1
|
Feng JR, Ni HG. Effects of heavy metals and metalloids on the biodegradation of organic contaminants. ENVIRONMENTAL RESEARCH 2024; 246:118069. [PMID: 38160966 DOI: 10.1016/j.envres.2023.118069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/22/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Heavy metals and metalloids (HMMs) inhibit the biodegradation of organic pollutants. The degree of inhibition depends not only on the concentration and bioavailability of HMMs but also on additional factors, such as environmental variables (e.g., inorganic components, organic matter, pH, and redox potential), the nature of the metals, and microbial species. Based on the degradation pattern and metal concentrations causing half biodegradation rate reductions (RC50s), the inhibition of biodegradation was: Hg2+, As2O3 > Cu2+, Cd2+, Pb2+, Cr3+ > Ni2+, Co2+ > Mn2+, Zn2+ > Fe3+. Four patterns were observed: inhibition increases with increasing metal concentration; low concentrations stimulate, while high concentrations inhibit; high concentrations inhibit less; and mild inhibition remains constant. In addition, metal ion mixtures have more complex inhibitory effects on the degradation of organic pollutants, which may be greater than, similar to, or less than that of individual HMMs. Finally, the inhibitory mechanism of HMMs on biodegradation is reviewed. HMMs generally have little impact on the biodegradation pathway of organic pollutants for bacterial strains. However, when pollutants are biodegraded by the community, HMMs may activate microbial populations harbouring different transformation pathways. HMMs can affect the biodegradation efficiency of organic pollutants by changing the surface properties of microbes, interfering with degradative enzymes, and interacting with general metabolism.
Collapse
Affiliation(s)
- Jin-Ru Feng
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Hong-Gang Ni
- School of Urban Planning and Design, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Sun J, He X, LE Y, Al-Tohamy R, Ali SS. Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120081. [PMID: 38237330 DOI: 10.1016/j.jenvman.2024.120081] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/31/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024]
Abstract
Protecting the environment from harmful pollutants has become increasingly difficult in recent decades. The presence of heavy metal (HM) pollution poses a serious environmental hazard that requires intricate attention on a worldwide scale. Even at low concentrations, HMs have the potential to induce deleterious health effects in both humans and other living organisms. Therefore, various strategies have been proposed to address this issue, with extremophiles being a promising solution. Bacteria that exhibit resistance to metals are preferred for applications involving metal removal due to their capacity for rapid multiplication and growth. Extremophiles are a special group of microorganisms that are capable of surviving under extreme conditions such as extreme temperatures, pH levels, and high salt concentrations where other organisms cannot. Due to their unique enzymes and adaptive capabilities, extremophiles are well suited as catalysts for environmental biotechnology applications, including the bioremediation of HMs through various strategies. The mechanisms of resistance to HMs by extremophilic bacteria encompass: (i) metal exclusion by permeability barrier; (ii) extracellular metal sequestration by protein/chelator binding; (iii) intracellular sequestration of the metal by protein/chelator binding; (iv) enzymatic detoxification of a metal to a less toxic form; (v) active transport of HMs; (vi) passive tolerance; (vii) reduced metal sensitivity of cellular targets to metal ions; and (viii) morphological change of cells. This review provides comprehensive information on extremophilic bacteria and their potential roles for bioremediation, particularly in environments contaminated with HMs, which pose a threat due to their stability and persistence. Genetic engineering of extremophilic bacteria in stressed environments could help in the bioremediation of contaminated sites. Due to their unique characteristics, these organisms and their enzymes are expected to bridge the gap between biological and chemical industrial processes. However, the structure and biochemical properties of extremophilic bacteria, along with any possible long-term effects of their applications, need to be investigated further.
Collapse
Affiliation(s)
- Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Xing He
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Yilin LE
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
3
|
Elmosallamy MAF, Hashem HA, Abdalmoez FF. New solid-state membrane and coated wire potentiometric sensors for the determination of Zn(II) ions based on nanoparticles. Anal Bioanal Chem 2022; 414:8277-8287. [PMID: 36239752 DOI: 10.1007/s00216-022-04359-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/04/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022]
Abstract
The first, novel solid-state membrane sensor for Zn(II) determination is developed based on ZnS nanoparticles. ZnS nanoparticles are synthesized by chemical co-precipitation and investigated via X-ray diffraction, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and impedance study. X-ray diffraction shows that the prepared ZnS nanoparticles have an average domain size of 5.72 nm, which is very close to the particle size obtained from TEM observations (6.30 nm). The ZnS nanoparticles are pressed into disks and examined as electroactive solid-state membrane. Solid-state membrane and coated wire sensors are fabricated. They display linear responses over concentration ranges of 1.0 × 10-5 to 1.0 × 10-1 mol L-1 Zn2+ ions with cationic slopes of 28.9±0.2 and 25.9±0.2 mV decade-1 for the solid-state membrane and coated wire sensors, respectively. The lower limits of detection are 2.86 × 10-6 and 4.60 × 10-6 mol L-1 Zn2+ ions for the solid-state membrane and coated wire sensors, respectively. The response time for the two sensors is instantaneous (1 s), and the useful lifetimes for the solid-state membrane and coated wire sensors are long (10 and 6 months, respectively). The solid-state membrane sensor is utilized for the quantification of Zn(II) ions in brass alloys and pharmaceutical preparations.
Collapse
Affiliation(s)
| | - Hassan A Hashem
- Nano Materials Research Lab., Department of Physics, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Fatma F Abdalmoez
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
4
|
Sereni L, Guenet B, Crouzet O, Blasi C, Lamy I. Responses of soil nitrification activities to copper after a moisture stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46680-46690. [PMID: 35171414 DOI: 10.1007/s11356-022-19093-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Some steps of the soil nitrogen (N) cycle are sensitive to environmental pressures like soil moisture or contamination, which are expected to evolve during the next decades. Individual stresses have been well studied, but their combination is not yet documented. In this work, we aimed at assessing the importance of the soil moisture on the impact of copper (Cu) contaminations on the N cycling soil function using the potential nitrification activities (PNA) as bioindicator. A two-step experiment was performed. First, a loamy soil was incubated 5 weeks in either 30, 60, or 90% of its water holding capacity (WHC) or alternating drought and rewetting periods. Thereafter, soil samples were exposed to a gradient of Cu concentrations through a bioassay involving nitrification. The dose-response curves of PNA in function of added Cu were modeled to calculate the effective Cu concentrations, namely ECx with x being the percentage of PNA inhibition. These values were then compared between experimental conditions to highlight differences in threshold values. The preincubation moisture treatments significantly affected the PNA responses to the secondary Cu stress with, for instance, hormetic responses in all cases except for the dry-rewetting treatment. Small PNA inhibitions were estimated for high Cu doses in the soils with low water contents (30% WHC) or submitted to dry-rewetting cycles, contrarily to the patterns observed for the soils with high water contents (90% WHC) or submitted to a single period of drought. Overall, significant differences were found in estimated ECx values between moisture treatments.
Collapse
Affiliation(s)
- Laura Sereni
- Ecotoxicology Team, University Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78026, Versailles, France.
| | - Bertrand Guenet
- Laboratoire de Géologie de L'ENS, PSL Research University, CNRS, UMR 8538, Paris, France
| | - Olivier Crouzet
- Ecotoxicology Team, University Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78026, Versailles, France
- Office National de La Chasse et de La Faune Sauvage, Site d'Auffargis-Saint-Benoist, 78612, Le-Perray-en-Yvelines, France
| | - Charlotte Blasi
- Ecotoxicology Team, University Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78026, Versailles, France
- Centre Sève, Département de Chimie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Isabelle Lamy
- Ecotoxicology Team, University Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, 78026, Versailles, France
| |
Collapse
|
5
|
Kumar S, Islam ARMT, Hasanuzzaman M, Salam R, Islam MS, Khan R, Rahman MS, Pal SC, Ali MM, Idris AM, Gustave W, Elbeltagi A. Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022. [PMID: 35088286 DOI: 10.21203/rs.3.rs-941620/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Potentially toxic element (PTE) contamination in Wainivesi River, Fiji triggered by gold-mining activities is a major public health concern deserving attention. However, chemometric approaches and pattern recognition of PTEs in surface water and sediment are yet hardly studied in Pacific Island countries like Fijian urban River. In this study, twenty-four sediment and eight water sampling sites from the Wainivesi River, Fiji were explored to evaluate the spatial pattern, eco-environmental pollution, and source apportionment of PTEs. This analysis was done using an integrated approach of self-organizing map (SOM), principle component analysis (PCA), hierarchical cluster analysis (HCA), and indexical approaches. The PTE average concentration is decreasing in the order of Fe > Pb > Zn > Ni > Cr > Cu > Mn > Co > Cd for water and Fe > Zn > Pb > Mn > Cr > Ni > Cu > Co > Cd for sediment, respectively. Outcomes of eco-environmental indices including contamination and enrichment factors, and geo-accumulation index differed spatially indicated that majority of the sediment sites were highly polluted by Zn, Cd, and Ni. Cd and Ni contents can cause both ecological and human health risks. According to PCA, both mixed sources (geogenic and anthropogenic such as mine wastes discharge and farming activities) of PTEs for water and sediment were identified in the study area. The SOM analysis identified three spatial patterns, e.g., Cr-Co-Zn-Mn, Fe-Cd, and Ni-Pb-Cu in water and Zn-Cd-Cu-Mn, Cr-Ni and Fe, Co-Pb in sediment. Spatial distribution of entropy water quality index (EWQI) values depicted that northern and northwestern areas possess "poor" to "extremely poor" quality water. The entropy weights indicated Zn, Cd, and Cu as the major pollutants in deteriorating the water quality. This finding provides a baseline database with eco-environmental and health risk measures for the Wainivesi river contamination.
Collapse
Affiliation(s)
- Satendra Kumar
- School of Geography, Earth Science and Environment, The University of the South Pacific, Laucala Campus, Private Bag, Suva, Fiji.
| | | | - Md Hasanuzzaman
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Roquia Salam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - M Safiur Rahman
- Atmospheric and Environmental Chemistry Laboratory, Atomic Energy Centre Dhaka, 4 -Kazi Nazrul Islam Avenue, Dhaka, 1000, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, West Bengal, Pin: 713104, India
| | - Mir Mohammad Ali
- Department of Aquaculture, Bangla Agricultural University, Sher-e, Dhaka-1207, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia
| | - Williamson Gustave
- School of Chemistry, Environmental and Life Sciences, University of the Bahamas, New Province, Nassau, Bahamas
| | - Ahmed Elbeltagi
- Agricultural Engineering Dept, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
6
|
Kumar S, Islam ARMT, Hasanuzzaman M, Salam R, Islam MS, Khan R, Rahman MS, Pal SC, Ali MM, Idris AM, Gustave W, Elbeltagi A. Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42742-42767. [PMID: 35088286 DOI: 10.1007/s11356-022-18734-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Potentially toxic element (PTE) contamination in Wainivesi River, Fiji triggered by gold-mining activities is a major public health concern deserving attention. However, chemometric approaches and pattern recognition of PTEs in surface water and sediment are yet hardly studied in Pacific Island countries like Fijian urban River. In this study, twenty-four sediment and eight water sampling sites from the Wainivesi River, Fiji were explored to evaluate the spatial pattern, eco-environmental pollution, and source apportionment of PTEs. This analysis was done using an integrated approach of self-organizing map (SOM), principle component analysis (PCA), hierarchical cluster analysis (HCA), and indexical approaches. The PTE average concentration is decreasing in the order of Fe > Pb > Zn > Ni > Cr > Cu > Mn > Co > Cd for water and Fe > Zn > Pb > Mn > Cr > Ni > Cu > Co > Cd for sediment, respectively. Outcomes of eco-environmental indices including contamination and enrichment factors, and geo-accumulation index differed spatially indicated that majority of the sediment sites were highly polluted by Zn, Cd, and Ni. Cd and Ni contents can cause both ecological and human health risks. According to PCA, both mixed sources (geogenic and anthropogenic such as mine wastes discharge and farming activities) of PTEs for water and sediment were identified in the study area. The SOM analysis identified three spatial patterns, e.g., Cr-Co-Zn-Mn, Fe-Cd, and Ni-Pb-Cu in water and Zn-Cd-Cu-Mn, Cr-Ni and Fe, Co-Pb in sediment. Spatial distribution of entropy water quality index (EWQI) values depicted that northern and northwestern areas possess "poor" to "extremely poor" quality water. The entropy weights indicated Zn, Cd, and Cu as the major pollutants in deteriorating the water quality. This finding provides a baseline database with eco-environmental and health risk measures for the Wainivesi river contamination.
Collapse
Affiliation(s)
- Satendra Kumar
- School of Geography, Earth Science and Environment, The University of the South Pacific, Laucala Campus, Private Bag, Suva, Fiji.
| | | | - Md Hasanuzzaman
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Roquia Salam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali, 8602, Bangladesh
| | - Rahat Khan
- Institute of Nuclear Science and Technology, Bangladesh Atomic Energy Commission, Savar, Dhaka, 1349, Bangladesh
| | - M Safiur Rahman
- Atmospheric and Environmental Chemistry Laboratory, Atomic Energy Centre Dhaka, 4 -Kazi Nazrul Islam Avenue, Dhaka, 1000, Bangladesh
| | - Subodh Chandra Pal
- Department of Geography, The University of Burdwan, West Bengal, Pin: 713104, India
| | - Mir Mohammad Ali
- Department of Aquaculture, Bangla Agricultural University, Sher-e, Dhaka-1207, Bangladesh
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 62529, Abha, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, 62529, Abha, Saudi Arabia
| | - Williamson Gustave
- School of Chemistry, Environmental and Life Sciences, University of the Bahamas, New Province, Nassau, Bahamas
| | - Ahmed Elbeltagi
- Agricultural Engineering Dept, Faculty of Agriculture, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Sun S, Zhang K, Wu Y, Zhu N, Wang Y, Chen J, Leng F. Transporter drives the biosorption of heavy metals by Stenotrophomonas rhizophila JC1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:45380-45395. [PMID: 35143001 DOI: 10.1007/s11356-022-18900-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
To better understand the function of transporter in heavy metal detoxification of bacteria, the transporters associated with heavy metal detoxification in S. rhizophila JC1 were analyzed, among which four members were verified by RT-qPCR. In addition, the removal rates of four single metal ions (Cr6+, Cu2+, Zn2+, Pb2+) and polymetallic ions by strain JC1 were studied, respectively. We also researched the physiological response of strain JC1 to different metal stress via morphological observation, elemental composition, functional group and membrane permeability analysis. The results showed that in the single metal ion solution, removal capacities of Cu2+ (120 mg/L) and Cr6+ (80 mg/L) of S. rhizophila JC1 reached to 79.9% and 89.3%, respectively, while in polymetallic ions solution, the removal capacity of each metal ion all decreased, and in detail, the adsorption capacity was determined Cr6+>Cu2+>Zn2+>Pb2+ under the same condition. The physiological response analyses results showed that extracellular adsorption phenomena occurred, and the change of membrane permeability hindered the uptake of metal ions by bacteria. The analysis of transporters in strain JC1 genome illustrated that a total of 323 transporters were predicted. Among them, two, six and five proteins of the cation diffusion facilitator, resistance-nodulation-division efflux and P-type ATPase families were, respectively, predicted. The expression of corresponding genes showed that the synergistic action of correlative transporters played important roles in the process of adsorption. The comparative genomics analysis revealed that S. rhizophila JC1 has long-distance evolutionary relationships with other strains, but the efflux system of S. rhizophila JC1 contained the same types of metal transporters as other metal-resistant bacteria.
Collapse
Affiliation(s)
- Shangchen Sun
- School of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, China
| | - Kexin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| | - Yamiao Wu
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| | - Ning Zhu
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| | - Yonggang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China.
| | - Jixiang Chen
- School of Petrochemical Engineering, Lanzhou University of Technology, 730050, Lanzhou, China
| | - Feifan Leng
- School of Life Science and Engineering, Lanzhou University of Technology, Langongping Road 287, Qilihe District, 730050, Lanzhou, China
| |
Collapse
|
8
|
Pal A, Bhattacharjee S, Saha J, Sarkar M, Mandal P. Bacterial survival strategies and responses under heavy metal stress: a comprehensive overview. Crit Rev Microbiol 2021; 48:327-355. [PMID: 34473592 DOI: 10.1080/1040841x.2021.1970512] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Heavy metals bring long-term hazardous consequences and pose a serious threat to all life forms. Being non-biodegradable, they can remain in the food webs for a long period of time. Metal ions are essential for life and indispensable for almost all aspects of metabolism but can be toxic beyond threshold level to all living beings including microbes. Heavy metals are generally present in the environment, but many geogenic and anthropogenic activities has led to excess metal ion accumulation in the environment. To survive in harsh metal contaminated environments, bacteria have certain resistance mechanisms to metabolize and transform heavy metals into less hazardous forms. This also gives rise to different species of heavy metal resistant bacteria. Herein, we have tried to incorporate the different aspects of heavy metal toxicity in bacteria and provide an up-to-date and across-the-board review. The various aspects of heavy metal biology of bacteria encompassed in this review includes the biological notion of heavy metals, toxic effect of heavy metals on bacteria, the factors regulating bacterial heavy metal resistance, the diverse mechanisms governing bacterial heavy metal resistance, bacterial responses to heavy metal stress, and a brief overview of gene regulation under heavy metal stress.
Collapse
Affiliation(s)
- Ayon Pal
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Sukanya Bhattacharjee
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Jayanti Saha
- Microbiology and Computational Biology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Monalisha Sarkar
- Mycology and Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| | - Parimal Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Raiganj University, Raiganj, India
| |
Collapse
|
9
|
Golub N, Shynkarchuk A, Kozlovets O, Xinhua S. Influence of Heavy Metals on the Process of Anaerobic Fermentation of Biomass by the Consortia of Anaerobic Microorganisms. INNOVATIVE BIOSYSTEMS AND BIOENGINEERING 2020. [DOI: 10.20535/ibb.2020.4.4.211227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
10
|
Sun X, Zhao J, Wang Q, Ren X, Li R, Kumar Awasthi M, Zhang Z. Behaviors and related mechanisms of Zn resistance and antibiotic resistance genes during co-composting of erythromycin manufacturing wastes and pig manure. BIORESOURCE TECHNOLOGY 2020; 318:124048. [PMID: 32871319 DOI: 10.1016/j.biortech.2020.124048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
This study explored the fate of Zn- resistance genes (ZRGs), antibiotic- resistance genes (ARGs) and related mechanisms associated with bacterial communities during co-composting of erythromycin manufacturing wastes (EMW) and pig manure (PM) at the ratio of 0% (control), 5% (L) and 20% (H) (PM basis). The relative abundance (RAs) of erm genes in most treatments were decreased by 77.75-99.97% after composting. But total RA of czc genes were increased by 8.34, 15.86 and 12.03 times in control, L and H treatment respectively. The higher EMW in H showed a negative impact on removing of erm genes and aggravated the enrichment of ZRGs compared with control and L. Redundancy analysis showed that Firmicutes accounted for the highest explanation of ARGs and ZRGs variations, and Zn in EMW had significant impact on the succession of bacterial community.
Collapse
Affiliation(s)
- Xining Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
11
|
Asaithambi G, Periasamy V, Karuppannan N. Fluorescence sensing response of zinc(II) and pyrophosphate ions by benzoxazole appended dipodal Schiff base. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
12
|
Bollyn J, Willaert B, Kerré B, Moens C, Arijs K, Mertens J, Leverett D, Oorts K, Smolders E. Transformation-dissolution reactions partially explain adverse effects of metallic silver nanoparticles to soil nitrification in different soils. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2123-2131. [PMID: 29691884 DOI: 10.1002/etc.4161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/22/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Risk assessment of metallic nanoparticles (NPs) is critically affected by the concern that toxicity goes beyond that of the metallic ion. The present study addressed this concern for soils with silver nanoparticles (AgNPs) using the Ag-sensitive nitrification assay. Three agricultural soils (A, B, and C) were spiked with equivalent doses of either AgNP (diameter = 13 nm) or AgNO3 . Soil solution was isolated and monitored over 97 d with due attention to accurate Ag fractionation at low (∼10 μg L-1 ) Ag concentrations. Truly dissolved (<1 kDa) Ag in the AgNO3 -amended soils decreased with reaction half-lives of 4 to 22 d depending on the soil, denoting important Ag-aging reactions. In contrast, truly dissolved Ag in AgNP-amended soils first increased by dissolution and subsequently decreased by aging, the concentration never exceeding that in the AgNO3 -amended soils. The half-lives of AgNP transformation-dissolution were approximately 4 d (soils A and B) and 36 d (soil C). The Ag toxic thresholds (10% effect concentrations, milligrams of Ag per kilogram of soil) of nitrification, evaluated at 21 or 35 d after spiking, were similar between the 2 Ag forms (soils A and B) but were factors of 3 to 8 lower for AgNO3 than for AgNP (soil C), largely corroborating dissolution differences. This fate and bioassay showed that AgNPs are not more toxic than AgNO3 at equivalent total soil Ag concentrations and that differences in Ag dissolution at least partially explain toxicity differences between the forms and among soils. Environ Toxicol Chem 2018;37:2123-2131. © 2018 SETAC.
Collapse
Affiliation(s)
- Jessica Bollyn
- Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Bernd Willaert
- Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Bart Kerré
- Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Claudia Moens
- Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Katrien Arijs
- ARCHE Consulting, Ghent (Wondelgem), Belgium
- European Precious Metal Federation, Brussels, Belgium
| | - Jelle Mertens
- European Precious Metal Federation, Brussels, Belgium
| | - Dean Leverett
- wca environment, Brunel House, Faringdon, United Kingdom
| | - Koen Oorts
- ARCHE Consulting, Ghent (Wondelgem), Belgium
| | - Erik Smolders
- Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| |
Collapse
|
13
|
A micro-plate colorimetric assay for rapid determination of trace zinc in animal feed, pet food and drinking water by ion masking and statistical partitioning correction. Food Chem 2018; 245:337-345. [DOI: 10.1016/j.foodchem.2017.10.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 10/03/2017] [Accepted: 10/09/2017] [Indexed: 12/13/2022]
|
14
|
Dimkpa CO, White JC, Elmer WH, Gardea-Torresdey J. Nanoparticle and Ionic Zn Promote Nutrient Loading of Sorghum Grain under Low NPK Fertilization. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:8552-8559. [PMID: 28905629 DOI: 10.1021/acs.jafc.7b02961] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This study evaluated the effects of ZnO nanoparticles (NP) or Zn salt amendment on sorghum yield, macronutrient use efficiency, and grain Zn-enrichment. Amendments were through soil and foliar pathways, under "low" and "high" levels of nitrogen, phosphorus, and potassium (NPK). In soil and foliar amendments, grain yield was significantly (p ≤ 0.05) increased by both Zn types, albeit insignificantly with soil-applied Zn at low NPK. Across NPK levels and Zn exposure pathways, both Zn types increased N and K accumulation relative to control plants. Compared to N and K, both Zn types had a mixed effect on P accumulation, depending on NPK level and Zn exposure pathway, and permitted greater soil P retention. Both Zn types significantly (p ≤ 0.05) increased grain Zn content, irrespective of exposure pathway. These findings suggest a nanoenabled strategy for enhancing crop productivity, grain nutritional quality, and N use efficiency based on Zn micronutrient amendments, with potential implications for improved human and environmental health.
Collapse
Affiliation(s)
- Christian O Dimkpa
- International Fertilizer Development Center , Muscle Shoals, Alabama 35662, United States
| | - Jason C White
- The Connecticut Agricultural Experiment Station , New Haven, Connecticut 06511, United States
| | - Wade H Elmer
- The Connecticut Agricultural Experiment Station , New Haven, Connecticut 06511, United States
| | - Jorge Gardea-Torresdey
- Chemistry Department and Environmental Science, The University of Texas at El Paso , El Paso, Texas 79968, United States
| |
Collapse
|
15
|
Feng J, Shao X, Shang Z, Chao J, Wang Y, Jin W. A new biphenylcarbonitrile based fluorescent sensor for Zn2+ ions and application in living cells. Chem Res Chin Univ 2017. [DOI: 10.1007/s40242-017-7084-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
16
|
Liu A, Li J, Li M, Niu XY, Wang J. Toxicity Assessment of Binary Metal Mixtures (Copper-Zinc) to Nitrification in Soilless Culture with the Extended Biotic Ligand Model. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:312-319. [PMID: 28050624 DOI: 10.1007/s00244-016-0346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
Metals are always found in the environment as mixtures rather than as solitary elements. Only a limited number of studies have developed appropriate models that incorporate bioavailability to estimate the toxicity of heavy-metal mixtures. In the present study, we explored the applicability of two extended biotic ligand model (BLM) approaches-BLM-f mix and BLM-toxicity unit (TU)-to predict and interpret mixture toxicity with the assumption that interactions between metal ions obey the BLM theory. Exposure assays of single and mixed metals were performed with inoculums of an ammonia-oxidizing bacterium SD5 isolated from soil. Nitrification of the cultures was the end point used to quantify the toxic response. The results indicated that the developed BLM-f mix approach could well estimate the single toxicity of Cu2+ and Zn2+ as well as their binary mixture toxicity to nitrification with >90% of toxicity variation explained. Assuming that metal ions compete with each other for binding at a single biotic ligand, the BLM-f mix approach (root-mean-square error [RMSE] = 19.66, R 2 = 0.8879) showed better predictive power than the BLM-TU approach (RMSE = 31.12, R 2 = 0.6892). The present study supports the use of the accumulation of metal ions at the biotic ligands as predictor of toxicity of single metals and metal mixtures.
Collapse
Affiliation(s)
- Aiju Liu
- Shandong University of Technology, Zibo, 255049, China
| | - JinXin Li
- Shandong University of Technology, Zibo, 255049, China
| | - Menghong Li
- Shandong University of Technology, Zibo, 255049, China
| | - Xiao Yin Niu
- Shandong University of Technology, Zibo, 255049, China
| | - Jun Wang
- Key Laboratory of Agriculture Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
17
|
Liang L, Rao T. Ratiometric Fluorescent Determination of the Zinc Ion Using a Terpyridine Derivative. ANAL LETT 2017. [DOI: 10.1080/00032719.2016.1178758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lijiao Liang
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, College of Chemistry and Environmental Engineering, Chongqing Three Georges University, Wanzhou, China
| | - Tongde Rao
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, College of Chemistry and Environmental Engineering, Chongqing Three Georges University, Wanzhou, China
| |
Collapse
|
18
|
Fashola MO, Ngole-Jeme VM, Babalola OO. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111047. [PMID: 27792205 PMCID: PMC5129257 DOI: 10.3390/ijerph13111047] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/20/2022]
Abstract
Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment.
Collapse
Affiliation(s)
- Muibat Omotola Fashola
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| | - Veronica Mpode Ngole-Jeme
- Department of Environmental Sciences, College of Agriculture and Environmental Sciences, UNISA, Florida, Private Bag X6 Florida, Roodepoort 1710, South Africa.
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Agriculture, Science and Technology, North-West University, Private Bag X2046, Mmabatho 2735, South Africa.
| |
Collapse
|
19
|
Ghosh K, Dey S, Halder S, Bhattacharjee A, Rizzoli C, Roy P. A turn-on fluorescent chemosensor for Zn2+ ion: X-ray structure and application in cell imaging study. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.04.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
20
|
Dey S, Roy A, Maiti GP, Mandal SK, Banerjee P, Roy P. A highly selective and biocompatible chemosensor for sensitive detection of zinc(ii). NEW J CHEM 2016. [DOI: 10.1039/c5nj02723c] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A selective fluorescence chemosensor for Zn2+ has been developed with a very low limit of detection value (0.832 nM).
Collapse
Affiliation(s)
- Sudipto Dey
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Ankita Roy
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Guru Prasad Maiti
- Department of Molecular Biology and Biotechnology
- University of Kalyani
- Kalyani-741235
- India
| | - Sushil Kumar Mandal
- Department of Ecological Engineering & Environmental Management
- University of Kalyani
- Kalyani
- India
| | - Piyali Banerjee
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| | - Partha Roy
- Department of Chemistry
- Jadavpur University
- Kolkata-700 032
- India
| |
Collapse
|
21
|
Abdel Aziz AA, Seda SH. A Novel Fluorescent Optode for Recognition of Zn2+ ion Based on N,N’-bis-(1-Hydroxypheylimine)2,5-Thiophenedicarobxaldehyde (HPTD) Schiff Base. J Fluoresc 2015; 25:1711-9. [DOI: 10.1007/s10895-015-1657-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/14/2015] [Indexed: 01/29/2023]
|
22
|
The Confluence of Heavy Metal Biooxidation and Heavy Metal Resistance: Implications for Bioleaching by Extreme Thermoacidophiles. MINERALS 2015. [DOI: 10.3390/min5030397] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Bazrafshan AA, Hajati S, Ghaedi M. Improvement in the performance of a zinc ion-selective potentiometric sensor using modified core/shell Fe3O4@SiO2nanoparticles. RSC Adv 2015. [DOI: 10.1039/c5ra16572e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A novel, simple, accurate and sensitive zinc ion-selective potentiometric sensor was fabricated by modifying the surface of Fe3O4@SiO2nanoparticles using a ligand prepared by a coupled reaction between APTMS and 2-H-3-MBA.
Collapse
Affiliation(s)
| | - S. Hajati
- Department of Physics
- Yasouj University
- Yasouj 75918-74831
- Iran
| | - M. Ghaedi
- Chemistry Department
- Yasouj University
- Yasouj 75918-74831
- Iran
| |
Collapse
|
24
|
Ardestani MM, van Straalen NM, van Gestel CAM. The relationship between metal toxicity and biotic ligand binding affinities in aquatic and soil organisms: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 195:133-47. [PMID: 25217851 DOI: 10.1016/j.envpol.2014.08.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/14/2014] [Accepted: 08/18/2014] [Indexed: 05/04/2023]
Abstract
The biotic ligand model (BLM) is a theoretical, potentially mechanistic approach to assess metal bioavailability in soil and aquatic systems. In a BLM, toxicity is linked to the fraction of biotic ligand occupied, which in turn, depends on the various components of the solution, including activity of the metal. Bioavailability is a key factor in determining toxicity and uptake of metals in organisms. In this study, the present status of BLM development for soil and aquatic organisms is summarized. For all species and all metals, toxicity was correlated with the conditional biotic ligand binding constants. For almost all organisms, values for Ag, Cu, and Cd were higher than those for Zn and Ni. The constants derived for aquatic systems seem to be equally valid for soil organisms, but in the case of soils, bioavailability from the soil solution is greatly influenced by the presence of the soil solid phase.
Collapse
Affiliation(s)
- Masoud M Ardestani
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Nico M van Straalen
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Chen GC, Tam NFY, Ye Y. Does zinc in livestock wastewater reduce nitrous oxide (N2O) emissions from mangrove soils? WATER RESEARCH 2014; 65:402-413. [PMID: 25171729 DOI: 10.1016/j.watres.2014.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 07/15/2014] [Accepted: 08/03/2014] [Indexed: 06/03/2023]
Abstract
Zinc (Zn) affects nitrogen cycling but the effect of Zn in wastewater on the emission of nitrous oxide (N2O) from the soil has not been reported. This study compared N2O emissions from mangrove soil receiving livestock wastewater containing various Zn(2+) concentrations and evaluated how long the effects of Zn would last in these soil-wastewater microcosms. Significant increases in N2O flux were observed soon after the discharge of wastewater with a low Zn content. On the other hand, the flux was reduced significantly in the wastewater with high Zn levels but such inhibitory effect was not observed after tidal flushing. Continuous monitoring of the N2O fluxes also confirmed that the inhibitory effect of Zn was confined within a few hours and the fluxes recovered in 6-9 h after the wastewater was completely drained away. These results indicated that the inhibitory effect of Zn on N2O fluxes occurred immediately after wastewater discharge and disappeared gradually. In the surface soil, nitrate levels increased with the addition of wastewater but there was no significant accumulation of NH4(+)-N, irrespective of the Zn content in the wastewater. The study also showed that nitrification potential and immediate N2O emissions were inhibited by high Zn levels in the soil, but the total oxidation of ammonium to nitrate was not affected.
Collapse
Affiliation(s)
- Guang C Chen
- Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian, China; Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China
| | - Nora F Y Tam
- Department of Biology and Chemistry, City University of Hong Kong, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Hong Kong, China.
| | - Yong Ye
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystem, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
26
|
Tayade K, Bondhopadhyay B, Sharma H, Basu A, Gite V, Attarde S, Singh N, Kuwar A. “Turn-on” fluorescent chemosensor for zinc(ii) dipodal ratiometric receptor: application in live cell imaging. Photochem Photobiol Sci 2014; 13:1052-7. [DOI: 10.1039/c4pp00034j] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A dipodal ligand 2,2′-((ethane-1,2-diylbis(azanediyl))bis(ethane-1,1-diyl))diphenol was synthesized through a condensation reaction and was characterized with IR, 1H NMR, 13C-NMR, and mass spectroscopy.
Collapse
Affiliation(s)
- Kundan Tayade
- School of Chemical Sciences
- North Maharashtra University
- Jalgaon, India
- School of Environmental and Earth Sciences
- North Maharashtra University
| | - Banashree Bondhopadhyay
- Molecular Biology and Human Genetics Laboratory
- Department of Zoology
- The University of Burdwan
- Burdwan, India
| | - Hemant Sharma
- Department of Chemistry
- Indian Institute of Chemistry
- Rupnagar, India
| | - Anupam Basu
- Molecular Biology and Human Genetics Laboratory
- Department of Zoology
- The University of Burdwan
- Burdwan, India
| | - Vikas Gite
- School of Chemical Sciences
- North Maharashtra University
- Jalgaon, India
| | - Sanjay Attarde
- School of Environmental and Earth Sciences
- North Maharashtra University
- Jalgaon, India
| | - Narinder Singh
- Department of Chemistry
- Indian Institute of Chemistry
- Rupnagar, India
| | - Anil Kuwar
- School of Chemical Sciences
- North Maharashtra University
- Jalgaon, India
| |
Collapse
|
27
|
Lofts S, Tipping E, Lawlor AJ, Shotbolt L. An intermediate complexity dynamic model for predicting accumulation of atmospherically-deposited metals (Ni, Cu, Zn, Cd, Pb) in catchment soils: 1400 to present. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 180:236-245. [PMID: 23792383 DOI: 10.1016/j.envpol.2013.05.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 05/09/2013] [Accepted: 05/09/2013] [Indexed: 06/02/2023]
Abstract
The Intermediate Dynamic Model for Metals (IDMM) is a model for prediction of the pools of metals (Ni, Cu, Zn, Cd, Pb) in topsoils of catchments resulting from deposition of metals from the atmosphere. We used the model to simulate soil metal pools from 1400 onwards in ten UK catchments comprising semi-natural habitats, and compared the results with present day observations of soil metal pools. Generally the model performed well in simulating present day pools, and further improvements were made to simulations of Ni, Cu, Zn and Cd by adjusting the strength of metal adsorption to the soils. Some discrepancies between observation and prediction for Pb appeared to be due either to underestimation of cumulative deposition, or to overestimation of the metal pool under 'pristine', pre-industrial conditions. The IDMM provides a potential basis for large scale assessment of metal dynamics in topsoils.
Collapse
Affiliation(s)
- Stephen Lofts
- NERC Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom.
| | | | | | | |
Collapse
|
28
|
Lofts S, Criel P, Janssen CR, Lock K, McGrath SP, Oorts K, Rooney CP, Smolders E, Spurgeon DJ, Svendsen C, Van Eeckhout H, Zhao FZ. Modelling the effects of copper on soil organisms and processes using the free ion approach: towards a multi-species toxicity model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:244-253. [PMID: 23584604 DOI: 10.1016/j.envpol.2013.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2012] [Revised: 02/15/2013] [Accepted: 03/02/2013] [Indexed: 06/02/2023]
Abstract
The free ion approach has been previously used to calculate critical limit concentrations for soil metals based on point estimates of toxicity. Here, the approach was applied to dose-response data for copper effects on seven biological endpoints in each of 19 European soils. The approach was applied using the concept of an effective dose, comprising a function of the concentrations of free copper and 'protective' major cations, including H(+). A significant influence of H(+) on the toxicity of Cu(2+) was found, while the effects of other cations were inconsistent. The model could be generalised by forcing the effect of H(+) and the slope of the dose-response relationship to be equal for all endpoints. This suggests the possibility of a general bioavailability model for copper effects on organisms. Furthermore, the possibility of such a model could be explored for other cationic metals such as nickel, zinc, cadmium and lead.
Collapse
Affiliation(s)
- Stephen Lofts
- NERC Centre for Ecology and Hydrology, Lancaster Environment Centre, Bailrigg, Lancaster LA1 4AP, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Qiu H, Vijver MG, He E, Peijnenburg WJGM. Predicting copper toxicity to different earthworm species using a multicomponent Freundlich model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:4796-4803. [PMID: 23548049 DOI: 10.1021/es305240n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study aimed to develop bioavailability models for predicting Cu toxicity to earthworms (Lumbricus rubellus, Aporrectodea longa, and Eisenia fetida) in a range of soils of varying properties. A multicomponent Freundlich model, complying with the basic assumption of the biotic ligands model, was used to relate Cu toxicity to the free Cu(2+) activity and possible protective cations in soil porewater. Median lethal concentrations (LC50s) of Cu based on the total Cu concentration varied in each species from soil to soil, reaching differences of approximately a factor 9 in L. rubellus, 49 in A. longa and 45 in E. fetida. The relative sensitivity of the earthworms to Cu in different soils followed the same order: L. rubellus > A. longa > E. fetida. Only pH not other cations (K(+), Ca(2+), Na(+), and Mg(2+)) were found to exert significant protective effects against Cu toxicity to earthworms. The Freundlich-type model in which the protective effects of pH were included, explained 84%, 94%, and 96% of variations in LC50s of Cu (expressed as free ion activity) for L. rubellus, A. longa, and E. fetida, respectively. Predicted LC50s never differed by a factor of more than 2 from the observed LC50s. External validation of the model showed a similar level of precision, even though toxicity data for other soil organisms and for different endpoints were used. The findings of the present study showed the possibility of extrapolating the developed toxicity models for one earthworm species to another species. Moreover, the Freundlich-type model in which the free Cu(2+) activity and pH in soil porewater are considered can even be used to predict toxicity for other soil invertebrates and plants.
Collapse
Affiliation(s)
- Hao Qiu
- Institute of Environmental Sciences, Leiden University, 2300 RA, Leiden, The Netherlands.
| | | | | | | |
Collapse
|
30
|
Chen BC, Ho PC, Juang KW. Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:174-183. [PMID: 23138334 DOI: 10.1007/s10646-012-1015-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2012] [Indexed: 05/28/2023]
Abstract
Copper toxicity and accumulation in plants are affected by physicochemical characteristics of soil solutions such as the concentrations of coexistent cations (e.g., Ca(2+), Mg(2+), K(+), Na(+), and H(+)). The biotic ligand model (BLM) approach has been proposed to predict metal phyto-toxicity and -accumulation by taking into account the effects of coexistent cations, given the assumption of the partition equilibrium of metal ions between soil solution and solid phase. The alleviation effects of Mg on Cu toxicity and accumulation in grapevine roots were the main concerns in this study and were investigated by using a hydroponic experiment of grapevine cuttings. The BLM approach, which incorporated competition of Mg(2+) with Cu(2+) to occupy the biotic ligands on root surfaces, was developed to predict Cu rhizotoxicity and accumulation by grapevine roots. In the results, the effective activity of Cu, {Cu (2+)}, resulting in a 50 % reduction of root elongation (EA (50)), linearly increased with increments of Mg activity, {Mg (2+)}. In addition, the Cu concentration in root, Cu ( root ), was retarded by an increase of {Mg (2+)}. The linear model was significantly fitted to the relationship between {Cu (2+)}/Cu ( root ) and {Mg (2+)}. According to the concept of BLM, the present results revealed that the amelioration effects of Mg on Cu toxicity and accumulation in roots could arise from competition between Mg(2+) and Cu(2+) on the binding sites (i.e., the biotic ligands). Then, the developed Cu-BLMs incorporating the Mg(2+) competition effectiveness were validated provide accurate predictions of Cu toxicity and accumulation in grapevine roots. To our knowledge this is the first report of the successful development of BLMs for a woody plant. This BLM approach shows promise of being widely applicable for various terrestrial plants.
Collapse
Affiliation(s)
- Bo-Ching Chen
- Department of Post-Modern Agriculture, MingDao University, No. 369, Wenhua Rd., Peetow, Changhua, 52345, Taiwan
| | | | | |
Collapse
|
31
|
Extreme zinc tolerance in acidophilic microorganisms from the bacterial and archaeal domains. Extremophiles 2012; 17:75-85. [PMID: 23143658 DOI: 10.1007/s00792-012-0495-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/25/2012] [Indexed: 12/21/2022]
Abstract
Zinc can occur in extremely high concentrations in acidic, heavy metal polluted environments inhabited by acidophilic prokaryotes. Although these organisms are able to thrive in such severely contaminated ecosystems their resistance mechanisms have not been well studied. Bioinformatic analysis of a range of acidophilic bacterial and archaeal genomes identified homologues of several known zinc homeostasis systems. These included primary and secondary transporters, such as the primary heavy metal exporter ZntA and Nramp super-family secondary importer MntH. Three acidophilic model microorganisms, the archaeon 'Ferroplasma acidarmanus', the Gram negative bacterium Acidithiobacillus caldus, and the Gram positive bacterium Acidimicrobium ferrooxidans, were selected for detailed analyses. Zinc speciation modeling of the growth media demonstrated that a large fraction of the free metal ion is complexed, potentially affecting its toxicity. Indeed, many of the putative zinc homeostasis genes were constitutively expressed and with the exception of 'F. acidarmanus' ZntA, they were not up-regulated in the presence of excess zinc. Proteomic analysis revealed that zinc played a role in oxidative stress in At. caldus and Am. ferrooxidans. Furthermore, 'F. acidarmanus' kept a constant level of intracellular zinc over all conditions tested whereas the intracellular levels increased with increasing zinc exposure in the remaining organisms.
Collapse
|
32
|
Abbasi MA, Ibupoto ZH, Hussain M, Khan Y, Khan A, Nur O, Willander M. Potentiometric zinc ion sensor based on honeycomb-like NiO nanostructures. SENSORS 2012. [PMID: 23202217 PMCID: PMC3522970 DOI: 10.3390/s121115424] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study honeycomb-like NiO nanostructures were grown on nickel foam by a simple hydrothermal growth method. The NiO nanostructures were characterized by field emission electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM) and X-ray diffraction (XRD) techniques. The characterized NiO nanostructures were uniform, dense and polycrystalline in the crystal phase. In addition to this, the NiO nanostructures were used in the development of a zinc ion sensor electrode by functionalization with the highly selective zinc ion ionophore 12-crown-4. The developed zinc ion sensor electrode has shown a good linear potentiometric response for a wide range of zinc ion concentrations, ranging from 0.001 mM to 100 mM, with sensitivity of 36 mV/decade. The detection limit of the present zinc ion sensor was found to be 0.0005 mM and it also displays a fast response time of less than 10 s. The proposed zinc ion sensor electrode has also shown good reproducibility, repeatability, storage stability and selectivity. The zinc ion sensor based on the functionalized NiO nanostructures was also used as indicator electrode in potentiometric titrations and it has demonstrated an acceptable stoichiometric relationship for the determination of zinc ion in unknown samples. The NiO nanostructures-based zinc ion sensor has potential for analysing zinc ion in various industrial, clinical and other real samples.
Collapse
Affiliation(s)
- Mazhar Ali Abbasi
- Physical Electronic and Nanotechnology Division, Department of Science and Technology, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden; E-Mails: (Z.H.I.); (M.H.); (A.K.); (O.N.); (M.W.)
- Author to whom correspondence should be addressed; E-Mail:
| | - Zafar Hussain Ibupoto
- Physical Electronic and Nanotechnology Division, Department of Science and Technology, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden; E-Mails: (Z.H.I.); (M.H.); (A.K.); (O.N.); (M.W.)
| | - Mushtaque Hussain
- Physical Electronic and Nanotechnology Division, Department of Science and Technology, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden; E-Mails: (Z.H.I.); (M.H.); (A.K.); (O.N.); (M.W.)
| | - Yaqoob Khan
- Nanosciences and Catalysis Division, National Centre for Physics, Quaid-e-Azam University Campus, 45320 Islamabad, Pakistan; E-Mail:
| | - Azam Khan
- Physical Electronic and Nanotechnology Division, Department of Science and Technology, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden; E-Mails: (Z.H.I.); (M.H.); (A.K.); (O.N.); (M.W.)
| | - Omer Nur
- Physical Electronic and Nanotechnology Division, Department of Science and Technology, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden; E-Mails: (Z.H.I.); (M.H.); (A.K.); (O.N.); (M.W.)
| | - Magnus Willander
- Physical Electronic and Nanotechnology Division, Department of Science and Technology, Campus Norrköping, Linköping University, SE-60174 Norrköping, Sweden; E-Mails: (Z.H.I.); (M.H.); (A.K.); (O.N.); (M.W.)
| |
Collapse
|
33
|
Degryse F, Shahbazi A, Verheyen L, Smolders E. Diffusion limitations in root uptake of cadmium and zinc, but not nickel, and resulting bias in the Michaelis constant. PLANT PHYSIOLOGY 2012; 160:1097-109. [PMID: 22864584 PMCID: PMC3461532 DOI: 10.1104/pp.112.202200] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 08/01/2012] [Indexed: 05/05/2023]
Abstract
It has long been recognized that diffusive boundary layers affect the determination of active transport parameters, but this has been largely overlooked in plant physiological research. We studied the short-term uptake of cadmium (Cd), zinc (Zn), and nickel (Ni) by spinach (Spinacia oleracea) and tomato (Lycopersicon esculentum) in solutions with or without metal complexes. At same free ion concentration, the presence of complexes, which enhance the diffusion flux, increased the uptake of Cd and Zn, whereas Ni uptake was unaffected. Competition effects of protons on Cd and Zn uptake were observed only at a very large degree of buffering, while competition of magnesium ions on Ni uptake was observed even in unbuffered solutions. These results strongly suggest that uptake of Cd and Zn is limited by diffusion of the free ion to the roots, except at very high degree of solution buffering, whereas Ni uptake is generally internalization limited. All results could be well described by a model that combined a diffusion equation with a competitive Michaelis-Menten equation. Direct uptake of the complex was estimated to be a major contribution only at millimolar concentrations of the complex or at very large ratios of complex to free ion concentration. The true K(m) for uptake of Cd(2+) and Zn(2+) was estimated at <5 nm, three orders of magnitude smaller than the K(m) measured in unbuffered solutions. Published Michaelis constants for plant uptake of Cd and Zn likely strongly overestimate physiological ones and should not be interpreted as an indicator of transporter affinity.
Collapse
Affiliation(s)
- Fien Degryse
- Laboratory for Soil and Water Management, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium.
| | | | | | | |
Collapse
|
34
|
Rousk J, Ackermann K, Curling SF, Jones DL. Comparative toxicity of nanoparticulate CuO and ZnO to soil bacterial communities. PLoS One 2012; 7:e34197. [PMID: 22479561 PMCID: PMC3315546 DOI: 10.1371/journal.pone.0034197] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/23/2012] [Indexed: 11/19/2022] Open
Abstract
The increasing industrial application of metal oxide Engineered Nano-Particles (ENPs) is likely to increase their environmental release to soils. While the potential of metal oxide ENPs as environmental toxicants has been shown, lack of suitable control treatments have compromised the power of many previous assessments. We evaluated the ecotoxicity of ENP (nano) forms of Zn and Cu oxides in two different soils by measuring their ability to inhibit bacterial growth. We could show a direct acute toxicity of nano-CuO acting on soil bacteria while the macroparticulate (bulk) form of CuO was not toxic. In comparison, CuSO(4) was more toxic than either oxide form. Unlike Cu, all forms of Zn were toxic to soil bacteria, and the bulk-ZnO was more toxic than the nano-ZnO. The ZnSO(4) addition was not consistently more toxic than the oxide forms. Consistently, we found a tight link between the dissolved concentration of metal in solution and the inhibition of bacterial growth. The inconsistent toxicological response between soils could be explained by different resulting concentrations of metals in soil solution. Our findings suggested that the principal mechanism of toxicity was dissolution of metal oxides and sulphates into a metal ion form known to be highly toxic to bacteria, and not a direct effect of nano-sized particles acting on bacteria. We propose that integrated efforts toward directly assessing bioavailable metal concentrations are more valuable than spending resources to reassess ecotoxicology of ENPs separately from general metal toxicity.
Collapse
Affiliation(s)
- Johannes Rousk
- Environment Centre Wales, Bangor University, Gwynedd, United Kingdom.
| | | | | | | |
Collapse
|
35
|
Electrochemical sensors for the determination of Zn2+ ions based on pendant armed macrocyclic ligand. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.03.090] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Hosseini M, Abkenar SD, Ganjali M, Faridbod F. Determination of zinc(II) ions in waste water samples by a novel zinc sensor based on a new synthesized Schiff's base. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2011. [DOI: 10.1016/j.msec.2010.10.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
37
|
Ore S, Mertens J, Brandt KK, Smolders E. Copper toxicity to bioluminescent Nitrosomonas europaea in soil is explained by the free metal ion activity in pore water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:9201-9206. [PMID: 21047118 DOI: 10.1021/es1026294] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The terrestrial biotic ligand model (BLM) for metal toxicity in soil postulates that metal toxicity depends on the free metal ion activity in solution and on ions competing for metal sorption to the biotic ligand. Unequivocal evidence for the BLM assumptions is most difficult to obtain for native soil microorganisms because the abiotic and biotic compartments cannot be experimentally separated. Here, we report copper (Cu) toxicity to a bioluminescent Nitrosomonas europaea reporter strain that was used in a solid phase-contact assay and in corresponding soil extracts and artificial soil solutions. The Cu(2+) ion activities that halve bioluminescence (EC50) in artificial solutions ranged 10(-5) to 10(-7) M and increased with increasing activities of H(+), Ca(2+) and Mg(2+) according to the BLM concept. The solution based Cu(2+) EC50 values of N. europaea in six contaminated soils ranged 2 × 10(-6) to 2 × 10(-9) M and these thresholds for both solid phase or soil extract based assays were well predicted by the ion competition model fitted to artificial solution data. In addition, solution based Cu(2+) EC50 of the solid phase-contact assay were never smaller than corresponding values in soil extracts suggesting no additional solid phase toxic route. By restricting the analysis to the same added species, we show that the Cu(2+) in solution represents the toxic species to this bacterium.
Collapse
Affiliation(s)
- S Ore
- Department of Earth and Environmental Sciences, Division Soil and Water Management, K.U.Leuven, Kasteelpark Arenberg 20, 3001, Heverlee, Belgium
| | | | | | | |
Collapse
|
38
|
Moberly JG, Staven A, Sani RK, Peyton BM. Influence of pH and inorganic phosphate on toxicity of zinc to Arthrobacter sp. isolated from heavy-metal-contaminated sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7302-7308. [PMID: 20553043 DOI: 10.1021/es100117f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Because of its high solubility over a wide range of pH conditions, zinc is found in many natural and human-impacted systems. Zinc speciation is critical in assessing zinc toxicity to microorganisms because it varies considerably with pH and is dependent on other aqueous constituents. Combined results of thermodynamic modeling, statistical analysis, and batch culture studies using Arthrobacter sp. JM018 suggest that the toxic species may not be solely limited to the free ion, but also includes ZnHPO(4)(0)(aq). Cellular uptake of ZnHPO(4)(0)(aq) through the inorganic phosphate transporter (Pit family), which requires a neutral metal phosphate complex for phosphate transport, may explain the observed toxicity. Based on visual MINTEQ (v3.0) modeling, at 50 μM total zinc, ZnHPO(4)(0)(aq) constitutes 33, 70, and 76% of the neutral metal phosphate pool at pH 6, 7, and 8, respectively. At 50 μM total zinc, cultures supplied with organic phosphate (glycerol-3-phosphate) show no significant response to pH (p = 0.13) while inhibition of inorganic phosphate-supplemented cultures, whose neutral metal phosphates are increasingly dominated by ZnHPO(4)(0)(aq), show significant pH dependence (p = 9.45 × 10(-7)). Using sodium to decrease the distribution of ZnHPO(4)(0)(aq) in the neutral metal phosphate pool also decreased the pH dependent toxicity, further supporting this mechanism. These findings show the important role of minor zinc species in organism toxicity and have wider implications because the Pit inorganic phosphate transport system is widely distributed in Bacteria, Archaea, and Eukarya.
Collapse
Affiliation(s)
- James G Moberly
- Department of Chemical and Biological Engineering, Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, USA
| | | | | | | |
Collapse
|
39
|
Cloutier-Hurteau B, Turmel MC, Sauvé S, Courchesne F. The speciation of water-soluble Al and Zn in the rhizosphere of forest soils. JOURNAL OF ENVIRONMENTAL MONITORING : JEM 2010; 12:1274-86. [PMID: 20383395 DOI: 10.1039/c002497j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study focuses on the relationships of dissolved Al and Zn speciation with microbial and chemical soil properties in the bulk and rhizosphere of forest soils. The soil components were sampled under Populus tremuloides Michx. at six sites located close to industrial facilities. Total water-soluble (Al(WS), Zn(WS)) and reactive (Al(R), Zn(R)) Al and Zn concentrations measured in soil water extracts, speciation data modeled by WHAM 6, chemical properties (pH, DOC, major cations and anions) and microbial properties (microbial biomass and enzyme activities) were measured on all soils. Enrichment in Al(R) and Zn(R) was observed in the rhizosphere compared to bulk soils. In a given soil material, the speciation of Al and Zn varied according to solution pH and Al-organic as well as Zn-organic complexes or Zn(2+) were generally the dominant species. The factors controlling the Al(WS), Zn(WS), Al(R) and Zn(R) concentrations differed between soil components, shifting from strictly chemical in the bulk (78%) to interactions among microbial and chemical variables in the rhizosphere (87%). Results further indicate that organic matter and pH were significantly linked to these response variables in the rhizosphere. Involvement of rhizospheric microorganisms occurred via pH changes induced by either the microbial assimilation of nitrogen or through the release of metals during the mineralization of roots. Our results therefore suggest that microbial activity is an important component of the biogeochemistry of Al and Zn in the rhizosphere. The study further provides key information to improve the assessment of ecological risk associated to Al and Zn in forest soils.
Collapse
Affiliation(s)
- Benoît Cloutier-Hurteau
- UMR Eco&Sols (INRA-IRD-SupAgro-CIRAD), Bâtiment 12, 2 place Pierre Viala, 34060, Montpellier Cedex 2, France
| | | | | | | |
Collapse
|
40
|
Mertens J, Wakelin SA, Broos K, McLaughlin MJ, Smolders E. Extent of copper tolerance and consequences for functional stability of the ammonia-oxidizing community in long-term copper-contaminated soils. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2010; 29:27-37. [PMID: 20821416 DOI: 10.1002/etc.16] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Adaptation of soil microbial communities to elevated copper (Cu) concentrations has been well documented. However, effects of long-term Cu exposure on adaptation responses associated with functional stability and structural composition within the nitrifying community are still unknown. Soils were sampled in three field sites (Denmark, Thailand, and Australia) where Cu gradients had been established from 3 to 80 years prior to sampling. In each field site, the potential nitrification rate (PNR) decreased by over 50% with increasing soil Cu, irrespective of a 20 to >200-fold increase in Cu tolerance (at the highest soil Cu) among the nitrifying communities. This increased tolerance was associated with decreasing numbers (15-120-fold) of ammonia-oxidizing bacteria (AOB), except in the oldest contaminated field site, decreasing numbers of ammonia-oxidizing archaea (AOA; 10-130-fold) and differences in the operational taxonomic unit (OTU) composition of the AOB and, to a lesser extent, AOA communities. The sensitivity of nitrifying communities, previously under long-term Cu exposure, to additional stresses was assessed. Nitrification in soils from the three field sites was measured following acidification, pesticide addition, freeze-thaw cycles, and dry-rewetting cycles. Functional stability of the nitrification process was assessed immediately after stress application (resistance) and after an additional three weeks of incubation (resilience). No indications were found that long-term Cu exposure affected the sensitivity to the selected stressors, suggesting that resistance and resilience were unaffected. It was concluded that the nitrifying community changed structurally in all long-term Cu-exposed field sites and that these changes were associated with increased Cu tolerance but not with a loss of functional stability.
Collapse
Affiliation(s)
- Jelle Mertens
- K.U.Leuven, Faculty of Bioscience Engineering, Department of Earth and Environmental Sciences, Division Soil and Water Management, Kasteelpark Arenberg, 20 Box 2459, 3001 Heverlee, Belgium.
| | | | | | | | | |
Collapse
|
41
|
Electrochemical codeposition of copper and manganese from room-temperature N-butyl-N-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2009.07.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Ma QJ, Zhang XB, Zhao XH, Gong YJ, Tang J, Shen GL, Yu RQ. A ratiometric fluorescent sensor for zinc ions based on covalently immobilized derivative of benzoxazole. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2009; 73:687-693. [PMID: 19398369 DOI: 10.1016/j.saa.2009.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2008] [Revised: 03/06/2009] [Accepted: 03/19/2009] [Indexed: 05/27/2023]
Abstract
In the present paper, we describe the fabrication and analytical characteristics of fluorescence-based zinc ion-sensing glass slides. To construct the sensor, a benzoxazole derivative 4-benzoxazol-2'-yl-3-hydroxyphenyl allyl ether (1) with a terminal double bond was synthesized and copolymerized with 2-hydroxyethyl methacrylate (HEMA) on the activated surface of glass slides by UV irradiation. In the absence of Zn(2+) at pH 7.24, the resulting optical sensor emitted fluorescence at 450 nm via excited-state intramolecular proton transfer (ESIPT). Upon binding with Zn(2+), the ESIPT process was inhibited resulting in a 46 nm blue-shift of fluorescence emission. Thus, the proposed sensor can behave as a ratiometric fluorescent sensor for the selective detection of Zn(2+). In addition, the sensor shows nice selectivity, good reproducibility and fast response time. Cd(2+) did not interfere with Zn(2+) sensing. The sensing membrane demonstrates a good stability with a lifetime of at least 3 months. The linear response range covers a concentration range of Zn(2+) from 8.0x10(-5) to 4.0x10(-3) mol/L and the detection limit is 4.0x10(-5) mol/L. The determination of Zn(2+) in both tap and river water samples shows satisfactory results.
Collapse
Affiliation(s)
- Qiu-Juan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | | | | | | | | | | | | |
Collapse
|
43
|
Smolders E, Oorts K, Van Sprang P, Schoeters I, Janssen CR, McGrath SP, McLaughlin MJ. Toxicity of trace metals in soil as affected by soil type and aging after contamination: using calibrated bioavailability models to set ecological soil standards. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2009; 28:1633-42. [PMID: 19301943 DOI: 10.1897/08-592.1] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 03/02/2009] [Indexed: 05/24/2023]
Abstract
Total concentrations of metals in soil are poor predictors of toxicity. In the last decade, considerable effort has been made to demonstrate how metal toxicity is affected by the abiotic properties of soil. Here this information is collated and shows how these data have been used in the European Union for defining predicted-no-effect concentrations (PNECs) of Cd, Cu, Co, Ni, Pb, and Zn in soil. Bioavailability models have been calibrated using data from more than 500 new chronic toxicity tests in soils amended with soluble metal salts, in experimentally aged soils, and in field-contaminated soils. In general, soil pH was a good predictor of metal solubility but a poor predictor of metal toxicity across soils. Toxicity thresholds based on the free metal ion activity were generally more variable than those expressed on total soil metal, which can be explained, but not predicted, using the concept of the biotic ligand model. The toxicity thresholds based on total soil metal concentrations rise almost proportionally to the effective cation exchange capacity of soil. Total soil metal concentrations yielding 10% inhibition in freshly amended soils were up to 100-fold smaller (median 3.4-fold, n = 110 comparative tests) than those in corresponding aged soils or field-contaminated soils. The change in isotopically exchangeable metal in soil proved to be a conservative estimate of the change in toxicity upon aging. The PNEC values for specific soil types were calculated using this information. The corrections for aging and for modifying effects of soil properties in metal-salt-amended soils are shown to be the main factors by which PNEC values rise above the natural background range.
Collapse
Affiliation(s)
- Erik Smolders
- Division Soil and Water Management, University of Leuven, Kasteelpark Arenberg 20, 3001 Leuven, Belgium.
| | | | | | | | | | | | | |
Collapse
|
44
|
Mertens J, Broos K, Wakelin SA, Kowalchuk GA, Springael D, Smolders E. Bacteria, not archaea, restore nitrification in a zinc-contaminated soil. ISME JOURNAL 2009; 3:916-23. [DOI: 10.1038/ismej.2009.39] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Ma QJ, Zhang XB, Zhao Y, Li CY, Han ZX, Shen GL, Yu RQ. A fluorescent probe for zinc ions based on N-methyltetraphenylporphine with high selectivity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2009; 71:1683-1687. [PMID: 18715820 DOI: 10.1016/j.saa.2008.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2007] [Revised: 05/23/2008] [Accepted: 06/23/2008] [Indexed: 05/26/2023]
Abstract
N-methyl-alpha,beta,gamma,delta-tetraphenylporphine (NMTPPH) has been used to detect trace amount of zinc ions in ethanol-water solution by fluorescence spectroscopy. The fluorescent probe undergoes a fluorescent emission intensity enhancement upon binding to zinc ions in EtOH/H(2)O (1:1, v/v) solution. The fluorescence enhancement of NMTPPH is attributed to the 1:1 complex formation between NMTPPH and Zn(II) which has been utilized as the basis for the selective detection of Zn(II). The linear response range covers a concentration range of Zn(II) from 5.0x10(-7) to 1.0x10(-5)mol/L and the detection limit is 1.5x10(-7)mol/L. The fluorescent probe exhibits high selectivity over other common metal ions except for Cu(II).
Collapse
Affiliation(s)
- Qiu-Juan Ma
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China
| | | | | | | | | | | | | |
Collapse
|
46
|
Luo XS, Li LZ, Zhou DM. Effect of cations on copper toxicity to wheat root: implications for the biotic ligand model. CHEMOSPHERE 2008; 73:401-406. [PMID: 18585752 DOI: 10.1016/j.chemosphere.2008.05.031] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 05/13/2008] [Accepted: 05/18/2008] [Indexed: 05/26/2023]
Abstract
The extent to which calcium, magnesium, sodium, potassium and hydrogen ions independently mitigate Cu rhizotoxicity to wheat (Triticumaestivum) in nutrient solutions was examined. Increasing activities of Ca2+ and Mg2+ but not Na+, K+ and H+ linearly increased the 2 d EC50 (as Cu2+ activity), supporting the concept that some cations can compete with Cu2+ for binding the active sites at the terrestrial organism-solution interface (i.e., the biotic ligand, BL). According to the biotic ligand model (BLM) concept, the conditional stability constants for the binding of Cu2+, Ca2+ and Mg2+ to the BL were derived from the toxicity data. They were 6.28, 2.43 and 3.34 for logK(CuBL), logK(CaBL) and logK(MgBL), respectively. It was calculated that on average 43.6% of BL sites need to be occupied by Cu2+ to induce 50% root growth inhibition. Using the estimated parameters, a BLM was successfully developed to predict Cu toxicity for wheat as a function of solution characteristics.
Collapse
Affiliation(s)
- Xiao-San Luo
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Graduate School of Chinese Academy of Sciences, Beijing 100049, China
| | | | | |
Collapse
|