1
|
Azam MS, Ibrahim AM, Leddy O, Oh SY, Schneewind O, Missiakas D. A SecA-associated protease modulates the extent of surface display of staphylococcal protein A. J Bacteriol 2025; 207:e0052224. [PMID: 40135891 PMCID: PMC12004944 DOI: 10.1128/jb.00522-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025] Open
Abstract
In bacteria, signal peptides direct pre-proteins to the SecYEG secretion channel and are typically cleaved by signal peptidases during translocation across the membrane. In gram-positive bacteria, such as Staphylococcus aureus, some signal peptides have a pre-translocation function. Staphylococcal protein A (SpA) carries such an atypical signal sequence, with a YSIRK/GXXS motif that directs its precursor into the cross-wall of dividing cells for subsequent anchoring by sortase A. Here, we report that PepV-a member of the M20 peptidase family which has been described as a manganese-dependent dipeptidase in vitro-may influence the surface display of precursors with a YSIRK/GXXS motif. SpA deposition into cross-walls was increased in ΔpepV bacteria. Yet, in the absence of pepV, neither the kinetics of signal sequence processing nor the final product of the sorting reaction was altered. In pull-down experiments, PepV was identified as a ligand of SecA. When purified PepV was incubated with SpA precursors, this interaction triggered self-cleavage of the enzyme, an unexpected activity exacerbated by the presence of a chelating agent. In agreement with this finding, a pulse-chase experiment revealed that the half-life of PepV is extended in bacteria lacking spa. Collectively, these data reveal a mutually inhibitory relationship between SpA precursors and PepV, the net result suggesting that while PepV may reduce the surface display of SpA, SpA precursors destabilize PepV possibly to overcome such inhibition. IMPORTANCE The "signal hypothesis" proposed that N-terminal sequences of secretory proteins contain targeting cues directing nascent polypeptides to the endoplasmic reticulum. This concept was later confirmed as broadly applicable, even to prokaryotes with a single membrane. In gram-positive bacteria, signal sequences bearing the YSIRK/GXXS motif are necessary and sufficient to direct precursors to septal membranes. However, trans-acting factors involved in this spatially restricted targeting remain largely unknown. Here, we identify a member of the M20 metalloprotease family as a potential contributor to the septal surface display of proteins containing YSIRK/GXXS signal peptides.
Collapse
Affiliation(s)
- Muhammad S. Azam
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Amany M. Ibrahim
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Owen Leddy
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - So-Young Oh
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Olaf Schneewind
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Terrazas-López M, González-Segura L, Díaz-Vilchis A, Aguirre-Mendez KA, Lobo-Galo N, Martínez-Martínez A, Díaz-Sánchez ÁG. The three-dimensional structure of DapE from Enterococcus faecium reveals new insights into DapE/ArgE subfamily ligand specificity. Int J Biol Macromol 2024; 270:132281. [PMID: 38740150 DOI: 10.1016/j.ijbiomac.2024.132281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024]
Abstract
DapE is a Zn2+-metallohydrolase recognized as a drug target for bacterial control. It is a homodimer that requires the exchange of interface strands by an induced fit essential for catalysis. Identifying novel anti-DapE agents requires greater structural details. Most of the characterized DapEs are from the Gram-negative group. Here, two high-resolution DapE crystal structures from Enterococcus faecium are presented for the first time with novel aspects. A loosened enzyme intermediate between the open and closed conformations is observed. Substrates may bind to loose state, subsequently it closes, where hydrolysis occurs, and finally, the change to the open state leads to the release of the products. Mutation of His352 suggests a role, along with His194, in the oxyanion stabilization in the mono-metalated Zn2+ isoform, while in the di-metalated isoform, the metal center 2 complements it function. An aromatic-π box potentially involved in the interaction of DapE with other proteins, and a peptide flip could determine the specificity in the Gram-positive ArgE/DapE group. Finally, details of two extra-catalytic cavities whose geometry changes depending on the conformational state of the enzyme are presented. These cavities could be a target for developing non-competitive agents that trap the enzyme in an inactive state.
Collapse
Affiliation(s)
- Manuel Terrazas-López
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Lilian González-Segura
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico.
| | - Adelaida Díaz-Vilchis
- Universidad Nacional Autónoma de México, Facultad de Química, Departamento de Bioquímica, Ciudad Universitaria, Ciudad de México, 04510, Mexico
| | - Kelly Annecy Aguirre-Mendez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Naún Lobo-Galo
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Alejandro Martínez-Martínez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico
| | - Ángel G Díaz-Sánchez
- Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Instituto de Ciencias Biomédicas, Departamento de Ciencias Químico-Biológicas, Chihuahua, CP 32310, Mexico.
| |
Collapse
|
3
|
Liveris ZJ, Kelley EH, Simmons E, Konczak K, Lutz MR, Ballicora M, Olsen KW, Becker DP. Synthesis and characterization of the N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) alternate substrate analog N,N-dimethyl-l,l-SDAP. Bioorg Med Chem 2023; 91:117415. [PMID: 37459673 DOI: 10.1016/j.bmc.2023.117415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/26/2023] [Accepted: 07/11/2023] [Indexed: 08/01/2023]
Abstract
Growing antibiotic resistance by pathogenic bacteria has led to a global crisis. The bacterial enzyme N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) provides a very attractive target for the discovery of a new class of antibiotics, as it resides exclusively in many pathogenic bacterial strains and is a key enzyme in the lysine biosynthetic pathway. This pathway is responsible for the production of lysine as well as meso-diaminopimelate (m-DAP), both of which are required for peptidoglycan cell-wall synthesis, and lysine for peptide synthesis. The enzyme DapE catalyzes the hydrolysis of N-succinyl-l,l-diaminopimelic acid (l,l-SDAP) to succinate and l,l-diaminopimelic acid (l,l-DAP), and due to its absence in humans, inhibition of DapE avoids mechanism-based side effects. We have executed the asymmetric synthesis of N,N-dimethyl-SDAP, an l,l-SDAP substrate analog and an analog of the synthetic substrate of our previously described DapE assay. Previous modeling studies advocated that N,N-dimethyl-SDAP might function as an inhibitor, however the compound behaves as a substrate, and we have demonstrated the use of N,N-dimethyl-SDAP as the substrate in a modified ninhydrin-based DapE assay. Thermal shift experiments of DapE in the presence of N,N-dimethyl-SDAP are consistent with a melt temperature (Tm) shifted by succinate, the product of enzymatic hydrolysis.
Collapse
Affiliation(s)
- Zachary J Liveris
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Emma H Kelley
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Emma Simmons
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Katherine Konczak
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Marlon R Lutz
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Miguel Ballicora
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Kenneth W Olsen
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1032 West Sheridan Road, Chicago, IL 60660, United States.
| |
Collapse
|
4
|
Muduli S, Karmakar S, Mishra S. The coordinated action of the enzymes in the L-lysine biosynthetic pathway and how to inhibit it for antibiotic targets. Biochim Biophys Acta Gen Subj 2023; 1867:130320. [PMID: 36813209 DOI: 10.1016/j.bbagen.2023.130320] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND Antimicrobial resistance is a global health issue that requires immediate attention in terms of new antibiotics and new antibiotic targets. The l-lysine biosynthesis pathway (LBP) is a promising avenue for drug discovery as it is essential for bacterial growth and survival and is not required by human beings. SCOPE OF REVIEW The LBP involves a coordinated action of fourteen different enzymes distributed over four distinct sub-pathways. The enzymes involved in this pathway belong to different classes, such as aspartokinase, dehydrogenase, aminotransferase, epimerase, etc. This review provides a comprehensive account of the secondary and tertiary structure, conformational dynamics, active site architecture, mechanism of catalytic action, and inhibitors of all enzymes involved in LBP of different bacterial species. MAJOR CONCLUSIONS LBP offers a wide scope for novel antibiotic targets. The enzymology of a majority of the LBP enzymes is well understood, although these enzymes are less widely studied in the critical pathogens (according to the 2017 WHO report) that require immediate attention. In particular, the enzymes in the acetylase pathway, DapAT, DapDH, and Aspartokinase in critical pathogens have received little attention. High throughput screening for inhibitor design against the enzymes of lysine biosynthetic pathway is rather limited, both in number and in the extent of success. GENERAL SIGNIFICANCE This review can serve as a guide for the enzymology of LBP and help in identifying new drug targets and designing potential inhibitors.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Soumyajit Karmakar
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
5
|
Paul A, Mishra S. Deciphering the role of the two metal-binding sites of DapE enzyme via metal substitution. Comput Biol Chem 2023; 103:107832. [PMID: 36805170 DOI: 10.1016/j.compbiolchem.2023.107832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
DapE is a microbial metalloenzyme that hosts two Zn ions in its active site, although it shows catalytic activity with varying efficiency when the Zn ions in one or both of its metal-binding sites (MBS) are replaced by other transition-metal ions. The metal-ion promiscuity of DapE is believed to be a microbial strategy to overcome the homeostatic regulation of Zn ions by the mammalian host. Here, a hybrid QM/MM study is performed on a series of mixed-metal DapEs, where the Zn ion in the first MBS (MBS-1) is substituted by Mn, Co, Ni, and Cu ions, while the MBS-2 is occupied by Zn(II). The substrate binding affinity and the mechanism of catalytic action are estimated by optimizing the intermediates and the transition states with hybrid QM/MM method. Comparison of the binding affinity of the MBS-1 and MBS-2 substituted DapEs reveals that the MBS-1 substitution does not affect the substrate binding affinity in the mixed-metal DapEs, while a strong metal specificity was observed in MBS-2 substituted DapEs. On the contrary, the activation energy barriers show a high metal specificity at MBS-1 compared to MBS-2. Taken together, the QM/MM studies indicate that MBS-2 leads the substrate binding process, while MBS-1 steers the catalytic activity of the DapE enzyme.
Collapse
Affiliation(s)
- Atanuka Paul
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
6
|
Muduli S, Mishra S. Ligands-induced open-close conformational change during DapE catalysis: Insights from molecular dynamics simulations. Proteins 2023; 91:781-797. [PMID: 36633566 DOI: 10.1002/prot.26466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
The microbial enzyme DapE plays a critical role in the lysine biosynthetic pathway and is considered as a potentially safe antibiotic target. In this study, atomistic simulations are employed to identify the modes of essential dynamics that define the conformational response of the enzyme to ligand binding and unbinding. The binding modes and the binding affinities of the products to the DapE enzyme are estimated from the MM-PBSA method, and the residues contributing to the ligand binding are identified. Various structural analyses and the principal component analysis of the molecular dynamics trajectories reveal that the removal of products from the active site causes a significant change in the overall enzyme structure. Both Cartesian and dihedral principal component analyses are used to characterize the structural changes in terms of domain unfolding and domain twisting motions. In the most dominant mode, that is, the domain unfolding motion, the two catalytic domains move away from the two dimerization domains of the dimeric enzyme, representing a closed-to-open conformational change. The conformational changes are initiated by the coordinated movement of three loops (Asp75-Pro82, Gly240-Asn244, and Thr347-Glu353) that trigger a domain-level movement. From multiple short trajectories, the time constant associated with the domain opening motion is estimated as 43.6 ns. Physiologically, this close-to-open conformational change is essential for the regeneration of the initial state of the enzyme for the subsequent cycle of catalytic action and provides the apo enzyme enough flexibility for efficient substrate binding.
Collapse
Affiliation(s)
- Sunita Muduli
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
7
|
Brambley CA, Yared TJ, Gonzalez M, Jansch AL, Wallen JR, Weiland MH, Miller JM. Sphingomonas sp. KT-1 PahZ2 Structure Reveals a Role for Conformational Dynamics in Peptide Bond Hydrolysis. J Phys Chem B 2021; 125:5722-5739. [PMID: 34060838 PMCID: PMC8657308 DOI: 10.1021/acs.jpcb.1c01216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Poly(aspartic acid) (PAA) is a common water-soluble polycarboxylate used in a broad range of applications. PAA biodegradation and environmental assimilation were first identified in river water bacterial strains, Sphingomonas sp. KT-1 and Pedobacter sp. KP-2. Within Sphingomonas sp. KT-1, PahZ1KT-1 cleaves β-amide linkages to oligo(aspartic acid) and then is degraded by PahZ2KT-1. Recently, we reported the first structure for PahZ1KT-1. Here, we report novel structures for PahZ2KT-1 bound to either Gd3+/Sm3+ or Zn2+ cations in a dimeric state consistent with M28 metallopeptidase family members. PahZ2KT-1 monomers include a dimerization domain and a catalytic domain with dual Zn2+ cations. MD methods predict the putative substrate binding site to span across the dimerization and catalytic domains, where NaCl promotes the transition from an open conformation to a closed conformation that positions the substrate adjacent to catalytic zinc ions. Structural knowledge of PahZ1KT-1 and PahZ2KT-1 will allow for protein engineering endeavors to develop novel biodegradation reagents.
Collapse
Affiliation(s)
- Chad A Brambley
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, United States
| | - Tarah J Yared
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Marriah Gonzalez
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, United States
| | - Amanda L Jansch
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Jamie R Wallen
- Department of Chemistry and Physics, Western Carolina University, 111 Memorial Drive, Cullowhee, North Carolina 28723, United States
| | - Mitch H Weiland
- Department of Chemistry and Biochemistry, Georgia Southern University, 11935 Abercorn Street, Savannah, Georgia 31419, United States
| | - Justin M Miller
- Department of Chemistry, Middle Tennessee State University, 1301 East Main Street, Murfreesboro, Tennessee 37132, United States
| |
Collapse
|
8
|
Terrazas-López M, Lobo-Galo N, Aguirre-Reyes LG, Bustos-Jaimes I, Marcos-Víquez JÁ, González-Segura L, Díaz-Sánchez ÁG. Interaction of N-succinyl diaminopimelate desuccinylase with orphenadrine and disulfiram. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Terrazas-López M, Lobo-Galo N, Aguirre-Reyes LG, Cuen-Andrade JL, de la Rosa LA, Alvarez-Parrilla E, Martínez-Martínez A, Díaz-Sánchez ÁG. Interaction of N-succinyl-diaminopimelate desuccinylase with flavonoids. Biochimie 2020; 177:198-212. [DOI: 10.1016/j.biochi.2020.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/03/2020] [Accepted: 08/21/2020] [Indexed: 12/27/2022]
|
10
|
Inverse Solvent Isotope Effects in Enzyme-Catalyzed Reactions. Molecules 2020; 25:molecules25081933. [PMID: 32326332 PMCID: PMC7221790 DOI: 10.3390/molecules25081933] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/14/2020] [Accepted: 04/20/2020] [Indexed: 11/17/2022] Open
Abstract
Solvent isotope effects have long been used as a mechanistic tool for determining enzyme mechanisms. Most commonly, macroscopic rate constants such as kcat and kcat/Km are found to decrease when the reaction is performed in D2O for a variety of reasons including the transfer of protons. Under certain circumstances, these constants are found to increase, in what is termed an inverse solvent kinetic isotope effect (SKIE), which can be a diagnostic mechanistic feature. Generally, these phenomena can be attributed to an inverse solvent equilibrium isotope effect on a rapid equilibrium preceding the rate-limiting step(s). This review surveys inverse SKIEs in enzyme-catalyzed reactions by assessing their underlying origins in common mechanistic themes. Case studies for each category are presented, and the mechanistic implications are put into context. It is hoped that readers may find the illustrative examples valuable in planning and interpreting solvent isotope effect experiments.
Collapse
|
11
|
Veana F, González-Purata PY, Wong-Paz JE, Aguilar-Zárate P, Muñiz-Márquez DB. Tendencias de la bioenergía: del metagenoma de hábitats ricos en azufre a la purificación del biogás. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2019. [DOI: 10.22201/fesz.23958723e.2019.0.190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Gran cantidad de residuos generados por la agroindustria son considerados tanto para la obtención de productos útiles de mayor valor agregado como para reducir el impacto ambiental. Existen alternativas para evaluar estos desechos siendo la producción de bioenergía una solución de gran precedente, desde la producción de biodiesel, bioetanol y biogás hasta aprovechar la biomasa. La producción de biogás por metanogénesis es una alternativa para la generación de biocombustibles y energía. Sin embargo, surge un problema que puede generar daños en la planta industrial durante la producción del biogás, cuando se inhibe su proceso fermentativo por la presencia tóxica del sulfuro de hidrógeno y se presenta un aumento en la emisión de SOx (en concentraciones de hasta 658 ppmv). Dentro de los métodos de remoción de este compuesto se encuentra el biológico, a través de microorganismos por oxidación. El objetivo de esta revisión es exponer las tendencias del uso de microorganismos oxidantes de azufre en biotecnología ambiental, particularmente el papel de éstos en la purificación del biogás.
Collapse
|
12
|
Nocek B, Reidl C, Starus A, Heath T, Bienvenue D, Osipiuk J, Jedrzejczak R, Joachimiak A, Becker DP, Holz RC. Structural Evidence of a Major Conformational Change Triggered by Substrate Binding in DapE Enzymes: Impact on the Catalytic Mechanism. Biochemistry 2018; 57:574-584. [PMID: 29272107 PMCID: PMC6886521 DOI: 10.1021/acs.biochem.7b01151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The X-ray crystal structure of the dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae (HiDapE) bound by the products of hydrolysis, succinic acid and l,l-DAP, was determined at 1.95 Å. Surprisingly, the structure bound to the products revealed that HiDapE undergoes a significant conformational change in which the catalytic domain rotates ∼50° and shifts ∼10.1 Å (as measured at the position of the Zn atoms) relative to the dimerization domain. This heretofore unobserved closed conformation revealed significant movements within the catalytic domain compared to that of wild-type HiDapE, which results in effectively closing off access to the dinuclear Zn(II) active site with the succinate carboxylate moiety bridging the dinculear Zn(II) cluster in a μ-1,3 fashion forming a bis(μ-carboxylato)dizinc(II) core with a Zn-Zn distance of 3.8 Å. Surprisingly, His194.B, which is located on the dimerization domain of the opposing chain ∼10.1 Å from the dinuclear Zn(II) active site, forms a hydrogen bond (2.9 Å) with the oxygen atom of succinic acid bound to Zn2, forming an oxyanion hole. As the closed structure forms upon substrate binding, the movement of His194.B by more than ∼10 Å is critical, based on site-directed mutagenesis data, for activation of the scissile carbonyl carbon of the substrate for nucleophilic attack by a hydroxide nucleophile. Employing the HiDapE product-bound structure as the starting point, a reverse engineering approach called product-based transition-state modeling provided structural models for each major catalytic step. These data provide insight into the catalytic reaction mechanism and also the future design of new, potent inhibitors of DapE enzymes.
Collapse
Affiliation(s)
- Boguslaw Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Cory Reidl
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, United States
| | - Anna Starus
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, United States
| | - Tahirah Heath
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, United States
| | - David Bienvenue
- 19010 33rd Avenue Northeast, Seattle, Washington 98155, United States
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Jerzy Osipiuk
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Robert Jedrzejczak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Daniel P. Becker
- Department of Chemistry and Biochemistry, Loyola University Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, United States
| | - Richard C. Holz
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
13
|
Dutta D, Mishra S. Loss of Catalytic Activity in the E134D, H67A, and H349A Mutants of DapE: Mechanistic Analysis with QM/MM Investigation. J Phys Chem B 2016; 120:11654-11664. [DOI: 10.1021/acs.jpcb.6b07446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
14
|
Fakhar Z, Naiker S, Alves CN, Govender T, Maguire GEM, Lameira J, Lamichhane G, Kruger HG, Honarparvar B. A comparative modeling and molecular docking study on Mycobacterium tuberculosis targets involved in peptidoglycan biosynthesis. J Biomol Struct Dyn 2016; 34:2399-417. [PMID: 26612108 DOI: 10.1080/07391102.2015.1117397] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
An alarming rise of multidrug-resistant Mycobacterium tuberculosis strains and the continuous high global morbidity of tuberculosis have reinvigorated the need to identify novel targets to combat the disease. The enzymes that catalyze the biosynthesis of peptidoglycan in M. tuberculosis are essential and noteworthy therapeutic targets. In this study, the biochemical function and homology modeling of MurI, MurG, MraY, DapE, DapA, Alr, and Ddl enzymes of the CDC1551 M. tuberculosis strain involved in the biosynthesis of peptidoglycan cell wall are reported. Generation of the 3D structures was achieved with Modeller 9.13. To assess the structural quality of the obtained homology modeled targets, the models were validated using PROCHECK, PDBsum, QMEAN, and ERRAT scores. Molecular dynamics simulations were performed to calculate root mean square deviation (RMSD) and radius of gyration (Rg) of MurI and MurG target proteins and their corresponding templates. For further model validation, RMSD and Rg for selected targets/templates were investigated to compare the close proximity of their dynamic behavior in terms of protein stability and average distances. To identify the potential binding mode required for molecular docking, binding site information of all modeled targets was obtained using two prediction algorithms. A docking study was performed for MurI to determine the potential mode of interaction between the inhibitor and the active site residues. This study presents the first accounts of the 3D structural information for the selected M. tuberculosis targets involved in peptidoglycan biosynthesis.
Collapse
Affiliation(s)
- Zeynab Fakhar
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Suhashni Naiker
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Claudio N Alves
- b Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais , Instituto de Ciências Biológicas, Universidade Federal do Pará , CEP 66075-110, Belém , Pará , Brazil
| | - Thavendran Govender
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Glenn E M Maguire
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa.,c School of Chemistry and Physics , University of KwaZulu-Natal , 4001 Durban , South Africa
| | - Jeronimo Lameira
- b Laboratório de Planejamento de Fármacos, Instituto de Ciências Exatas e Naturais , Instituto de Ciências Biológicas, Universidade Federal do Pará , CEP 66075-110, Belém , Pará , Brazil
| | - Gyanu Lamichhane
- d Division of Infectious Diseases, Center for Tuberculosis Research , Johns Hopkins University School of Medicine , Baltimore , MD 21205 , USA
| | - Hendrik G Kruger
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| | - Bahareh Honarparvar
- a Catalysis and Peptide Research Unit, School of Health Sciences , University of KwaZulu-Natal , Durban 4001 , South Africa
| |
Collapse
|
15
|
Reconstruction of diaminopimelic acid biosynthesis allows characterisation of Mycobacterium tuberculosis N-succinyl-L,L-diaminopimelic acid desuccinylase. Sci Rep 2016; 6:23191. [PMID: 26976706 PMCID: PMC4791643 DOI: 10.1038/srep23191] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 02/26/2016] [Indexed: 11/22/2022] Open
Abstract
With the increased incidence of tuberculosis (TB) caused by Mycobacterium tuberculosis there is an urgent need for new and better anti-tubercular drugs. N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) is a key enzyme in the succinylase pathway for the biosynthesis of meso-diaminopimelic acid (meso-DAP) and L-lysine. DapE is a zinc containing metallohydrolase which hydrolyses N-succinyl L,L diaminopimelic acid (L,L-NSDAP) to L,L-diaminopimelic acid (L,L-DAP) and succinate. M. tuberculosis DapE (MtDapE) was cloned, over-expressed and purified as an N-terminal hexahistidine ((His)6) tagged fusion containing one zinc ion per DapE monomer. We redesigned the DAP synthetic pathway to generate L,L-NSDAP and other L,L-NSDAP derivatives and have characterised MtDapE with these substrates. In contrast to its other Gram negative homologues, the MtDapE was insensitive to inhibition by L-captopril which we show is consistent with novel mycobacterial alterations in the binding site of this drug.
Collapse
|
16
|
Zhao L, Jiang J, Zhu Z, Liao Z, Yao X, Yang Y, Cao Y, Jiang Y. Lysine enhances the effect of amphotericin B against Candida albicans in vitro. Acta Biochim Biophys Sin (Shanghai) 2016; 48:182-93. [PMID: 26711896 DOI: 10.1093/abbs/gmv125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/18/2015] [Indexed: 01/11/2023] Open
Abstract
Amphotericin B (AmB) is a polyene antibiotic produced by Streptomyces nodosus and has been used for >50 years in the treatment of acute systemic fungal infections. In the present study, we demonstrated that lysine, an essential amino acid, could enhance the effect of AmB against Candida albicans in vitro, although lysine itself did not exert a fungicidal effect. In addition, the combination of AmB with lysine could provide an enhanced action against Candida parapsilosis and Cryptococcus neoformans compared with AmB alone. Lysine could also enhance the antifungal effect of caspofungin or nystatin. An enhanced effect of the combination of lysine with AmB was observed for the prevention of biofilm and hypha formation. Furthermore, our results demonstrated that lysine-mediated oxidative damage, such as the generation of endogenous reactive oxygen species, may be the mechanism underlying the enhancing effect of lysine on AmB. Our results also showed that CaMCA1 gene plays an important role in increasing the sensitivity of C. albicans cells upon AmB treatment. Using AmB together with lysine may be a promising strategy for the therapy of disseminated candidiasis.
Collapse
Affiliation(s)
- Liuya Zhao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China Pharmacy Department, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jingchen Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zebin Liao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiangwen Yao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yu Yang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yingying Cao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yuanying Jiang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
17
|
Dutta D, Mishra S. Structural and mechanistic insight into substrate binding from the conformational dynamics in apo and substrate-bound DapE enzyme. Phys Chem Chem Phys 2016; 18:1671-80. [DOI: 10.1039/c5cp06024a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Conformational dynamics induced by substrate binding in DapE enzyme.
Collapse
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| | - Sabyashachi Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur
- India
| |
Collapse
|
18
|
Starus A, Nocek B, Bennett B, Larrabee JA, Shaw DL, Sae-Lee W, Russo MT, Gillner DM, Makowska-Grzyska M, Joachimiak A, Holz RC. Inhibition of the dapE-Encoded N-Succinyl-L,L-diaminopimelic Acid Desuccinylase from Neisseria meningitidis by L-Captopril. Biochemistry 2015; 54:4834-44. [PMID: 26186504 DOI: 10.1021/acs.biochem.5b00475] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Binding of the competitive inhibitor L-captopril to the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Neisseria meningitidis (NmDapE) was examined by kinetic, spectroscopic, and crystallographic methods. L-Captopril, an angiotensin-converting enzyme (ACE) inhibitor, was previously shown to be a potent inhibitor of the DapE from Haemophilus influenzae (HiDapE) with an IC50 of 3.3 μM and a measured Ki of 1.8 μM and displayed a dose-responsive antibiotic activity toward Escherichia coli. L-Captopril is also a competitive inhibitor of NmDapE with a Ki of 2.8 μM. To examine the nature of the interaction of L-captopril with the dinuclear active site of DapE, we have obtained electron paramagnetic resonance (EPR) and magnetic circular dichroism (MCD) data for the enzymatically hyperactive Co(II)-substituted forms of both HiDapE and NmDapE. EPR and MCD data indicate that the two Co(II) ions in DapE are antiferromagnetically coupled, yielding an S = 0 ground state, and suggest a thiolate bridge between the two metal ions. Verification of a thiolate-bridged dinuclear complex was obtained by determining the three-dimensional X-ray crystal structure of NmDapE in complex with L-captopril at 1.8 Å resolution. Combination of these data provides new insights into binding of L-captopril to the active site of DapE enzymes as well as important inhibitor-active site residue interaction's. Such information is critical for the design of new, potent inhibitors of DapE enzymes.
Collapse
Affiliation(s)
- Anna Starus
- †Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 West Sheridan Road, Chicago, Illinois 60626, United States
| | - Boguslaw Nocek
- ‡Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Brian Bennett
- §Department of Physics, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - James A Larrabee
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Daniel L Shaw
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Wisath Sae-Lee
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Marie T Russo
- ∥Department of Chemistry and Biochemistry, Middlebury College, Middlebury, Vermont 05753, United States
| | - Danuta M Gillner
- ⊥Department of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland
| | - Magdalena Makowska-Grzyska
- ‡Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrzej Joachimiak
- ‡Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Richard C Holz
- #Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
19
|
Broussard TC, Pakhomova S, Neau DB, Bonnot R, Waldrop GL. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase. Biochemistry 2015; 54:3860-70. [PMID: 26020841 DOI: 10.1021/acs.biochem.5b00340] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1'-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1'-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO₂ from the carboxyphosphate intermediate to biotin.
Collapse
Affiliation(s)
- Tyler C Broussard
- †Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Svetlana Pakhomova
- †Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - David B Neau
- ‡Department of Chemistry and Chemical Biology, Cornell University, Northeastern Collaborative Access Team, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Ross Bonnot
- †Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Grover L Waldrop
- †Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
20
|
Mandal RS, Das S. In silicoapproach towards identification of potential inhibitors ofHelicobacter pyloriDapE. J Biomol Struct Dyn 2014; 33:1460-73. [DOI: 10.1080/07391102.2014.954272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Nocek B, Starus A, Makowska-Grzyska M, Gutierrez B, Sanchez S, Jedrzejczak R, Mack JC, Olsen KW, Joachimiak A, Holz RC. The dimerization domain in DapE enzymes is required for catalysis. PLoS One 2014; 9:e93593. [PMID: 24806882 PMCID: PMC4012986 DOI: 10.1371/journal.pone.0093593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 03/04/2014] [Indexed: 11/21/2022] Open
Abstract
The emergence of antibiotic-resistant bacterial strains underscores the importance of identifying new drug targets and developing new antimicrobial compounds. Lysine and meso-diaminopimelic acid are essential for protein production and bacterial peptidoglycan cell wall remodeling and are synthesized in bacteria by enzymes encoded within dap operon. Therefore dap enzymes may serve as excellent targets for developing a new class of antimicrobial agents. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. The enzyme is composed of catalytic and dimerization domains, and belongs to the M20 peptidase family. To understand the specific role of each domain of the enzyme we engineered dimerization domain deletion mutants of DapEs from Haemophilus influenzae and Vibrio cholerae, and characterized these proteins structurally and biochemically. No activity was observed for all deletion mutants. Structural comparisons of wild-type, inactive monomeric DapE enzymes with other M20 peptidases suggest that the dimerization domain is essential for DapE enzymatic activity. Structural analysis and molecular dynamics simulations indicate that removal of the dimerization domain increased the flexibility of a conserved active site loop that may provide critical interactions with the substrate.
Collapse
Affiliation(s)
- Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Anna Starus
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Magdalena Makowska-Grzyska
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
| | - Blanca Gutierrez
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Stephen Sanchez
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Robert Jedrzejczak
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Jamey C. Mack
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
| | - Kenneth W. Olsen
- The Department of Chemistry and Biochemistry, Loyola University-Chicago, Chicago, Illinois, United States of America
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Computation Institute, University of Chicago, Chicago, Illinois, United States of America
- The Midwest Center for Structural Genomics, Bioscience Division, Argonne National Laboratory, Lemont, Illinois, United States of America
- * E-mail: (AJ); (RCH)
| | - Richard C. Holz
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, United States of America
- * E-mail: (AJ); (RCH)
| |
Collapse
|
22
|
Uda NR, Upert G, Angelici G, Nicolet S, Schmidt T, Schwede T, Creus M. Zinc-selective inhibition of the promiscuous bacterial amide-hydrolase DapE: implications of metal heterogeneity for evolution and antibioticdrug design. Metallomics 2014; 6:88-95. [DOI: 10.1039/c3mt00125c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Dutta D, Mishra S. The structural and energetic aspects of substrate binding and the mechanism of action of the DapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) investigated using a hybrid QM/MM method. Phys Chem Chem Phys 2014; 16:26348-58. [DOI: 10.1039/c4cp03986f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Substrate binding and the mechanism of action of the DapE-encodedN-succinyl-l,l-diaminopimelic acid desuccinylase (DapE).
Collapse
Affiliation(s)
- Debodyuti Dutta
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry
- Indian Institute of Technology Kharagpur
- Kharagpur, India
| |
Collapse
|
24
|
McGregor WC, Gillner DM, Swierczek SI, Liu D, Holz RC. Identification of a Histidine Metal Ligand in the argE-Encoded N-Acetyl-L-Ornithine Deacetylase from Escherichia coli. SPRINGERPLUS 2013; 2:482. [PMID: 25674394 PMCID: PMC4320195 DOI: 10.1186/2193-1801-2-482] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 08/28/2013] [Indexed: 11/15/2022]
Abstract
The H355A, H355K, H80A, and H80K mutant enzymes of the argE-encoded N-acetyl-L-ornithine deacetylase (ArgE) from Escherichia coli were prepared, however, only the H355A enzyme was found to be soluble. Kinetic analysis of the Co(II)-loaded H355A exhibited activity levels that were 380-fold less than Co(II)-loaded WT ArgE. Electronic absorption spectra of Co(II)-loaded H355A-ArgE indicate that the bound Co(II) ion resides in a distorted, five-coordinate environment and Isothermal Titration Calorimetry (ITC) data for Zn(II) binding to the H355A enzyme provided a dissociation constant (Kd) of 39 μM. A three-dimensional homology model of ArgE was generated using the X-ray crystal structure of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae confirming the assignment of H355 as well as H80 as active site ligands.
Collapse
Affiliation(s)
- Wade C McGregor
- The Department of Applied Sciences and Mathematics, College of Technology and Innovation, Arizona State University, Mesa, AZ 85212 USA
| | - Danuta M Gillner
- Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA ; The Department of Chemistry, Silesian University of Technology, Gliwice, 44-100 Poland
| | - Sabina I Swierczek
- Contribution from the Department of Chemistry, Marquette University, Milwaukee, WI 53233 USA
| | - Dali Liu
- Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA
| | - Richard C Holz
- Contribution from the Department of Chemistry, Marquette University, Milwaukee, WI 53233 USA ; Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL 60626 USA
| |
Collapse
|
25
|
Liu X, Li X, Zhang Z, Dong Y, Liu P, Zhang C. Studies on antibacterial mechanisms of copper complexes with 1,10-phenanthroline and amino acid on Escherichia coli. Biol Trace Elem Res 2013; 154:150-5. [PMID: 23716177 DOI: 10.1007/s12011-013-9707-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
The antibacterial mechanisms of Cu(phen)2Cl2·6H2O, [Cu(phen)(Gly)(H2O)]Cl·3H2O, [Cu(phen)(L-Ser)(H2O)Cl] (1,10-phenanthroline (phen)) on Escherichia coli were investigated. In the inductively coupled plasma atomic emission spectroscopy experiments, it showed that lipophilic phen ligand can cause elevation of intracellular copper, but intracellular copper is not the decisive factor. The UV-vis and gel electrophoresis experiments reveal that the DNA binding and cleavage activity are decisive factors for the antibacterial action of these compounds. It is revealed by the cyclic voltammetry experiments that the redox potential was bound to the cleave activity.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry, School of Science, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | | | | | | | | | | |
Collapse
|
26
|
Hangasky JA, Saban E, Knapp MJ. Inverse solvent isotope effects arising from substrate triggering in the factor inhibiting hypoxia inducible factor. Biochemistry 2013; 52:1594-602. [PMID: 23351038 DOI: 10.1021/bi3015482] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oxygen homeostasis plays a critical role in angiogenesis, erythropoiesis, and cell metabolism. Oxygen homeostasis is set by the hypoxia inducible factor-1α (HIF-1α) pathway, which is controlled by factor inhibiting HIF-1α (FIH). FIH is a non-heme Fe(II), α-ketoglutarate (αKG)-dependent dioxygenase that inhibits HIF-1α by hydroxylating the C-terminal transactivation domain (CTAD) of HIF-1α at HIF-Asn(803). A tight coupling between CTAD binding and O2 activation is essential for hypoxia sensing, making changes in the coordination geometry of Fe(II) upon CTAD encounter a crucial feature of this enzyme. Although the consensus chemical mechanism for FIH proposes that CTAD binding triggers O2 activation by causing the Fe(II) cofactor to release an aquo ligand, experimental evidence of this has been absent. More broadly, this proposed coordination change at Fe(II) has not been observed during steady-state turnover in any αKG oxygenase to date. In this work, solvent isotope effects (SIEs) were used as a direct mechanistic probe of substrate-triggered aquo release in FIH, as inverse SIEs (SIE < 1) are signatures for pre-equilibrium aquo release from metal ions. Our mechanistic studies of FIH have revealed inverse solvent isotope effects in the steady-state rate constants at limiting concentrations of CTAD or αKG [(D2O)kcat/KM(CTAD) = 0.40 ± 0.07, and (D2O)kcat/KM(αKG) = 0.32 ± 0.08], providing direct evidence of aquo release during steady-state turnover. Furthermore, the SIE at saturating concentrations of CTAD and αKG was inverse ((D2O)kcat = 0.51 ± 0.07), indicating that aquo release occurs after CTAD binds. The inverse kinetic SIEs observed in the steady state for FIH can be explained by a strong Fe-OH2 bond. The stable Fe-OH2 bond plays an important part in FIH's regulatory role over O2 homeostasis in humans and points toward a strategy for tightly coupling O2 activation with CTAD hydroxylation that relies on substrate triggering.
Collapse
Affiliation(s)
- John A Hangasky
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
27
|
Gillner DM, Becker DP, Holz RC. Lysine biosynthesis in bacteria: a metallodesuccinylase as a potential antimicrobial target. J Biol Inorg Chem 2013; 18:155-163. [PMID: 23223968 PMCID: PMC3862034 DOI: 10.1007/s00775-012-0965-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/15/2012] [Indexed: 01/12/2023]
Abstract
In this review, we summarize the recent literature on dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) enzymes, with an emphasis on structure-function studies that provide insight into the catalytic mechanism. Crystallographic data have also provided insight into residues that might be involved in substrate and hence inhibitor recognition and binding. These data have led to the design and synthesis of several new DapE inhibitors, which are described along with what is known about how inhibitors interact with the active site of DapE enzymes, including the efficacy of a moderately strong DapE inhibitor.
Collapse
Affiliation(s)
- Danuta M Gillner
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA.
- Department of Chemistry, Silesian University of Technology, ul. Krzywoustego 4, 44-100, Gliwice, Poland.
| | - Daniel P Becker
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA
| | - Richard C Holz
- Department of Chemistry and Biochemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL, 60626, USA.
| |
Collapse
|
28
|
Flagg SC, Giri N, Pektas S, Maroney MJ, Knapp MJ. Inverse solvent isotope effects demonstrate slow aquo release from hypoxia inducible factor-prolyl hydroxylase (PHD2). Biochemistry 2012; 51:6654-66. [PMID: 22747465 PMCID: PMC3525350 DOI: 10.1021/bi300229y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Prolyl hydroxylase domain 2 (PHD2) is deemed a primary oxygen sensor in humans, yet many details of its underlying mechanism are still not fully understood. (Fe(2+) + αKG)PHD2 is 6-coordinate, with a 2His/1Asp facial triad occupying three coordination sites, a bidentate α-ketoglutarate occupying two sites, and an aquo ligand in the final site. Turnover is thought to be initiated upon release of the aquo ligand, creating a site for O(2) to bind at the iron. Herein we show that steady-state turnover is faster under acidic conditions, with k(cat) exhibiting a kinetic pK(a) = 7.22. A variety of spectroscopic probes were employed to identify the active-site acid, through comparison of (Fe(2+) + αKG)PHD2 at pH 6.50 with pH 8.50. The near-UV circular dichroism spectrum was virtually unchanged at elevated pH, indicating that the secondary structure did not change as a function of pH. UV-visible and Fe X-ray absorption spectroscopy indicated that the primary coordination sphere of Fe(2+) changed upon increasing the pH; extended X-ray absorption fine structure analysis found a short Fe-(O/N) bond length of 1.96 Å at pH 8.50, strongly suggesting that the aquo ligand was deprotonated at this pH. Solvent isotope effects were measured during steady-sate turnover over a wide pH-range, with an inverse solvent isotope effect (SIE) of k(cat) observed ((D(2)O)k(cat) = 0.91 ± 0.03) for the acid form; a similar SIE was observed for the basic form of the enzyme ((D(2)O)k(cat) = 0.9 ± 0.1), with an acid equilibrium offset of ΔpK(a) = 0.67 ± 0.04. The inverse SIE indicated that aquo release from the active site Fe(2+) immediately precedes a rate-limiting step, suggesting that turnover in this enzyme may be partially limited by the rate of O(2) binding or activation, and suggesting that aquo release is relatively slow. The unusual kinetic pK(a) further suggested that PHD2 might function physiologically to sense both intracellular pO(2) as well as pH, which could provide for feedback between anaerobic metabolism and hypoxia sensing.
Collapse
Affiliation(s)
- Shannon C. Flagg
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
| | - Nitai Giri
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
| | - Serap Pektas
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
| | - Michael J. Maroney
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003
| | - Michael J. Knapp
- Department of Chemistry, University of Massachusetts, Amherst, MA, 01003
- Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA, 01003
| |
Collapse
|
29
|
Usha V, Lloyd AJ, Lovering AL, Besra GS. Structure and function of Mycobacterium tuberculosis meso-diaminopimelic acid (DAP) biosynthetic enzymes. FEMS Microbiol Lett 2012; 330:10-6. [PMID: 22339732 DOI: 10.1111/j.1574-6968.2012.02527.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 01/10/2012] [Accepted: 02/11/2012] [Indexed: 11/28/2022] Open
Abstract
Because of an increased emergence of resistance to current antitubercular drugs, there is a need for new antitubercular agents directed against novel targets. Diaminopimelic acid (DAP) biosynthetic enzymes are unique to bacteria and are absent in mammals and provide a rich source of essential targets for antitubercular chemotherapy. Herein, we review the structure and function of the mycobacterial DAP biosynthetic enzymes.
Collapse
|
30
|
Selectivity of Inhibition of N-Succinyl-l,l-Diaminopimelic Acid Desuccinylase in Bacteria: The product of dapE-gene Is Not the Target of l-Captopril Antimicrobial Activity. Bioinorg Chem Appl 2011; 2011:306465. [PMID: 21577314 PMCID: PMC3092495 DOI: 10.1155/2011/306465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 01/21/2011] [Indexed: 12/03/2022] Open
Abstract
The emergence of bacterial strains that are resistant to virtually all currently available antibiotics underscores the importance of developing new antimicrobial compounds. N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) is a metallohydrolase involved in the meso-diaminopimelate (mDAP)/lysine biosynthetic pathway necessary for lysine biosynthesis and for building the peptidoglycan cell wall. Because DapE is essential for Gram-negative and some Gram-positive bacteria, DapE has been proposed as a good target for antibiotic development. Recently, l-captopril has been suggested as a lead compound for inhibition of DapE, although its selectivity for this enzyme target in bacteria remains unclear (Gillner et al. (2009)). Here, we tested the selectivity of l-captopril against DapE in bacteria. Since DapE knockout strains of gram-negative bacteria are viable upon chemical supplementation with mDAP, we reasoned that the antimicrobial activity of compounds targeting DapE should be abolished in mDAP-containing media. Although l-captopril had modest antimicrobial activity in Escherichia coli and in Salmonella enterica, to our surprise, inhibition of bacterial growth was independent both of mDAP supplementation and DapE over-expression. We conclude that DapE is not the main target of l-captopril inhibition in these bacteria. The methods implemented here will be useful for screening DapE-selective antimicrobial compounds directly in bacterial cultures.
Collapse
|
31
|
Nocek BP, Gillner DM, Fan Y, Holz RC, Joachimiak A. Structural basis for catalysis by the mono- and dimetalated forms of the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase. J Mol Biol 2010; 397:617-26. [PMID: 20138056 DOI: 10.1016/j.jmb.2010.01.062] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 11/15/2022]
Abstract
Biosynthesis of lysine and meso-diaminopimelic acid in bacteria provides essential components for protein synthesis and construction of the bacterial peptidoglycan cell wall. The dapE operon enzymes synthesize both meso-diaminopimelic acid and lysine and, therefore, represent potential targets for novel antibacterials. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase functions in a late step of the pathway and converts N-succinyl-L,L-diaminopimelic acid to L,L-diaminopimelic acid and succinate. Deletion of the dapE gene is lethal to Helicobacter pylori and Mycobacterium smegmatis, indicating that DapE's are essential for cell growth and proliferation. Since there are no similar pathways in humans, inhibitors that target DapE may have selective toxicity against only bacteria. A major limitation in developing antimicrobial agents that target DapE has been the lack of structural information. Herein, we report the high-resolution X-ray crystal structures of the DapE from Haemophilus influenzae with one and two zinc ions bound in the active site, respectively. These two forms show different activity. Based on these newly determined structures, we propose a revised catalytic mechanism of peptide bond cleavage by DapE enzymes. These structures provide important insight into catalytic mechanism of DapE enzymes as well as a structural foundation that is critical for the rational design of DapE inhibitors.
Collapse
Affiliation(s)
- Boguslaw P Nocek
- Midwest Center for Structural Genomics and Structural Biology Center, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | | | | | |
Collapse
|
32
|
Liao RZ, Yu JG, Himo F. Reaction Mechanism of the Trinuclear Zinc Enzyme Phospholipase C: A Density Functional Theory Study. J Phys Chem B 2010; 114:2533-40. [PMID: 20121060 DOI: 10.1021/jp910992f] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Rong-Zhen Liao
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden, and College of Chemistry, Beijing Normal University, Beijing, 100875, People’s Republic of China
| | - Jian-Guo Yu
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden, and College of Chemistry, Beijing Normal University, Beijing, 100875, People’s Republic of China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden, and College of Chemistry, Beijing Normal University, Beijing, 100875, People’s Republic of China
| |
Collapse
|
33
|
Gillner D, Armoush N, Holz RC, Becker DP. Inhibitors of bacterial N-succinyl-l,l-diaminopimelic acid desuccinylase (DapE) and demonstration of in vitro antimicrobial activity. Bioorg Med Chem Lett 2009; 19:6350-2. [DOI: 10.1016/j.bmcl.2009.09.077] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/18/2009] [Accepted: 09/18/2009] [Indexed: 11/16/2022]
|
34
|
Gillner DM, Bienvenue DL, Nocek BP, Joachimiak A, Zachary V, Bennett B, Holz RC. The dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase from Haemophilus influenzae contains two active-site histidine residues. J Biol Inorg Chem 2009; 14:1-10. [PMID: 18712420 PMCID: PMC2678232 DOI: 10.1007/s00775-008-0418-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 08/02/2008] [Indexed: 10/21/2022]
Abstract
The catalytic and structural properties of the H67A and H349A dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae were investigated. On the basis of sequence alignment with the carboxypeptidase from Pseudomonas sp. strain RS-16, both H67 and H349 were predicted to be Zn(II) ligands. The H67A DapE enzyme exhibited a decreased catalytic efficiency (180-fold) compared with wild-type (WT) DapE towards N-succinyldiaminopimelic acid. No catalytic activity was observed for H349A under the experimental conditions used. The electronic paramagnetic resonance (EPR) and electronic absorption data indicate that the Co(II) ion bound to H349A-DapE is analogous to that of WT DapE after the addition of a single Co(II) ion. The addition of 1 equiv of Co(II) to H67A DapE provides spectra that are very different from those of the first Co(II) binding site of the WT enzyme, but that are similar to those of the second binding site. The EPR and electronic absorption data, in conjunction with the kinetic data, are consistent with the assignment of H67 and H349 as active-site metal ligands for the DapE from H. influenzae. Furthermore, the data suggest that H67 is a ligand in the first metal binding site, while H349 resides in the second metal binding site. A three-dimensional homology structure of the DapE from H. influenzae was generated using the X-ray crystal structure of the DapE from Neisseria meningitidis as a template and superimposed on the structure of the aminopeptidase from Aeromonas proteolytica (AAP). This homology structure confirms the assignment of H67 and H349 as active-site ligands. The superimposition of the homology model of DapE with the dizinc(II) structure of AAP indicates that within 4.0 A of the Zn(II) binding sites of AAP all of the amino acid residues of DapE are nearly identical.
Collapse
Affiliation(s)
| | | | | | | | | | - Brian Bennett
- Address correspondence to: Richard C. Holz, Department of Chemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL 60626, Phone (773) 508−3092, Fax: (773) 508−3045, Internet:
| | - Richard C. Holz
- Address correspondence to: Richard C. Holz, Department of Chemistry, Loyola University-Chicago, 1068 W. Sheridan Rd., Chicago, IL 60626, Phone (773) 508−3092, Fax: (773) 508−3045, Internet:
| |
Collapse
|
35
|
Liu Z, Zhen Z, Zuo Z, Wu Y, Liu A, Yi Q, Li W. Probing the Catalytic Center of Porcine Aminoacylase 1 by Site-Directed Mutagenesis, Homology Modeling and Substrate Docking. ACTA ACUST UNITED AC 2006; 139:421-30. [PMID: 16567407 DOI: 10.1093/jb/mvj047] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Three-dimensional structural models of porcine aminoacylase 1 (pACY1) were constructed by homology modeling and aligning the structures of members of the M20 peptidase family. After energy minimization and quality evaluation, the best model from the homology modeling was chosen for docking with the best substrate (N-acetyl-L-methionine). The most reasonable binding mode was found among a large number of predicted complexes by using clustering analysis and screening with expert knowledge. Structural analysis revealed that the zinc ion is not likely to bind to the substrate, and that Arg348 and Glu146 play vital roles in binding and catalysis. In the site-directed mutagenesis experiments, mutation of His79, Asp112, Glu147, Arg348, and Glu146, resulted in significant reductions of specific activity, while the wild-type pACY1 overexpressed in Rosetta (DE3) had almost as high a specific activity as the native enzyme. On the basis of these observations, we proposed a revised catalytic mechanism for this metalloenzyme.
Collapse
Affiliation(s)
- Zhigang Liu
- National Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | | | | | | | | | | | | |
Collapse
|
36
|
Davis R, Bienvenue D, Swierczek SI, Gilner DM, Rajagopal L, Bennett B, Holz RC. Kinetic and spectroscopic characterization of the E134A- and E134D-altered dapE-encoded N-succinyl-l,l-diaminopimelic acid desuccinylase from Haemophilus influenzae. J Biol Inorg Chem 2006; 11:206-16. [PMID: 16421726 DOI: 10.1007/s00775-005-0071-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2005] [Accepted: 11/21/2005] [Indexed: 11/30/2022]
Abstract
Glutamate-134 (E134) is proposed to act as the general acid/base during the hydrolysis reaction catalyzed by the dapE-encoded N-succinyl-L,L-diaminopimelic acid desuccinylase (DapE) from Haemophilus influenzae. To date, no direct evidence has been reported for the role of E134 during catalytic turnover by DapE. In order to elucidate the catalytic role of E134, altered DapE enzymes were prepared in which E134 was substituted with an alanine and an aspartate residue. The Michaelis constant (K (m)) does not change upon substitution with aspartate but the rate of the reaction changes drastically in the following order: glutamate (100% activity), aspartate (0.09%), and alanine (0%). Examination of the pH dependence of the kinetic constants k (cat) and K (m) for E134D-DapE revealed ionizations at pH 6.4, 7.4, and approximately 9.7. Isothermal titration calorimetry experiments revealed a significant weakening in metal K (d) values of E134D-DapE. D134 and A134 perturb the second divalent metal binding site significantly more than the first, but both altered enzymes can still bind two divalent metal ions. Structural perturbations of the dinuclear active site of DapE were also examined for two E134-substituted forms, namely E134D-DapE and E134A-DapE, by UV-vis and electron paramagnetic resonance (EPR) spectroscopy. UV-vis spectroscopy of Co(II)-substituted E134D-DapE and E134A-DapE did not reveal any significant changes in the electronic absorption spectra, suggesting that both Co(II) ions in E134D-DapE and E134A-DapE reside in distorted trigonal bipyramidal coordination geometries. EPR spectra of [Co_(E134D-DapE)] and [Co_(E1341A-DapE] are similar to those observed for [CoCo(DapE)] and somewhat similar to the spectrum of [Co(H(2)O)(6)](2+) which typically exhibit E/D values of approximately 0.1. Computer simulation returned an axial g-tensor with g ((x,y))=2.24 and E/D=0.07; g ( z ) was only poorly determined, but was estimated as 2.5-2.6. Upon the addition of a second Co(II) ion to [Co_(E134D-DapE)] and [Co_(E134A-DapE)], a broad axial signal was observed; however, no signals were observed with B (0)||B (1) ("parallel mode"). On the basis of these data, E134 is intrinsically involved in the hydrolysis reaction catalyzed by DapE and likely plays the role of a general acid and base.
Collapse
Affiliation(s)
- Ryan Davis
- Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322-0300, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Lindner HA, Lunin VV, Alary A, Hecker R, Cygler M, Ménard R. Essential roles of zinc ligation and enzyme dimerization for catalysis in the aminoacylase-1/M20 family. J Biol Chem 2003; 278:44496-504. [PMID: 12933810 DOI: 10.1074/jbc.m304233200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the aminoacylase-1 (Acy1)/M20 family of aminoacylases and exopeptidases exist as either monomers or homodimers. They contain a zinc-binding domain and a second domain mediating dimerization in the latter case. The roles that both domains play in catalysis have been investigated for human Acy1 (hAcy1) by x-ray crystallography and by site-directed mutagenesis. Structure comparison of the dinuclear zinc center in a mutant of hAcy1 reported here with dizinc centers in related enzymes points to a difference in zinc ligation in the Acy1/M20 family. Mutational analysis supports catalytic roles of zinc ions, a vicinal glutamate, and a histidine from the dimerization domain. By complementing different active site mutants of hAcy1, we show that catalysis occurs at the dimer interface. Reinterpretation of the structure of a monomeric homolog, peptidase V, reveals that a domain insertion mimics dimerization. We conclude that monomeric and dimeric Acy1/M20 family members share a unique active site architecture involving both enzyme domains. The study may provide means to improve homologous carboxypeptidase G2 toward application in antibody-directed enzyme prodrug therapy.
Collapse
Affiliation(s)
- Holger A Lindner
- Biotechnology Research Institute, National Research Council of Canada, Montréal, Québec H4P 2R2, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Antikainen NM, Monzingo AF, Franklin CL, Robertus JD, Martin SF. Using X-ray crystallography of the Asp55Asn mutant of the phosphatidylcholine-preferring phospholipase C from Bacillus cereus to support the mechanistic role of Asp55 as the general base. Arch Biochem Biophys 2003; 417:81-6. [PMID: 12921783 DOI: 10.1016/s0003-9861(03)00343-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Because mutations of the ionizable Asp at position 55 of the phosphatidylcholine preferring phospholipase C from Bacillus cereus (PLC(Bc)) to a non-ionizable Asn generate a mutant enzyme (D55N) with 10(4)-fold lower catalytic activity than the wild-type enzyme, we tentatively identified Asp55 as the general base for the enzymatic reaction. To eliminate the alternate possibility that Asp55 is a structurally important amino acid, the X-ray structures of unbound D55N and complexes of D55N with two non-hydrolyzable substrate analogues have been solved and refined to 2.0, 2.0, and 2.3A, respectively. The structures of unbound wild-type PLC(Bc) and a wild-type PLC(Bc)-complex with a non-hydrolyzable substrate analogue do not change significantly as a result of replacing Asp55 with Asn. These observations demonstrate that Asp55 is not critical for the structural integrity of the enzyme and support the hypothesis that Asp55 is the general base in the PLC(Bc)-catalyzed hydrolysis of phospholipids.
Collapse
Affiliation(s)
- Nina M Antikainen
- Department of Chemistry and Biochemistry, The Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | | | | | | |
Collapse
|
39
|
Abstract
Extracts of a multiply peptidase-deficient (pepNABDPQTE iadA iaaA) Salmonella enterica serovar Typhimurium strain contain an aspartyl dipeptidase activity that is dependent on Mn(2+). Purification of this activity followed by N-terminal sequencing of the protein suggested that the Mn(2+)-dependent peptidase is DapE (N-succinyl-L,L-diaminopimelate desuccinylase). A dapE chromosomal disruption was constructed and transduced into a multiply peptidase-deficient (MPD) strain. Crude extracts of this strain showed no aspartyl peptidase activity, and the strain failed to utilize Asp-Leu as a leucine source. The dapE gene was cloned into expression vectors in order to overproduce either the native protein (DapE) or a hexahistidine fusion protein (DapE-His(6)). Extracts of a strain carrying the plasmid overexpresssing native DapE in the MPD dapE background showed a 3,200-fold elevation of Mn(2+)-dependent aspartyl peptidase activity relative to the MPD dapE(+) strain. In addition, purified DapE-His(6) exhibited Mn(2+)-dependent peptidase activity toward aspartyl dipeptides. Growth of the MPD strain carrying a single genomic copy of dapE on Asp-Leu as a Leu source was slow but detectable. Overproduction of DapE in the MPD dapE strain allowed growth on Asp-Leu at a much faster rate. DapE was found to be specific for N-terminal aspartyl dipeptides: no N-terminal Glu, Met, or Leu peptides were hydrolyzed, nor were any peptides containing more than two amino acids. DapE is known to bind two divalent cations: one with high affinity and the other with lower affinity. Our data indicate that the form of DapE active as a peptidase contains Zn(2+) in the high-affinity site and Mn(2+) in the low-affinity site.
Collapse
Affiliation(s)
- Daniel H Broder
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | |
Collapse
|
40
|
Holz RC. The aminopeptidase from Aeromonas proteolytica: structure and mechanism of co-catalytic metal centers involved in peptide hydrolysis. Coord Chem Rev 2002. [DOI: 10.1016/s0010-8545(01)00470-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
41
|
Yang G, Kirkpatrick RB, Ho T, Zhang GF, Liang PH, Johanson KO, Casper DJ, Doyle ML, Marino JP, Thompson SK, Chen W, Tew DG, Meek TD. Steady-state kinetic characterization of substrates and metal-ion specificities of the full-length and N-terminally truncated recombinant human methionine aminopeptidases (type 2). Biochemistry 2001; 40:10645-54. [PMID: 11524009 DOI: 10.1021/bi010806r] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The steady-state kinetics of a full-length and truncated form of the type 2 human methionine aminopeptidase (hMetAP2) were analyzed by continuous monitoring of the amide bond cleavage of various peptide substrates and methionyl analogues of 7-amido-4-methylcoumarin (AMC) and p-nitroaniline (pNA), utilizing new fluorescence-based and absorbance-based assay substrates and a novel coupled-enzyme assay method. The most efficient substrates for hMetAP2 appeared to be peptides of three or more amino acids for which the values of k(cat)/K(m) were approximately 5 x 10(5) M(-1) min(-1). It was found that while the nature of the P1' residue of peptide substrates dictates the substrate specificity in the active site of hMetAP2, the P2' residue appears to play a key role in the kinetics of peptidolysis. The catalytic efficiency of dipeptide substrates was found to be at least 250-fold lower than those of the tripeptides. This substantially diminished catalytic efficiency of hMetAP2 observed with the alternative substrates MetAMC and MetpNA is almost entirely due to the reduction in the turnover rate (k(cat)), suggesting that cleavage of the amide bond is at least partially rate-limiting. The 107 N-terminal residues of hMetAP2 were not required for either the peptidolytic activity of the enzyme or its stability. Steady-state kinetic comparison and thermodynamic analyses of an N-terminally truncated form and full-length enzyme yielded essentially identical kinetic behavior and physical properties. Addition of exogenous Co(II) cation was found to significantly activate the full-length hMetAP2, while Zn(II) cation, on the other hand, was unable to activate hMetAP2 under any concentration that was tested.
Collapse
Affiliation(s)
- G Yang
- Department of Assay Methodology Development, GlaxoSmithKline Pharmaceuticals, 709 Swedeland Road, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Biagini A, Puigserver A. Sequence analysis of the aminoacylase-1 family. A new proposed signature for metalloexopeptidases. Comp Biochem Physiol B Biochem Mol Biol 2001; 128:469-81. [PMID: 11250542 DOI: 10.1016/s1096-4959(00)00341-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The amino acid sequence analysis of the human and porcine aminoacylases-1, the carboxypeptidase S precursor from Saccharomyces cerevisiae, the succinyl-diaminopimelate desuccinylase from Escherichia coli, Haemophilus influenzae and Corynebacterium glutamicum, the acetylornithine deacetylase from Escherichia coli and Dictyostelium discoideum and the carboxypeptidase G(2) precursor from Pseudomonas strain, using the Basic Local Alignment Search Tool (BLAST) and the Position-Specific Iterated BLAST (PSI-BLAST), allowed us to suggest that all these enzymes, which share common functional and biochemical features, belong to the same structural family. The three amino acid blocks which were found to be highly conserved, using the CLUSTAL W program, could be assigned to the catalytic active site, based on the general three-dimensional structure of the carboxypeptidase G(2) from the Pseudomonas strain precursor. Six additional proteins with the same signature have been retrieved after performing two successive PSI-BLAST iterations using the sequence of the conserved motif, namely Lactobacillus delbrueckii aminoacyl-histidine dipeptidase, Streptomyces griseus aminopeptidase, Saccharomyces cerevisiae aminopeptidase Y precursor, two Bacillus stearothermophilus N-carbamyl-L-amino acid amidohydrolases and Pseudomonas sp. hydantoin utilization protein C. The three conserved amino acid motifs corresponded to the following blocks: (i) [S, G, A]-H-x-D-x-V; (ii) G-x-x-D; and (iii) x-E-E. This new sequence signature is clearly different from that commonly reported in the literature for proteins belonging to the ArgE/DapE/CPG2/YscS family.
Collapse
Affiliation(s)
- A Biagini
- Institut Méditerranéen de Recherche en Nutrition, UMR Université Aix-Marseille III-INRA, Faculté des Sciences et Techniques de Saint-Jérôme, 13397 Marseille Cedex 20, France.
| | | |
Collapse
|
43
|
Abstract
The effect of pressure on the capture of a substrate alcohol by yeast alcohol dehydrogenase is biphasic. Solvent isotope effects accompany both phases and are expressed differently at different pressures. These differences allow the extraction of an inverse intrinsic kinetic solvent isotope effect of 1.1 (i.e., (D(2(O)))V/K = 0.9) accompanying hydride transfer and an inverse equilibrium solvent isotope effect of 2.6 (i.e., (D(2(O)))K(s) = 0.4) accompanying the binding of nucleotide, NAD(+). The value of the kinetic effect is consistent with a reactant-state E-NAD(+)-Zn-OH(2) having a fractionation factor of phi approximately 0.5 for the zinc-bound water in conjunction with a transition-state proton exiting a low-barrier hydrogen bond with a fractionation factor between 0.6 and 0.9. The value of the equilibrium effect is consistent with restrictions of torsional motions of multiple hydrogens of the enzyme protein during the conformational change that accompanies the binding of NAD(+). The absence of significant commitments to catalysis accompanying the kinetic solvent isotope effect means that this portion of the proton transfer occurs in the same reactive step as hydride transfer in a concerted chemical mechanism. The success of this analysis suggests that future measurements of solvent isotope effects as a function of pressure, in the presence of moderate commitments to catalysis, may yield precise estimates of intrinsic solvent isotope effects that are not fully expressed on capture at atmospheric pressure.
Collapse
Affiliation(s)
- D B Northrop
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53706 USA.
| | | |
Collapse
|
44
|
Cox RJ, Sutherland A, Vederas JC. Bacterial diaminopimelate metabolism as a target for antibiotic design. Bioorg Med Chem 2000; 8:843-71. [PMID: 10881998 DOI: 10.1016/s0968-0896(00)00044-4] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- R J Cox
- School of Chemistry, University of Bristol, Clifton, UK.
| | | | | |
Collapse
|
45
|
Phosphatidylcholine-Preferring Phospholipase C from B. cereus. Function, Structure, and Mechanism. Top Curr Chem (Cham) 2000. [DOI: 10.1007/3-540-45035-1_5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
46
|
Born TL, Blanchard JS. Structure/function studies on enzymes in the diaminopimelate pathway of bacterial cell wall biosynthesis. Curr Opin Chem Biol 1999; 3:607-13. [PMID: 10508663 DOI: 10.1016/s1367-5931(99)00016-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Within the past 18 months work has continued on the structure and mechanisms of enzymes involved in the diaminopimelic acid/lysine biosynthetic pathway. A novel structure has been determined for a PLP-independent epimerase, and structures with bound substrates have been solved for two other enzymes. Additionally, new studies have appeared describing the chemical mechanisms of three enzymes in the pathway.
Collapse
Affiliation(s)
- T L Born
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | | |
Collapse
|