterial tolerance in M. tuberculosis. The common pathways observed in anaerobic and biofilm conditions following drug treatments were peptidoglycan biosynthesis, glycerophospholipid metabolism and protein export. The LprB lipoprotein, highly synthesized in MAH biofilms during drug treatments and shown to be essential for M. tuberculosis virulence and survival in vivo, was selected and overexpressed in MAH. Results demonstrate that LprB is secreted in MAH biofilms and the overexpression clone is more tolerant to antimicrobials than the wild-type strain. Our study identified promising metabolic pathways that can be targeted to prevent the bacterial tolerance mechanism and, subsequently, reduce the length of MAH therapy.
Collapse
Affiliation(s)
- Rajoana Rojony
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
| | - Matthew Martin
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, USA
| | - Anaamika Campeau
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - Jacob M. Wozniak
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - David J. Gonzalez
- Department of Pharmacology, School of Medicine, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, USA
| | - Pankaj Jaiswal
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, USA
| | - L. Danelishvili
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, USA
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, USA
| |
Collapse
|
17
|
Damale MG, Patil RB, Ansari SA, Alkahtani HM, Almehizia AA, Shinde DB, Arote R, Sangshetti J. Molecular docking, pharmacophore based virtual screening and molecular dynamics studies towards the identification of potential leads for the management of H. pylori. RSC Adv 2019; 9:26176-26208. [PMID: 35531003 PMCID: PMC9070323 DOI: 10.1039/c9ra03281a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
The enzyme pantothenate synthetase panC is one of the potential new antimicrobial drug targets, but it is poorly characterized in H. pylori. H. pylori infection can cause gastric cancer and the management of H. pylori infection is crucial in various gastric ulcers and gastric cancer. The current study describes the use of innovative drug discovery and design approaches like comparative metabolic pathway analysis (Metacyc), exploration of database of essential genes (DEG), homology modelling, pharmacophore based virtual screening, ADMET studies and molecular dynamics simulations in identifying potential lead compounds for the H. pylori specific panC. The top ranked virtual hits STOCK1N-60270, STOCK1N-63040, STOCK1N-44424 and STOCK1N-63231 can act as templates for synthesis of new H. pylori inhibitors and they hold a promise in the management of gastric cancers caused by H. pylori.
Collapse
Affiliation(s)
- Manoj G Damale
- Department of Pharmaceutical Medicinal Chemistry, Srinath College of Pharmacy Aurangabad M.S. 431136 India
| | - Rajesh B Patil
- Sinhgad Technical Education Society's, Smt. Kashibai Navale College of Pharmacy Kondhwa (Bk) Pune India
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Po Box 2454 Riyadh 11451 Saudi Arabia
| | - Hamad M Alkahtani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Po Box 2454 Riyadh 11451 Saudi Arabia
| | - Abdulrahman A Almehizia
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University Po Box 2454 Riyadh 11451 Saudi Arabia
| | | | - Rohidas Arote
- Department of Molecular Genetics, School of Dentistry, Seoul National University Seoul Republic of Korea
| | - Jaiprakash Sangshetti
- Y. B. Chavan College of Pharmacy Dr Rafiq Zakaria Campus, Rauza Baugh Aurangabad MS India
| |
Collapse
|
18
|
Liyanage SI, Gupta M, Wu F, Taylor M, Carter MD, Weaver DF. Inhibition of Pantothenate Synthetase by Analogs of β-Alanine Precursor Ineffective as an Antibacterial Strategy. Chemotherapy 2019; 64:22-27. [PMID: 31167192 DOI: 10.1159/000499899] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 03/24/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Pantothenate, the fundamental precursor to coenzyme A, is required for optimal growth and virulence of microbial pathogens. It is synthesized by the enzyme-catalyzed condensation of β-alanine and pantoate, which has shown susceptibility to inhibition by analogs of its molecular constituents. Accordingly, analogs of β-alanine are gaining inquiry as potential antimicrobial chemotherapeutics. METHODS We synthesized and evaluated 35 derivatives of β-alanine, substituted at the α, β, amine, and carboxyl sites, derived from in silico, dynamic molecular modeling to be potential competitive inhibitors of pantothenate synthetase. Employing the Clinical Laboratory Standards M7-A6 broth microdilution method, we tested these for inhibition of growth in Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. RESULTS All compounds proved entirely ineffective in all species tested, with no inhibition of growth being observed up to 200 µM/mL. CONCLUSIONS Upon revision of the literature, we conclude that high enzyme selectivity or external salvage mechanisms may render this strategy futile against most bacteria.
Collapse
Affiliation(s)
- S Imindu Liyanage
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Mayuri Gupta
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Fan Wu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Marcy Taylor
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael D Carter
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Donald F Weaver
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada, .,Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada, .,Department of Chemistry, University of Toronto, Toronto, Ontario, Canada, .,Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada,
| |
Collapse
|
19
|
Tigu F, Zhang J, Liu G, Cai Z, Li Y. A highly active pantothenate synthetase from Corynebacterium glutamicum enables the production of d-pantothenic acid with high productivity. Appl Microbiol Biotechnol 2018; 102:6039-6046. [DOI: 10.1007/s00253-018-9017-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 04/02/2018] [Accepted: 04/10/2018] [Indexed: 11/28/2022]
|
20
|
Ashok D, Gundu S, Aamate VK, Devulapally MG, Bathini R, Manga V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Pandey B, Grover S, Goyal S, Kumari A, Singh A, Jamal S, Kaur J, Grover A. Alanine mutation of the catalytic sites of Pantothenate Synthetase causes distinct conformational changes in the ATP binding region. Sci Rep 2018; 8:903. [PMID: 29343701 PMCID: PMC5772511 DOI: 10.1038/s41598-017-19075-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/19/2017] [Indexed: 02/01/2023] Open
Abstract
The enzyme Pantothenate synthetase (PS) represents a potential drug target in Mycobacterium tuberculosis. Its X-ray crystallographic structure has demonstrated the significance and importance of conserved active site residues including His44, His47, Asn69, Gln72, Lys160 and Gln164 in substrate binding and formation of pantoyl adenylate intermediate. In the current study, molecular mechanism of decreased affinity of the enzyme for ATP caused by alanine mutations was investigated using molecular dynamics (MD) simulations and free energy calculations. A total of seven systems including wild-type + ATP, H44A + ATP, H47A + ATP, N69A + ATP, Q72A + ATP, K160A + ATP and Q164A + ATP were subjected to 50 ns MD simulations. Docking score, MM-GBSA and interaction profile analysis showed weak interactions between ATP (substrate) and PS (enzyme) in H47A and H160A mutants as compared to wild-type, leading to reduced protein catalytic activity. However, principal component analysis (PCA) and free energy landscape (FEL) analysis revealed that ATP was strongly bound to the catalytic core of the wild-type, limiting its movement to form a stable complex as compared to mutants. The study will give insight about ATP binding to the PS at the atomic level and will facilitate in designing of non-reactive analogue of pantoyl adenylate which will act as a specific inhibitor for PS.
Collapse
Affiliation(s)
- Bharati Pandey
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Sonam Grover
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, 304022, India
| | - Anchala Kumari
- Department of Biotechnology, TERI University, VasantKunj, New Delhi, 110070, India
| | - Aditi Singh
- Department of Biotechnology, TERI University, VasantKunj, New Delhi, 110070, India
| | - Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, Rajasthan, 304022, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
22
|
de Oliveira Viana J, Scotti MT, Scotti L. Molecular Docking Studies in Multitarget Antitubercular Drug Discovery. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/7653_2018_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
23
|
Dadová J, Wu KJ, Isenegger PG, Errey JC, Bernardes GL, Chalker JM, Raich L, Rovira C, Davis BG. Precise Probing of Residue Roles by Post-Translational β,γ-C,N Aza-Michael Mutagenesis in Enzyme Active Sites. ACS CENTRAL SCIENCE 2017; 3:1168-1173. [PMID: 29202018 PMCID: PMC5704290 DOI: 10.1021/acscentsci.7b00341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Biomimicry valuably allows the understanding of the essential chemical components required to recapitulate biological function, yet direct strategies for evaluating the roles of amino acids in proteins can be limited by access to suitable, subtly-altered unnatural variants. Here we describe a strategy for dissecting the role of histidine residues in enzyme active sites using unprecedented, chemical, post-translational side-chain-β,γ C-N bond formation. Installation of dehydroalanine (as a "tag") allowed the testing of nitrogen conjugate nucleophiles in "aza-Michael"-1,4-additions (to "modify"). This allowed the creation of a regioisomer of His (iso-His, Hisiso) linked instead through its pros-Nπ atom rather than naturally linked via C4, as well as an aza-altered variant aza-Hisiso. The site-selective generation of these unnatural amino acids was successfully applied to probe the contributing roles (e.g., size, H-bonding) of His residues toward activity in the model enzymes subtilisin protease from Bacillus lentus and Mycobacterium tuberculosis pantothenate synthetase.
Collapse
Affiliation(s)
- Jitka Dadová
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Kuan-Jung Wu
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Patrick G. Isenegger
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - James C. Errey
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Gonçalo
J. L. Bernardes
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Justin M. Chalker
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Lluís Raich
- Departament
de Química Inorgànica i Orgànica (secció
de Química Orgànica) & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (secció
de Química Orgànica) & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| | - Benjamin G. Davis
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
24
|
Fernandes GFDS, Man Chin C, Dos Santos JL. Advances in Drug Discovery of New Antitubercular Multidrug-Resistant Compounds. Pharmaceuticals (Basel) 2017; 10:ph10020051. [PMID: 28587160 PMCID: PMC5490408 DOI: 10.3390/ph10020051] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/09/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB), a disease caused mainly by the Mycobacterium tuberculosis (Mtb), is according to the World Health Organization (WHO) the infectious disease responsible for the highest number of deaths worldwide. The increased number of multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains, and the ineffectiveness of the current treatment against latent tuberculosis are challenges to be overcome in the coming years. The scenario of drug discovery becomes alarming when it is considered that the number of new drugs does not increase proportionally to the emergence of drug resistance. In this review, we will demonstrate the current advances in antitubercular drug discovery, focusing on the research of compounds with potent antituberculosis activity against MDR-TB strains. Herein, active compounds against MDR-TB with minimum inhibitory concentrations (MICs) less than 11 µM and low toxicity published in the last 4 years in the databases PubMed, Web of Science and Scopus will be presented and discussed.
Collapse
Affiliation(s)
- Guilherme Felipe Dos Santos Fernandes
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Chung Man Chin
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| | - Jean Leandro Dos Santos
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800060, Brazil.
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800903, Brazil.
| |
Collapse
|
25
|
Wang Y, Wang S, Bao Y, Li T, Chang X, Yang G, Meng X. Multipathway Integrated Adjustment Mechanism of Glycyrrhiza Triterpenes Curing Gastric Ulcer in Rats. Pharmacogn Mag 2017; 13:209-215. [PMID: 28539709 PMCID: PMC5421414 DOI: 10.4103/0973-1296.204550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/02/2016] [Indexed: 12/17/2022] Open
Abstract
Background: Gastric ulcer is a common chronic disease in human digestive system, which is difficult to cure, easy to relapse, and endangers human health seriously. Compared with western medicine, traditional Chinese medicine has a unique advantage in improving the general situation, stablizing medical condition, and with little side effects. Glycyrrhiza known as “king of all the medicine”, has a range of pharmacological activities and is commonly used in a variety of proprietary Chinese medicines and formulations. Objective: On the basis of explicit antiulcer effect of Glycyrrhiza triterpenes, the molecular mechanisms of its therapeutic effect on acetic acid induced gastric ulcer in rats were explored. Materials and Methods: Acetic acid induced gastric ulcer model in rats was established to evaluate the curing effect of G. triterpenes and all of the rats were randomised into six groups: Control group, model group, omeprazole group (0.8 mg/mL), triterpenes high dose group (378.0 mg/mL), triterpenes middle dose group (126.0 mg/mL), and triterpenes low dose group (42.0 mg/mL). All rats in groups were orally administered the active group solution 1.5 mL once daily (model and control groups with saline) for 7 days. HPLC-TOF-MS analysis method was performed to obtain the plasma metabolites spectrums of control group, model group, triterpenes high, middle and low dose groups. Results: A total of 11 differential endogenous metabolites related to the therapeutic effect of G. triterpenes were identified, including tryptophan, phingosine-1-phosphate, pantothenic acid, and so on, among which tryptophan and phingosine-1-phosphate are related with the calcium signaling pathway and arachidonic acid (AA) metabolism. At the same time, in order to verify the above results, quantitative real time polymerase chain reaction were performed to evaluate the expression of H+-K+-ATPase alpha mRNA and phospholipase a 2 mRNA in relational signaling pathways. Combined with statistical analysis of plasma metabolic spectrum and gene expression in tissue, it is suggested that G. triterpenes has antiulcer effect on gastric ulcer in rats. Conclusion: G. triterpenes has a certain regulating effect on the metabolism of tryptophan, AA, sphingosine, and other endogenous metabolites, and we speculated that the antiulcer potential of G. triterpenes can be primarily attributed to its inhibiting gastric acid secretion, reducing the release of inflammatory mediators, and protecting gastric mucosa effects to prevent the further development of gastric ulcer. SUMMARY G. triterpenes can obviously relieve the symptoms of gastric ulcer, especially the low dose group. G. triterpenes can effectively regulate the amount of small molecule metablism in gastric ulcer rats in vivo, including tryptophan, phingosine-1-phosphate, etc. G. triterpenes resisting gastric ulcer is probably by regulating arachidonic acid metabolism, sphingosine metabolism, etc. Down-regulation of H+-K+-ATPase alpha subunit mRNA and up-regulation of PLA2 mRNA in gastric tissue of dose group validated the possible mechanisms of G. triterpenes for the treatment of gastric ulcer
Abbreviations used: HP: Helicobacter pylori, ECL: enterochromaffinlike, TCM: Traditional Chinese medicine; HPLC: High Performance Liquid Chromatography, HPLC/MS: High Performance Liquid chromatography Mass Spectrometry, HPLC-TOF-MS: High Performance Liquid Chromatography and Tof Mass Spectrometry, SD: Sprague Dawley, PCDL: Personal Compound Database and Library, MPP: Mass Profiler Professiona; PCA: principal component analysis, RT-PCR: real time polymerase chain reaction, PGE 2: Prostaglandin E2, COX1: cyclooxygenase 1 S1P: Sphingosine-1-phosphate, AA: Arachidonic acid, 5-HT: 5- hydroxytryptamine.
Collapse
Affiliation(s)
- Ying Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Shuai Wang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, People's Republic of China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, People's Republic of China
| | - Yongrui Bao
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, People's Republic of China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, People's Republic of China
| | - Tianjiao Li
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, People's Republic of China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, People's Republic of China
| | - Xin Chang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Guanlin Yang
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China
| | - Xiansheng Meng
- School of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, People's Republic of China.,Component Medicine Engineering Research Center of Liaoning Province, Dalian, People's Republic of China.,Liaoning Province Modern Chinese Medicine Research Engineering Laboratory, Dalian, People's Republic of China
| |
Collapse
|
26
|
Goud GL, Ramesh S, Ashok D, Reddy VP, Yogeeswari P, Sriram D, Saikrishna B, Manga V. Design, synthesis, molecular-docking and antimycobacterial evaluation of some novel 1,2,3-triazolyl xanthenones. MEDCHEMCOMM 2017; 8:559-570. [PMID: 30108772 PMCID: PMC6072411 DOI: 10.1039/c6md00593d] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/26/2016] [Indexed: 11/21/2022]
Abstract
As part of an ongoing effort to develop new antitubercular and antimicrobial agents, a series of substituted xanthenone derivatives (7a-p) were synthesized. Xanthenone derivatives (7a-p) were prepared via a one-pot three-component thermal cyclization reaction of β-naphthol (5), substituted 1-aryl-1H-[1,2,3]triazole-4-carbaldehydes (4a-h), and cyclic-1,3-diones (6a, b) in the presence of a catalytic amount of iodine. The newly synthesized compounds were characterized by IR, NMR, mass spectral data, and elemental analysis. These compounds (4a-h and 7a-p) were screened for in vitro antitubercular activity against the M. tuberculosis H37Rv (ATCC 27294) strain, for antibacterial activity against Gram-positive and Gram-negative strains, and for antifungal activity against a pathogenic strain of fungi. Among the compounds tested, most of them showed good to excellent antimicrobial and antitubercular activity. The active compounds displaying good potency in the MTB were further examined for toxicity in a HEK cell line. In addition, the structure and antitubercular activity relationship were further supported by in silico molecular-docking studies of the active compounds against the pantothenate synthetase (PS) enzyme of M. tuberculosis.
Collapse
Affiliation(s)
- Gudikadi Linga Goud
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Seela Ramesh
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Dongamanti Ashok
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Vummenthala Prabhakar Reddy
- Green and Medicinal Chemistry Laboratory , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India . ; Tel: +91 9391024769
| | - Perumal Yogeeswari
- Department of Pharmacy , Birla Institute of Technology & Science - Hyderabad Campus , Jawahar Nagar , Hyderabad , Telangana-500 078 , India
| | - Dharmarajan Sriram
- Department of Pharmacy , Birla Institute of Technology & Science - Hyderabad Campus , Jawahar Nagar , Hyderabad , Telangana-500 078 , India
| | - Balabadra Saikrishna
- Molecular Modeling and Medicinal Chemistry Group , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India
| | - Vijjulatha Manga
- Molecular Modeling and Medicinal Chemistry Group , Department of Chemistry , Osmania University , Hyderabad , Telangana-500 007 , India
| |
Collapse
|
27
|
Avalos-Alanís FG, Hernández-Fernández E, Carranza-Rosales P, López-Cortina S, Hernández-Fernández J, Ordóñez M, Guzmán-Delgado NE, Morales-Vargas A, Velázquez-Moreno VM, Santiago-Mauricio MG. Synthesis, antimycobacterial and cytotoxic activity of α,β-unsaturated amides and 2,4-disubstituted oxazoline derivatives. Bioorg Med Chem Lett 2017; 27:821-825. [PMID: 28117200 DOI: 10.1016/j.bmcl.2017.01.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/08/2017] [Accepted: 01/09/2017] [Indexed: 02/02/2023]
Abstract
The synthesis of six α,β,-unsaturated amides and six 2,4-disubstituted oxazolines derivatives and their evaluation against two Mycobacterium tuberculosis strains (sensitive H37Rv and a resistant clinical isolate) is reported. 2,4-Disubstituted oxazolines (S)-3b,d,e were the most active in the sensitive strain with a MIC of 14.2, 13.6 and 10.8μM, respectively, and the compounds (S)-3d,f were the most active against resistant strain with a MIC of 6.8 and 7.4μM. The ex-vivo evaluation of hepatotoxicity on precision-cut rat liver slices was also tested for the α,β-unsaturated amides (S)-2b and (S)-2d,f and for the oxazolines (S)-3b and (S)-3d,f at different concentrations (5, 15 and 30μg/mL). The results indicate that these compounds possess promising antimycobacterial activity and at the same time are not hepatotoxic. These findings open the possibility for development of new drugs against tuberculosis.
Collapse
Affiliation(s)
- Francisco G Avalos-Alanís
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66400 San Nicolás de los Garza, Nuevo León, Mexico
| | - Eugenio Hernández-Fernández
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66400 San Nicolás de los Garza, Nuevo León, Mexico.
| | - Pilar Carranza-Rosales
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico.
| | - Susana López-Cortina
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66400 San Nicolás de los Garza, Nuevo León, Mexico
| | - Jorge Hernández-Fernández
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba s/n, Ciudad Universitaria, 66400 San Nicolás de los Garza, Nuevo León, Mexico
| | - Mario Ordóñez
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, 62209 Cuernavaca, Morelos, Mexico
| | - Nancy E Guzmán-Delgado
- Unidad Médica de Alta Especialidad 34, Instituto Mexicano del Seguro Social, 64730 Monterrey, Nuevo León, Mexico
| | | | | | - María G Santiago-Mauricio
- Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey, Nuevo León, Mexico
| |
Collapse
|
28
|
Amaroju S, Kalaga MN, Srinivasarao S, Napiórkowska A, Augustynowicz-Kopeć E, Murugesan S, Chander S, Krishnan R, Chandra Sekhar KVG. Identification and development of pyrazolo[4,3-c]pyridine carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors. NEW J CHEM 2017. [DOI: 10.1039/c6nj02671k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A novel series of pyrazolo[4,3-c]pyridine carboxamides were synthesized and characterized. The compounds were evaluated for their antitubercular activity and pantothenate synthetase enzyme inhibition study.
Collapse
Affiliation(s)
- Suresh Amaroju
- Department of Chemistry
- Birla Institute of Technology and Science-Pilani
- R. R. Dist. Hyderabad
- India
| | - Mahalakshmi Naidu Kalaga
- Department of Chemistry
- Birla Institute of Technology and Science-Pilani
- R. R. Dist. Hyderabad
- India
| | - Singireddi Srinivasarao
- Department of Chemistry
- Birla Institute of Technology and Science-Pilani
- R. R. Dist. Hyderabad
- India
| | - Agnieszka Napiórkowska
- Microbiology Department
- National Tuberculosis and Lung Diseases Research Institute
- 01-138 Warsaw
- Poland
| | - Ewa Augustynowicz-Kopeć
- Microbiology Department
- National Tuberculosis and Lung Diseases Research Institute
- 01-138 Warsaw
- Poland
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory
- Department of Pharmacy
- Birla Institute of Technology & Science
- Pilani
- India
| | - Subhash Chander
- Medicinal Chemistry Research Laboratory
- Department of Pharmacy
- Birla Institute of Technology & Science
- Pilani
- India
| | - Rangan Krishnan
- Department of Chemistry
- Birla Institute of Technology and Science-Pilani
- R. R. Dist. Hyderabad
- India
| | | |
Collapse
|
29
|
Vergnolle O, Xu H, Tufariello JM, Favrot L, Malek AA, Jacobs WR, Blanchard JS. Post-translational Acetylation of MbtA Modulates Mycobacterial Siderophore Biosynthesis. J Biol Chem 2016; 291:22315-22326. [PMID: 27566542 PMCID: PMC5064009 DOI: 10.1074/jbc.m116.744532] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/17/2016] [Indexed: 11/06/2022] Open
Abstract
Iron is an essential element for life, but its soluble form is scarce in the environment and is rarer in the human body. Mtb (Mycobacterium tuberculosis) produces two aryl-capped siderophores, mycobactin (MBT) and carboxymycobactin (cMBT), to chelate intracellular iron. The adenylating enzyme MbtA catalyzes the first step of mycobactin biosynthesis in two half-reactions: activation of the salicylic acid as an acyl-adenylate and ligation onto the acyl carrier protein (ACP) domain of MbtB to form covalently salicylated MbtB-ACP. We report the first apo-MbtA structure from Mycobacterium smegmatis at 2.3 Å. We demonstrate here that MbtA activity can be reversibly, post-translationally regulated by acetylation. Indeed the mycobacterial Pat (protein lysine acetyltransferase), Rv0998, specifically acetylates MbtA on lysine 546, in a cAMP-dependent manner, leading to enzyme inhibition. MbtA acetylation can be reversed by the NAD+-dependent DAc (deacetyltransferase), Rv1151c. Deletion of Pat and DAc genes in Mtb revealed distinct phenotypes for strains lacking one or the other gene at low pH and limiting iron conditions. This study establishes a direct connection between the reversible acetylation system Pat/DAc and the ability of Mtb to adapt in limited iron conditions, which is critical for mycobacterial infection.
Collapse
Affiliation(s)
| | - Hua Xu
- From the Department of Biochemistry and
| | - JoAnn M Tufariello
- the Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | - Adel A Malek
- the Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461
| | - William R Jacobs
- the Department of Microbiology and Immunology, Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York 10461
| | | |
Collapse
|
30
|
Samala G, Devi PB, Saxena S, Meda N, Yogeeswari P, Sriram D. Design, synthesis and biological evaluation of imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Bioorg Med Chem 2016; 24:1298-307. [PMID: 26867485 DOI: 10.1016/j.bmc.2016.01.059] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/29/2016] [Accepted: 01/30/2016] [Indexed: 11/29/2022]
Abstract
In the present study, we have designed imidazo[2,1-b]thiazole and benzo[d]imidazo[2,1-b]thiazole derivatives from earlier reported imidazo[1,2-a]pyridine based Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibitors. We synthesized thirty compounds and they were evaluated for MTB PS inhibition study, in vitro anti-TB activities against replicative and non-replicative MTB, in vivo activity using Mycobacterium marinum infected Zebra fish and cytotoxicity against RAW 264.7 cell line. Among them compound 2-methyl-N'-(4-phenoxybenzoyl)benzo[d]imidazo[2,1-b]thiazole-3-carbohydrazide (5bc) emerged as potent compound active against MTB PS with IC50 of 0.53±0.13 μM, MIC of 3.53 μM, 2.1 log reduction against nutrient starved MTB, with 33% cytotoxicity at 50 μM. It also showed 1.5 log reduction of M. marinum load in Zebra fish at 10mg/kg.
Collapse
Affiliation(s)
- Ganesh Samala
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Parthiban Brindha Devi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Shalini Saxena
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Nikhila Meda
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Perumal Yogeeswari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, Hyderabad 500078, India.
| |
Collapse
|
31
|
Hung AW, Silvestre HL, Wen S, George GPC, Boland J, Blundell TL, Ciulli A, Abell C. Optimization of Inhibitors of Mycobacterium tuberculosis Pantothenate Synthetase Based on Group Efficiency Analysis. ChemMedChem 2015; 11:38-42. [PMID: 26486566 PMCID: PMC4949533 DOI: 10.1002/cmdc.201500414] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 11/06/2022]
Abstract
Ligand efficiency has proven to be a valuable concept for optimization of leads in the early stages of drug design. Taking this one step further, group efficiency (GE) evaluates the binding efficiency of each appendage of a molecule, further fine‐tuning the drug design process. Here, GE analysis is used to systematically improve the potency of inhibitors of Mycobacterium tuberculosis pantothenate synthetase, an important target in tuberculosis therapy. Binding efficiencies were found to be distributed unevenly within a lead molecule derived using a fragment‐based approach. Substitution of the less efficient parts of the molecule allowed systematic development of more potent compounds. This method of dissecting and analyzing different groups within a molecule offers a rational and general way of carrying out lead optimization, with potential broad application within drug discovery.
Collapse
Affiliation(s)
- Alvin W Hung
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK.,Experimental Therapeutic Centre, A-STAR, 11 Biopolis Way, Singapore, 138667, Singapore
| | - H Leonardo Silvestre
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge, CB2 1GA, UK
| | - Shijun Wen
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Guillaume P C George
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Jennifer Boland
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Rd, Cambridge, CB2 1GA, UK
| | - Alessio Ciulli
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK.,Division of Biological Chemistry & Drug Discovery, College of Life Sciences, James Black Centre, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Rd, Cambridge, CB2 1EW, UK.
| |
Collapse
|
32
|
Abstract
Pantothenate is vitamin B5 and is the key precursor for the biosynthesis of coenzyme A (CoA), a universal and essential cofactor involved in a myriad of metabolic reactions, including the synthesis of phospholipids, the synthesis and degradation of fatty acids, and the operation of the tricarboxylic acid cycle. CoA is also the only source of the phosphopantetheine prosthetic group for enzymes that shuttle intermediates between the active sites of enzymes involved in fatty acid, nonribosomal peptide, and polyketide synthesis. Pantothenate can be synthesized de novo and/or transported into the cell through a pantothenatepermease. Pantothenate uptake is essential for those organisms that lack the genes to synthesize this vitamin. The intracellular levels of CoA are controlled by the balance between synthesis and degradation. In particular, CoA is assembled in five enzymatic steps, starting from the phosphorylation of pantothenate to phosphopantothenatecatalyzed by pantothenate kinase, the product of the coaA gene. In some bacteria, the production of phosphopantothenate by pantothenate kinase is the rate limiting and most regulated step in the biosynthetic pathway. CoA synthesis additionally networks with other vitamin-associated pathways, such as thiamine and folic acid.
Collapse
|
33
|
Devi PB, Samala G, Sridevi JP, Saxena S, Alvala M, Salina EG, Sriram D, Yogeeswari P. Structure-guided design of thiazolidine derivatives as Mycobacterium tuberculosis pantothenate synthetase inhibitors. ChemMedChem 2014; 9:2538-47. [PMID: 25155986 DOI: 10.1002/cmdc.201402171] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Indexed: 11/07/2022]
Abstract
The pantothenate biosynthetic pathway is essential for the persistent growth and virulence of Mycobacterium tuberculosis (Mtb) and one of the enzymes in the pathway, pantothenate synthetase (PS, EC: 6.3.2.1), encoded by the panC gene, has become an appropriate target for new therapeutics to treat tuberculosis. Herein, we report nanomolar thiazolidine inhibitors of Mtb PS developed by a rational inhibitor design approach. The thiazolidine compounds were discovered by using energy-based pharmacophore modelling and subsequent in vitro screening, which resulted in compounds with a half maximal inhibitory concentration (IC50) value of (1.12 ± 0.12) μM. These compounds were subsequently optimised by a combination of modelling and synthetic chemistry. Hit expansion of the lead by chemical synthesis led to an improved inhibitor with an IC50 value of 350 nM and an Mtb minimum inhibitory concentration (MIC) of 1.55 μM. Some of these compounds also showed good activity against dormant Mtb cells.
Collapse
Affiliation(s)
- Parthiban Brindha Devi
- Drug Discovery Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Hyderabad-500078 (India)
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ntie-Kang F, Kannan S, Wichapong K, Owono Owono LC, Sippl W, Megnassan E. Binding of pyrazole-based inhibitors to Mycobacterium tuberculosis pantothenate synthetase: docking and MM-GB(PB)SA analysis. MOLECULAR BIOSYSTEMS 2014; 10:223-39. [PMID: 24240974 DOI: 10.1039/c3mb70449a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recently, the search for new drugs against tuberculosis (TB) has been a hot topic and the search for new inhibitors against validated drug targets and pathways other than those currently targeted by known drugs is suggested to be the most promising way forward. Mycobacterium tuberculosis pantothenate synthetase (MTBPS) happens to be one of such targets. In a quest to carry out virtual screening for active inhibitors against MTBPS and to get ideas for the design of new inhibitors against this target, we have docked a set of pyrazole-based inhibitors to the active site of this enzyme. The docking solutions were post processed using the MM-PB(GB)SA method and molecular dynamic simulations in order to analyze and validate the two previously proposed binding modes. The results show that both the MM-PBSA and MM-GBSA were able to discriminate between active and inactive compounds. Moreover, the pharmacophore-based scoring method proved efficient in discriminating the active compounds from inactives. From this work a protocol for screening of potential inhibitors of the enzyme from commercially available databases has been devised.
Collapse
Affiliation(s)
- Fidele Ntie-Kang
- CEPAMOQ, Faculty of Science, University of Douala, P.O. Box 8580, Douala, Cameroon.
| | | | | | | | | | | |
Collapse
|
35
|
Samala G, Nallangi R, Devi PB, Saxena S, Yadav R, Sridevi JP, Yogeeswari P, Sriram D. Identification and development of 2-methylimidazo[1,2-a]pyridine-3-carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors. Bioorg Med Chem 2014; 22:4223-32. [DOI: 10.1016/j.bmc.2014.05.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/07/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
|
36
|
Noy T, Xu H, Blanchard JS. Acetylation of acetyl-CoA synthetase from Mycobacterium tuberculosis leads to specific inactivation of the adenylation reaction. Arch Biochem Biophys 2014; 550-551:42-9. [PMID: 24751484 DOI: 10.1016/j.abb.2014.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
Abstract
Acetyl-CoA synthetase (ACS) catalyzes the formation of AcCoA from acetate, ATP and Coenzyme A, allowing the organism to grow on acetate as the sole carbon source. ACS was the first enzyme in Mycobacterium tuberculosis shown to be regulated by posttranslational acetylation by the cAMP-dependent protein acetyltransferase. This modification results in the inactivation of the enzyme and can be reversed in the presence of NAD(+) and a mycobacterial sirtuin-like deacetylase. In this study we characterize the kinetic mechanism of MtACS, where the overall reaction can be divided into two half-reactions: the acetyl-adenylate forming reaction and the thiol-ligation reaction. We also provide evidence for the existence of the acetyl-adenylate intermediate via (31)P NMR spectroscopy. Furthermore, we dissect the regulatory role of K617 acetylation and show that acetylation inhibits only the first, adenylation half-reaction while leaving the second half reaction unchanged. Finally, we demonstrate that the chemical mechanism of the enzyme relies on a conformational change which is controlled by the protonation state of aspartate 525. Together with our earlier results, this suggests a degree of regulation of enzyme activity that is appropriate for the role of the enzyme in central carbon metabolism.
Collapse
Affiliation(s)
- Tahel Noy
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park avenue, Bronx, NY 10461, United States
| | - Hua Xu
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park avenue, Bronx, NY 10461, United States
| | - John S Blanchard
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park avenue, Bronx, NY 10461, United States.
| |
Collapse
|
37
|
Samala G, Kakan SS, Nallangi R, Devi PB, Sridevi JP, Saxena S, Yogeeswari P, Sriram D. Investigating structure-activity relationship and mechanism of action of antitubercular 1-(4-chlorophenyl)-4-(4-hydroxy-3-methoxy-5-nitrobenzylidene) pyrazolidine-3,5-dione [CD59]. Int J Mycobacteriol 2014; 3:117-26. [PMID: 26786333 DOI: 10.1016/j.ijmyco.2014.02.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/25/2014] [Accepted: 02/25/2014] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The objective of this study is to synthesize and evaluate 1-(4-chlorophenyl)-4-(4-hydroxy-3-methoxy-5-nitrobenzylidene) pyrazolidine-3,5-dione (CD59) analogues to establish structure-activity relationship and mechanism of action. METHODS Thirty analogues of reported antitubercular CD59 were prepared by two-step synthetic protocols and characterized. The compounds were evaluated for in vitro activities against Mycobacterium tuberculosis (MTB), cytotoxicity against RAW 264.7 cells. The molecules were also evaluated for three mycobacterial enzymes to study the mechanism of action. RESULTS Among the compounds, 4-(2-bromobenzylidene)-1-(4-chlorophenyl)pyrazolidine-3,5-dione (4k) was found to be the most active compound in vitro with MICs of 4.13μM against log-phase culture of MTB and also non-toxic up to 50μM. CONCLUSIONS Amongst all, the compounds 4g, 3i and 3n were most active against the enzymes MTB Pantothenate synthetase, lysine amino transferase and Alanine dehydrogenase, respectively. Further screening of these molecules was required in the in vitro dormant MTB models.
Collapse
Affiliation(s)
- Ganesh Samala
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Shruti Singh Kakan
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Radhika Nallangi
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Parthiban Brindha Devi
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Jonnalagadda Padma Sridevi
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Shalini Saxena
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Perumal Yogeeswari
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India.
| |
Collapse
|
38
|
Xu Z, Yin W, Martinelli LK, Evans J, Chen J, Yu Y, Wilson DJ, Mizrahi V, Qiao C, Aldrich CC. Reaction intermediate analogues as bisubstrate inhibitors of pantothenate synthetase. Bioorg Med Chem 2014; 22:1726-35. [PMID: 24507827 PMCID: PMC4667779 DOI: 10.1016/j.bmc.2014.01.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/25/2013] [Accepted: 01/14/2014] [Indexed: 11/16/2022]
Abstract
The biosynthesis of pantothenate, the core of coenzyme A (CoA), has been considered an attractive target for the development of antimicrobial agents since this pathway is essential in prokaryotes, but absent in mammals. Pantothenate synthetase, encoded by the gene panC, catalyzes the final condensation of pantoic acid with β-alanine to afford pantothenate via an intermediate pantoyl adenylate. We describe the synthesis and biochemical characterization of five PanC inhibitors that mimic the intermediate pantoyl adenylate. These inhibitors are competitive inhibitors with respect to pantoic acid and possess submicromolar to micromolar inhibition constants. The observed SAR is rationalized through molecular docking studies based on the reported co-crystal structure of 1a with PanC. Finally, whole cell activity is assessed against wild-type Mtb as well as a PanC knockdown strain where PanC is depleted to less than 5% of wild-type levels.
Collapse
Affiliation(s)
- Zhixiang Xu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Wei Yin
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | | | - Joanna Evans
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Jinglei Chen
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Yang Yu
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China
| | - Daniel J Wilson
- Center for Drug Design, University of Minnesota, MN 55455, USA
| | - Valerie Mizrahi
- MRC/NHLS/UCT Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, Faculty of Health Sciences, University of Cape Town, Observatory, Cape Town 7925, South Africa
| | - Chunhua Qiao
- College of Pharmaceutical Science, Soochow University, Suzhou 215123, China.
| | | |
Collapse
|
39
|
Samala G, Devi PB, Nallangi R, Sridevi JP, Saxena S, Yogeeswari P, Sriram D. Development of novel tetrahydrothieno[2,3-c]pyridine-3-carboxamide based Mycobacterium tuberculosis pantothenate synthetase inhibitors: molecular hybridization from known antimycobacterial leads. Bioorg Med Chem 2014; 22:1938-47. [PMID: 24565972 DOI: 10.1016/j.bmc.2014.01.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/18/2014] [Accepted: 01/20/2014] [Indexed: 10/25/2022]
Abstract
Twenty six 2,6-disubstituted 4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide derivatives were designed by molecular hybridization approach using and synthesized from piperidin-4-one by five step synthesis. Compounds were evaluated for Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibition study, in vitro activities against MTB, cytotoxicity against RAW 264.7 cell line. Among the compounds, 6-(4-nitrophenylsulfonyl)-2-(5-nitrothiophene-2-carboxamido)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide (11) was found to be the most active compound with IC50 of 5.87 ± 0.12 μM against MTB PS, inhibited MTB with MIC of 9.28 μM and it was non-cytotoxic at 50 μM. The binding affinity of the most potent inhibitor 11 was further confirmed biophysically through differential scanning fluorimetry.
Collapse
Affiliation(s)
- Ganesh Samala
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Parthiban Brindha Devi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Radhika Nallangi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Jonnalagadda Padma Sridevi
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Shalini Saxena
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Perumal Yogeeswari
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Shameerpet, R.R. District, Hyderabad 500078, Andhra Pradesh, India.
| |
Collapse
|
40
|
Kumar A, Casey A, Odingo J, Kesicki EA, Abrahams G, Vieth M, Masquelin T, Mizrahi V, Hipskind PA, Sherman DR, Parish T. A high-throughput screen against pantothenate synthetase (PanC) identifies 3-biphenyl-4-cyanopyrrole-2-carboxylic acids as a new class of inhibitor with activity against Mycobacterium tuberculosis. PLoS One 2013; 8:e72786. [PMID: 24244263 PMCID: PMC3820577 DOI: 10.1371/journal.pone.0072786] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 07/12/2013] [Indexed: 12/17/2022] Open
Abstract
The enzyme pantothenate synthetase, PanC, is an attractive drug target in Mycobacterium tuberculosis. It is essential for the in vitro growth of M. tuberculosis and for survival of the bacteria in the mouse model of infection. PanC is absent from mammals. We developed an enzyme-based assay to identify inhibitors of PanC, optimized it for high-throughput screening, and tested a large and diverse library of compounds for activity. Two compounds belonging to the same chemical class of 3-biphenyl-4- cyanopyrrole-2-carboxylic acids had activity against the purified recombinant protein, and also inhibited growth of live M. tuberculosis in manner consistent with PanC inhibition. Thus we have identified a new class of PanC inhibitors with whole cell activity that can be further developed.
Collapse
Affiliation(s)
- Anuradha Kumar
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Samala G, Devi PB, Nallangi R, Yogeeswari P, Sriram D. Development of 3-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine derivatives as novel Mycobacterium tuberculosis pantothenate synthetase inhibitors. Eur J Med Chem 2013; 69:356-64. [PMID: 24077526 DOI: 10.1016/j.ejmech.2013.08.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 08/22/2013] [Accepted: 08/25/2013] [Indexed: 11/16/2022]
Abstract
Forty 3-phenyl-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine derivatives were synthesized from piperidin-4-one by five step synthesis and evaluated for Mycobacterium tuberculosis (MTB) pantothenate synthetase (PS) inhibition study, in vitro activities against MTB, cytotoxicity against RAW 264.7 cell line. Among the compounds, 1-benzoyl-N-(4-nitrophenyl)-3-phenyl-6,7-dihydro-1H-pyrazolo[4,3-c]pyridine-5(4H)-carboxamide (6ac) was found to be the most active compound with IC₅₀ of 21.8 ± 0.8 μM against MTB PS, inhibited MTB with MIC of 26.7 μM and it was non-cytotoxic at 50 μM.
Collapse
Affiliation(s)
- Ganesh Samala
- Antitubercular Drug Discovery Laboratory, Department of Pharmacy, Birla Institute of Technology and Science - Pilani, Hyderabad Campus, Jawahar Nagar, Hyderabad 500 078, India
| | | | | | | | | |
Collapse
|
42
|
Vergnolle O, Xu H, Blanchard JS. Mechanism and regulation of mycobactin fatty acyl-AMP ligase FadD33. J Biol Chem 2013; 288:28116-25. [PMID: 23935107 DOI: 10.1074/jbc.m113.495549] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mycobacterial siderophores are critical components for bacterial virulence in the host. Pathogenic mycobacteria synthesize iron chelating siderophores named mycobactin and carboxymycobactin to extract intracellular macrophage iron. The two siderophores differ in structure only by a lipophilic aliphatic chain attached on the ε-amino group of the lysine mycobactin core, which is transferred by MbtK. Prior to acyl chain transfer, the lipophilic chain requires activation by a specific fatty acyl-AMP ligase FadD33 (also known as MbtM) and is then loaded onto phosphopantetheinylated acyl carrier protein (holo-MbtL) to form covalently acylated MbtL. We demonstrate that FadD33 prefers long chain saturated lipids and initial velocity studies showed that FadD33 proceeds via a Bi Uni Uni Bi ping-pong mechanism. Inhibition experiments suggest that, during the first half-reaction (adenylation), fatty acid binds first to the free enzyme, followed by ATP and the release of pyrophosphate to form the adenylate intermediate. During the second half-reaction (ligation), holo-MbtL binds to the enzyme followed by the release of products AMP and acylated MbtL. In addition, we characterized a post-translational regulation mechanism of FadD33 by the mycobacterial protein lysine acetyltransferase in a cAMP-dependent manner. FadD33 acetylation leads to enzyme inhibition, which can be reversed by the NAD(+)-dependent deacetylase, MSMEG_5175 (DAc1). To the best of our knowledge, this is the first time that bacterial siderophore synthesis has been shown to be regulated via post-translational protein acetylation.
Collapse
Affiliation(s)
- Olivia Vergnolle
- From the Department of Biochemistry, Albert Einstein College of Medicine, Bronx, New York 10461
| | | | | |
Collapse
|
43
|
Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery. Proc Natl Acad Sci U S A 2013; 110:12984-9. [PMID: 23872845 DOI: 10.1073/pnas.1304045110] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In fragment-based drug discovery, the weak affinities exhibited by fragments pose significant challenges for screening. Biophysical techniques are used to address this challenge, but there is no clear consensus on which cascade of methods is best suited to identify fragment hits that ultimately translate into bound X-ray structures and provide bona fide starting points for synthesis. We have benchmarked an integrated biophysical approach for fragment screening and validation against Mycobacterium tuberculosis pantothenate synthetase. A primary screen of 1,250 fragments library was performed by thermal shift, followed by secondary screen using one-dimensional NMR spectroscopy (water ligand observed gradient spectroscopy and saturation transfer difference binding experiments) and ultimate hit validation by isothermal titration calorimetry and X-ray crystallography. Our multibiophysical approach identified three distinct binding sites for fragments and laid a solid foundation for successful structure-based elaboration into potent inhibitors.
Collapse
|
44
|
Duckworth BP, Nelson KM, Aldrich CC. Adenylating enzymes in Mycobacterium tuberculosis as drug targets. Curr Top Med Chem 2012; 12:766-96. [PMID: 22283817 DOI: 10.2174/156802612799984571] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 11/08/2011] [Indexed: 11/22/2022]
Abstract
Adenylation or adenylate-forming enzymes (AEs) are widely found in nature and are responsible for the activation of carboxylic acids to intermediate acyladenylates, which are mixed anhydrides of AMP. In a second reaction, AEs catalyze the transfer of the acyl group of the acyladenylate onto a nucleophilic amino, alcohol, or thiol group of an acceptor molecule leading to amide, ester, and thioester products, respectively. Mycobacterium tuberculosis encodes for more than 60 adenylating enzymes, many of which represent potential drug targets due to their confirmed essentiality or requirement for virulence. Several strategies have been used to develop potent and selective AE inhibitors including highthroughput screening, fragment-based screening, and the rationale design of bisubstrate inhibitors that mimic the acyladenylate. In this review, a comprehensive analysis of the mycobacterial adenylating enzymes will be presented with a focus on the identification of small molecule inhibitors. Specifically, this review will cover the aminoacyl tRNAsynthetases (aaRSs), MenE required for menaquinone synthesis, the FadD family of enzymes including the fatty acyl- AMP ligases (FAAL) and the fatty acyl-CoA ligases (FACLs) involved in lipid metabolism, and the nonribosomal peptide synthetase adenylation enzyme MbtA that is necessary for mycobactin synthesis. Additionally, the enzymes NadE, GuaA, PanC, and MshC involved in the respective synthesis of NAD, guanine, pantothenate, and mycothiol will be discussed as well as BirA that is responsible for biotinylation of the acyl CoA-carboxylases.
Collapse
|
45
|
Abrahams GL, Kumar A, Savvi S, Hung AW, Wen S, Abell C, Barry CE, Sherman DR, Boshoff HI, Mizrahi V. Pathway-selective sensitization of Mycobacterium tuberculosis for target-based whole-cell screening. CHEMISTRY & BIOLOGY 2012; 19:844-54. [PMID: 22840772 PMCID: PMC3421836 DOI: 10.1016/j.chembiol.2012.05.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 05/22/2012] [Accepted: 05/25/2012] [Indexed: 11/19/2022]
Abstract
Whole-cell screening of Mycobacterium tuberculosis (Mtb) remains a mainstay of drug discovery, but subsequent target elucidation often proves difficult. Conditional mutants that underexpress essential genes have been used to identify compounds with known mechanism of action by target-based whole-cell screening (TB-WCS). Here, the feasibility of TB-WCS in Mtb was assessed by generating mutants that conditionally express pantothenate synthetase (panC), diaminopimelate decarboxylase (lysA), and isocitrate lyase (icl1). The essentiality of panC and lysA, and conditional essentiality of icl1 for growth on fatty acids, was confirmed. Depletion of PanC and Icl1 rendered mutants hypersensitive to target-specific inhibitors. Stable reporter strains were generated for use in high-throughput screening, and their utility was demonstrated by identifying compounds that display greater potency against a PanC-depleted strain. These findings illustrate the power of TB-WCS as a tool for tuberculosis drug discovery.
Collapse
Affiliation(s)
- Garth L. Abrahams
- Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| | - Anuradha Kumar
- Seattle Biomedical Research Institute, Seattle, WA 98109
| | - Suzana Savvi
- Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa
| | - Alvin W. Hung
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Shijun Wen
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Chris Abell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | | | - Helena I.M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | - Valerie Mizrahi
- Molecular Mycobacteriology Research Unit and DST/NRF Centre of Excellence for Biomedical TB Research, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg 2000, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch 7701, South Africa
| |
Collapse
|
46
|
Lu X, Zhou R, Sharma I, Li X, Kumar G, Swaminathan S, Tonge PJ, Tan DS. Stable analogues of OSB-AMP: potent inhibitors of MenE, the o-succinylbenzoate-CoA synthetase from bacterial menaquinone biosynthesis. Chembiochem 2011; 13:129-36. [PMID: 22109989 DOI: 10.1002/cbic.201100585] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Indexed: 12/15/2022]
Abstract
MenE, the o-succinylbenzoate (OSB)-CoA synthetase from bacterial menaquinone biosynthesis, is a promising new antibacterial target. Sulfonyladenosine analogues of the cognate reaction intermediate, OSB-AMP, have been developed as inhibitors of the MenE enzymes from Mycobacterium tuberculosis (mtMenE), Staphylococcus aureus (saMenE) and Escherichia coli (ecMenE). Both a free carboxylate and a ketone moiety on the OSB side chain are required for potent inhibitory activity. OSB-AMS (4) is a competitive inhibitor of mtMenE with respect to ATP (K(i) =5.4±0.1 nM) and a noncompetitive inhibitor with respect to OSB (K(i) =11.2±0.9 nM). These data are consistent with a Bi Uni Uni Bi Ping-Pong kinetic mechanism for these enzymes. In addition, OSB-AMS inhibits saMenE with K(i)(app) =22±8 nM and ecMenE with K(i)(OSB) =128±5 nM. Putative active-site residues, Arg222, which may interact with the OSB aromatic carboxylate, and Ser302, which may bind the OSB ketone oxygen, have been identified through computational docking of OSB-AMP with the unliganded crystal structure of saMenE. A pH-dependent interconversion of the free keto acid and lactol forms of the inhibitors is also described, along with implications for inhibitor design.
Collapse
Affiliation(s)
- Xuequan Lu
- Molecular Pharmacology and Chemistry Program and Tri-Institutional Research Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Yang Y, Gao P, Liu Y, Ji X, Gan M, Guan Y, Hao X, Li Z, Xiao C. A discovery of novel Mycobacterium tuberculosis pantothenate synthetase inhibitors based on the molecular mechanism of actinomycin D inhibition. Bioorg Med Chem Lett 2011; 21:3943-3946. [PMID: 21641210 DOI: 10.1016/j.bmcl.2011.05.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 05/06/2011] [Accepted: 05/07/2011] [Indexed: 01/17/2023]
Abstract
Mycobacterium tuberculosis pantothenate synthetase is a potential anti-tuberculosis target, and a high-throughput screening system was previously developed to identify its inhibitors. Using a similar system, we screened a small library of compounds and identified actinomycin D (ActD) as a weak inhibitor of pantothenate synthetase. A new method was established to discover more effective inhibitors by determining the molecular mechanism of ActD inhibition followed by structure-based virtual screening. The molecular interaction of inhibition was determined by circular dichroism and tryptophan fluorescence quenching. The structure-based search and virtual screening were performed using the Molecular Operating Environment (MOE) program and SYBYL 7.5, respectively. Two inhibitors were identified with an IC(50) for pantothenate synthetase that was at least ten times better than that of ActD.
Collapse
Affiliation(s)
- Yanhui Yang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Tan YS, Fuentes G, Verma C. A comparison of the dynamics of pantothenate synthetase from M. tuberculosis and E. coli: computational studies. Proteins 2011; 79:1715-27. [PMID: 21425349 DOI: 10.1002/prot.22994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Revised: 11/24/2010] [Accepted: 12/15/2010] [Indexed: 11/11/2022]
Abstract
Pantothenate synthetase (PS) catalyzes the final step of the pantothenate pathway, in which pantothenate is formed from pantoate and β-alanine in an ATP-dependent reaction. Mycobacterium tuberculosis PS (MTB PS) is functionally a dimer and a potential target for novel antitubercular drugs. Molecular dynamics simulations show that the functional dynamics of the enzyme are dominated by motions of a flexible gate loop in the N-terminal domain and of the C-terminal domain. The gate loop motions dominate in MTB PS while the C-terminal domain motion dominates in Escherichia coli PS. Simulations also show that the correlated motions of the domains are severely compromised in the monomeric forms. Mutations that reduce the mobility of the gate loop in MTB PS and increased it in E. coli PS were designed and validated through simulations.
Collapse
Affiliation(s)
- Yaw Sing Tan
- Bioinformatics Institute, A*STAR, 30 Biopolis Street, #07-01 Matrix, Singapore 138671
| | | | | |
Collapse
|
49
|
Wilson DJ, Aldrich CC. A continuous kinetic assay for adenylation enzyme activity and inhibition. Anal Biochem 2010; 404:56-63. [PMID: 20450872 PMCID: PMC2900519 DOI: 10.1016/j.ab.2010.04.033] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 04/28/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Adenylation/adenylate-forming enzymes catalyze the activation of a carboxylic acid at the expense of ATP to form an acyl-adenylate intermediate and pyrophosphate (PP(i)). In a second half-reaction, adenylation enzymes catalyze the transfer of the acyl moiety of the acyl-adenylate onto an acceptor molecule, which can be either a protein or a small molecule. We describe the design, development, and validation of a coupled continuous spectrophotometric assay for adenylation enzymes that employs hydroxylamine as a surrogate acceptor molecule, leading to the formation of a hydroxamate. The released pyrophosphate from the first half-reaction is measured using the pyrophosphatase-purine nucleoside phosphorylase coupling system with the chromogenic substrate 7-methylthioguanosine (MesG). The coupled hydroxamate-MesG assay is especially useful for characterizing the activity and inhibition of adenylation enzymes that acylate a protein substrate and/or fail to undergo rapid ATP-PP(i) exchange.
Collapse
Affiliation(s)
- Daniel J. Wilson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| | - Courtney C. Aldrich
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
50
|
Chen Q, Westfall CS, Hicks LM, Wang S, Jez JM. Kinetic basis for the conjugation of auxin by a GH3 family indole-acetic acid-amido synthetase. J Biol Chem 2010; 285:29780-6. [PMID: 20639576 DOI: 10.1074/jbc.m110.146431] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The GH3 family of acyl-acid-amido synthetases catalyze the ATP-dependent formation of amino acid conjugates to modulate levels of active plant hormones, including auxins and jasmonates. Initial biochemical studies of various GH3s show that these enzymes group into three families based on sequence relationships and acyl-acid substrate preference (I, jasmonate-conjugating; II, auxin- and salicylic acid-conjugating; III, benzoate-conjugating); however, little is known about the kinetic and chemical mechanisms of these enzymes. Here we use GH3-8 from Oryza sativa (rice; OsGH3-8), which functions as an indole-acetic acid (IAA)-amido synthetase, for detailed mechanistic studies. Steady-state kinetic analysis shows that the OsGH3-8 requires either Mg(2+) or Mn(2+) for maximal activity and is specific for aspartate but accepts asparagine as a substrate with a 45-fold decrease in catalytic efficiency and accepts other auxin analogs, including phenyl-acetic acid, indole butyric acid, and naphthalene-acetic acid, as acyl-acid substrates with 1.4-9-fold reductions in k(cat)/K(m) relative to IAA. Initial velocity and product inhibition studies indicate that the enzyme uses a Bi Uni Uni Bi Ping Pong reaction sequence. In the first half-reaction, ATP binds first followed by IAA. Next, formation of an adenylated IAA intermediate results in release of pyrophosphate. The second half-reaction begins with binding of aspartate, which reacts with the adenylated intermediate to release IAA-Asp and AMP. Formation of a catalytically competent adenylated-IAA reaction intermediate was confirmed by mass spectrometry. These mechanistic studies provide insight on the reaction catalyzed by the GH3 family of enzymes to modulate plant hormone action.
Collapse
Affiliation(s)
- Qingfeng Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | |
Collapse
|