1
|
Meira DI, Barbosa AI, Borges J, Reis RL, Correlo VM, Vaz F. Recent advances in nanomaterial-based optical biosensors for food safety applications: Ochratoxin-A detection, as case study. Crit Rev Food Sci Nutr 2024; 64:6318-6360. [PMID: 36688280 DOI: 10.1080/10408398.2023.2168248] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Global population growth tremendously impacts the global food industry, endangering food safety and quality. Mycotoxins, particularly Ochratoxin-A (OTA), emerge as a food chain production threat, since it is produced by fungus that contaminates different food species and products. Beyond this, OTA exhibits a possible human toxicological risk that can lead to carcinogenic and neurological diseases. A selective, sensitive, and reliable OTA biodetection approach is essential to ensure food safety. Current detection approaches rely on accurate and time-consuming laboratory techniques performed at the end of the food production process, or lateral-flow technologies that are rapid and on-site, but do not provide quantitative and precise OTA concentration measurements. Nanoengineered optical biosensors arise as an avant-garde solution, providing high sensing performance, and a fast and accurate OTA biodetection screening, which is attractive for the industrial market. This review core presents and discusses the recent advancements in optical OTA biosensing, considering engineered nanomaterials, optical transduction principle and biorecognition methodologies. Finally, the major challenges and future trends are discussed, and current patented OTA optical biosensors are emphasized for a particular promising detection method.
Collapse
Affiliation(s)
- Diana I Meira
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
| | - Ana I Barbosa
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Joel Borges
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Vitor M Correlo
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-Parque de Ciência e wwTecnologia, Zona Industrial da Gandra, Guimarães, Portugal
- ICVS/3B's-PT Government Associated Laboratory, Braga, Portugal
| | - Filipe Vaz
- Physics Center of Minho and Porto Universities (CF-UM-UP), University of Minho, Guimarães, Portugal
- LaPMET-Laboratory of Physics for Materials and Emergent Technologies, University of Minho, Braga, Portugal
| |
Collapse
|
2
|
Ding H, Zhang M, Wang X, He S, Wang X, Chen L. Colorimetric and fluorescent independent dual "signal on" biosensor for accurate detection of ochratoxin A based on aptamer-triggered biocatalytic reactions. Anal Chim Acta 2024; 1299:342440. [PMID: 38499428 DOI: 10.1016/j.aca.2024.342440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
Ochratoxin A (OTA) is a hazardous food contaminant with significant health risks. Dual-channel OTA detection is noted for its cross-reference capability and high accuracy. Still, challenges in addressing in-system corrections and "signal off" related false positives and limited signal gains remain. Herein, we developed a dual-channel "signal on" aptasensor with one recognition process and two independent signal outputs for OTA analysis. The OTA aptamer binds to magnetic beads (MBs) and partially hybridizes with a complementary-trigger (cDNA-Trigger) sequence. Adding OTA disrupts the duplex sequence, leading to G-quadruplex (G4) formation and enrichment on the MBs, which then interacts with hemin to catalyze a color signal. Concurrently, the freed cDNA-Trigger catalyzes an enzyme-free DNA circuit, producing a fluorescence signal. The magnetic enrichment and signal amplification strategies make the proposed assay demonstrate excellent sensitivity toward OTA, with limits of detection (LOD) of 0.017 pM in the fluorescence channel and 48.1 pM in the colorimetric channel. Both channels have effectively detected OTA in grape juice and baijiu, demonstrating their applicability and reliability. Moreover, given the widespread use of smartphones globally, a mini-program with a self-correction function was designed to facilitate on-site colorimetric channel monitoring, making OTA detection more accessible and user-friendly.
Collapse
Affiliation(s)
- Hao Ding
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Mingdi Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xiaochun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuai He
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Xiaokun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Centre for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; School of Pharmacy, Binzhou Medical University, Yantai, 264003, China; College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
3
|
Benítez-Cabello A, Delgado AM, Quintas C. Main Challenges Expected from the Impact of Climate Change on Microbial Biodiversity of Table Olives: Current Status and Trends. Foods 2023; 12:3712. [PMID: 37835365 PMCID: PMC10572816 DOI: 10.3390/foods12193712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Climate change is a global emergency that is affecting agriculture in Mediterranean countries, notably the production and the characteristics of the final products. This is the case of olive cultivars, a source of olive oil and table olives. Table olives are the most important fermented vegetables in the Mediterranean area, whose world production exceeds 3 million tons/year. Lactic acid bacteria and yeast are the main microorganisms responsible for the fermentation of this product. The microbial diversity and population dynamics during the fermentation process are influenced by several factors, such as the content of sugars and phenols, all of which together influence the quality and safety of the table olives. The composition of fruits is in turn influenced by environmental conditions, such as rainfall, temperature, radiation, and the concentration of minerals in the soil, among others. In this review, we discuss the effect of climate change on the microbial diversity of table olives, with special emphasis on Spanish and Portuguese cultivars. The alterations expected to occur in climate change scenario(s) include changes in the microbial populations, their succession, diversity, and growth kinetics, which may impact the safety and quality of the table olives. Mitigation and adaptation measures are proposed to safeguard the authenticity and sensorial features of this valuable fermented food while ensuring food safety requirements.
Collapse
Affiliation(s)
- Antonio Benítez-Cabello
- Instituto de la Grasa (CSIC), Food Biotechnology Department, Campus Universitario Pablo de Olavide, Building 46, Ctra, Sevilla-Utrera, km 1, 41013 Seville, Spain
| | - Amélia M. Delgado
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
| | - Célia Quintas
- Mediterranean Institute for Agriculture, Environment and Development (MED), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal;
- Instituto Superior de Engenharia, Universidade do Algarve, Campus da Penha, 8005-139 Faro, Portugal
| |
Collapse
|
4
|
Rovetto EI, Luz C, La Spada F, Meca G, Riolo M, Cacciola SO. Diversity of Mycotoxins and Other Secondary Metabolites Recovered from Blood Oranges Infected by Colletotrichum, Alternaria, and Penicillium Species. Toxins (Basel) 2023; 15:407. [PMID: 37505676 PMCID: PMC10467077 DOI: 10.3390/toxins15070407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/12/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
This study identified secondary metabolites produced by Alternaria alternata, Colletotrichum gloeosporioides, and Penicillium digitatum in fruits of two blood orange cultivars before harvest. Analysis was performed by UHPLC-Q-TOF-MS. Three types of fruits were selected, asymptomatic, symptomatic showing necrotic lesions caused by hail, and mummified. Extracts from peel and juice were analyzed separately. Penicillium digitatum was the prevalent species recovered from mummified and hail-injured fruits. Among 47 secondary metabolites identified, 16, 18, and 13 were of A. alternata, C. gloeosporioides, and P. digitatum, respectively. Consistently with isolations, indicating the presence of these fungi also in asymptomatic fruits, the metabolic profiles of the peel of hail-injured and asymptomatic fruits did not differ substantially. Major differences were found in the profiles of juice from hail-injured and mummified fruits, such as a significant higher presence of 5,4-dihydroxy-3,7,8-trimethoxy-6C-methylflavone and Atrovenetin, particularly in the juice of mummified fruits of the Tarocco Lempso cultivar. Moreover, the mycotoxins patulin and Rubratoxin B were detected exclusively in mummified fruits. Patulin was detected in both the juice and peel, with a higher relative abundance in the juice, while Rubratoxin B was detected only in the juice. These findings provide basic information for evaluating and preventing the risk of contamination by mycotoxins in the citrus fresh fruit supply chain and juice industry.
Collapse
Affiliation(s)
- Ermes Ivan Rovetto
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| | - Carlos Luz
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| | - Giuseppe Meca
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Mario Riolo
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, 460100 València, Spain; (C.L.); (G.M.)
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, 95123 Catania, Italy; (E.I.R.); (F.L.S.)
| |
Collapse
|
5
|
Zhu D, Huang T, Zhou Q, Yang Z, Liu B, Li M, Li C, Chen JX, Dai Z, Chen J. A label-free fluorescent aptasensor based on a novel exponential rolling circle amplification for highly sensitive ochratoxin A detection. Food Chem 2023; 410:135427. [PMID: 36623460 DOI: 10.1016/j.foodchem.2023.135427] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023]
Abstract
Rapid and sensitive analysis of ochratoxin A (OTA) plays an important role in food safety. Here, an aptasensor based on novel exponential rolling circle amplification (ERCA) was proposed for ultrasensitive and label-free fluorescence detection of OTA. The attachment of OTA to its aptamer could release H and rapidly hybridize with CT to initiate rolling circle amplification (RCA). The amplicons could further displace H from APH to initiate recycled RCA, achieving exponential growth of amplification products that contained G4 dimers for lighting up ThT. Benefiting from the exponential amplification efficiency of the ERCA strategy and the high fluorescence quantum yield of G4 dimer/ThT, this strategy exhibited a wide linear range from 10 fg/mL to 10 ng/mL with a detection limit of 4.3 fg/mL. In addition, the aptasensor displayed satisfactory recoveries in real sample analysis. We believe that this novel aptasensor possesses promising application prospects in food safety and medicine detection.
Collapse
Affiliation(s)
- Daozhong Zhu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China; Guangzhou Customs Technology Center, People's Republic of China, Guangzhou 510623, PR China
| | - Ting Huang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Qianying Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Zizhong Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Birong Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China
| | - Minmin Li
- Center of Clinical Laboratory, The First Affiliated Hospital of Jinan University, Guangzhou 510632, PR China.
| | - Chunrong Li
- Qiannan Medical College for Nationalities, Duyun 558000, PR China
| | - Jin-Xiang Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| | - Zong Dai
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, School of Biomedical Engineering, Sun Yat-Sen University, Shenzhen 518107, PR China
| | - Jun Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangzhou Key Laboratory of Drug Research for Emerging Virus Prevention and Treatment, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|
6
|
Singh A, Singh G, Kaur N, Singh N. Quantitative and qualitative analysis of ochratoxin-A using fluorescent CQDs@DNA-based nanoarchitecture assembly to monitor food safety and quality. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1826-1835. [PMID: 36971227 DOI: 10.1039/d3ay00209h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Ochratoxin A (OTA), a mycotoxin formed by various fungi, such as Aspergillus and Penicillium species, is dangerous to human health. Thus, to circumvent the risk of OTA ingestion, the recognition and quantification of OTA levels are of great significance. A perusal of the literature has revealed that the integration of DNA/Carbon Quantum Dot (CQD)-based hybrid systems may exhibit the unique electronic and optical properties of nanomaterials/nanoarchitecture and consequent recognition properties. Herein, we developed the CQDs@DNA-based hybrid nanoarchitecture system for the selective detection of OTA, which exhibits modulation in the emission spectrum after interaction with OTA, with a significant binding constant (Ka = 3.5 × 105 M-1), a limit of detection of 14 nM, limit of quantification of 47 nM and working range of 1-10 μM. The mechanism for sensing the OTA has been corroborated using fluorescence, UV-visible absorption spectroscopy, and FTIR techniques, demonstrating the binding mode of CQD@DNA hybrid nano-architecture assembly with OTA. Further, we demonstrated the sensing ability of developed CQDs@DNA-based nanoarchitecture assembly towards the quantification of OTA in real food monitoring analysis for real-time applications, which makes this developed nanoarchitecture assembly the potential candidate to conveniently monitor food safety and quality for human health.
Collapse
Affiliation(s)
- Amanpreet Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
| | - Gagandeep Singh
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh, 160014, Punjab, India.
| | - Narinder Singh
- Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India.
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001, Punjab, India
| |
Collapse
|
7
|
Mwabulili F, Xie Y, Li Q, Sun S, Yang Y, Ma W. Research progress of ochratoxin a bio-detoxification. Toxicon 2023; 222:107005. [PMID: 36539080 DOI: 10.1016/j.toxicon.2022.107005] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/30/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Ochratoxins (OTs) is an extremely toxic mycotoxin in which Ochratoxin A (OTA) is the most toxic and prevalent in the ochratoxin family. OTA is among the five most critical mycotoxins that are subject to legal regulations. Animals and humans may be exposed to OTA through dietary intake, inhalation, and dermal contact. OTA is considered nephrotoxic, genotoxic, cytotoxic, teratogenic, carcinogenic, mutagenic, immunotoxic, and myelotoxic. So, intake of OTA contaminated foods and feeds can impact the productivity of animals and health of people. According to this review, several studies have reported on the approaches that have been established for OTA removal. This review focused on the control approaches to mitigate OTA contamination, OTA bio-detoxification materials and their applicable techniques, recombinant strains for OTA bio-detoxification, and their detoxification effects, recombinant OTA-degrading enzymes and their sources, recombinant fusion enzymes for OTA, ZEN and AFB1 mycotoxins detoxification, as well as the current application and commercialized OTA bio-detoxification products. However, there is no single technique that has been approved to detoxify OTA by 100% to date. Some preferred current strategies for OTA bio-detoxification have been recombinant degrading enzymes and genetic engineering technology due to their efficiency and safety. Therefore, prospective studies should focus on standardizing pure enzymes from genetically engineered microbial strains that have great potential for OTA detoxification.
Collapse
Affiliation(s)
- Fred Mwabulili
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China; Department of Applied Sciences, Mbeya University of Science and Technology, P.O.Box 131, Mbeya, Tanzania
| | - Yanli Xie
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China.
| | - Qian Li
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Shumin Sun
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Yuhui Yang
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China
| | - Weibin Ma
- College of Food Science and Engineering, Henan Key Laboratory of Cereal and Oil Food Safety Inspection and Control, Henan University of Technology, Zhengzhou, Henan, 450001, China
| |
Collapse
|
8
|
La Placa L, Tsitsigiannis D, Camardo Leggieri M, Battilani P. From Grapes to Wine: Impact of the Vinification Process on Ochratoxin A Contamination. Foods 2023; 12:260. [PMID: 36673352 PMCID: PMC9858051 DOI: 10.3390/foods12020260] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Ochratoxin A (OTA) is one of the major mycotoxins, classified as "potentially carcinogenic to humans" (Group 2B) by the International Agency for Research on Cancer (IARC), and wine is one of its main sources of intake in human consumption. The main producer of this toxin is Aspergillus carbonarius, a fungus that contaminates grapes early in the growing season. The vinification process, as a whole, reduces the toxin content in wine compared to the grapes; however, not all vinification steps contribute equally to this reduction. During the maceration phase in red wines, toxin concentrations generally tend to increase. Based on previous studies, this review provides an overview of how each step of the vinification process influences the final OTA contamination in wine. Moreover, certain physical, chemical, and microbiological post-harvest strategies are useful in reducing OTA levels in wine. Among these, the use of fining agents, such as gelatin, egg albumin, and bentonite, must be considered. Therefore, this review describes the fate of OTA during the winemaking process, including quantitative data when available, and highlights actions able to reduce the final OTA level in wine.
Collapse
Affiliation(s)
- Laura La Placa
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Dimitrios Tsitsigiannis
- Department of Crop Science, School of Plant Sciences, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Marco Camardo Leggieri
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Paola Battilani
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122 Piacenza, Italy
| |
Collapse
|
9
|
Zhang R, Yan C, Zong Z, Qu W, Yao L, Xu J, Zhu Y, Yao B, Chen W. Taking glucose as intermediate bridge-signal-molecule for on-site and convenient detection of ochratoxin A in rice with portable glucose meter. Food Chem 2023; 400:134007. [DOI: 10.1016/j.foodchem.2022.134007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/06/2022] [Accepted: 08/21/2022] [Indexed: 10/15/2022]
|
10
|
Tian C, Wei M, Wang X, Hua Q, Tang F, Zhao L, Zhuang X, Luan F. Electrochemiluminescence Aptasensor Based on Gd(OH) 3 Nanocrystalline for Ochratoxin A Detection in Food Samples. BIOSENSORS 2022; 12:1141. [PMID: 36551108 PMCID: PMC9775045 DOI: 10.3390/bios12121141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/02/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
In the present study, the electrochemiluminescence (ECL) properties of Gd(OH)3 nanocrystals with K2S2O8 as the cathode coreactant were studied for the first time. Based on the prominent ECL behavior of this material and the excellent specificity of the aptamer technique, an ECL aptasensor for the detection of ochratoxin A (OTA) was formulated successfully. Over an OTA concentration range of 0.01 pg mL-1 to 10 ng mL-1, the change in the ECL signal was highly linear with the OTA concentration, and the limit of detection (LOD) was 0.0027 pg mL-1. Finally, the ECL aptasensor was further used to detect OTA in real samples (grapes and corn) and satisfactory results were obtained, which indicated that the built method is expected to be applied in food detection.
Collapse
|
11
|
Hua Y, Ahmadi Y, Sonne C, Kim KH. Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119218. [PMID: 35364185 DOI: 10.1016/j.envpol.2022.119218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxin is toxic secondary metabolite formed by certain filamentous fungi. This toxic compound can enter the food chain through contamination of food (e.g., by colonization of toxigenic fungi on food). In light of the growing concerns on the health hazards posed by mycotoxins, it is desirable to develop reliable analytical tools for their detection in food products in both sensitive and efficient manner. For this purpose, the potential utility of molecularly imprinted polymers (MIPs) has been explored due to their meritful properties (e.g., large number of tailor-made binding sites, sensitive template molecules, high recognition specificity, and structure predictability). This review addresses the recent advances in the application of MIPs toward the sensing of various mycotoxins (e.g., aflatoxins and patulin) along with their fabrication strategies. Then, performance evaluation is made for various types of MIP- and non-MIP-based sensing platforms built for the listed target mycotoxins in terms of quality assurance such as limit of detection (LOD). Further, the present challenges in the MIP-based sensing application of mycotoxins are discussed along with the future outlook in this research field.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
12
|
Höfs S, Hülagü D, Bennet F, Carl P, Flemig S, Schmid T, Schenk JA, Hodoroaba V, Schneider RJ. Electrochemical Immunomagnetic Ochratoxin A Sensing: Steps Forward in the Application of 3,3’,5,5’‐Tetramethylbenzidine in Amperometric Assays. ChemElectroChem 2021. [DOI: 10.1002/celc.202100446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Soraya Höfs
- Department of Analytical Chemistry Reference Materials Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
- Institute for Biochemistry and Biology University of Potsdam OT-Golm, Karl-Liebknecht-Straße 24–25 14476 Potsdam Germany
| | - Deniz Hülagü
- Department of Materials Chemistry Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 44–46 12203 Berlin Germany
| | - Francesca Bennet
- Department of Materials Chemistry Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 44–46 12203 Berlin Germany
| | - Peter Carl
- Department of Analytical Chemistry Reference Materials Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
| | - Sabine Flemig
- Department of Analytical Chemistry Reference Materials Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
| | - Thomas Schmid
- Department of Analytical Chemistry Reference Materials Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
- School of Analytical Sciences Adlershof (SALSA) Humboldt-Universität zu Berlin Unter den Linden 6 10099 Berlin Germany
| | | | - Vasile‐Dan Hodoroaba
- Department of Materials Chemistry Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 44–46 12203 Berlin Germany
| | - Rudolf J. Schneider
- Department of Analytical Chemistry Reference Materials Bundesanstalt für Materialforschung und -prüfung (BAM) Richard-Willstätter-Straße 11 12489 Berlin Germany
- Technische Universität Berlin Straße des 17. Juni 135 10623 Berlin Germany
| |
Collapse
|
13
|
Li X, Falcone N, Hossain MN, Kraatz HB, Chen X, Huang H. Development of a novel label-free impedimetric electrochemical sensor based on hydrogel/chitosan for the detection of ochratoxin A. Talanta 2021; 226:122183. [PMID: 33676715 DOI: 10.1016/j.talanta.2021.122183] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 01/15/2023]
Abstract
Ochratoxin A (OTA) is one of the most abundant mycotoxins that contaminate various food products. Herein, we propose a novel label-free impedimetric electrochemical sensor consisting of chitosan/dipeptide nanofibrous hydrogel and immobilized DNA probes with OTA aptamer for the detection of OTA. The thin film of chitosan/dipeptide nanofibrous hydrogel was used as sensing interface and carrier for hybridization chain reaction (HCR) of OTA aptamer and DNA2 strand to form DNA concatemer. The concatemer was dissociated to single-stranded DNA (ssDNA) in the presence of target OTA, and the signal amplification was further implemented by introducing RecJf exonuclease, which could digest the single-stranded DNA resulting in OTA recycle. Electrochemical impedance spectroscopy (EIS) has been employed to characterize the properties of the fabricated sensor. A linear detection range of 0.1-100 ng mL-1 was obtained for OTA with a low detection limit of 0.03 ng mL-1. Furthermore, the developed sensor was demonstrated in white wine to detect OTA, indicating that the proposed impedimetric sensor has a promising potential application in the food industry.
Collapse
Affiliation(s)
- Xiaoyan Li
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, PR China; College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China
| | - Natashya Falcone
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C 1A4, Canada
| | - M Nur Hossain
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C 1A4, Canada.
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, PR China.
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, PR China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| |
Collapse
|
14
|
McCarthy GC, Morgan SC, Martiniuk JT, Newman BL, McCann SE, Measday V, Durall DM. An indigenous Saccharomyces uvarum population with high genetic diversity dominates uninoculated Chardonnay fermentations at a Canadian winery. PLoS One 2021; 16:e0225615. [PMID: 33539404 PMCID: PMC7861373 DOI: 10.1371/journal.pone.0225615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
Saccharomyces cerevisiae is the primary yeast species responsible for most fermentations in winemaking. However, other yeasts, including Saccharomyces uvarum, have occasionally been found conducting commercial fermentations around the world. S. uvarum is typically associated with white wine fermentations in cool-climate wine regions, and has been identified as the dominant yeast in fermentations from France, Hungary, northern Italy, and, recently, Canada. However, little is known about how the origin and genetic diversity of the Canadian S. uvarum population relates to strains from other parts of the world. In this study, a highly diverse S. uvarum population was found dominating uninoculated commercial fermentations of Chardonnay grapes sourced from two different vineyards. Most of the strains identified were found to be genetically distinct from S. uvarum strains isolated globally. Of the 106 strains of S. uvarum identified in this study, four played a dominant role in the fermentations, with some strains predominating in the fermentations from one vineyard over the other. Furthermore, two of these dominant strains were previously identified as dominant strains in uninoculated Chardonnay fermentations at the same winery two years earlier, suggesting the presence of a winery-resident population of indigenous S. uvarum. This research provides valuable insight into the diversity and persistence of non-commercial S. uvarum strains in North America, and a stepping stone for future work into the enological potential of an alternative Saccharomyces yeast species.
Collapse
Affiliation(s)
- Garrett C. McCarthy
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Sydney C. Morgan
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Jonathan T. Martiniuk
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Brianne L. Newman
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Stephanie E. McCann
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| | - Vivien Measday
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel M. Durall
- Department of Biology, Irfigving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada
| |
Collapse
|
15
|
Nao SC, Wu KJ, Wang W, Leung CH, Ma DL. Recent Progress and Development of G-Quadruplex-Based Luminescent Assays for Ochratoxin A Detection. Front Chem 2020; 8:767. [PMID: 33088800 PMCID: PMC7490745 DOI: 10.3389/fchem.2020.00767] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Ochratoxin A (OTA) is a mycotoxin that is widespread throughout the world. It contaminates foods such as vegetables, fruits, and rice. It harms human health and has potential carcinogenic effects. The G-quadruplex (G4) is a tetraplexed DNA structure generated from guanine-rich DNA that has found emerging use in aptamer-based sensing systems. This review outlines the status of OTA contamination and conventional detection methods for OTA. Various G4-based methods to detect OTA developed in recent years are summarized along with their advantages and disadvantages compared to existing approaches.
Collapse
Affiliation(s)
- Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Ke-Jia Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Wanhe Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, China
| |
Collapse
|
16
|
Jiang YY, Zhao X, Chen LJ, Yang C, Yin XB, Yan XP. Persistent luminescence nanorod based luminescence resonance energy transfer aptasensor for autofluorescence-free detection of mycotoxin. Talanta 2020; 218:121101. [PMID: 32797868 DOI: 10.1016/j.talanta.2020.121101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/21/2020] [Accepted: 04/27/2020] [Indexed: 10/24/2022]
Abstract
Serious ochratoxin A (OTA) contamination necessitates the development of rapid, sensitive and selective analytical methods for its determination in food safety. Herein, we report a persistent luminescence resonance energy transfer (LRET) based aptasensor for the autofluorescence-free detection of OTA. OTA aptamer functionalized persistent luminescence nanorod (PLNR) Zn2GeO4:Mn2+ and the aptamer complementary DNA modified gold nanoparticle (AuNP) were used as the donor and the acceptor, respectively. The developed LRET aptasensor integrated the advantages of the long-lasting persistent luminescence of PLNR, the high selectivity of aptamer and the low probe background of LRET sensors, allowing autofluorescence-free detection of OTA in biological samples with high sensitivity and selectivity. The developed LRET aptasensor gave an excellent linearity in the range of 0.01-10 ng mL-1, the detection limit of 3 pg mL-1 and the precision of 2.7% (RSD, n = 11) at 1 ng mL-1 level. The applicability of the developed aptasensor was demonstrated by analyzing beer samples for OTA with the recoveries of 92.3%-104%.
Collapse
Affiliation(s)
- Yuan-Yuan Jiang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xue-Bo Yin
- Research Center for Analytical Science, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
17
|
Lv L, Wang X. Recent Advances in Ochratoxin A Electrochemical Biosensors: Recognition Elements, Sensitization Technologies, and Their Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4769-4787. [PMID: 32243155 DOI: 10.1021/acs.jafc.0c00258] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ochratoxin A (OTA) is a class of mycotoxin that are mainly produced by Aspergillus and Penicillium and widely found in plant origin food. OTA-contaminated foods can cause serious harm to animals and humans, while high stability of OTA makes it difficult to remove in conventional food processing. Thus, sensitive and rapid detection of OTA undoubtedly plays an important role in OTA prevention and control. In this paper, the conventional and novel methods of OTA at home and abroad are summarized and compared. The latest research progress and related applications of novel OTA electrochemical biosensors are mainly described with a new perspective. We innovatively divided the recognition element into single and combined recognition elements. Specifically, signal amplification technologies applied to the OTA electrochemical aptasensor are proposed. Furthermore, summary of the current limitations and future challenges in OTA analysis is included, which provide reference for the further research and applications.
Collapse
Affiliation(s)
- Liangrui Lv
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiaoying Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
18
|
You KH, Luo XE, Hu WJ, Xu Y, Guo JB, He QH. Environmental-friendly gold nanoparticle immunochromatographic assay for ochratoxin A based on biosynthetic mimetic mycotoxin-conjugates. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ochratoxin A (OTA) is a possibly carcinogenic mycotoxin which is one of the most abundant food contaminants. It can be normally monitored and detected by immunochromatographic assays (ICG) which have a good sensitivity and specificity and easy to operate. However, the development of normal ICG is based on traditional OTA-conjugates or chemosynthetic mimotope peptides, which are very high-cost reagents with a detrimental effect on the environment and operators. This study takes advantage of both biosynthetic mimetic OTA-conjugates and a convenient IGG to develop a novel environmental-friendly and low-cost ICG for the rapid detection of OTA. Qualitatively, the visual cut-off level of the developed ICG for OTA was 0.8 ng/ml, which is 10-fold more sensitive than the chemosynthetic mimotope peptide based ICG, while there is no cross-reaction with other mycotoxins. The assay takes only 15 min to acquire results visible to the naked eye. Quantitatively, the half inhibition concentration of the ICG setup with mimetic OTA-conjugates was 0.187 ng/ml, with a linear range of 0.015 to 0.5 ng/ml. These results demonstrate the potential to adapt the method for detecting other toxic mycotoxins.
Collapse
Affiliation(s)
- K-H. You
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China P.R
- College of Food, Nanchang University, Nanchang 330031, China P.R
| | - X-E. Luo
- College of Food, Nanchang University, Nanchang 330031, China P.R
| | - W-J. Hu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China P.R
- College of Food, Nanchang University, Nanchang 330031, China P.R
| | - Y. Xu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China P.R
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China P.R
| | - J-B. Guo
- Yingdong College of Food Science and Technology, Shaoguan University, No. 288 University Road, Shaoguan 512005, China P.R
| | - Q-H. He
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China P.R
- College of Food, Nanchang University, Nanchang 330031, China P.R
- Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China P.R
- Jiangxi Province Key Laboratory of Modern Analytical Sciences, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China P.R
| |
Collapse
|
19
|
Fadlalla MH, Ling S, Wang R, Li X, Yuan J, Xiao S, Wang K, Tang S, Elsir H, Wang S. Development of ELISA and Lateral Flow Immunoassays for Ochratoxins (OTA and OTB) Detection Based on Monoclonal Antibody. Front Cell Infect Microbiol 2020; 10:80. [PMID: 32211342 PMCID: PMC7067699 DOI: 10.3389/fcimb.2020.00080] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
Ochratoxins were important secondary metabolites secreted by fungi, and OTA and OTB are mainly significant mycotoxin, having toxic effects on humans and animals. Therefore, it is important to establish a rapid, sensitive, and precise method for ochratoxins detection and quantification in real samples. In this study, a stable monoclonal antibody (mAb) that recognizing both OTA and OTB toxins was employed for the establishment of indirect competitive ELISA (ic-ELISA), colloidal gold nanoparticles (CGNs), and nanoflowers gold strips (AuNFs) for detection of ochratoxins in real samples. A 6E5 hybridoma cell line stable secreting mAb against both OTA and OTB toxins was obtained by fusion of splenocytes with myeloma SP2/0 cells. The 6E5 mAb had a high affinity (3.7 × 108 L/mol) to OTA, and also showed similar binding activity to OTB. The optimized ic-ELISA resulted in a linear range of 0.06–0.6 ng/mL for ochratoxins (OTA and OTB) detection. The IC50 was 0.2 ng/mL and the limit of detection (LOD) was 0.03 ng/mL. The mean recovery rate from the spiked samples was 89.315 ± 2.257%, with a coefficient variation of 2.182%. The result from lateral flow immunoassays indicated that the LOD of CGNs and AuNFs were 5 and 1 μg/mL, respectively. All these results indicated that the developed ic-ELISA, CGNs, and AuNFs in this study could be used for the analysis of the residual of ochratoxins (OTA and OTB) in food and agricultural products.
Collapse
Affiliation(s)
- Mohamed Hassan Fadlalla
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sumei Ling
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rongzhi Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiulan Li
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jun Yuan
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shiwei Xiao
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ke Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuqin Tang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hoyda Elsir
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou, China.,School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,Key Laboratory of Biopesticide and Chemical Biology of the Education Ministry, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
20
|
Zhu W, Li L, Zhou Z, Yang X, Hao N, Guo Y, Wang K. A colorimetric biosensor for simultaneous ochratoxin A and aflatoxins B1 detection in agricultural products. Food Chem 2020; 319:126544. [PMID: 32151901 DOI: 10.1016/j.foodchem.2020.126544] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/07/2019] [Accepted: 03/01/2020] [Indexed: 02/08/2023]
Abstract
Colorimetric biosensors have been widely applied to mycotoxins testing. However, the colorimetric assay previously reported used a single color to detect one mycotoxin, and there were few reports on the simultaneous detection of multiple mycotoxins. In this work, a colorimetric biosensor for dual mycotoxins detection was developed. A Fe3O4/GO based platform for aflatoxins B1 (AFB1) detection and a Fe3O4@Au based platform for ochratoxin A (OTA) detection were fabricated. The quantification of OTA and AFB1 was respectively achieved by the release of thymolphthalein under alkaline conditions and 3,3',5,5'-tetramethylbenzidine was catalyzed by Au NPs under acidic conditions. Because of different conditions, two sensing methods didn't interfere with each other but could provide a higher detection efficiency. The detection range of AFB1 is 5-250 ng·ml-1 and that of OTA is 0.5-80 ng·ml-1. This biosensor has been successfully applied in real sample detection, which has a broad application prospect in fields of food safety.
Collapse
Affiliation(s)
- Weiran Zhu
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China; College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Liubo Li
- Department of Interventional Oncology, Yueyang Hospital of Integrated Traditional Chinese & Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, PR China
| | - Zhou Zhou
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaodi Yang
- College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China
| | - Nan Hao
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| | - Yingshu Guo
- Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, PR China.
| | - Kun Wang
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, PR China.
| |
Collapse
|
21
|
|
22
|
Wang X, Wang Y, Wang Y, Chen Q, Liu X. Nanobody-alkaline phosphatase fusion-mediated phosphate-triggered fluorescence immunoassay for ochratoxin a detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117617. [PMID: 31605970 DOI: 10.1016/j.saa.2019.117617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/09/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
Ochratoxin A (OTA) is a kind of mycotoxin that seriously harms the health of humans and animals. In this study, a nanobody-alkaline phosphatase fusion-mediated phosphate-triggered fluorescence immunoassay (Nb-AP-mediated PT-FIA) was developed for detecting OTA. Based on the constructed phosphate-triggered fluorescence sensing system for Nb-AP and the optimal working conditions, the Nb-AP-mediated PT-FIA has a half maximal inhibition concentration (IC50) of 0.46 ng/mL, a limit of detection (IC10) of 0.12 ng/mL, and a linear range (IC20-80) of 0.2-1.26 ng/mL, respectively. The recovery experiment indicated acceptable accuracy and precision of the Nb-AP-mediated PT-FIA, and the results were validated by high performance liquid chromatography with fluorescence detector. Thus this proposed method is applicable to sensitive, rapid, and low-cost detection of OTA and other toxic analytes with low molecular weight in food and environment.
Collapse
Affiliation(s)
- Xuerou Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Yuanyuan Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Yidan Wang
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Qi Chen
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China
| | - Xing Liu
- College of Food Science and Engineering, Hainan University, 58 Renmin Avenue, Haikou, 570228, China.
| |
Collapse
|
23
|
Ubeda C, Hornedo-Ortega R, Cerezo AB, Garcia-Parrilla MC, Troncoso AM. Chemical hazards in grapes and wine, climate change and challenges to face. Food Chem 2020; 314:126222. [PMID: 31981884 DOI: 10.1016/j.foodchem.2020.126222] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
Abstract
Climate change has an impact on the chemical risks associated to wine consumption related with grape development and microbial contamination. We can classify chemical hazards in wine into two groups: those present in grapes due to agricultural practices, environmental contamination or fungal growth and those coming from fermentation and the winemaking process. The first group includes mycotoxins, whilst the second encompasses ethyl carbamate, biogenic amines, sulfur dioxide and proteins used as technological ingredients such as fining material. Usually the effective control of chemical hazards is achieved by assuring that they either are minimized or absent in the final product since their removal is somewhat difficult and sometimes it may affect sensory properties, which is a major issue in wine. Interestingly, it is possible to give recommendations to avoid excess of these compounds, but more research is needed to face future challenges related to climate change and consumer demands.
Collapse
Affiliation(s)
- Cristina Ubeda
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - Ruth Hornedo-Ortega
- MIB, Unité de Recherche Oenologie, EA 4577, USC 1366 INRA, ISVV, Université de Bordeaux, Villenave d Onron, France
| | - Ana B Cerezo
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - M Carmen Garcia-Parrilla
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain
| | - Ana M Troncoso
- Departamento de Nutricion y Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García Gonzalez 2, 41012 Sevilla, Spain.
| |
Collapse
|
24
|
Liu M, Li X, Li B, Du J, Yang Z. A fluorometric aptamer-based assay for ochratoxin A by using exonuclease III-assisted recycling amplification. Mikrochim Acta 2019; 187:46. [PMID: 31838593 DOI: 10.1007/s00604-019-3992-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/28/2019] [Indexed: 02/06/2023]
Abstract
A fluorometric assay is described for ochratoxin A (OTA) using an aptamer. The method is based on exonuclease-assisted recycling amplification. The OTA-binding aptamer partially hybridizes with complementary DNA (cDNA) that is released when the aptamer recognizes OTA. Then, cDNA hybridizes with a specifically designed hairpin DNA. Next, short ssDNA and cDNA are, respectively, released by exonuclease III catalyzed hydrolysis of the dsDNA. The cDNA induces the next ring opening and digestion. The short ssDNA captures the sDNA that is labeled with fluorescent FAM and is absorbed on graphene oxide (GO). The green fluorescence of the sDNA/GO system is quenched but is recovered if the sDNA is released from GO. This assay is high sensitive, works in the 5 nM to 200 nM OTA concentration range and has a 0.96 nM lower detection limit. It was applied to the quantitation of OTA in spiked wine and coffee samples. Graphical abstractSchematic of a fluorometric assay based on exonuclease-assisted recycling amplification for quantitative monitoring of OTA without the need of sample separation and multiple washing steps.
Collapse
Affiliation(s)
- Mei Liu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xuanyi Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Baoxin Li
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Jianxiu Du
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Zongqi Yang
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
25
|
Mycotoxins in cereal-based products during 24 years (1983–2017): A global systematic review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.06.007] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Morgan SC, McCarthy GC, Watters BS, Tantikachornkiat M, Zigg I, Cliff MA, Durall DM. Effect of sulfite addition and pied de cuve inoculation on the microbial communities and sensory profiles of Chardonnay wines: dominance of indigenous Saccharomyces uvarum at a commercial winery. FEMS Yeast Res 2019; 19:foz049. [PMID: 31344230 PMCID: PMC6666381 DOI: 10.1093/femsyr/foz049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/19/2019] [Indexed: 02/01/2023] Open
Abstract
The microbial consortium of wine fermentations is highly dependent upon winemaking decisions made at crush, including the decision to inoculate and the decision to add sulfur dioxide (SO2) to the must. To investigate this, Chardonnay grape juice was subjected to two inoculation treatments (uninoculated and pied de cuve inoculation) as well as two SO2 addition concentrations (0 and 40 mg/L). The bacterial communities, fungal communities and Saccharomyces populations were monitored throughout fermentation using culture-dependent and culture-independent techniques. After fermentation, the wines were evaluated by a panel of experts. When no SO2 was added, the wines underwent alcoholic fermentation and malolactic fermentation simultaneously. Tatumella bacteria were present in significant numbers, but only in the fermentations to which no SO2 was added, and were likely responsible for the malolactic fermentation observed in these treatments. All fermentations were dominated by a genetically diverse indigenous population of Saccharomyces uvarum, the highest diversity of S. uvarum strains to be identified to date; 150 unique strains were identified, with differences in strain composition as a result of SO2 addition. This is the first report of indigenous S. uvarum strains dominating and completing fermentations at a commercial winery in North America.
Collapse
Affiliation(s)
- Sydney C Morgan
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Garrett C McCarthy
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Brittany S Watters
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Mansak Tantikachornkiat
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Ieva Zigg
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| | - Margaret A Cliff
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada, V0H 1Z0
| | - Daniel M Durall
- Department of Biology, Irving K. Barber School of Arts and Sciences, The University of British Columbia, Kelowna, British Columbia, Canada, V1V 1V7
| |
Collapse
|
27
|
Yang YJ, Zhou Y, Xing Y, Zhang GM, Zhang Y, Zhang CH, Lei P, Dong C, Deng X, He Y, Shuang SM. A Label-free aptasensor based on Aptamer/NH 2 Janus particles for ultrasensitive electrochemical detection of Ochratoxin A. Talanta 2019; 199:310-316. [PMID: 30952263 DOI: 10.1016/j.talanta.2019.02.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/28/2019] [Accepted: 02/03/2019] [Indexed: 11/24/2022]
Abstract
In this study, a novel aptasensor based on Aptamer/NH2 Janus particles is developed for the detection of Ochratoxin A(OTA). By coating gold on the hemispherical surface of the aminated polystyrene particles, Ochratoxin A aptamer is immobilized on the surface of the gold layer for selective identification and the other hemispherical able to bind to Glassy carbon electrode via peptide bond. Under optimum conditions, the sensor exhibited a wide dynamic range of OTA concentration from 1 × 10-5 nM to 10 nM, and the detection limit is 3.3 × 10-3 pM on condition of acceptable stability and reproducibility. The sensors were showed excellent performance in the detection of OTA in red wine sample with recoveries between 95.7% and 100.18%, which studied by the standard addition spiking technique. This work provides a new idea and method for preparing immune electrochemical sensors and is expected to be used for the OTA detection in red wine sample analysis.
Collapse
Affiliation(s)
- Ya-Juan Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Ying Zhou
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yang Xing
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Guo-Mei Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Cai-Hong Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Peng Lei
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Chuan Dong
- Institute of Environmental Science, Shanxi University, Taiyuan 030006, China
| | - Xu Deng
- University of Electronic Science and Technology of China, Institute of Fundamental and Frontier Sciences, Chengdu 610054, Sichuan, China
| | - Yujian He
- College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shao-Min Shuang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
28
|
Nan M, Bi Y, Xue H, Xue S, Long H, Pu L, Fu G. Rapid Determination of Ochratoxin A in Grape and Its Commodities Based on a Label-Free Impedimetric Aptasensor Constructed by Layer-by-Layer Self-Assembly. Toxins (Basel) 2019; 11:toxins11020071. [PMID: 30696025 PMCID: PMC6410112 DOI: 10.3390/toxins11020071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 01/21/2023] Open
Abstract
A simple and sensitive label-free impedimetric aptasensor for rapid determination of ochratoxin A (OTA) has been developed, which was based on the combination between thiolated aptamer and gold nanoparticles by layer-by-layer self-assembly. Because of the interaction between aptamer and OTA, the relative normalized electron-transfer resistance (ΔRct) values obtained by electrochemical impedance spectroscopy (EIS) was proportional to the concentration of OTA and showed a good linear relationship from 0.1 to 10.0 ng/mL, with a lower detection limit (0.030 ng/mL) than one-step thiolated DNA aptasensor. The established method was successfully applied to detect and analyze OTA in table wine and grape juice, and the recovery was 90.56%–104.21% when PVP effective removed of phenolic substances. The label-free impedimetric aptasensor was used for rapid detection and quantitation of OTA in the inoculated grapes with the Aspergillus Nigri (H1), and the production of OTA (62.4 μg/kg, 20 μg/kg) far exceeded the maximum levels of 2 μg/kg after inoculation for three days. The developed method exhibited a good specificity, high sensitivity, time-efficient, and it could be applied to detect the OTA concentration in grape and its commodities.
Collapse
Affiliation(s)
- Mina Nan
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| | - Huali Xue
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Sulin Xue
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
| | - Haitao Long
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Lumei Pu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| | - Guorui Fu
- College of Science, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
29
|
Omotayo OP, Omotayo AO, Mwanza M, Babalola OO. Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol Res 2019; 35:1-7. [PMID: 30766652 PMCID: PMC6354945 DOI: 10.5487/tr.2019.35.1.001] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/09/2018] [Accepted: 08/02/2018] [Indexed: 11/20/2022] Open
Abstract
Mycotoxin contamination is a global phenomenon and causes a wide array of negative effects and other complications. This study focused on commonly found mycotoxins in Africa and the possible means of prevention or reduction of their contaminating effects. Mycotoxins are secondary metabolites of mold and fungi; they are generally toxic to living organisms. Hundreds of mycotoxins have been identified thus far, with some, such as aflatoxins, ochratoxins, trichothecenes, zearalenone, fumonisins, and patulin, considered agro-economically important. Several factors contribute to the presence of mycotoxins in food, such as climatic conditions, pest infestation, and poor harvest and storage practices. Exposure to mycotoxins, which occurs mostly by ingestion, leads to various diseases, such as mycotoxicoses and mycoses that may eventually result in death. In light of this, this review of relevant literature focuses on mycotoxin contamination, as well as various methods for the prevention and control of their prevalence, to avert its debilitating consequences on human health. Clear evidence of mycotoxin contamination is present in Africa, and it was therefore recommended that adequate prevention and control of these toxic substances in our food system should be encouraged and that appropriate measures must be taken to ensure food safety as well as the enhanced or long-lifespan of the African populace. Governments, research institutions, and non-governmental organizations should tailor the limited resources available to tackle mycotoxin prevalence, as these will offer the best prospects for successful development of a sustainable food system in Africa.
Collapse
Affiliation(s)
- Oluwadara Pelumi Omotayo
- Department of Biological Sciences, Faculty of Natural and Agricultural Science, North-West University, Mmabatho,
South Africa
| | - Abiodun Olusola Omotayo
- Food Security and Safety Niche, Faculty of Natural and Agricultural Science, North-West University, Mafikeng Campus, Mmabatho,
South Africa
| | - Mulunda Mwanza
- Department of Animal Health, Faculty of Natural and Agricultural Science, North-West University, Mmabatho,
South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho,
South Africa
| |
Collapse
|
30
|
Wang Y, Ning G, Wu Y, Wu S, Zeng B, Liu G, He X, Wang K. Facile combination of beta-cyclodextrin host-guest recognition with exonuclease-assistant signal amplification for sensitive electrochemical assay of ochratoxin A. Biosens Bioelectron 2018; 124-125:82-88. [PMID: 30343160 DOI: 10.1016/j.bios.2018.10.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 09/22/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
Smartly coupling exonuclease-induced target recycling signal amplifications with β-cyclodextrin host-guest recognition, a novel "signal-on" aptamer sensor for sensitive determination of ochratoxin A (OTA) was proposed for the first time. Firstly, the formation of double-strand DNA (dsDNA) was occurred by hybridizing OTA aptamer with its complementary DNA (cDNA) and as the probe DNA the cDNA at its 3' terminal was labeled with methylene blue (MB). Next, when OTA was present, the aptamer tended to form aptamer-OTA complex with conformation of G-quadruplex instead of aptamer-cDNA duplex, leading to thus the probe DNA separating from dsDNA complex. Then the RecJf exonuclease was added, demolishing partially G-quadruplex structure and releasing a certain number of OTA. Sequentially, those released OTA would continue to react with the rest of aptamer in dsDNA, drawn into development of a new round of G-quadruplex complex, where the target cycling was realized. Meanwhile, as a signal molecule, MB modified on cDNA was liberated along with the cDNA being digested into monoucleotides by RecJf exonuclease, capable of diffusing onto the electrode surface due to host-guest recognition with β-cyclodextrin, whereupon the signal was enriched and yielded. In this way, cycles of target with continuous output of signal indicators were undergone, in which the detection of target was in return fulfilled with signal amplification owing to the joint endeavor of exonuclease and β-cyclodextrin. Under the optimal conditions, the raising signal maintained a linear relation with the logarithm of the target concentrations ranging from 10 pg/mL to 10.0 ng/mL and the detection limit reached as low as 3 pg/mL. This brand-new strategy was simple and low-cost but satisfactory in terms of detection limit, range and sensitivity, in all possibility to be applied extensively for diverse targets detection by easily alternating the corresponding aptamers.
Collapse
Affiliation(s)
- Yonghong Wang
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Ge Ning
- International Education Institute, Hunan University of Chinese Medicine, 410208, Changsha, China
| | - Yaohui Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Shun Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Baiquan Zeng
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China
| | - Gaoqiang Liu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, 410004, Changsha, China.
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Hunan University, 410082 Changsha, China
| |
Collapse
|
31
|
Jalalvand AR. Fabrication of a novel and high-performance amperometric sensor for highly sensitive determination of ochratoxin A in juice samples. Talanta 2018; 188:225-231. [DOI: 10.1016/j.talanta.2018.05.093] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/26/2018] [Accepted: 05/28/2018] [Indexed: 11/24/2022]
|
32
|
Morgan SC, Tantikachornkiat M, Scholl CM, Benson NL, Cliff MA, Durall DM. The effect of sulfur dioxide addition at crush on the fungal and bacterial communities and the sensory attributes of Pinot gris wines. Int J Food Microbiol 2018; 290:1-14. [PMID: 30278370 DOI: 10.1016/j.ijfoodmicro.2018.09.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 11/18/2022]
Abstract
Modern day winemaking often involves the addition of sulfur dioxide (SO2) at crush to act as both an antioxidant and an antimicrobial agent. While the effects of SO2 on microbial communities and particularly on spoilage microorganisms has been well-studied, the advent of culture-independent molecular technologies, such as Illumina sequencing, allows the subject to be re-visited in a new context. High-throughput amplicon sequencing allows for a more thorough evaluation of microbial communities, as thousands of microbial sequences per sample can be identified and even rare microorganisms can be studied. This research investigated whether the addition of different levels of SO2 at crush (0, 20, or 40 mg/L) would affect the composition of fungal and bacterial communities, as well as the sensory attributes of the resulting wines. Samples were taken from uninoculated fermentations of Pinot gris and analyzed via high-throughput amplicon sequencing using the Illumina MiSeq platform. Yeast relative abundance and overall fungal community composition differed among the SO2 additions. Notably, a Hanseniaspora yeast appeared in all treatments and persisted until the end of alcoholic fermentation, although its relative abundance was significantly higher in the fermentations to which low or no SO2 had been added. Two key wine sensory attributes (citrus aroma and pome fruit flavor) differed among the SO2 treatments. This research provides an in-depth look into the fungal and bacterial communities during alcoholic fermentation and gives a better understanding of the microbial community response to SO2 additions during the crush period.
Collapse
Affiliation(s)
- Sydney C Morgan
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada.
| | - Mansak Tantikachornkiat
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Chrystal M Scholl
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Natasha L Benson
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada
| | - Margaret A Cliff
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, 4200 Highway 97, Summerland, British Columbia V0H 1Z0, Canada.
| | - Daniel M Durall
- Irving K. Barber School of Arts and Sciences, Unit 2 (Biology), University of British Columbia, 1177 Research Rd, Kelowna, British Columbia V1V 1V7, Canada.
| |
Collapse
|
33
|
Wang Y, Ning G, Bi H, Wu Y, Liu G, Zhao Y. A novel ratiometric electrochemical assay for ochratoxin A coupling Au nanoparticles decorated MoS2 nanosheets with aptamer. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.195] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
34
|
Sun Z, Lv J, Liu X, Tang Z, Wang X, Xu Y, Hammock BD. Development of a Nanobody-AviTag Fusion Protein and Its Application in a Streptavidin-Biotin-Amplified Enzyme-Linked Immunosorbent Assay for Ochratoxin A in Cereal. Anal Chem 2018; 90:10628-10634. [PMID: 30092629 DOI: 10.1021/acs.analchem.8b03085] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ochratoxin A (OTA) is a common food contaminant that threatens consumers' safety and health. A sensitive and selective biotin-streptavidin-amplified enzyme-linked immunosorbent assay (BA-ELISA) for OTA using a nanobody-AviTag fusion protein (Nb-AviTag) was developed in this study. The prokaryotic expression vector Nb28-AviTag-pAC6 for Nb-AviTag was constructed, followed by transformation to the AVB101 cells for antibody expression and in vivo biotinylation. The purified Nb28-AviTag was used to establish the BA-ELISA and the procedures for this Nb-AviTag-based BA-ELISA were optimized. The Nb-AviTag-based BA-ELISA exhibited the half maximal inhibitory concentration (IC50) of 0.14 ng mL-1 and the limit of detection (LOD = IC10) of 0.028 ng mL-1 for OTA basing on the optimized experiment parameters. The assay sensitivity was improved 4.6 times and 4.3 times compared to Nb-based ELISA, respectively. This method had LODs of 1.4 μg kg-1 in barley, 0.56 μg kg-1 in oats, and 0.84 μg kg-1 in rice for OTA. The average recovery percent was in a range of 84-137%, and the relative standard derivation percent ranged from 0.64% to 7.8%. The content of OTA in contaminated cereal samples was determined by both the developed Nb-AviTag-based method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The results demonstrated that the Nb-AviTag was a robust and promising bioreceptor in highly sensitive detection of OTA and other low molecular weight compounds using BA system.
Collapse
Affiliation(s)
- Zhichang Sun
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Jingwen Lv
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Xing Liu
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Zongwen Tang
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Xuerou Wang
- College of Food Science and Technology , Hainan University , 58 Renmin Avenue , Haikou 570228 , P. R. China
| | - Yang Xu
- State Key Laboratory of Food Science and Technology , Nanchang University , 235 Nanjing East Road , Nanchang 330047 , P. R. China
| | - Bruce D Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center , University of California , Davis , California 95616 , United States
| |
Collapse
|
35
|
Shen P, Li W, Ding Z, Deng Y, Liu Y, Zhu X, Cai T, Li J, Zheng T. A competitive aptamer chemiluminescence assay for ochratoxin A using a single silica photonic crystal microsphere. Anal Biochem 2018; 554:28-33. [PMID: 29860095 DOI: 10.1016/j.ab.2018.05.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/25/2018] [Accepted: 05/25/2018] [Indexed: 12/27/2022]
Abstract
We designed a competitive aptamer chemiluminescence assay for ochratoxin A (OTA) on the surface of a single silica photonic crystal microsphere (SPCM) in cereal samples. The structural color of SPCMs is used to recognize and trace the microspheres during process of detection. Anti-aptamer was immobilized on the surface of SPCM. OTA and anti-aptamer competed to bind to aptamer when OTA and its aptamer (labeled by biotin at 5'end) were added in the system. The chemiluminescence signal was developed by the horseradish peroxidase (HRP), luminol and H2O2. The molecules on the single SPCM can produce enough chemiluminescence signal intensity for quantitative detection for OTA. The linear detection range for OTA was from 1 pg/mL to 1 ng/mL and recovery rates were 89%-95%, 81%-92% and 94%-105% in rice, wheat and corn, respectively. The results showed that the developed method for OTA using a single SPCM has a great application potential in cereal samples.
Collapse
Affiliation(s)
- Peng Shen
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Wei Li
- Department of Electronic and Electrical Engineering, The University of Sheffield, Sheffield, S3 7HQ, United Kingdom
| | - Zhi Ding
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Yang Deng
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Yan Liu
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Xuerui Zhu
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Tingting Cai
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| | - Jianlin Li
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China.
| | - Tiesong Zheng
- Department of Food Science and Engineering, Nanjing Normal University, Nanjing, 210024, China
| |
Collapse
|
36
|
Jiang C, Lan L, Yao Y, Zhao F, Ping J. Recent progress in application of nanomaterial-enabled biosensors for ochratoxin A detection. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.02.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Porous silicon based photoluminescence immunosensor for rapid and highly-sensitive detection of Ochratoxin A. Biosens Bioelectron 2018; 102:661-667. [DOI: 10.1016/j.bios.2017.11.048] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/13/2017] [Accepted: 11/15/2017] [Indexed: 01/03/2023]
|
38
|
De Jesus CL, Bartley A, Welch AZ, Berry JP. High Incidence and Levels of Ochratoxin A in Wines Sourced from the United States. Toxins (Basel) 2017; 10:toxins10010001. [PMID: 29267200 PMCID: PMC5793088 DOI: 10.3390/toxins10010001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/12/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022] Open
Abstract
Ochratoxin A (OTA) is one of the most prevalent mycotoxin contaminants of food crops. Among the agricultural products consequently contaminated by OTA is wine. In the present study, a sample of wines sourced from the United States was assessed for OTA. Wines were primarily analyzed by high-performance liquid chromatography with fluorescence detection (HPLC-FD) coupled to a liquid-liquid extraction (LLE) technique which was developed and validated as a simplified sample preparation approach. More than 85% of the wines evaluated were found to contain OTA, at levels above the limit-of-detection (LOD = 0.1 µg L−1), and 76% were above the limit-of-quantitation (LOQ = 0.3 µg L−1) for the LLE/HPLC-FD method. More than two-thirds of the wines above the LOQ were found to exceed 1 µg L−1. Complementary analysis by HPLC coupled to tandem mass spectrometry (HPLC-MS/MS) confirmed OTA in 74% of the OTA-positive wines (i.e., >LOQ by HPLC-FD). Overall, both the occurrence and measured levels of OTA were generally high, specifically relative to previous assessments of OTA in wine, and two of the wines were above the only current (European Union) regulatory limit of two parts-per-billion (ppb, ~2 µg L−1). Possible trends with respect to geographical region and/or growing climate are noted. As the first assessment of U.S. wines in more than a decade, the overall high occurrence and levels of OTA in wine, and possible geographic and climatic trends, point to a need for regular surveillance of wines, as well as investigation of the relevant contributors to OTA occurrence toward mitigating contamination and exposure risks.
Collapse
Affiliation(s)
- Christopher Lawrence De Jesus
- Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA.
| | - Amanda Bartley
- Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA.
| | - Aaron Z Welch
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33181, USA.
| | - John P Berry
- Department of Chemistry and Biochemistry, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA.
| |
Collapse
|
39
|
Myndrul V, Viter R, Savchuk M, Koval M, Starodub N, Silamiķelis V, Smyntyna V, Ramanavicius A, Iatsunskyi I. Gold coated porous silicon nanocomposite as a substrate for photoluminescence-based immunosensor suitable for the determination of Aflatoxin B1. Talanta 2017; 175:297-304. [DOI: 10.1016/j.talanta.2017.07.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/15/2017] [Accepted: 07/19/2017] [Indexed: 02/02/2023]
|
40
|
Paterson RRM, Venâncio A, Lima N, Guilloux-Bénatier M, Rousseaux S. Predominant mycotoxins, mycotoxigenic fungi and climate change related to wine. Food Res Int 2017; 103:478-491. [PMID: 29389638 DOI: 10.1016/j.foodres.2017.09.080] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/22/2017] [Accepted: 09/25/2017] [Indexed: 12/31/2022]
Abstract
Wine is a significant contributor to the economies of many countries. However, the commodity can become contaminated with mycotoxins produced by certain fungi. Most information on mycotoxins in wine is from Spain, Italy and France. Grapes can be infected by mycotoxigenic fungi, of which Aspergillus carbonarius producing ochratoxin A (OTA) is of highest concern. Climate is the most important factor in determining contamination once the fungi are established, with high temperatures being a major factor for OTA contamination: OTA in wine is at higher concentrations in warmer southern Europe than northern. Contamination by fumonisins is a particular concern, related to Aspergillus niger producing these compounds and the fungus being isolated frequently from grapes. Aflatoxins can be present in wine, but patulin is seldom detected. Alternaria mycotoxins (e.g. alternariol) have been frequently observed. There are indications that T-2 toxin may be common. Also, the combined effects of mycotoxins in wine require consideration. No other mycotoxins are currently of concern. Accurate fungal identifications and mycotoxin detection from the fungi are important and a consideration of practical methods are required. There is a diversity of wines that can be contaminated (e.g. red, white, sweet, dry and fortified). The occurrence of OTA is higher in red and sweet than white wines. Steps to control mycotoxins in wine involve good agriculture practices. The effect of climate change on vines and mycotoxins in wine needs urgent consideration by well-constructed modelling studies and expert interpretation of existing data. Reliable models of the effect of climate change on vines is a priority: the health of vines affects mycotoxin contamination. A modelling study of OTA in grapes at higher temperatures over 100years is required. Progress has been made in reducing OTA in wine. The other mycotoxins require consideration and the effects of climate change will become crucial.
Collapse
Affiliation(s)
- R Russell M Paterson
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710 057 Braga, Portugal.
| | - Armando Venâncio
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710 057 Braga, Portugal
| | - Nelson Lima
- Centre of Biological Engineering, Campus de Gualtar, University of Minho, 4710 057 Braga, Portugal
| | | | - Sandrine Rousseaux
- Université Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, F-21000 Dijon, France
| |
Collapse
|
41
|
Zhu W, Nie Y, Xu Y. The incidence and distribution of ochratoxin A in Daqu, a Chinese traditional fermentation starter. Food Control 2017. [DOI: 10.1016/j.foodcont.2017.02.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Mariño-Repizo L, Gargantini R, Manzano H, Raba J, Cerutti S. Assessment of ochratoxin A occurrence in Argentine red wines using a novel sensitive quechers-solid phase extraction approach prior to ultra high performance liquid chromatography-tandem mass spectrometry methodology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:2487-2497. [PMID: 27701739 DOI: 10.1002/jsfa.8065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/12/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND The assessment of ochratoxin A (OTA) in wine is relevant for food safety and its continuous control allows to reduce the risk of intake. Thus, a novel sensitive QuEChERS-SPE (Quick, Easy, Cheap, Effective, Rugged and Safe - Solid Phase Extraction) pretreatment prior to liquid chromatography coupled to tandem mass spectrometry was developed for the determination of OTA in red wine samples from different grape-growing regions in Argentine. RESULTS A sensitive methodology was achieved and thus the limits of detection and quantification were 0.02 and 0.05 µg L-1 , respectively. Recoveries ranged from 89.0% to 105.3%. The method was applied to 136 red wine samples (Argentina's flagship varieties: Malbec and Cabernet Sauvignon) from ten grape-growing regions, during vintages 2013-2015. Although all of the samples investigated were contaminated with OTA (concentrations ranged from 0.02 to 0.98 µg L-1 ), the levels detected were lower than the maximum allowable concentration limit of 2.0 µg L-1 established by international regulations. CONCLUSION The methodology proposed is suitable for reliable OTA analysis in red wines. Similarly, the values obtained from the samples analyzed were in accordance with the current regulations and, as a consequence, preventive actions to reduce this mycotoxin incidence can be undertaken. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Leonardo Mariño-Repizo
- Instituto de Química de San Luis (CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Avda. Ejército de los Andes 950, San Luis, Argentina
| | - Raquel Gargantini
- Instituto Nacional de Vitivinicultura (INV), Avda. San Martín 430, Mendoza, Argentina
| | - Humberto Manzano
- Instituto Nacional de Vitivinicultura (INV), Avda. San Martín 430, Mendoza, Argentina
| | - Julio Raba
- Instituto de Química de San Luis (CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Avda. Ejército de los Andes 950, San Luis, Argentina
| | - Soledad Cerutti
- Instituto de Química de San Luis (CONICET-UNSL), Laboratorio de Espectrometría de Masas, Bloque III, Avda. Ejército de los Andes 950, San Luis, Argentina
| |
Collapse
|
43
|
Sun Z, Duan Z, Liu X, Deng X, Tang Z. Development of a Nanobody-Based Competitive Dot ELISA for Visual Screening of Ochratoxin A in Cereals. FOOD ANAL METHOD 2017. [DOI: 10.1007/s12161-017-0915-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
In-situ amplified voltammetric immunoassay for ochratoxin A by coupling a platinum nanocatalyst based enhancement to a redox cycling process promoted by an enzyme mimic. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2223-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
45
|
Qing Y, Li X, Chen S, Zhou X, Luo M, Xu X, Li C, Qiu J. Differential pulse voltammetric ochratoxin A assay based on the use of an aptamer and hybridization chain reaction. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2080-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Bellí N, Marín S, Sanchis V, Ramos A. Review: Ochratoxin A (OTA) in Wines, Musts and Grape Juices: Occurrence, Regulations and Methods of Analysis. FOOD SCI TECHNOL INT 2016. [DOI: 10.1106/108201302031863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This work gives a general overview of ochratoxin A (OTA) occurrence in wines and the methodology for OTA analysis. The results of more than two thousand samples taken from the literature have been taken into account to quite extensively describe the present situation of OTA contamination of wine. According to these data, OTA is much more commonly detected in red wines than in rosé and white wines, and OTA concentration is remarkably higher than in the latter ones. Thus OTA could be detected in 45% (median 34%) of white wine samples, whereas it was detected in 66% (median 66%) of rosé and 71% (median 90%) of red wine samples. When comparing the wines from Northern and Southern regions, the latter showed a higher contamination than those from the Northern area. It has been suggested that OTA accumulation could be due to fungi belonging to the genus Aspergillus in wines from Southern European countries because the crops are exposed to elevated temperatures, which favour growth of OTA-producing Aspergillus species over Penicillium. High performance liquid chromatography (HPLC) associated with fluorescence detection preceded by extraction of OTA using commercially available immunoaffinity columns (IAC) is currently the most applied method for OTA determination in wines.
Collapse
Affiliation(s)
- N. Bellí
- Food Technology Department, University of Lleida. Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - S. Marín
- Food Technology Department, University of Lleida. Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - V. Sanchis
- Food Technology Department, University of Lleida. Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | - A.J. Ramos
- Food Technology Department, University of Lleida. Av. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| |
Collapse
|
47
|
Development of a lyophilized soybean paste certified reference material for the analysis of ochratoxin A. J Food Compost Anal 2016. [DOI: 10.1016/j.jfca.2016.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Zhu W, Ren C, Nie Y, Xu Y. Quantification of ochratoxin A in Chinese liquors by a new solid-phase extraction clean-up combined with HPLC-FLD method. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.11.044] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
49
|
Qian J, Wang K, Wang C, Hua M, Yang Z, Liu Q, Mao H, Wang K. A FRET-based ratiometric fluorescent aptasensor for rapid and onsite visual detection of ochratoxin A. Analyst 2016; 140:7434-42. [PMID: 26396995 DOI: 10.1039/c5an01403d] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A color change observable by the naked eye to indicate the content of an analyte is considered to be the most conceivable way of various sensing protocols. By taking advantage of the Förster resonance energy transfer (FRET) principles, we herein designed a dual-emission ratiometric fluorescent aptasensor for ochratoxin A (OTA) detection via a dual mode of fluorescent sensing and onsite visual screening. Amino group-modified OTA's aptamer was firstly labeled with the green-emitting CdTe quantum dots (gQDs) donor. The red-emitting CdTe QDs (rQDs) which were wrapped in the silica sphere could serve as the reference signal, while the gold nanoparticle (AuNP) acceptors were attached on the silica surface to bind with the thiolated complementary DNA (cDNA). The hybridization reaction between the aptamer and the cDNA brought gQD-AuNP pair close enough, thereby making the FRET occur in the aptasensor fabrication, while the subsequent fluorescence recovery induced by OTA was obtained in the detection procedure. Based on the red background of the wrapped rQDs, the aptasensor in response to increasing OTA displayed a distinguishable color change from red to yellow-green, which could be conveniently readout in solution even by the naked eye. Since the bioconjugations used as the aptasensor can be produced at large scale, this method can be used for in situ, rapid, or high-throughput OTA detection after only an incubation step in a homogeneous mode. We believe that this novel aptasensing strategy provides not only a promising method for OTA detection but also a universal model for detecting diverse targets by changing the corresponding aptamer.
Collapse
Affiliation(s)
- Jing Qian
- Key Laboratory of Modern Agriculture Equipment and Technology, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|