1
|
Zhou X, Du L, Li M. Recent Progress in Azobenzene-Based In Vivo Photopharmacology. Med Res Rev 2025. [PMID: 40420431 DOI: 10.1002/med.22120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 05/06/2025] [Accepted: 05/15/2025] [Indexed: 05/28/2025]
Abstract
As the most extensively studied photoswitch in photopharmacology, the azobenzene photoswitch has precision instrumental in the photoregulation of physiological processes across various animal models. Currently, it exhibits the greatest clinical potential for photosensitive retinal restoration, capable of inducing long-term therapeutic effects following intravitreal injection, without the need for foreign gene expression or optical fiber implantation. A significant advancement in the application of azobenzene photoswitches is their integration with optical flow control technology, which facilitates the targeting of deep tissues within the mouse cerebral cortex, addressing long-standing challenges related to tissue penetration depth in photopharmacology. With exceptional spatial and temporal resolution, photopharmacology is particularly well-suited for precision medicine, holding substantial potential for further development. Consequently, a comprehensive summary and review of the design strategies of azobenzene photoswitches for In Vivo applications, along with their experimental outcomes, are essential for guiding future advancements in photopharmacology. This review provides an overview of the fundamental properties and design strategies of azobenzene photoswitch molecules. Additionally, we extensively summarize all azobenzene photoswitch molecules successfully applied In Vivo for photopharmacological purposes since 2006, covering species such as Caenorhabditis elegans, Xenopus tadpoles, zebrafish, mice, rats, rabbits, and canines. Finally, we discuss the challenges associated with the In Vivo implementation of azobenzene photoswitch molecules and propose potential solutions.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (MOE), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Key Laboratory of Tropical Biological Resources (MOE), School of Pharmaceutical Sciences, Hainan University, Haikou, Hainan, China
| |
Collapse
|
2
|
Achouba Y, Peres B, Ascoët S, Meudal H, Caumes C, Zoukimian C, Millet H, Choteau‐Bodor M, Carvalhosa C, Croyal M, Bouchama F, Wulff H, Téletchéa S, Béroud R, Ishow E, Landon C, Boumendjel A, Montnach J, De Waard M. Photoisomerization of Azobenzene-Extended Charybdotoxin for the Optical Control of K v1.2 Potassium Channel Activity. Angew Chem Int Ed Engl 2025; 64:e202423278. [PMID: 40013552 PMCID: PMC12051786 DOI: 10.1002/anie.202423278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/04/2025] [Accepted: 02/27/2025] [Indexed: 02/28/2025]
Abstract
Natural peptides from animal venoms effectively modulate ion channel activity. While photoswitches regulate small compound pharmacology, their application to natural peptides rich in disulfide bridges and active on ion channels is novel due to larger pharmacophores. A pilot study integrating azobenzene photoswitches into charybdotoxin (ChTx), known for blocking potassium channels is initiated. Two click-chemistry-compatible azobenzene are synthesized differing in length and amide orientation (Az1 & Az2). Az1 is grafted onto ChTx at various amino acid positions using L-azidohomoalanine mutation. ChTx monomers outperformed dimers, particularly with azobenzene at position 14, by exhibiting optimal photoswitching activity. In the cis configuration, Az1 altered ChTx's pharmacophore, reducing potassium channel blockage, while conversely, Az2 increased ChTx potency. This study pioneers photoswitch application to complex peptides, leveraging structure-activity relationships. Successful integration depends on precise azobenzene positioning and chemical grafting guided by SAR insights. This advancement underscores the adaptability of photoswitch technology to intricate peptide structures, offering new avenues for pharmacological modulation.
Collapse
Affiliation(s)
- Yanis Achouba
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | - Basile Peres
- Département de Pharmacochimie MoléculaireUniversité Grenoble AlpesCNRSGrenobleF‐38000France
| | - Steven Ascoët
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | - Hervé Meudal
- Center for Molecular BiophysicsCNRSOrléans45071France
| | | | | | - Hugo Millet
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | | | | | - Mikael Croyal
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | - Fella Bouchama
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | - Heike Wulff
- Department of PharmacologyUniversity of CaliforniaDavisCAUSA
| | | | - Rémy Béroud
- Smartox BiotechnologySaint‐Egrève38120France
- SB‐PeptidesSaint‐Egrève38120France
| | - Eléna Ishow
- CEISAMNantes UniversitéCNRSNantes44322France
| | - Céline Landon
- Center for Molecular BiophysicsCNRSOrléans45071France
| | | | - Jérôme Montnach
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
| | - Michel De Waard
- L'institut du thoraxNantes UniversitéCNRS, INSERMNantesF‐44000France
- Smartox BiotechnologySaint‐Egrève38120France
- Laboratory of Excellence «Ion Channels, Science and Therapeutics»ValbonneF‐06560France
| |
Collapse
|
3
|
Ganzoni RLZ, Bournons SS, Carreira EM, De Bundel D, Smolders I. A Bright Future for Photopharmaceuticals Addressing Central Nervous System Disorders: State of the Art and Challenges Toward Clinical Translation. Med Res Rev 2025. [PMID: 40186449 DOI: 10.1002/med.22105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Photopharmacology is an innovative approach that uses light to activate drugs. This method offers the potential for highly localized and precise drug activation, making it particularly promising for the treatment of neurological disorders. Despite the enticing prospects of photopharmacology, its application to treat human central nervous system (CNS) diseases remains to be demonstrated. In this review, we provide an overview of prominent strategies for the design and activation of photopharmaceutical agents in the field of neuroscience. Photocaged and photoswitchable drugs and bioactive molecules are discussed, and an instructive list of examples is provided to highlight compound design strategies. Special emphasis is placed on photoactivatable compounds for the modulation of glutamatergic, GABAergic, dopaminergic, and serotonergic neurotransmission for the treatment of neurological conditions, as well as various photoresponsive molecules with potential for improved pain management. Compounds holding promise for clinical translation are discussed in-depth and their potential for future applications is assessed. Neurophotopharmaceuticals have yet to achieve breakthrough in the clinic, as both light delivery and drug design have not reached full maturity. However, by describing the current state of the art and providing illustrative case studies, we offer a perspective on future opportunities in the field of neurophotopharmacology focused on addressing CNS disorders.
Collapse
Affiliation(s)
- Rudolf L Z Ganzoni
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Sofie S Bournons
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Erick M Carreira
- Laboratorium für Organische Chemie, Eidgenössische Technische Hochschule Zürich, Zürich, Switzerland
| | - Dimitri De Bundel
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Ilse Smolders
- Department of Pharmaceutical and Pharmacological Sciences, Research Group Experimental Pharmacology (EFAR), Center for Neurosciences (C4N), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
4
|
Noev A, Likhobabina D, Sutemieva J, Plyutinskaya A, Cheshkov D, Morozova N, Vinokurova A, Vasil’ev Y, Suvorov N, Nemtzova E, Pankratov A, Filonenko E, Shegay P, Kaprin A, Grin M. Structure-Property Relationships in Novel Series of Photoswitchable Local Anesthetic Ethercaine Derivatives: Emphasis on Biological and Photophysical Properties. Int J Mol Sci 2025; 26:3244. [PMID: 40244047 PMCID: PMC11989239 DOI: 10.3390/ijms26073244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/27/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
The insufficient selectivity of existing local anesthetics can lead to serious adverse effects. Considering the widespread use of this class of drugs, the development of new local anesthetics that do not cause side effects is an important task. One approach to address this issue is the use of photopharmacology, which enables the creation of agents with light-controlled biological activity. Several examples of azobenzene-based photoswitchable blockers of voltage-gated sodium (Nav) channels have been described so far. These compounds can be used as light-controlled local anesthetics, one of which is ethercaine, synthesized by our group earlier. However, systematic studies of the "structure-activity" relationship in the series of light-controlled local anesthetics based on azobenzene are absent in the literature. The aim of this study was to obtain new derivatives of ethercaine and investigate their photophysical and biological properties. A total of 14 new derivatives were synthesized, and their structure was confirmed by various physicochemical analysis methods. The Z-E isomerization half-lifes were determined for all the synthesized compounds. The cytotoxic effect on normal cells was studied in vitro using human dermal fibroblasts (DF2). The local anesthetic activity of all the synthesized compounds was evaluated in vivo on a model of surface anesthesia in both darkness and under UV light irradiation. Based on the results obtained, conclusions were drawn regarding the potential of the proposed substances, and optimal pathways for structural modification were identified.
Collapse
Affiliation(s)
- Alexey Noev
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (D.L.); (J.S.); (D.C.); (Y.V.); (N.S.); (A.P.); (E.F.); (M.G.)
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr. 3, 125284 Moscow, Russia; (A.P.); (N.M.); (E.N.); (P.S.); (A.K.)
| | - Daria Likhobabina
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (D.L.); (J.S.); (D.C.); (Y.V.); (N.S.); (A.P.); (E.F.); (M.G.)
| | - Janna Sutemieva
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (D.L.); (J.S.); (D.C.); (Y.V.); (N.S.); (A.P.); (E.F.); (M.G.)
| | - Anna Plyutinskaya
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr. 3, 125284 Moscow, Russia; (A.P.); (N.M.); (E.N.); (P.S.); (A.K.)
| | - Dmitry Cheshkov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (D.L.); (J.S.); (D.C.); (Y.V.); (N.S.); (A.P.); (E.F.); (M.G.)
- State Scientific Research Institute of Chemistry and Technology of Organoelement Compounds, 38 Shosse Entuziastov, 105118 Moscow, Russia
| | - Natalia Morozova
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr. 3, 125284 Moscow, Russia; (A.P.); (N.M.); (E.N.); (P.S.); (A.K.)
| | | | - Yuriy Vasil’ev
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (D.L.); (J.S.); (D.C.); (Y.V.); (N.S.); (A.P.); (E.F.); (M.G.)
- Department of Operative Surgery and Topographic Anatomy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia
| | - Nikita Suvorov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (D.L.); (J.S.); (D.C.); (Y.V.); (N.S.); (A.P.); (E.F.); (M.G.)
| | - Elena Nemtzova
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr. 3, 125284 Moscow, Russia; (A.P.); (N.M.); (E.N.); (P.S.); (A.K.)
| | - Andrei Pankratov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (D.L.); (J.S.); (D.C.); (Y.V.); (N.S.); (A.P.); (E.F.); (M.G.)
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr. 3, 125284 Moscow, Russia; (A.P.); (N.M.); (E.N.); (P.S.); (A.K.)
| | - Elena Filonenko
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (D.L.); (J.S.); (D.C.); (Y.V.); (N.S.); (A.P.); (E.F.); (M.G.)
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr. 3, 125284 Moscow, Russia; (A.P.); (N.M.); (E.N.); (P.S.); (A.K.)
| | - Petr Shegay
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr. 3, 125284 Moscow, Russia; (A.P.); (N.M.); (E.N.); (P.S.); (A.K.)
| | - Andrey Kaprin
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr. 3, 125284 Moscow, Russia; (A.P.); (N.M.); (E.N.); (P.S.); (A.K.)
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (D.L.); (J.S.); (D.C.); (Y.V.); (N.S.); (A.P.); (E.F.); (M.G.)
| |
Collapse
|
5
|
Colleoni A, Galli G, Dallanoce C, De Amici M, Gorostiza P, Matera C. Light-Activated Pharmacological Tools for Exploring the Cholinergic System. Med Res Rev 2025. [PMID: 40123150 DOI: 10.1002/med.22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 03/25/2025]
Abstract
Cholinergic transmission plays a critical role in both the central and peripheral nervous systems, affecting processes such as learning, memory, and inflammation. Conventional cholinergic drugs generally suffer from poor selectivity and temporal precision, leading to undesired effects and limited therapeutic efficacy. Photopharmacology aims to overcome the limitations of traditional drugs using photocleavable or photoswitchable ligands and spatiotemporal patterns of illumination. Spanning from muscarinic and nicotinic modulators to cholinesterase inhibitors, this review explores the development and application of light-activated compounds as tools for unraveling the role of cholinergic signaling in both physiological and pathological contexts, while also paving the way for innovative phototherapeutic approaches.
Collapse
Grants
- This research was supported by the European Union-Next Generation EU, Mission 4, Component 1 (CUP J53C24002040004), EU Horizon 2020 Framework Programme for Research and Innovation, European Innovation Council Pathfinder (PHOTOTHERAPORT, 101130883), Human Brain Project (WaveScalES, SGA3, 945539), Information and Communication Technologies (Deeper, ICT-36-2020-101016787), and Piano di Sostegno alla Ricerca 2023 (Azione A, Linea 2, PSR2023_DIP_021_CMATE). It was also supported by the Government of Catalonia (CERCA Programme; AGAUR 2021-SGR-01410), Spanish Ministry of Science and Innovation (DEEP RED, grant PID2019-111493RB-I00; EPILLUM, grant AEI/10.13039/501100011033; and Research Network in Biomedicine eBrains-Spain, RED2022-134823-E).
Collapse
Affiliation(s)
- Alessio Colleoni
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Giulia Galli
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Clelia Dallanoce
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marco De Amici
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Pau Gorostiza
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Carlo Matera
- Section of Medicinal Chemistry "Pietro Pratesi", Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
6
|
Brandt T, Lentes P, Rudtke J, Hösgen M, Näther C, Herges R. Synthesis of N-acetyl diazocine derivatives via cross-coupling reaction. Beilstein J Org Chem 2025; 21:490-499. [PMID: 40079020 PMCID: PMC11897653 DOI: 10.3762/bjoc.21.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Diazocines are photoswitches derived from azobenzenes by bridging the two phenyl rings in ortho position with a CH2CH2 group forming an eight membered (diazocine) ring. Diazocine is superior to most azobenzenes in almost all photophysical properties (switching efficiency, quantum yield, wavelengths etc.). The biggest advantage, especially in photopharmacology and when used in photoswitchable materials, is the inverted thermodynamic stability of the two switching states (isomers). The Z isomer is more stable than the E form. However, one disadvantage that it shares with the frequently used azobenzene is that the switching efficiency decreases sharply with increasing water content in the solvent. In a recently published paper, we reported that replacing one CH2 group in the bridge with NCOCH3 not only confers intrinsic water solubility, but also largely eliminates the problem of reduced switching efficiency in aqueous solutions. In order to investigate the chemistry of this promising photoswitch and to unlock further applications, we now investigate strategies for the synthesis of derivatives, which are based on cross-coupling reactions. Fourteen vinyl-, aryl-, cyano-, and amino-substituted diazocines were prepared via Stille, Suzuki, and Buchwald-Hartwig reactions. X-ray structures are presented for derivatives 1, 2 and 7.
Collapse
Affiliation(s)
- Thomas Brandt
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Pascal Lentes
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Jeremy Rudtke
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Michael Hösgen
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| | - Christian Näther
- Institute for Inorganic Chemistry, Kiel University, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Rainer Herges
- Otto Diels Institute for Organic Chemistry, Kiel University, Otto-Hahn-Platz 4, 24118 Kiel, Germany
| |
Collapse
|
7
|
Becker J, Ellerkmann CS, Schmelzer H, Hermann C, Lützel K, Gudermann T, Konrad DB, Trauner D, Storch U, Mederos Y Schnitzler M. Optical Control of TRPM8 Channels with Photoswitchable Menthol. Angew Chem Int Ed Engl 2025; 64:e202416549. [PMID: 39660776 DOI: 10.1002/anie.202416549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Accepted: 12/10/2024] [Indexed: 12/12/2024]
Abstract
Transient receptor potential melastatin 8 (TRPM8) channels are well known as sensors for cold temperatures and cooling agents such as menthol and icilin and these channels are tightly regulated by the membrane lipid phosphoinositol-4,5-bisphosphate (PIP2). Since TRPM8 channels emerged as promising drug targets for treating pain, itching, obesity, cancer, dry eye disease, and inflammation, we aimed at developing a high-precision TRPM8 channel activator, to achieve spatiotemporal control of TRPM8 activity with light. In this study, we designed, synthesized and characterized the first photoswitchable TRPM8 activator azo-menthol (AzoM). AzoM enables optical control of endogenously and heterologously expressed TRPM8 channels with UV and blue light which is demonstrated by performing patch-clamp experiments. Moreover, AzoM facilitates the reliable determination of activation, inactivation, and deactivation kinetics thereby providing further insights into the channel gating. Using AzoM, the specific roles of individual amino acids for AzoM or PIP2 binding and for sensitization by PIP2 can be elucidated. Altogether, AzoM represents as a high-precision pharmaceutical tool for reversible control of TRPM8 channel function that enhances our biophysical understanding of TRPM8 channels and holds the potential to support the development of novel pharmaceuticals.
Collapse
Affiliation(s)
- Jasmin Becker
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Clara S Ellerkmann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Hannah Schmelzer
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Christian Hermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
| | - Kyra Lützel
- Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research, 81377, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, 80336, Munich, Germany
| | - David B Konrad
- Department of Pharmacy, Ludwig Maximilian University of Munich, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Dirk Trauner
- Department of Chemistry College of Arts and Sciences, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania, 19104-6323, United States
| | - Ursula Storch
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
- Institute of Pharmacy, University of Regensburg, Universitätsstr. 31, 93040, Regensburg, Germany
| | - Michael Mederos Y Schnitzler
- Walther Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University of Munich, Goethestr. 33, 80336, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Munich Heart Alliance, 80336, Munich, Germany
| |
Collapse
|
8
|
Saßmannshausen T, Glover H, Trabuco M, Neidhart W, Cheng R, Hennig M, Slavov C, Standfuss J, Wachtveitl J. Kinetic Basis for the Design of Azobenzene-Based Photoswitchable A 2a Adenosine Receptor Ligands. J Am Chem Soc 2024; 146:32670-32677. [PMID: 39533779 DOI: 10.1021/jacs.4c11995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photoisomerization of ligands is a key process in the field of photopharmacology. Thus, the kinetics and efficiency of this initial photoreaction are of great importance but can be influenced by the molecular environment of the binding pocket and the resulting confinement of the reaction pathway. In this study, we investigated the photoisomerization of an azobenzene derivative of the anti-Parkinson's drug istradefylline. To identify the impact of the binding pocket, the ligand was examined in solution and bound to its target protein, the A2a adenosine receptor (A2aR), belonging to the family of G protein-coupled receptors (GPCRs). Although the overall efficiency of isomerization is reduced when the ligand is bound, the initial photoreaction experiences little influence from the binding pocket. However, protein-coupled motion promotes a longer-lived excited-state population and thus leads to a reduction in efficiency. The results provide the kinetic basis for a photoswitchable GPCR ligand and demonstrate the influence of the binding pocket on fundamental photochemistry.
Collapse
Affiliation(s)
- Torben Saßmannshausen
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt 60438, Germany
| | - Hannah Glover
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI 5234, Switzerland
| | - Matilde Trabuco
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Werner Neidhart
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Robert Cheng
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Michael Hennig
- LeadXpro Biotech AG, Park Innovaare, Villigen PSI 5234, Switzerland
| | - Chavdar Slavov
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Jörg Standfuss
- Division of Biology and Chemistry, Paul Scherrer Institut, Villigen PSI 5234, Switzerland
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University, Frankfurt 60438, Germany
| |
Collapse
|
9
|
Maleeva G, Nin-Hill A, Wirth U, Rustler K, Ranucci M, Opar E, Rovira C, Bregestovski P, Zeilhofer HU, König B, Alfonso-Prieto M, Gorostiza P. Light-Activated Agonist-Potentiator of GABA A Receptors for Reversible Neuroinhibition in Wildtype Mice. J Am Chem Soc 2024; 146:28822-28831. [PMID: 39383450 PMCID: PMC11503767 DOI: 10.1021/jacs.4c08446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024]
Abstract
Gamma aminobutyric acid type A receptors (GABAARs) play a key role in the mammalian central nervous system (CNS) as drivers of neuroinhibitory circuits, which are commonly targeted for therapeutic purposes with potentiator drugs. However, due to their widespread expression and strong inhibitory action, systemic pharmaceutical potentiation of GABAARs inevitably causes adverse effects regardless of the drug selectivity. Therefore, therapeutic guidelines must often limit or exclude clinically available GABAAR potentiators, despite their high efficacy, good biodistribution, and favorable molecular properties. One solution to this problem is to use drugs with light-dependent activity (photopharmacology) in combination with on-demand, localized illumination. However, a suitable light-activated potentiator of GABAARs has been elusive so far for use in wildtype mammals. We have met this need by developing azocarnil, a diffusible GABAergic agonist-potentiator based on the anxiolytic drug abecarnil that is inactive in the dark and activated by visible violet light. Azocarnil can be rapidly deactivated with green light and by thermal relaxation in the dark. We demonstrate that it selectively inhibits neuronal currents in hippocampal neurons in vitro and in the dorsal horns of the spinal cord of mice, decreasing the mechanical sensitivity as a function of illumination without displaying systemic adverse effects. Azocarnil expands the in vivo photopharmacological toolkit with a novel chemical scaffold and achieves a milestone toward future phototherapeutic applications to safely treat muscle spasms, pain, anxiety, sleep disorders, and epilepsy.
Collapse
Affiliation(s)
- Galyna Maleeva
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Networking
Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), ISCIII, Barcelona 08028, Spain
| | - Alba Nin-Hill
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08020, Spain
| | - Ulrike Wirth
- Institute
of Organic Chemistry, University of Regensburg, Regensburg 93053, Germany
| | - Karin Rustler
- Institute
of Organic Chemistry, University of Regensburg, Regensburg 93053, Germany
| | - Matteo Ranucci
- Institute
of Pharmacology and Toxicology, University
of Zurich, Zürich 8057, Switzerland
| | - Ekin Opar
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Networking
Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), ISCIII, Barcelona 08028, Spain
- Doctorate
program of the University of Barcelona, Barcelona 08020, Spain
| | - Carme Rovira
- Departament
de Química Inorgànica i Orgànica (Secció
de Química Orgànica) & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Barcelona 08020, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Piotr Bregestovski
- Institut
de Neurosciences des Systèmes, UMR INSERM 1106, Aix-Marseille Université, Marseille 13005, France
| | - Hanns Ulrich Zeilhofer
- Institute
of Pharmacology and Toxicology, University
of Zurich, Zürich 8057, Switzerland
- Institute
of Pharmaceutical Sciences, Swiss Federal
Institute of Technology (ETH) Zürich, Zürich 8093, Switzerland
| | - Burkhard König
- Institute
of Organic Chemistry, University of Regensburg, Regensburg 93053, Germany
| | - Mercedes Alfonso-Prieto
- Institute
of Neuroscience and Medicine INM-9 Computational Biomedicine, Forschungszentrum Jülich GmbH, D-52428 Jülich, Germany
| | - Pau Gorostiza
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Networking
Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine
(CIBER-BBN), ISCIII, Barcelona 08028, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
10
|
Chen Y. Recent Progress in Regulating the Activity of Enzymes with Photoswitchable Inhibitors. Molecules 2024; 29:4523. [PMID: 39407453 PMCID: PMC11477607 DOI: 10.3390/molecules29194523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
Photoregulation of biomolecules has become crucial tools in chemical biology, because light enables access under mild conditions and with delicate spatiotemporal control. The control of enzyme activity in a reversible way is a challenge. To achieve it, a facile approach is to use photoswitchable inhibitors. This review highlights recent progress in photoswitchable inhibitors based on azobenzenes units. The progress suggests that the incorporation of an azobenzene unit to a known inhibitor is an effective method for preparing a photoswitchable inhibitor, and with these photoswitchable inhibitors, the activity of enzymes can be regulated by optical control, which is valuable in both basic science and therapeutic applications.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Camerin L, Maleeva G, Gomila AMJ, Suárez-Pereira I, Matera C, Prischich D, Opar E, Riefolo F, Berrocoso E, Gorostiza P. Photoswitchable Carbamazepine Analogs for Non-Invasive Neuroinhibition In Vivo. Angew Chem Int Ed Engl 2024; 63:e202403636. [PMID: 38887153 DOI: 10.1002/anie.202403636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
A problem of systemic pharmacotherapy is off-target activity, which causes adverse effects. Outstanding examples include neuroinhibitory medications like antiseizure drugs, which are used against epilepsy and neuropathic pain but cause systemic side effects. There is a need of drugs that inhibit nerve signals locally and on-demand without affecting other regions of the body. Photopharmacology aims to address this problem with light-activated drugs and localized illumination in the target organ. Here, we have developed photoswitchable derivatives of the widely prescribed antiseizure drug carbamazepine. For that purpose, we expanded our method of ortho azologization of tricyclic drugs to meta/para and to N-bridged diazocine. Our results validate the concept of ortho cryptoazologs (uniquely exemplified by Carbazopine-1) and bring to light Carbadiazocine (8), which can be photoswitched between 400-590 nm light (using violet LEDs and halogen lamps) and shows good drug-likeness and predicted safety. Both compounds display photoswitchable activity in vitro and in translucent zebrafish larvae. Carbadiazocine (8) also offers in vivo analgesic efficacy (mechanical and thermal stimuli) in a rat model of neuropathic pain and a simple and compelling treatment demonstration with non-invasive illumination.
Collapse
Affiliation(s)
- Luisa Camerin
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Doctorate program in organic chemistry, University of Barcelona, Barcelona, 08028, Spain
| | - Galyna Maleeva
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Alexandre M J Gomila
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Irene Suárez-Pereira
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, 11003, Spain
- Networking Biomedical Center in Mental Health (CIBER-SAM), ISCIII, Madrid, 28029, Spain
- Institute for Research and Innovation in Biomedical Sciences of Cádiz, INiBICA, University Hospital Puerta del Mar, Cádiz, 11009, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Department of Pharmaceutical Sciences, University of Milan, Milan, 20133, Italy
| | - Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Current address: Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, SW120BZ, United Kingdom
| | - Ekin Opar
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
| | - Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Current address: Teamit Institute, Partnerships, Barcelona Health Hub, Barcelona, 08025, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, 11003, Spain
- Networking Biomedical Center in Mental Health (CIBER-SAM), ISCIII, Madrid, 28029, Spain
- Institute for Research and Innovation in Biomedical Sciences of Cádiz, INiBICA, University Hospital Puerta del Mar, Cádiz, 11009, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute for Science and Technology, Barcelona, 08028, Spain
- Networking Biomedical Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), ISCIII, Madrid, 28029, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, 08010, Spain
| |
Collapse
|
12
|
Cholasseri R, De S. Deciphering the shape selective conformational equilibrium of E- and Z-locked azobenzene-tetraethylammonium ion in regulating photo-switchable K +-ion channel blocking. Phys Chem Chem Phys 2024; 26:19161-19175. [PMID: 38973424 DOI: 10.1039/d4cp01604a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The search for photo-switchable optopharmacological agents that can block ion channels has been a prevalent area owing to its prime advantages of reversibility and specificity over the traditional blockers. However, the quest for a higher blocking ability shown by a less stable photo-isomer to perfectly suit the requirement of the optopharmacological agents is still ongoing. To date, only a marginal improvement in terms of blocking ability is observed by the less stable E-isomer of para-substituted locked azobenzene with TEA (LAB-TEA) for the K+-ion channel. Thus, rationalization of the limitation for achieving high activity by the E-isomer is rather essential to aid the improvement of the efficiency of photoswitchable blocker drugs. Herein, we report a molecular-level analysis on the mechanism of blocking by E- and Z-LAB-TEA with the bacterial KcsA K+-ion channel using Molecular Dynamics (MD) simulation and Quantum Mechanical (QM) calculations. The positively charged TEA fragment engages in stronger electrostatic interactions, while the neutral LAB fragment engages in weaker dispersive interactions. The binding free energy calculated by Molecular Mechanics Poisson-Boltzmann Surface Area (MMPBSA) for E-LAB-TEA (-22.3 kcal mol-1) shows less thermodynamic preference for binding with K+-ion channels than Z-LAB-TEA (-21.6 kcal mol-1) corroborating the experimental observation. The correlation between the structure and the binding ability of E- and Z-isomers of LAB-TEA indicates that the channel gate is narrow and acts as a bottleneck for the entry of the binder molecule inside the large cavity. Upon irradiation, the Z-isomer converts into a less stable but long and planar E-isomer (ΔE of photoisomerism = 7.0 kcal mol-1, at SA2-CASPT2(6,4)/6-31+G(d)//CASSCF(6,4)/6-31+G(d)), which is structurally more suitable to fit into the narrow channel gate rather than the curved and non-planar Z-LAB-TEA. Thus, a reduction in the ionic current is observed owing to the preferential entry and subsequent blocking by E-LAB-TEA. Discontinuing the irradiation leads to conversion to the Z-isomer, the curved nature of which hinders its spontaneous release outside the cavity, thereby contributing only a small increase in the ionic current.
Collapse
Affiliation(s)
- Rinsha Cholasseri
- Theoretical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala, 673 601, India
| | - Susmita De
- Department of Chemistry, University of Calicut, Calicut University P. O, Malappuram, Kerala, 673 635, India.
| |
Collapse
|
13
|
Khranovska N, Skachkova O, Gorbach O, Semchuk I, Shvets Y, Komarov I. ANTICANCER IMMUNOGENIC POTENTIAL OF ONCOLYTIC PEPTIDES: RECENT ADVANCES AND NEW PROSPECTS. Exp Oncol 2024; 46:3-12. [PMID: 38852058 DOI: 10.15407/exp-oncology.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Oncolytic peptides are derived from natural host defense peptides/antimicrobial peptides produced in a wide variety of life forms. Over the past two decades, they have attracted much attention in both basic research and clinical applications. Oncolytic peptides were expected to act primarily on tumor cells and also trigger the immunogenic cell death. Their ability in the tumor microenvironment remodeling and potentiating the anticancer immunity has long been ignored. Despite the promising results, clinical application of oncolytic peptides is still hindered by their unsatisfactory bioactivity and toxicity to normal cells. To ensure safer therapy, various approaches are being developed. The idea of the Ukrainian research group was to equip peptide molecules with a "molecular photoswitch" - a diarylethene fragment capable of photoisomerization, allowing for the localized photoactivation of peptides within tumors reducing side effects. Such oncolytic peptides that may induce the membrane lysis-mediated cancer cell death and subsequent anticancer immune responses in combination with the low toxicity to normal cells have provided a new paradigm for cancer therapy. This review gives an overview of the broad effects and perspectives of oncolytic peptides in anticancer immunity highlighting the potential issues related to the use of oncolytic peptides in cancer immunotherapy. We summarize the current status of research on peptide-based tumor immunotherapy in combination with other therapies including immune checkpoint inhibitors, chemotherapy, and targeted therapy.
Collapse
Affiliation(s)
- N Khranovska
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - O Skachkova
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - O Gorbach
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - I Semchuk
- Nonprofit organization "National Cancer Institute", Kyiv, Ukraine
| | - Yu Shvets
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | - I Komarov
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| |
Collapse
|
14
|
Zhu WF, Empel C, Pelliccia S, Koenigs RM, Proschak E, Hernandez-Olmos V. Photochemistry in Medicinal Chemistry and Chemical Biology. J Med Chem 2024; 67:4322-4345. [PMID: 38457829 DOI: 10.1021/acs.jmedchem.3c02109] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Photochemistry has emerged as a transformative force in organic chemistry, significantly expanding the chemical space accessible for medicinal chemistry. Light-induced reactions enable the efficient synthesis of intricate organic structures and have found applications throughout the different stages of the drug discovery and development processes. Moreover, photochemical techniques provide innovative solutions in chemical biology, allowing precise spatiotemporal drug activation and targeted delivery. In this Perspective, we highlight the already numerous remarkable applications and the even more promising future of photochemistry in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- W Felix Zhu
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
| | - Claire Empel
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Sveva Pelliccia
- Department of Pharmacy (DoE 2023-2027), University of Naples Federico II, via D. Montesano 49, 80131 Naples, Italy
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Ewgenij Proschak
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt am Main, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| | - Victor Hernandez-Olmos
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt am Main, Germany
| |
Collapse
|
15
|
Borys F, Tobiasz P, Fabczak H, Joachimiak E, Krawczyk H. First-in-Class Colchicine-Based Visible Light Photoswitchable Microtubule Dynamics Disrupting Agent. Cells 2023; 12:1866. [PMID: 37508530 PMCID: PMC10378023 DOI: 10.3390/cells12141866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Compounds that disrupt microtubule dynamics, such as colchicine, paclitaxel, or Vinca alkaloids, have been broadly used in biological studies and have found application in clinical anticancer medications. However, their main disadvantage is the lack of specificity towards cancerous cells, leading to severe side effects. In this paper, we report the first synthesis of 12 new visible light photoswitchable colchicine-based microtubule inhibitors AzoCols. Among the obtained compounds, two photoswitches showed light-dependent cytotoxicity in cancerous cell lines (HCT116 and MCF-7). The most promising compound displayed a nearly twofold increase in potency. Moreover, dissimilar inhibition of purified tubulin polymerisation in cell-free assay and light-dependent disruption of microtubule organisation visualised by immunofluorescence imaging sheds light on the mechanism of action as microtubule photoswitchable destabilisers. The presented results provide a foundation towards the synthesis and development of a novel class of photoswitchable colchicine-based microtubule polymerisation inhibitors.
Collapse
Affiliation(s)
- Filip Borys
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Piotr Tobiasz
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland
| | - Hanna Fabczak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Ewa Joachimiak
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Hanna Krawczyk
- Department of Organic Chemistry, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3 Street, 00-664 Warsaw, Poland
| |
Collapse
|
16
|
Testolin G, Richter J, Ritter A, Prochnow H, Köhnke J, Brönstrup M. Optical Modulation of Antibiotic Resistance by Photoswitchable Cystobactamids. Chemistry 2022; 28:e202201297. [PMID: 35771231 DOI: 10.1002/chem.202201297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 01/07/2023]
Abstract
The rise of antibiotic resistance causes a serious health care problem, and its counterfeit demands novel, innovative concepts. The combination of photopharmacology, enabling a light-controlled reversible modulation of drug activity, with antibiotic drug design has led to first photoswitchable antibiotic compounds derived from established scaffolds. In this study, we converted cystobactamids, gyrase-inhibiting natural products with an oligoaryl scaffold and highly potent antibacterial activities, into photoswitchable agents by inserting azobenzene in the N-terminal part and/or an acylhydrazone moiety near the C-terminus, yielding twenty analogs that contain mono- as well as double-switches. Antibiotic and gyrase inhibition properties could be modulated 3.4-fold and 5-fold by light, respectively. Notably, the sensitivity of photoswitchable cystobactamids towards two known resistance factors, the peptidase AlbD and the scavenger protein AlbA, was light-dependent. While irradiation of an analog with an N-terminal azobenzene with 365 nm light led to less degradation by AlbD, the AlbA-mediated inactivation was induced. This provides a proof-of-principle that resistance towards photoswitchable antibiotics can be optically controlled.
Collapse
Affiliation(s)
- Giambattista Testolin
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Jana Richter
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Antje Ritter
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Hans Prochnow
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Jesko Köhnke
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,German Center for Infection Research (DZIF) Site Hannover-Braunschweig, 38124, Braunschweig, Germany.,Center of Biomolecular Drug Research (BMWZ), Leibniz University, 30159, Hannover, Germany
| |
Collapse
|
17
|
Matera C, Calvé P, Casadó-Anguera V, Sortino R, Gomila AMJ, Moreno E, Gener T, Delgado-Sallent C, Nebot P, Costazza D, Conde-Berriozabal S, Masana M, Hernando J, Casadó V, Puig MV, Gorostiza P. Reversible Photocontrol of Dopaminergic Transmission in Wild-Type Animals. Int J Mol Sci 2022; 23:ijms231710114. [PMID: 36077512 PMCID: PMC9456102 DOI: 10.3390/ijms231710114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/27/2022] [Accepted: 08/31/2022] [Indexed: 01/09/2023] Open
Abstract
Understanding the dopaminergic system is a priority in neurobiology and neuropharmacology. Dopamine receptors are involved in the modulation of fundamental physiological functions, and dysregulation of dopaminergic transmission is associated with major neurological disorders. However, the available tools to dissect the endogenous dopaminergic circuits have limited specificity, reversibility, resolution, or require genetic manipulation. Here, we introduce azodopa, a novel photoswitchable ligand that enables reversible spatiotemporal control of dopaminergic transmission. We demonstrate that azodopa activates D1-like receptors in vitro in a light-dependent manner. Moreover, it enables reversibly photocontrolling zebrafish motility on a timescale of seconds and allows separating the retinal component of dopaminergic neurotransmission. Azodopa increases the overall neural activity in the cortex of anesthetized mice and displays illumination-dependent activity in individual cells. Azodopa is the first photoswitchable dopamine agonist with demonstrated efficacy in wild-type animals and opens the way to remotely controlling dopaminergic neurotransmission for fundamental and therapeutic purposes.
Collapse
Affiliation(s)
- Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Department of Pharmaceutical Sciences, University of Milan, 20133 Milan, Italy
| | - Pablo Calvé
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Rosalba Sortino
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Thomas Gener
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Cristina Delgado-Sallent
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Pau Nebot
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Davide Costazza
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
| | - Sara Conde-Berriozabal
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERNED, 08036 Barcelona, Spain
| | - Mercè Masana
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neuroscience, University of Barcelona, IDIBAPS, CIBERNED, 08036 Barcelona, Spain
| | - Jordi Hernando
- Department of Chemistry, Autonomous University of Barcelona (UAB), 08193 Cerdanyola del Vallès, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - M. Victoria Puig
- Hospital del Mar Medical Research Institute (IMIM), Barcelona Biomedical Research Park, 08003 Barcelona, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute for Science and Technology, 08028 Barcelona, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Correspondence:
| |
Collapse
|
18
|
Salerno A, Seghetti F, Caciolla J, Uliassi E, Testi E, Guardigni M, Roberti M, Milelli A, Bolognesi ML. Enriching Proteolysis Targeting Chimeras with a Second Modality: When Two Are Better Than One. J Med Chem 2022; 65:9507-9530. [PMID: 35816671 PMCID: PMC9340767 DOI: 10.1021/acs.jmedchem.2c00302] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 02/08/2023]
Abstract
Proteolysis targeting chimera (PROTAC)-mediated protein degradation has prompted a radical rethink and is at a crucial stage in driving a drug discovery transition. To fully harness the potential of this technology, a growing paradigm toward enriching PROTACs with other therapeutic modalities has been proposed. Could researchers successfully combine two modalities to yield multifunctional PROTACs with an expanded profile? In this Perspective, we try to answer this question. We discuss how this possibility encompasses different approaches, leading to multitarget PROTACs, light-controllable PROTACs, PROTAC conjugates, and macrocycle- and oligonucleotide-based PROTACs. This possibility promises to further enhance PROTAC efficacy and selectivity, minimize side effects, and hit undruggable targets. While PROTACs have reached the clinical investigation stage, additional steps must be taken toward the translational development of multifunctional PROTACs. A deeper and detailed understanding of the most critical challenges is required to fully exploit these opportunities and decisively enrich the PROTAC toolbox.
Collapse
Affiliation(s)
- Alessandra Salerno
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Francesca Seghetti
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Jessica Caciolla
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Elisa Uliassi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Eleonora Testi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Melissa Guardigni
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Marinella Roberti
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Andrea Milelli
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
19
|
Noev A, Kuznetsov N, Korenev G, Morozova N, Vasil’ev Y, Suvorov N, Diachkova E, Usachev M, Pankratov A, Grin M. A Novel Photoswitchable Azobenzene-Containing Local Anesthetic Ethercaine with Light-Controlled Biological Activity In Vivo. Int J Mol Sci 2022; 23:ijms23105352. [PMID: 35628162 PMCID: PMC9141926 DOI: 10.3390/ijms23105352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/05/2023] Open
Abstract
Pain is a common symptom that impairs the quality of life for people around the world. Local anesthetics widely used for pain relief have a number of side effects, which makes the development of both new drugs and new ways to control their activity particularly important. Photopharmacology makes it possible to reduce the side effects of an anesthetic and control its biological activity in the body. The purpose of this work was to create a new light-controlled local anesthetic and study its biological activity in animals. A compound with a simple scheme of synthesis was chosen to shift the UV-Vis absorption band towards the visible range of the spectrum and was synthesized for the first time. Some computer calculations were performed to make sure that the aforementioned changes would not lead to loss of biological activity. The micellar form of the new compound was prepared, and in vivo biological studies were carried out in rabbits. The existence of a local anesthetic effect, which disappeared almost completely on irradiation with light (λ = 395 nm), was shown using the surface anesthesia model. Moreover, the possibility of multiple reversible changes in the biological activity of ethercaine under the action of light was demonstrated. The latter compound manifests no local irritating effect, either. The data obtained indicate the prospects for the development of new compounds based on azobenzene for light-controlled local anesthesia.
Collapse
Affiliation(s)
- Alexey Noev
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (N.K.); (G.K.); (N.S.); (M.U.); (M.G.)
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr. 3, 125284 Moscow, Russia; (N.M.); (A.P.)
- Correspondence: (A.N.); (E.D.)
| | - Nikita Kuznetsov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (N.K.); (G.K.); (N.S.); (M.U.); (M.G.)
| | - Georgiy Korenev
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (N.K.); (G.K.); (N.S.); (M.U.); (M.G.)
| | - Natalia Morozova
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr. 3, 125284 Moscow, Russia; (N.M.); (A.P.)
| | - Yuriy Vasil’ev
- Department of Topographic Anatomy and Operative Surgery, Sklifosovskii Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia;
- Department of Prosthetic Dentistry, Dental Faculty, Kazan State Medical University of the Ministry of Health of Russia, Str. Butlerova 49, 420012 Kazan, Russia
| | - Nikita Suvorov
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (N.K.); (G.K.); (N.S.); (M.U.); (M.G.)
| | - Ekaterina Diachkova
- Department of Topographic Anatomy and Operative Surgery, Sklifosovskii Institute of Clinical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia;
- Department of Oral Surgery Borovskiy Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya St. bldg. 8\2, 119435 Moscow, Russia
- Correspondence: (A.N.); (E.D.)
| | - Maksim Usachev
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (N.K.); (G.K.); (N.S.); (M.U.); (M.G.)
| | - Andrei Pankratov
- P. Hertsen Moscow Oncology Research Institute—Branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, 2nd Botkinsky pr. 3, 125284 Moscow, Russia; (N.M.); (A.P.)
| | - Mikhail Grin
- Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, Institute of Fine Chemical Technologies, MIREA-Russian Technological University, 86 Vernadsky Avenue, 119571 Moscow, Russia; (N.K.); (G.K.); (N.S.); (M.U.); (M.G.)
| |
Collapse
|
20
|
Mizukami S. Development of Photoresponsive Probes to Investigate Cellular Functions. YAKUGAKU ZASSHI 2022; 142:503-511. [DOI: 10.1248/yakushi.21-00203-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shin Mizukami
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University
| |
Collapse
|
21
|
Fu W, Shao Z, Sun X, Zhou C, Xu Z, Zhang Y, Cheng J, Li Z, Shao X. Reversible Regulation of Succinate Dehydrogenase by Tools of Photopharmacology. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4279-4290. [PMID: 35357145 DOI: 10.1021/acs.jafc.1c08198] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Succinate dehydrogenase (SDH) is extremely important in metabolic function and biological processes. Modulation of SDH has been reported to be a promising therapeutic target to SDH mutations. Current measures for the regulation of SDH are scarce, and precise and reversible modulation of SDH still remains challenging. Herein, a powerful tool for reversible optical control of SDH was proposed and evaluated utilizing the technology of photopharmacology. We reported photochromic ligands (PCLs), azobenzene-pyrazole amides (APAs), that exert light-dependent inhibition effects on SDH. Physicochemical property tests and biological assays were conducted to demonstrate the feasibility of modulating SDH. In this paper, common agricultural pathogens were used to develop a procedure by which our PCLs could reversibly and precisely control SDH utilizing green light. This research would help us to understand the target-ligand interactions and provide new insights into modulation of SDH.
Collapse
Affiliation(s)
- Wen Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhongli Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xujuan Sun
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cong Zhou
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
Kobauri P, Galenkamp NS, Schulte AM, de Vries J, Simeth NA, Maglia G, Thallmair S, Kolarski D, Szymanski W, Feringa BL. Hypothesis-Driven, Structure-Based Design in Photopharmacology: The Case of eDHFR Inhibitors. J Med Chem 2022; 65:4798-4817. [PMID: 35258959 PMCID: PMC8958501 DOI: 10.1021/acs.jmedchem.1c01962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Photopharmacology
uses light to regulate the biological activity
of drugs. This precise control is obtained through the incorporation
of molecular photoswitches into bioactive molecules. A major challenge
for photopharmacology is the rational design of photoswitchable drugs
that show light-induced activation. Computer-aided drug design is
an attractive approach toward more effective, targeted design. Herein,
we critically evaluated different structure-based approaches for photopharmacology
with Escherichia coli dihydrofolate reductase (eDHFR)
as a case study. Through the iterative examination of our hypotheses,
we progressively tuned the design of azobenzene-based, photoswitchable
eDHFR inhibitors in five design–make–switch–test–analyze
cycles. Targeting a hydrophobic subpocket of the enzyme and a specific
salt bridge only with the thermally metastable cis-isomer emerged as the most promising design strategy. We identified
three inhibitors that could be activated upon irradiation and reached
potencies in the low-nanomolar range. Above all, this systematic study
provided valuable insights for future endeavors toward rational photopharmacology.
Collapse
Affiliation(s)
- Piermichele Kobauri
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nicole S Galenkamp
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Albert M Schulte
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Jisk de Vries
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Nadja A Simeth
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Institute for Organic and Biomolecular Chemistry, University of Goettingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Giovanni Maglia
- Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands.,Frankfurt Institute for Advanced Studies, Ruth-Moufang-Straße 1, 60438 Frankfurt am Main, Germany
| | - Dušan Kolarski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,DWI-Leibniz Institut für interaktive Materialien e.V., RWTH Aachen University, Forckenbeckstraße 50, 52074 Aachen, Germany
| | - Wiktor Szymanski
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
23
|
Zheng Y, Wágner G, Hauwert N, Ma X, Vischer HF, Leurs R. New Chemical Biology Tools for the Histamine Receptor Family. Curr Top Behav Neurosci 2022; 59:3-28. [PMID: 35851442 DOI: 10.1007/7854_2022_360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The histamine research community has in the last decade been very active and generated a number of exciting new chemical biology tools for the study of histamine receptors, their ligands, and their pharmacology. In this paper we describe the development of histamine receptor structural biology, the use of receptor conformational biosensors, and the development of new ligands for covalent or fluorescent labeling or for photopharmacological approaches (photocaging and photoswitching). These new tools allow new approaches to study histamine receptors and hopefully will lead to better insights in the molecular aspects of histamine receptors and their ligands.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Gábor Wágner
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Niels Hauwert
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Xiaoyuan Ma
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Henry F Vischer
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands
| | - Rob Leurs
- Department of Medicinal Chemistry, Faculty of Science, Amsterdam Institute of Molecular Life Sciences (AIMMS), Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Matsuo K, Thayyil S, Kawaguchi M, Nakagawa H, Tamaoki N. A visible light-controllable Rho kinase inhibitor based on a photochromic phenylazothiazole. Chem Commun (Camb) 2021; 57:12500-12503. [PMID: 34751279 DOI: 10.1039/d1cc04905d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Rho-associated coiled-coil-containing protein kinase (ROCK) is a serine-threonine kinase whose inhibitors are useful for the regulation of the actomyosin system. Here, we developed a photoswitchable ROCK inhibitor based on a phenylazothiazole scaffold. The reversible trans-cis isomerization by visible light stimuli enabled us to manipulate ROCK activities in vitro and in cells.
Collapse
Affiliation(s)
- Kazuya Matsuo
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.
| | - Sampreeth Thayyil
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.
| | - Mitsuyasu Kawaguchi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Hidehiko Nakagawa
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1, Tanabedori, Mizuho-ku, Nagoya, 467-8603, Japan
| | - Nobuyuki Tamaoki
- Research Institute for Electronic Science, Hokkaido University, Kita 20, Nishi 10, Kita-ku, Sapporo, 001-0020, Japan.
| |
Collapse
|
25
|
Abstract
Azobenzenes are archetypal molecules that have a central role in fundamental and applied research. Over the course of almost two centuries, the area of azobenzenes has witnessed great achievements; azobenzenes have evolved from simple dyes to 'little engines' and have become ubiquitous in many aspects of our lives, ranging from textiles, cosmetics, food and medicine to energy and photonics. Despite their long history, azobenzenes continue to arouse academic interest, while being intensively produced for industrial purposes, owing to their rich chemistry, versatile and straightforward design, robust photoswitching process and biodegradability. The development of azobenzenes has stimulated the production of new coloured and light-responsive materials with various applications, and their use continues to expand towards new high-tech applications. In this Review, we highlight the latest achievements in the synthesis of red-light-responsive azobenzenes and the emerging application areas of photopharmacology, photoswitchable adhesives and biodegradable materials for drug delivery. We show how the synthetic versatility and adaptive properties of azobenzenes continue to inspire new research directions, with limits imposed only by one's imagination.
Collapse
|
26
|
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev 2021; 50:12377-12449. [PMID: 34590636 PMCID: PMC8591629 DOI: 10.1039/d0cs00547a] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Indexed: 12/17/2022]
Abstract
Molecular photoswitches enable dynamic control of processes with high spatiotemporal precision, using light as external stimulus, and hence are ideal tools for different research areas spanning from chemical biology to smart materials. Photoswitches are typically organic molecules that feature extended aromatic systems to make them responsive to (visible) light. However, this renders them inherently lipophilic, while water-solubility is of crucial importance to apply photoswitchable organic molecules in biological systems, like in the rapidly emerging field of photopharmacology. Several strategies for solubilizing organic molecules in water are known, but there are not yet clear rules for applying them to photoswitchable molecules. Importantly, rendering photoswitches water-soluble has a serious impact on both their photophysical and biological properties, which must be taken into consideration when designing new systems. Altogether, these aspects pose considerable challenges for successfully applying molecular photoswitches in aqueous systems, and in particular in biologically relevant media. In this review, we focus on fully water-soluble photoswitches, such as those used in biological environments, in both in vitro and in vivo studies. We discuss the design principles and prospects for water-soluble photoswitches to inspire and enable their future applications.
Collapse
Affiliation(s)
- Jana Volarić
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Department of Radiology, Medical Imaging Center, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Nadja A Simeth
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
- Institute for Organic and Biomolecular Chemistry, University of Göttingen, Tammannstr. 2, 37077 Göttingen, Germany
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.
| |
Collapse
|
27
|
Hu T, Zheng G, Xue D, Zhao S, Li F, Zhou F, Zhao F, Xie L, Tian C, Hua T, Zhao S, Xu Y, Zhong G, Liu ZJ, Makriyannis A, Stevens RC, Tao H. Rational Remodeling of Atypical Scaffolds for the Design of Photoswitchable Cannabinoid Receptor Tools. J Med Chem 2021; 64:13752-13765. [PMID: 34477367 DOI: 10.1021/acs.jmedchem.1c01088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Azobenzene-embedded photoswitchable ligands are the widely used chemical tools in photopharmacological studies. Current approaches to azobenzene introduction rely mainly on the isosteric replacement of typical azologable groups. However, atypical scaffolds may offer more opportunities for photoswitch remodeling, which are chemically in an overwhelming majority. Herein, we investigate the rational remodeling of atypical scaffolds for azobenzene introduction, as exemplified in the development of photoswitchable ligands for the cannabinoid receptor 2 (CB2). Based on the analysis of residue-type clusters surrounding the binding pocket, we conclude that among the three representative atypical arms of the CB2 antagonist, AM10257, the adamantyl arm is the most appropriate for azobenzene remodeling. The optimizing spacer length and attachment position revealed AzoLig 9 with excellent thermal bistability, decent photopharmacological switchability between its two configurations, and high subtype selectivity. This structure-guided approach gave new impetus in the extension of new chemical spaces for tool customization for increasingly diversified photo-pharmacological studies and beyond.
Collapse
Affiliation(s)
- Tao Hu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.,CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoxun Zheng
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Dongxiang Xue
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Simeng Zhao
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Fang Zhou
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Linshan Xie
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Cuiping Tian
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences and Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Raymond C Stevens
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai 201210, China.,Departments of Biological Sciences and Chemistry, Bridge Institute, USC Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, United States
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Pudong, Shanghai 201210, China
| |
Collapse
|
28
|
Biscussi B, Sequeira MA, Richmond V, Arroyo Mañez P, Murray AP. New photochromic azoderivatives with potent acetylcholinesterase inhibition. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
29
|
Strizhak AV, Babii O, Afonin S, Bakanovich I, Pantelejevs T, Xu W, Fowler E, Eapen R, Sharma K, Platonov MO, Hurmach VV, Itzhaki L, Hyvönen M, Ulrich AS, Spring DR, Komarov IV. Diarylethene moiety as an enthalpy-entropy switch: photoisomerizable stapled peptides for modulating p53/MDM2 interaction. Org Biomol Chem 2021; 18:5359-5369. [PMID: 32390036 DOI: 10.1039/d0ob00831a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Analogs of the known inhibitor (peptide pDI) of the p53/MDM2 protein-protein interaction are reported, which are stapled by linkers bearing a photoisomerizable diarylethene moiety. The corresponding photoisomers possess significantly different affinities to the p53-interacting domain of the human MDM2. Apparent dissociation constants are in the picomolar-to-low nanomolar range for those isomers with diarylethene in the "open" configuration, but up to eight times larger for the corresponding "closed" isomers. Spectroscopic, structural, and computational studies showed that the stapling linkers of the peptides contribute to their binding. Calorimetry revealed that the binding of the "closed" isomers is mostly enthalpy-driven, whereas the "open" photoforms bind to the protein stronger due to their increased binding entropy. The results suggest that conformational dynamics of the protein-peptide complexes may explain the differences in the thermodynamic profiles of the binding.
Collapse
Affiliation(s)
- Alexander V Strizhak
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK. and Enamine Ltd, Vul. Chervonotkatska 78, 02094 Kyiv, Ukraine
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany.
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany.
| | - Iuliia Bakanovich
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK. and Enamine Ltd, Vul. Chervonotkatska 78, 02094 Kyiv, Ukraine
| | - Teodors Pantelejevs
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | - Wenshu Xu
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | - Elaine Fowler
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | - Rohan Eapen
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, UK
| | - Krishna Sharma
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | | | - Vasyl V Hurmach
- Enamine Ltd, Vul. Chervonotkatska 78, 02094 Kyiv, Ukraine and Taras Shevchenko National University of Kyiv, Vul. Volodymyrska 60, 01601 Kyiv, Ukraine
| | - Laura Itzhaki
- Department of Pharmacology, University of Cambridge, Tennis Court Road, CB2 1PD Cambridge, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, CB2 1GA Cambridge, UK
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology (KIT), POB 3640, 76021 Karlsruhe, Germany. and Institute of Organic Chemistry (IOC), KIT, Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - David R Spring
- University Chemical Laboratory, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, UK.
| | - Igor V Komarov
- Taras Shevchenko National University of Kyiv, Vul. Volodymyrska 60, 01601 Kyiv, Ukraine and Lumobiotics GmbH, Auer Str. 2, 76227, Karlsruhe, Germany.
| |
Collapse
|
30
|
Riefolo F, Sortino R, Matera C, Claro E, Preda B, Vitiello S, Traserra S, Jiménez M, Gorostiza P. Rational Design of Photochromic Analogues of Tricyclic Drugs. J Med Chem 2021; 64:9259-9270. [PMID: 34160229 DOI: 10.1021/acs.jmedchem.1c00504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tricyclic chemical structures are the core of many important drugs targeting all neurotransmitter pathways. These medicines enable effective therapies to treat from peptic ulcer disease to psychiatric disorders. However, when administered systemically, they cause serious adverse effects that limit their use. To obtain localized and on-demand pharmacological action using light, we have designed photoisomerizable ligands based on azobenzene that mimic the tricyclic chemical structure and display reversibly controlled activity. Pseudo-analogues of the tricyclic antagonist pirenzepine demonstrate that this is an effective strategy in muscarinic acetylcholine receptors, showing stronger inhibition upon illumination both in vitro and in cardiac atria ex vivo. Despite the applied chemical modifications to make pirenzepine derivatives sensitive to light stimuli, the most potent candidate of the set, cryptozepine-2, maintained a moderate but promising M1 vs M2 subtype selectivity. These photoswitchable "crypto-azologs" of tricyclic drugs might open a general way to spatiotemporally target their therapeutic action while reducing their systemic toxicity and adverse effects.
Collapse
Affiliation(s)
- Fabio Riefolo
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain.,Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Rosalba Sortino
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain.,Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain.,Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,Department of Pharmaceutical Sciences, University of Milan, Milan 20133, Italy
| | - Enrique Claro
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona (UAB), Barcelona 08193, Spain
| | - Beatrice Preda
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Simone Vitiello
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Sara Traserra
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona 08193, Spain
| | - Marcel Jiménez
- Department of Cell Biology, Physiology and Immunology, Universitat Autonoma de Barcelona, Barcelona 08193, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid 28029, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain.,Network Biomedical Research Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
31
|
Rodríguez-Soacha DA, Fender J, Ramírez YA, Collado JA, Muñoz E, Maitra R, Sotriffer C, Lorenz K, Decker M. "Photo-Rimonabant": Synthesis and Biological Evaluation of Novel Photoswitchable Molecules Derived from Rimonabant Lead to a Highly Selective and Nanomolar " Cis-On" CB 1R Antagonist. ACS Chem Neurosci 2021; 12:1632-1647. [PMID: 33856764 DOI: 10.1021/acschemneuro.1c00086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Human cannabinoid receptor type 1 (hCB1R) plays important roles in the regulation of appetite and development of addictive behaviors. Herein, we describe the design, synthesis, photocharacterization, molecular docking, and in vitro characterization of "photo-rimonabant", i.e., azo-derivatives of the selective hCB1R antagonist SR1411716A (rimonabant). By applying azo-extension strategies, we yielded compound 16a, which shows marked affinity for CB1R (Ki (cis form) = 29 nM), whose potency increases by illumination with ultraviolet light (CB1R Kitrans/cis ratio = 15.3). Through radioligand binding, calcium mobilization, and cell luminescence assays, we established that 16a is highly selective for hCB1R over hCB2R. These selective antagonists can be valuable molecular tools for optical modulation of CBRs and better understanding of disorders associated with the endocannabinoid system.
Collapse
Affiliation(s)
- Diego A. Rodríguez-Soacha
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Julia Fender
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Straße 9, D-97078 Würzburg, Germany
| | - Yesid A. Ramírez
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
- Departmento de Ciencias Farmacéuticas, Facultad de Ciencias Naturales, Universidad Icesi, 760031 Cali, Valle del Cauca, Colombia
| | - Juan Antonio Collado
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Hospital Universitario Reina Sofía, Avda Menendez Pidal s/n, 14004 Córdoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Hospital Universitario Reina Sofía, Avda Menendez Pidal s/n, 14004 Córdoba, Spain
| | - Rangan Maitra
- Discovery Science and Technology, RTI International, 3040 Cornwallis Road, Research Triangle Park, North Carolina 27709-2194, United States
| | - Christoph Sotriffer
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Kristina Lorenz
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg, Versbacher Straße 9, D-97078 Würzburg, Germany
- Leibniz-Institut für Analytische Wissenschaften—ISAS e.V., Bunsen-Kirchhoff-Straße 11, 44139 Dortmund, Germany
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
32
|
Dwyer BG, Wang C, Abegg D, Racioppo B, Qiu N, Zhao Z, Pechalrieu D, Shuster A, Hoch DG, Adibekian A. Chemoproteomics-Enabled De Novo Discovery of Photoswitchable Carboxylesterase Inhibitors for Optically Controlled Drug Metabolism. Angew Chem Int Ed Engl 2021; 60:3071-3079. [PMID: 33035395 PMCID: PMC12011475 DOI: 10.1002/anie.202011163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/07/2020] [Indexed: 12/28/2022]
Abstract
Herein, we report arylazopyrazole ureas and sulfones as a novel class of photoswitchable serine hydrolase inhibitors and present a chemoproteomic platform for rapid discovery of optically controlled serine hydrolase targets in complex proteomes. Specifically, we identify highly potent and selective photoswitchable inhibitors of the drug-metabolizing enzymes carboxylesterases 1 and 2 and demonstrate their pharmacological application by optically controlling the metabolism of the immunosuppressant drug mycophenolate mofetil. Collectively, this proof-of-concept study provides a first example of photopharmacological tools to optically control drug metabolism by modulating the activity of a metabolizing enzyme. Our arylazopyrazole ureas and sulfones offer synthetically accessible scaffolds that can be expanded to identify specific photoswitchable inhibitors for other serine hydrolases, including lipases, peptidases, and proteases. Our chemoproteomic platform can be applied to other photoswitches and scaffolds to achieve optical control over diverse protein classes.
Collapse
Affiliation(s)
- Brendan G. Dwyer
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA)
| | - Chao Wang
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA)
| | - Daniel Abegg
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA)
| | - Brittney Racioppo
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA)
| | - Nan Qiu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA)
| | - Zhensheng Zhao
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA)
| | - Dany Pechalrieu
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA)
| | - Anton Shuster
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA)
| | - Dominic G. Hoch
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA)
| | - Alexander Adibekian
- Department of Chemistry, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL 33458 (USA)
| |
Collapse
|
33
|
Kobauri P, Szymanski W, Cao F, Thallmair S, Marrink SJ, Witte MD, Dekker FJ, Feringa BL. Biaryl sulfonamides as cisoid azosteres for photopharmacology. Chem Commun (Camb) 2021; 57:4126-4129. [DOI: 10.1039/d1cc00950h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biaryl sulfonamides are excellent candidates for the azologization approach that yields photoswitchable drugs more active in their metastable cis state, compared to the stable trans state.
Collapse
Affiliation(s)
- Piermichele Kobauri
- Stratingh Institute for Chemistry
- University of Groningen
- Nijenborgh 4
- Groningen
- The Netherlands
| | - Wiktor Szymanski
- Medical Imaging Center
- University of Groningen
- University Medical Center Groningen
- Hanzeplein 1
- Groningen 9713 GZ
| | - Fangyuan Cao
- Chemical and Pharmaceutical Biology
- Groningen Research Institute of Pharmacy
- University of Groningen
- A. Deusinglaan 1
- Groningen, 9713 AV
| | - Sebastian Thallmair
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials
- University of Groningen
- Nijenborgh 7
- Groningen 9747 AG
- The Netherlands
| | - Siewert J. Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute & Zernike Institute for Advanced Materials
- University of Groningen
- Nijenborgh 7
- Groningen 9747 AG
- The Netherlands
| | - Martin D. Witte
- Chemical Biology II
- Stratingh Institute for Chemistry
- University of Groningen
- Groningen 9747 AG
- The Netherlands
| | - Frank J. Dekker
- Chemical and Pharmaceutical Biology
- Groningen Research Institute of Pharmacy
- University of Groningen
- A. Deusinglaan 1
- Groningen, 9713 AV
| | - Ben L. Feringa
- Stratingh Institute for Chemistry
- University of Groningen
- Nijenborgh 4
- Groningen
- The Netherlands
| |
Collapse
|
34
|
Prischich D, Gomila AMJ, Milla‐Navarro S, Sangüesa G, Diez‐Alarcia R, Preda B, Matera C, Batlle M, Ramírez L, Giralt E, Hernando J, Guasch E, Meana JJ, Villa P, Gorostiza P. Adrenergic Modulation With Photochromic Ligands. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | | | - Gemma Sangüesa
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Rebeca Diez‐Alarcia
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Beatrice Preda
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Batlle
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Laura Ramírez
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
| | - Ernest Giralt
- Department of Inorganic and Organic Chemistry University of Barcelona (UB) Barcelona Spain
- Institute for Research in Biomedicine (IRB) Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Jordi Hernando
- Departament de Química Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - J. Javier Meana
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Pedro Villa
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
35
|
Prischich D, Gomila AMJ, Milla‐Navarro S, Sangüesa G, Diez‐Alarcia R, Preda B, Matera C, Batlle M, Ramírez L, Giralt E, Hernando J, Guasch E, Meana JJ, Villa P, Gorostiza P. Adrenergic Modulation With Photochromic Ligands. Angew Chem Int Ed Engl 2020; 60:3625-3631. [DOI: 10.1002/anie.202010553] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/21/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Davia Prischich
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | | | - Gemma Sangüesa
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Rebeca Diez‐Alarcia
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Beatrice Preda
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Batlle
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - Laura Ramírez
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
| | - Ernest Giralt
- Department of Inorganic and Organic Chemistry University of Barcelona (UB) Barcelona Spain
- Institute for Research in Biomedicine (IRB) Barcelona Institute for Science and Technology (BIST) Barcelona Spain
| | - Jordi Hernando
- Departament de Química Universitat Autònoma de Barcelona (UAB) Cerdanyola del Vallès Spain
| | - Eduard Guasch
- Institut Clínic Cardiovascular Hospital Clinic University of Barcelona (UB), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) Barcelona Spain
- Centro de Investigación Biomédica en Red— Enfermedades Cardiovasculares (CIBER-CV) Spain
| | - J. Javier Meana
- Department of Pharmacology University of the Basque Country (UPV/EHU) Leioa Bizkaia Spain
- Centro de Investigación Biomédica en Red— Salud Mental (CIBER-SAM) Spain
| | - Pedro Villa
- Department of Systems Biology University of Alcalá (UAH) Madrid Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) Madrid Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC) The Barcelona Institute for Science and Technology (BIST) Barcelona Spain
- Centro de Investigación Biomédica en Red— Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) Spain
- Catalan Institution for Research and Advanced Studies (ICREA) Barcelona Spain
| |
Collapse
|
36
|
Dwyer BG, Wang C, Abegg D, Racioppo B, Qiu N, Zhao Z, Pechalrieu D, Shuster A, Hoch DG, Adibekian A. Chemoproteomics‐Enabled De Novo Discovery of Photoswitchable Carboxylesterase Inhibitors for Optically Controlled Drug Metabolism. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Brendan G. Dwyer
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Chao Wang
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
- Current address: Department of Molecular Medicine The Scripps Research Institute 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Daniel Abegg
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Brittney Racioppo
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Nan Qiu
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Zhensheng Zhao
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Dany Pechalrieu
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Anton Shuster
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| | - Dominic G. Hoch
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
- Current address: Laboratory of Organic Chemistry ETH Zürich 8093 Zürich Switzerland
| | - Alexander Adibekian
- Department of Chemistry The Scripps Research Institute 130 Scripps Way Jupiter FL 33458 USA
| |
Collapse
|
37
|
Hinnah K, Willems S, Morstein J, Heering J, Hartrampf FWW, Broichhagen J, Leippe P, Merk D, Trauner DH. Photohormones Enable Optical Control of the Peroxisome Proliferator-Activated Receptor γ (PPARγ). J Med Chem 2020; 63:10908-10920. [PMID: 32886507 PMCID: PMC11684002 DOI: 10.1021/acs.jmedchem.0c00654] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Photopharmacology aims at the optical control of protein activity using synthetic photoswitches. This approach has been recently expanded to nuclear hormone receptors with the introduction of "photohormones" for the retinoic acid receptor, farnesoid X receptor, and estrogen receptor. Herein, we report the development and profiling of photoswitchable agonists for peroxisome proliferator-activated receptor γ (PPARγ). Based on known PPARγ ligands (MDG548, GW1929, and rosiglitazone), we have designed and synthesized azobenzene derivatives, termed AzoGW1929 and AzoRosi, which were confirmed to be active in cell-based assays. Subsequent computer-aided optimization of AzoRosi resulted in the photohormone AzoRosi-4, which bound and activated PPARγ preferentially in its light-activated cis-configuration.
Collapse
Affiliation(s)
- Konstantin Hinnah
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Sabine Willems
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Johannes Morstein
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Jan Heering
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Branch for Translational Medicine and Pharmacology TMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Felix W. W. Hartrampf
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Johannes Broichhagen
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Philipp Leippe
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Dirk H. Trauner
- Department of Chemistry, New York University, New York, New York 10003, USA
- Department of Chemistry and Center for Integrated Protein Science (CIPSM), Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, 81377 Munich, Germany
| |
Collapse
|
38
|
Paoletti P, Ellis-Davies GCR, Mourot A. Optical control of neuronal ion channels and receptors. Nat Rev Neurosci 2020; 20:514-532. [PMID: 31289380 DOI: 10.1038/s41583-019-0197-2] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Light-controllable tools provide powerful means to manipulate and interrogate brain function with relatively low invasiveness and high spatiotemporal precision. Although optogenetic approaches permit neuronal excitation or inhibition at the network level, other technologies, such as optopharmacology (also known as photopharmacology) have emerged that provide molecular-level control by endowing light sensitivity to endogenous biomolecules. In this Review, we discuss the challenges and opportunities of photocontrolling native neuronal signalling pathways, focusing on ion channels and neurotransmitter receptors. We describe existing strategies for rendering receptors and channels light sensitive and provide an overview of the neuroscientific insights gained from such approaches. At the crossroads of chemistry, protein engineering and neuroscience, optopharmacology offers great potential for understanding the molecular basis of brain function and behaviour, with promises for future therapeutics.
Collapse
Affiliation(s)
- Pierre Paoletti
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France.
| | | | - Alexandre Mourot
- Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS), CNRS, INSERM, Sorbonne Université, Paris, France.
| |
Collapse
|
39
|
Peptide drugs for photopharmacology: how much of a safety advantage can be gained by photocontrol? FUTURE DRUG DISCOVERY 2020. [DOI: 10.4155/fdd-2019-0033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Aim: To verify whether photocontrol of biological activity could augment safety of a chemotherapeutic agent. Materials & methods: LD50 values for gramicidin S and photoisomeric forms of its photoswitchable diarylethene-containing analogs were determined using mice. The results were compared with data obtained from cell viability measurements taken for the same compounds. Absorption, Distribution, Metabolism, and Elimination (ADME) tests using a murine cancer model were conducted to get insight into the underlying reasons for the observed in vivo toxicity. Results: While in vitro cytotoxicity values of the photoisomers differed substantially, the differences in the observed LD50 values were less pronounced due to unfavorable pharmacokinetic parameters. Conclusion: Despite unfavorable pharmacokinetic properties as in the representative case studied here, there is an overall advantage to be gained in the safety profile of a chemotherapeutic agent via photocontrol. Nevertheless, optimization of the pharmacokinetic parameters of photoisomers is an important issue to be addressed during the development of photopharmacological drugs.
Collapse
|
40
|
Ge Z, Yang Z, Liang J, Dong D, Zhu M. Optical Control of the GTP Affinity of K-Ras(G12C) by a Photoswitchable Inhibitor. Chembiochem 2019; 20:2916-2920. [PMID: 31219673 DOI: 10.1002/cbic.201900342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Indexed: 01/11/2023]
Abstract
Photocontrol of protein activity is an emerging field in biomedicine. For optical control of a mutant small GTPase K-Ras(G12C), we developed small-molecule inhibitors with photoswitchable efficacy, where one configuration binds the target protein and exert different pharmacological effects upon light irradiation. The compound design was based on the structure feature of a previously identified allosteric pocket of K-Ras(G12C) and the chemical structure of covalent inhibitors, and resulted in the synthesis and characterization of two representative azobenzene-containing compounds. Nucleotide exchange assays demonstrated the different efficacy to control the GTP affinity by photoswitching of one potent compound PS-C2, which would be a useful tool to probe the conformation of mutational K-Ras. Our study demonstrated the feasibility of designing photoswitchable modulators from allosteric covalent inhibitor of small GTPases.
Collapse
Affiliation(s)
- Zhihua Ge
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China
| | - Zhuojin Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China
| | - Jingshi Liang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China
| | - Duoling Dong
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China
| | - Mingyan Zhu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240, P. R. China
| |
Collapse
|
41
|
Grathwol CW, Wössner N, Swyter S, Smith AC, Tapavicza E, Hofstetter RK, Bodtke A, Jung M, Link A. Azologization and repurposing of a hetero-stilbene-based kinase inhibitor: towards the design of photoswitchable sirtuin inhibitors. Beilstein J Org Chem 2019; 15:2170-2183. [PMID: 31598174 PMCID: PMC6774072 DOI: 10.3762/bjoc.15.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/29/2019] [Indexed: 12/31/2022] Open
Abstract
The use of light as an external trigger to change ligand shape and as a result its bioactivity, allows the probing of pharmacologically relevant systems with spatiotemporal resolution. A hetero-stilbene lead resulting from the screening of a compound that was originally designed as kinase inhibitor served as a starting point for the design of photoswitchable sirtuin inhibitors. Because the original stilbenoid structure exerted unfavourable photochemical characteristics it was remodelled to its heteroarylic diazeno analogue. By this intramolecular azologization, the shape of the molecule was left unaltered, whereas the photoswitching ability was improved. As anticipated, the highly analogous compound showed similar activity in its thermodynamically stable stretched-out (E)-form. Irradiation of this isomer triggers isomerisation to the long-lived (Z)-configuration with a bent geometry causing a considerably shorter end-to-end distance. The resulting affinity shifts are intended to enable real-time photomodulation of sirtuins in vitro.
Collapse
Affiliation(s)
- Christoph W Grathwol
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Nathalie Wössner
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Sören Swyter
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Adam C Smith
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840 USA
| | - Enrico Tapavicza
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840 USA
| | - Robert K Hofstetter
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Anja Bodtke
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Andreas Link
- Institute of Pharmacy, University of Greifswald, Friedrich-Ludwig-Jahn-Str. 17, 17489 Greifswald, Germany
| |
Collapse
|
42
|
Hoorens MWH, Ourailidou ME, Rodat T, van der Wouden PE, Kobauri P, Kriegs M, Peifer C, Feringa BL, Dekker FJ, Szymanski W. Light-controlled inhibition of BRAFV600E kinase. Eur J Med Chem 2019; 179:133-146. [PMID: 31252305 DOI: 10.1016/j.ejmech.2019.06.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/22/2019] [Accepted: 06/15/2019] [Indexed: 11/26/2022]
Abstract
Metastatic melanoma is amongst the most difficult types of cancer to treat, with current therapies mainly relying on the inhibition of the BRAFV600E mutant kinase. However, systemic inhibition of BRAF by small molecule drugs in cancer patients results - paradoxically - in increased wild-type BRAF activity in healthy tissue, causing side-effects and even the formation of new tumors. Here we show the development of BRAFV600E kinase inhibitors of which the activity can be switched on and off reversibly with light, offering the possibility to overcome problems of systemic drug activity by selectively activating the drug at the desired site of action. Based on a known inhibitor, eight photoswitchable effectors containing an azobenzene photoswitch were designed, synthesized and evaluated. The most promising inhibitor showed an approximately 10-fold increase in activity upon light-activation. This research offers inspiration for the development of therapies for metastatic melanoma in which tumor tissue is treated with an active BRAFV600E inhibitor with high spatial and temporal resolution, thus limiting the damage to other tissues.
Collapse
Affiliation(s)
- Mark W H Hoorens
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands; Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Maria E Ourailidou
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Theo Rodat
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Petra E van der Wouden
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Piermichele Kobauri
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Malte Kriegs
- Laboratory of Radiobiology & Experimental Radiooncology and UCCH Kinomics Core Facility, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Christian Peifer
- Institute of Pharmacy, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany
| | - Ben L Feringa
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands
| | - Wiktor Szymanski
- University Medical Center Groningen, Department of Radiology, Medical Imaging Center, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, Netherlands; Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 7, 9747 AG Groningen, Netherlands.
| |
Collapse
|
43
|
Garcia-Amorós J, Maerz B, Reig M, Cuadrado A, Blancafort L, Samoylova E, Velasco D. Picosecond Switchable Azo Dyes. Chemistry 2019; 25:7726-7732. [PMID: 30924974 DOI: 10.1002/chem.201900796] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Indexed: 12/27/2022]
Abstract
Azo dyes that combine electron-withdrawing thiazole/benzothiazole heterocycles and electron-donating amino groups within the very same covalent skeleton exhibit relaxation times for their thermal isomerization kinetics within milli- and microsecond timescales at room temperature. Notably, the thermal back reaction of the corresponding benzothiazolium and thiazolium salts occurred much faster, within the picosecond temporal domain. In fact, these new light-sensitive platforms are the first molecular azo derivatives capable of reversible switching between their trans and cis isomers in a subnanosecond timescale under ambient conditions. In addition, theoretical calculations revealed very low activation energies for the isomerization process, in accordance with the fast subnanosecond kinetics that were observed experimentally.
Collapse
Affiliation(s)
- Jaume Garcia-Amorós
- Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN2UB), Departament de Química Inorgànica i Orgànica, (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Benjamin Maerz
- Chair for BioMolecular Optics, Department of Physics, Ludwigs-Maximilians-University, Oettingenstrasse 67, 80538, Munich, Germany
| | - Marta Reig
- Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN2UB), Departament de Química Inorgànica i Orgànica, (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Alba Cuadrado
- Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN2UB), Departament de Química Inorgànica i Orgànica, (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| | - Lluís Blancafort
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain
| | - Elena Samoylova
- Chair for BioMolecular Optics, Department of Physics, Ludwigs-Maximilians-University, Oettingenstrasse 67, 80538, Munich, Germany
| | - Dolores Velasco
- Grup de Materials Orgànics, Institut de Nanociència i Nanotecnologia (IN2UB), Departament de Química Inorgànica i Orgànica, (Secció de Química Orgànica), Universitat de Barcelona, Martí i Franquès 1, 08028, Barcelona, Spain
| |
Collapse
|
44
|
Morstein J, Awale M, Reymond JL, Trauner D. Mapping the Azolog Space Enables the Optical Control of New Biological Targets. ACS CENTRAL SCIENCE 2019; 5:607-618. [PMID: 31041380 PMCID: PMC6487453 DOI: 10.1021/acscentsci.8b00881] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Indexed: 06/01/2023]
Abstract
Photopharmacology relies on molecules that change their biological activity upon irradiation. Many of these are derived from known drugs by replacing their core with an isosteric azobenzene photoswitch (azologization). The question is how many of the known bioactive ligands could be addressed in such a way. Here, we systematically assess the space of molecules amenable to azologization from databases of bioactive molecules (DrugBank, PDB, CHEMBL) and the Cambridge Structural Database. Shape similarity scoring functions (3DAPfp) and analyses of dihedral angles are employed to quantify the structural homology between a bioactive molecule and the cis or trans isomer of its corresponding azolog ("azoster") and assess which isomer is likely to be active. Our analysis suggests that a very large number of bioactive ligands (>40 000) is amenable to azologization and that many new biological targets could be addressed with photopharmacology. N-Aryl benzamides, 1,2-diarylethanes, and benzyl phenyl ethers are particularly suited for this approach, while benzylanilines and sulfonamides appear to be less well-matched. On the basis of our analysis, the majority of azosters are expected to be active in their trans form. The broad applicability of our approach is demonstrated with photoswitches that target a nuclear hormone receptor (RAR) and a lipid processing enzyme (LTA4 hydrolase).
Collapse
Affiliation(s)
- Johannes Morstein
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Mahendra Awale
- Department
of Chemistry and Biochemistry, National Center for Competence in Research
NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Jean-Louis Reymond
- Department
of Chemistry and Biochemistry, National Center for Competence in Research
NCCR TransCure, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Dirk Trauner
- Department
of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| |
Collapse
|
45
|
Mashita T, Kowada T, Takahashi H, Matsui T, Mizukami S. Light‐Wavelength‐Based Quantitative Control of Dihydrofolate Reductase Activity by Using a Photochromic Isostere of an Inhibitor. Chembiochem 2019; 20:1382-1386. [DOI: 10.1002/cbic.201800816] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Takato Mashita
- Department of ChemistryGraduate School of ScienceTohoku University 6-3, Aoba Aramaki Aoba-ku Sendai Miyagi 980–8578 Japan
| | - Toshiyuki Kowada
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University 2-1-1, Katahira Aoba-ku Sendai Miyagi 980–8577 Japan
- Department of ChemistryGraduate School of ScienceTohoku University 6-3, Aoba Aramaki Aoba-ku Sendai Miyagi 980–8578 Japan
- Graduate School of Life SciencesTohoku University 2-1-1, Katahira Aoba-ku Sendai Miyagi 980–8577 Japan
| | - Hiroto Takahashi
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University 2-1-1, Katahira Aoba-ku Sendai Miyagi 980–8577 Japan
| | - Toshitaka Matsui
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University 2-1-1, Katahira Aoba-ku Sendai Miyagi 980–8577 Japan
- Department of ChemistryGraduate School of ScienceTohoku University 6-3, Aoba Aramaki Aoba-ku Sendai Miyagi 980–8578 Japan
- Graduate School of Life SciencesTohoku University 2-1-1, Katahira Aoba-ku Sendai Miyagi 980–8577 Japan
| | - Shin Mizukami
- Institute of Multidisciplinary Research for Advanced MaterialsTohoku University 2-1-1, Katahira Aoba-ku Sendai Miyagi 980–8577 Japan
- Department of ChemistryGraduate School of ScienceTohoku University 6-3, Aoba Aramaki Aoba-ku Sendai Miyagi 980–8578 Japan
- Graduate School of Life SciencesTohoku University 2-1-1, Katahira Aoba-ku Sendai Miyagi 980–8577 Japan
| |
Collapse
|
46
|
Rustler K, Maleeva G, Bregestovski P, König B. Azologization of serotonin 5-HT 3 receptor antagonists. Beilstein J Org Chem 2019; 15:780-788. [PMID: 30992726 PMCID: PMC6444460 DOI: 10.3762/bjoc.15.74] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/14/2019] [Indexed: 01/05/2023] Open
Abstract
The serotonin 5-hydroxytryptamine 3 receptor (5-HT3R) plays a unique role within the seven classes of the serotonin receptor family, as it represents the only ionotropic receptor, while the other six members are G protein-coupled receptors (GPCRs). The 5-HT3 receptor is related to chemo-/radiotherapy provoked emesis and dysfunction leads to neurodevelopmental disorders and psychopathologies. Since the development of the first serotonin receptor antagonist in the early 1990s, the range of highly selective and potent drugs expanded based on various chemical structures. Nevertheless, on-off-targeting of a pharmacophore's activity with high spatiotemporal resolution as provided by photopharmacology remains an unsolved challenge bearing additionally the opportunity for detailed receptor examination. In the presented work, we summarize the synthesis, photochromic properties and in vitro characterization of azobenzene-based photochromic derivatives of published 5-HT3R antagonists. Despite reported proof of principle of direct azologization, only one of the investigated derivatives showed antagonistic activity lacking isomer specificity.
Collapse
Affiliation(s)
- Karin Rustler
- Institute of Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Galyna Maleeva
- Aix-Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
| | - Piotr Bregestovski
- Aix-Marseille University, INSERM, INS, Institut de Neurosciences des Systèmes, 13005 Marseille, France
- Department of Normal Physiology, Kazan State Medical University, Kazan, Russia
- Institute of Neurosciences, Kazan State Medical University, Kazan, Russia
| | - Burkhard König
- Institute of Organic Chemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
47
|
Matera C, Gomila AMJ, Camarero N, Libergoli M, Soler C, Gorostiza P. Photoswitchable Antimetabolite for Targeted Photoactivated Chemotherapy. J Am Chem Soc 2018; 140:15764-15773. [DOI: 10.1021/jacs.8b08249] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Carlo Matera
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Alexandre M. J. Gomila
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Núria Camarero
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
| | - Michela Libergoli
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
| | - Concepció Soler
- Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat 08908, Barcelona, Spain
| | - Pau Gorostiza
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology, Barcelona 08028, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| |
Collapse
|
48
|
Reversible, Spatial and Temporal Control over Protein Activity Using Light. Trends Biochem Sci 2018; 43:567-575. [DOI: 10.1016/j.tibs.2018.05.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/03/2018] [Accepted: 05/27/2018] [Indexed: 12/22/2022]
|
49
|
Affiliation(s)
- Katharina Hüll
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Johannes Morstein
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| | - Dirk Trauner
- Department of Chemistry, New York University, 100 Washington Square East, New York, New York 10003-6699, United States
| |
Collapse
|
50
|
Komarov IV, Afonin S, Babii O, Schober T, Ulrich AS. Efficiently Photocontrollable or Not? Biological Activity of Photoisomerizable Diarylethenes. Chemistry 2018; 24:11245-11254. [PMID: 29633378 DOI: 10.1002/chem.201801205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 12/14/2022]
Abstract
Diarylethene derivatives, the biological activity of which can be reversibly changed by irradiation with light of different wavelengths, have shown promise as scientific tools and as candidates for photocontrollable drugs. However, examples demonstrating efficient photocontrol of their biological activity are still relatively rare. This concept article discusses the possible reasons for this situation and presents a critical analysis of existing data and hypotheses in this field, in order to extract the design principles enabling the construction of efficient photocontrollable diarylethene-based molecules. Papers addressing biologically relevant interactions between diarylethenes and biomolecules are analyzed; however, in most published cases, the efficiency of photocontrol in living systems remains to be demonstrated. We hope that this article will encourage further discussion of design principles, primarily among pharmacologists, synthetic and medicinal chemists.
Collapse
Affiliation(s)
- Igor V Komarov
- Taras Shevchenko National University of Kyiv, vul. Volodymyrska 60, 01601, Kyiv, Ukraine.,Lumobiotics GmbH, Auer Str. 2, 76227, Karlsruhe, Germany
| | - Sergii Afonin
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Oleg Babii
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany
| | - Tim Schober
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| | - Anne S Ulrich
- Institute of Biological Interfaces (IBG-2), Karlsruhe Institute of Technology, POB 3640, 76021, Karlsruhe, Germany.,Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology, Fritz-Haber-Weg 6, 76131, Karlsruhe, Germany
| |
Collapse
|