1
|
Webster AK, Phillips PC. Epigenetics and individuality: from concepts to causality across timescales. Nat Rev Genet 2025; 26:406-423. [PMID: 39789149 DOI: 10.1038/s41576-024-00804-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2024] [Indexed: 01/12/2025]
Abstract
Traditionally, differences among individuals have been divided into genetic and environmental causes. However, both types of variation can underlie regulatory changes in gene expression - that is, epigenetic changes - that persist across cell divisions (developmental differentiation) and even across generations (transgenerational inheritance). Increasingly, epigenetic variation among individuals is recognized as an important factor in human diseases and ageing. Moreover, non-genetic inheritance can lead to evolutionary changes within populations that differ from those expected by genetic inheritance alone. Despite its importance, causally linking epigenetic variation to phenotypic differences across individuals has proven difficult, particularly when epigenetic variation operates independently of genetic variation. New genomic approaches are providing unprecedented opportunity to measure and perturb epigenetic variation, helping to elucidate the role of epigenetic variation in mediating the genotype-phenotype map. Here, we review studies that have advanced our understanding of how epigenetic variation contributes to phenotypic differences between individuals within and across generations, and provide a unifying framework that allows historical and mechanistic perspectives to more fully inform one another.
Collapse
Affiliation(s)
- Amy K Webster
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
2
|
Longtin A, Watowich MM, Sadoughi B, Petersen RM, Brosnan SF, Buetow K, Cai Q, Cayo Biobank Research Unit, Gurven MD, Higham JP, Highland HM, Huang YT, Kaplan H, Kraft TS, Lim YAL, Long J, Melin AD, Montague MJ, Roberson J, Ng KS, Platt ML, Schneider-Crease IA, Stieglitz J, Trumble BC, Venkataraman VV, Wallace IJ, Wu J, Snyder-Mackler N, Jones A, Bick AG, Lea AJ. Cost-effective solutions for high-throughput enzymatic DNA methylation sequencing. PLoS Genet 2025; 21:e1011667. [PMID: 40402999 PMCID: PMC12162101 DOI: 10.1371/journal.pgen.1011667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 06/12/2025] [Accepted: 03/27/2025] [Indexed: 05/24/2025] Open
Abstract
Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, development, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies is currently lacking. To address this gap, we optimized the Targeted Methylation Sequencing protocol (TMS)-which profiles ~4 million CpG sites-for miniaturization, flexibility, and multispecies use. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n = 55 paired samples) and whole genome bisulfite sequencing (n = 6 paired samples). In both cases, we found strong agreement between technologies (R2 = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean = 77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R2 = 0.98). Finally, we confirmed that estimates of 1) epigenetic age and 2) tissue-specific DNA methylation patterns are strongly recapitulated using data generated from TMS versus other technologies. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.
Collapse
Affiliation(s)
- Amy Longtin
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Marina M. Watowich
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Baptiste Sadoughi
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Rachel M. Petersen
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Sarah F. Brosnan
- Departments of Psychology & Philosophy, Neuroscience Institute, Center for Behavioral Neuroscience, and the Language Research Center, Georgia State University, Atlanta, GeorgiaUnited States of America
| | - Kenneth Buetow
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Cayo Biobank Research Unit
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Michael D. Gurven
- Department of Anthropology, University of California, Santa Barbara, California, United States of America
| | - James P. Higham
- Department of Anthropology, New York University, New York, New York, United States of America
- New York Consortium in Evolutionary Primatology, New York, New York, United States of America
| | - Heather M. Highland
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yi-Ting Huang
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Hillard Kaplan
- Institute for Economics and Society, Chapman University, Orange, California, United States of America
| | - Thomas S. Kraft
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
| | - Yvonne A. L. Lim
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Malaysian Indigenous Studies (CMIS), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Amanda D. Melin
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
- Department of Medical Genetics, University of Calgary, Calgary, Alberta, Canada
- Alberta Children’s Hospital Research Institute, Calgary, Alberta, Canada
| | - Michael J. Montague
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jamie Roberson
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Kee Seong Ng
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Michael L. Platt
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Marketing Department, Wharton School of Business, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - India A. Schneider-Crease
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Jonathan Stieglitz
- Department of Social and Behavioral Sciences, Toulouse School of Economics, Institute for Advanced Study in Toulouse, Université Toulouse Capitole, Toulouse, France
| | - Benjamin C. Trumble
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
- Institute of Human Origins, Arizona State University, Tempe, Arizona, United States of America
| | - Vivek V. Venkataraman
- Department of Anthropology & Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Ian J. Wallace
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Jie Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Noah Snyder-Mackler
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, United States of America
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, United States of America
| | - Angela Jones
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Alexander G. Bick
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Amanda J. Lea
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, United States of America
- Evolutionary Studies Initiative, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Osmanović D, Rabin Y, Soen Y. A Model of Epigenetic Inheritance Accounts for Unexpected Adaptation to Unforeseen Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414297. [PMID: 40103281 PMCID: PMC12079329 DOI: 10.1002/advs.202414297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/20/2025] [Indexed: 03/20/2025]
Abstract
Accumulated evidence of transgenerational inheritance of epigenetic and symbiotic changes raises fundamental questions about the possible types, significance and duration of impacts on the population, as well as whether, and under which conditions, the inheritance of non-genetic changes confers long-term advantage to the population. To address these questions, a population epigenetics model of individuals undergoing stochastic changes and/or induced responses that are transmitted to the offspringis introduced. Potentially adaptive and maladaptive responses are represented, respectively, by environmentally driven changes that reduce and increase the selective pressure. Analytic solutions in a simplified case of populations that are exposed to either periodic or progressively deteriorating environments shows that acquisition and transmission of non-genetic changes that alleviate the selective pressure confer long-term advantage and may facilitate escape from extinction. Systematic analysis of outcomes as a function of population properties further identifies a non-traditional regime of adaptation mediated by stochastic changes that are rapidly acquired within a lifetime. Contrasting model predictions with experimental findings shows that inheritance of dynamically acquired changes enables rapid adaptation to unforeseen challenges and can account for population dynamics that is either unexpected or beyond the scope of traditional models.
Collapse
Affiliation(s)
- Dino Osmanović
- Department of Mechanical and Aerospace EngineeringUniversity of CaliforniaLos AngelesLos AngelesCA90095USA
| | - Yitzhak Rabin
- Department of PhysicsBar‐Ilan UniversityRamat Gan5290002Israel
| | - Yoav Soen
- Department of Biomolecular SciencesWeizmann Institute of ScienceRehovot7610001Israel
| |
Collapse
|
4
|
Zhuang QKW, Bauermeister K, Galvez JH, Alogayil N, Batdorj E, de Villena FPM, Taketo T, Bourque G, Naumova AK. Survey of gene, lncRNA and transposon transcription patterns in four mouse organs highlights shared and organ-specific sex-biased regulation. Genome Biol 2025; 26:74. [PMID: 40140847 PMCID: PMC11948892 DOI: 10.1186/s13059-025-03547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Sex-biased gene regulation is the basis of sexual dimorphism in phenotypes and has been studied across different cell types and different developmental stages. However, sex-biased expression of transposable elements (TEs), which represent nearly half of the mammalian genome and have the potential of influencing genome integrity and regulation, remains underexplored. RESULTS We report a survey of gene, lncRNA, and TE expression in four organs from mice with different combinations of gonadal and genetic sex. The data show remarkable variability among organs with respect to the impact of gonadal sex on transcription with the strongest effects observed in the liver. In contrast, the X-chromosome dosage alone had a modest influence on sex-biased transcription across organs, albeit interaction between X-dosage and gonadal sex cannot be ruled out. The presence of the Y-chromosome influences TE, but not gene or lncRNA, expression in the liver. Notably, 90% of sex-biased TEs (sDETEs) reside in clusters. Moreover, 54% of these clusters overlap or reside less than 100 kb from sex-biased genes or lncRNAs, share the same sex bias, and also have higher expression levels than sDETE clusters that do not co-localize with other types of sex-biased transcripts. We test the heterochromatic sink hypothesis that predicts higher expression of TEs in XX individuals finding no evidence to support it. CONCLUSIONS Our data show that sex-biased expression of TEs varies among organs with the highest numbers of sDETEs found in the liver following trends observed for genes and lncRNAs. It is enhanced by proximity to other types of sex-biased transcripts.
Collapse
Affiliation(s)
- Qinwei Kim-Wee Zhuang
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, 606-8303, Japan
| | - Klara Bauermeister
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Jose Hector Galvez
- Canadian Centre for Computational Genomics, Montreal, QC, H3A 0G1, Canada
| | - Najla Alogayil
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Enkhjin Batdorj
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada
| | - Fernando Pardo Manuel de Villena
- Department of Genetics, University of North Carolina, Chapel Hill, NC, 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Teruko Taketo
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
- Department of Surgery, McGill University, Montreal, QC, H4A 3J1, Canada
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto, 606-8303, Japan.
- Canadian Centre for Computational Genomics, Montreal, QC, H3A 0G1, Canada.
| | - Anna K Naumova
- Department of Human Genetics, McGill University, Montreal, QC, H3A 1C7, Canada.
- The Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada.
- Department of Obstetrics and Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
5
|
Mirchandani AS, Sanchez-Garcia MA, Walmsley SR. How oxygenation shapes immune responses: emerging roles for physioxia and pathological hypoxia. Nat Rev Immunol 2025; 25:161-177. [PMID: 39349943 DOI: 10.1038/s41577-024-01087-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 03/04/2025]
Abstract
Most eukaryotes require oxygen for their survival and, with increasing multicellular complexity, oxygen availability and delivery rates vary across the tissues of complex organisms. In humans, healthy tissues have markedly different oxygen gradients, ranging from the hypoxic environment of the bone marrow (where our haematopoietic stem cells reside) to the lungs and their alveoli, which are among the most oxygenated areas of the body. Immune cells are therefore required to adapt to varying oxygen availability as they move from the bone marrow to peripheral organs to mediate their effector functions. These changing oxygen gradients are exaggerated during inflammation, where oxygenation is often depleted owing to alterations in tissue perfusion and increased cellular activity. As such, it is important to consider the effects of oxygenation on shaping the immune response during tissue homeostasis and disease conditions. In this Review, we address the relevance of both physiological oxygenation (physioxia) and disease-associated hypoxia (where cellular oxygen demand outstrips supply) for immune cell functions, discussing the relevance of hypoxia for immune responses in the settings of tissue homeostasis, inflammation, infection, cancer and disease immunotherapy.
Collapse
Affiliation(s)
- Ananda Shanti Mirchandani
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| | | | - Sarah Ruth Walmsley
- Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Capra E, Lazzari B, Cozzi P, Turri F, Negrini R, Ajmone-Marsan P, Stella A. Defining bovine CpG epigenetic diversity by analyzing RRBS data from sperm of Montbéliarde and Holstein bulls. Front Cell Dev Biol 2025; 13:1532711. [PMID: 40052148 PMCID: PMC11882585 DOI: 10.3389/fcell.2025.1532711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Breed epigenetic diversity was recently detected in pig muscle and cattle blood, probably as a result of long-term selection for morphological adaptive and quantitative traits, persisting after embryo epigenetic reprogramming. Methods In our study, breed epigenetic diversity in the male germline from Holstein (H) and Montbéliarde (M) bulls was investigated using Reduced Representation Bisulfite Sequencing (RRBS) data publicly available at the NCBI database. Open-source Whole Genome Sequencing (WGS) data from H and M animals were used to estimate genetic diversity between the two breeds and, thus, correctly assess CpG positions with low frequencies or absence of SNPs. Results Sperm epigenetic diversity was studied in 356,635 SNP-free CpG positions, and a total of 6,074 differentially methylated cytosines (DMCs) were identified. The analysis of the DMCs pattern of distribution revealed that DMCs: i) are partially associated with genetic variation, ii) are consistent with epigenetic diversity previously observed in bovine blood, iii) present long-CpG stretches in specific genomic regions, and iv) are enriched in specific repeat elements, such as ERV-LTR transposable elements, ribosomal 5S rRNA, BTSAT4 Satellites and long interspersed nuclear elements (LINE). Discussion This study, based on publicly available data from two cattle breeds, contributes to the identification and definition of distinct epigenetic signatures in sperm, that may have potential implications for mammalian embryo development.
Collapse
Affiliation(s)
- Emanuele Capra
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - Barbara Lazzari
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - Paolo Cozzi
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - Federica Turri
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| | - Riccardo Negrini
- Department of Animal Science, Food and Nutrition – DIANA, and Romea and Enrica Invernizzi Research Center on Sustainable Dairy Production - CREI, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paolo Ajmone-Marsan
- Department of Animal Science, Food and Nutrition – DIANA, and Romea and Enrica Invernizzi Research Center on Sustainable Dairy Production - CREI, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Alessandra Stella
- Institute of Agricultural Biology and Biotechnology, National Research Council IBBA CNR, Lodi, Italy
| |
Collapse
|
7
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of Hepatic Lentiviral Vector Transduction: Implications for Preclinical Studies and Clinical Gene Therapy Protocols. Viruses 2025; 17:276. [PMID: 40007031 PMCID: PMC11861806 DOI: 10.3390/v17020276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Lentiviral vector-transduced T cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the effects of host genetic variation on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that the CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, a moderate correlation between mouse-strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intrastrain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes found in the above QTLs are potential targets for personalized gene therapy protocols. Importantly, we identified two mouse strains that open new directions for characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel clinical protocols should be considered for non-fatal diseases.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Institute for Developmental Disabilities, Carrboro, NC 27510, USA
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA (W.T.)
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Nienaber-Rousseau C. Understanding and applying gene-environment interactions: a guide for nutrition professionals with an emphasis on integration in African research settings. Nutr Rev 2025; 83:e443-e463. [PMID: 38442341 PMCID: PMC11723160 DOI: 10.1093/nutrit/nuae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Noncommunicable diseases (NCDs) are influenced by the interplay between genetics and environmental exposures, particularly diet. However, many healthcare professionals, including nutritionists and dietitians, have limited genetic background and, therefore, they may lack understanding of gene-environment interactions (GxEs) studies. Even researchers deeply involved in nutrition studies, but with a focus elsewhere, can struggle to interpret, evaluate, and conduct GxE studies. There is an urgent need to study African populations that bear a heavy burden of NCDs, demonstrate unique genetic variability, and have cultural practices resulting in distinctive environmental exposures compared with Europeans or Americans, who are studied more. Although diverse and rapidly changing environments, as well as the high genetic variability of Africans and difference in linkage disequilibrium (ie, certain gene variants are inherited together more often than expected by chance), provide unparalleled potential to investigate the omics fields, only a small percentage of studies come from Africa. Furthermore, research evidence lags behind the practices of companies offering genetic testing for personalized medicine and nutrition. We need to generate more evidence on GxEs that also considers continental African populations to be able to prevent unethical practices and enable tailored treatments. This review aims to introduce nutrition professionals to genetics terms and valid methods to investigate GxEs and their challenges, and proposes ways to improve quality and reproducibility. The review also provides insight into the potential contributions of nutrigenetics and nutrigenomics to the healthcare sphere, addresses direct-to-consumer genetic testing, and concludes by offering insights into the field's future, including advanced technologies like artificial intelligence and machine learning.
Collapse
Affiliation(s)
- Cornelie Nienaber-Rousseau
- Centre of Excellence for Nutrition, North-West University, Potchefstroom, South Africa
- SAMRC Extramural Unit for Hypertension and Cardiovascular Disease, Faculty of Health Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
9
|
Mueller SA, Merondun J, Lečić S, Wolf JBW. Epigenetic variation in light of population genetic practice. Nat Commun 2025; 16:1028. [PMID: 39863592 PMCID: PMC11762325 DOI: 10.1038/s41467-025-55989-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/03/2025] [Indexed: 01/27/2025] Open
Abstract
The evolutionary impact of epigenetic variation depends on its transgenerational stability and source - whether genetically determined, environmentally induced, or due to spontaneous, genotype-independent mutations. Here, we evaluate current approaches for investigating an independent role of epigenetics in evolution, pinpointing methodological challenges. We further identify opportunities arising from integrating epigenetic data with population genetic analyses in natural populations. Efforts to advance data quality, study design, and statistical treatment are encouraged to consolidate our understanding of the source of heritable epigenetic variation, quantify its autonomous potential for evolution, and enrich population genetic analyses with an additional layer of information.
Collapse
Affiliation(s)
- Sarah A Mueller
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.
| | - Justin Merondun
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Microevolution and Biodiversity, Max Planck Institute for Biological Intelligence, Seewiesen, Germany
| | - Sonja Lečić
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany
- Department of Ecosystem Management, Climate and Biodiversity, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jochen B W Wolf
- Division of Evolutionary Biology, Faculty of Biology, LMU Munich, Planegg-Martinsried, Germany.
- Department of Microevolution and Biodiversity, Max Planck Institute for Biological Intelligence, Seewiesen, Germany.
| |
Collapse
|
10
|
Argente J, Farooqi IS, Chowen JA, Kühnen P, López M, Morselli E, Gan HW, Spoudeas HA, Wabitsch M, Tena-Sempere M. Hypothalamic obesity: from basic mechanisms to clinical perspectives. Lancet Diabetes Endocrinol 2025; 13:57-68. [PMID: 39547253 DOI: 10.1016/s2213-8587(24)00283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 11/17/2024]
Abstract
Despite the diverse nature of obesity, there is compelling genetic, clinical, and experimental evidence that endorses the important contribution of brain circuits to this condition. The hypothalamus contains major regulatory circuits for bodyweight homoeostasis, the deregulation of which can lead to obesity. Although functional perturbation of hypothalamic pathways could lie at the basis of common forms of obesity, the term hypothalamic obesity has been created to define those rare forms of severe obesity where a clear hypothalamic substrate can be identified, either of genetic or acquired origin. An in-depth understanding of the pathogenesis, clinical presentation, and therapeutic targets of hypothalamic obesity relies on the comprehension of the physiological basis of hypothalamic pathways governing bodyweight control, the mechanisms (either genetic or acquired) whereby they are perturbed, and the consequences of such perturbation. In this Review, we provide a synoptic overview of hypothalamic obesity, from basic mechanisms to clinical perspectives, with a major focus on current developments and new avenues for the diagnosis and precise treatment of these rare forms of obesity.
Collapse
Affiliation(s)
- Jesús Argente
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain; IMDEA-Food Institute, Madrid, Spain; Department of Pediatrics, Universidad Autónoma de Madrid, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - I Sadaf Farooqi
- Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Julie A Chowen
- Department of Endocrinology, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, Madrid, Spain; IMDEA-Food Institute, Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Peter Kühnen
- Department of Pediatric Endocrinology, Charité-Universitätsmedizin Berlin, Berlin, Germany; German Centre for Child and Adolescent Health, Berlin, Germany
| | - Miguel López
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Physiology, CiMUS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago, Chile
| | - Hoong-Wei Gan
- UCL Great Ormond Street Institute of Child Health, London, UK; Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Helen A Spoudeas
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK; SUCCESS Charity, London, UK
| | - Martin Wabitsch
- German Centre for Child and Adolescent Health, Berlin, Germany; Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Instituto Maimónides de Investigación Biomédica de Córdoba, Córdoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain.
| |
Collapse
|
11
|
Chao S, Lu J, Li LJ, Guo HY, Xu K, Wang N, Zhao SX, Jin XW, Wang SG, Yin S, Shen W, Zhao MH, Huang GA, Sun QY, Ge ZJ. Maternal obesity may disrupt offspring metabolism by inducing oocyte genome hyper-methylation via increased DNMTs. eLife 2024; 13:RP97507. [PMID: 39642055 PMCID: PMC11623932 DOI: 10.7554/elife.97507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024] Open
Abstract
Maternal obesity has deleterious effects on the process of establishing oocyte DNA methylation; yet the underlying mechanisms remain unclear. Here, we found that maternal obesity disrupted the genomic methylation of oocytes using a high-fat diet (HFD) induced mouse model, at least a part of which was transmitted to the F2 oocytes and livers via females. We further examined the metabolome of serum and found that the serum concentration of melatonin was reduced. Exogenous melatonin treatment significantly reduced the hyper-methylation of HFD oocytes, and the increased expression of DNMT3a and DNMT1 in HFD oocytes was also decreased. These suggest that melatonin may play a key role in the disrupted genomic methylation in the oocytes of obese mice. To address how melatonin regulates the expression of DNMTs, the function of melatonin was inhibited or activated upon oocytes. Results revealed that melatonin may regulate the expression of DNMTs via the cAMP/PKA/CREB pathway. These results suggest that maternal obesity induces genomic methylation alterations in oocytes, which can be partly transmitted to F2 in females, and that melatonin is involved in regulating the hyper-methylation of HFD oocytes by increasing the expression of DNMTs via the cAMP/PKA/CREB pathway.
Collapse
Affiliation(s)
- Shuo Chao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Jun Lu
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Li-Jun Li
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Hong-Yan Guo
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Kuipeng Xu
- College of Horticulture, Qingdao Agricultural UniversityQingdaoChina
| | - Ning Wang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Shu-Xian Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Xiao-Wen Jin
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Shao-Ge Wang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Shen Yin
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Ming-Hui Zhao
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Gui-An Huang
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| | - Qing-Yuan Sun
- Guangzhou Key Laboratory of Metabolic Diseases and Reproductive Health, Guangdong-Hong Kong Metabolism & Reproduction Joint Laboratory, Reproductive Medicine Center, Guangdong Second Provincial General HospitalGuangzhouChina
| | - Zhao-Jia Ge
- College of Life Sciences, Institute of Reproductive Sciences, Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
12
|
Korolenko A, Skinner MK. Generational stability of epigenetic transgenerational inheritance facilitates adaptation and evolution. Epigenetics 2024; 19:2380929. [PMID: 39104183 PMCID: PMC11305060 DOI: 10.1080/15592294.2024.2380929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 08/07/2024] Open
Abstract
The epigenome and epigenetic inheritance were not included in the original modern synthesis theory or more recent extended evolutionary synthesis of evolution. In a broad range of species, the environment has been shown to play a significant role in natural selection, which more recently has been shown to occur through epigenetic alterations and epigenetic inheritance. However, even with this evidence, the field of epigenetics and epigenetic inheritance has been left out of modern evolutionary synthesis, as well as other current evolutionary models. Epigenetic mechanisms can direct the regulation of genetic processes (e.g. gene expression) and also can be directly changed by the environment. In contrast, DNA sequence cannot be directly altered by the environment. The goal of this review is to present the evidence of how epigenetics and epigenetic inheritance can alter phenotypic variation in numerous species. This can occur at a significantly higher frequency than genetic change, so correlates with the frequency of evolutionary change. In addition, the concept and importance of generational stability of transgenerational inheritance is incorporated into evolutionary theory. For there to be a better understanding of evolutionary biology, we must incorporate all aspects of molecular (e.g. genetics and epigenetics) and biological sciences (e.g. environment and adaptation).
Collapse
Affiliation(s)
- Alexandra Korolenko
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
13
|
Khatib H, Townsend J, Konkel MA, Conidi G, Hasselkus JA. Calling the question: what is mammalian transgenerational epigenetic inheritance? Epigenetics 2024; 19:2333586. [PMID: 38525788 DOI: 10.1080/15592294.2024.2333586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/17/2024] [Indexed: 03/26/2024] Open
Abstract
While transgenerational epigenetic inheritance has been extensively documented in plants, nematodes, and fruit flies, its existence in mammals remains controversial. Several factors have contributed to this debate, including the lack of a clear distinction between intergenerational and transgenerational epigenetic inheritance (TEI), the inconsistency of some studies, the potential confounding effects of in-utero vs. epigenetic factors, and, most importantly, the biological challenge of epigenetic reprogramming. Two waves of epigenetic reprogramming occur: in the primordial germ cells and the developing embryo after fertilization, characterized by global erasure of DNA methylation and remodelling of histone modifications. Consequently, TEI can only occur if specific genetic regions evade this reprogramming and persist through embryonic development. These challenges have revived the long-standing debate about the possibility of inheriting acquired traits, which has been strongly contested since the Lamarckian and Darwinian eras. As a result, coupled with the absence of universally accepted criteria for transgenerational epigenetic studies, a vast body of literature has emerged claiming evidence of TEI. Therefore, the goal of this study is to advocate for establishing fundamental criteria that must be met for a study to qualify as evidence of TEI. We identified five criteria based on the consensus of studies that critically evaluated TEI. To assess whether published original research papers adhere to these criteria, we examined 80 studies that either claimed or were cited as supporting TEI. The findings of this analysis underscore the widespread confusion in this field and highlight the urgent need for a unified scientific consensus on TEI requirements.
Collapse
Affiliation(s)
- Hasan Khatib
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Jessica Townsend
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Melissa A Konkel
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Gabi Conidi
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| | - Julia A Hasselkus
- The Department of Animal and Dairy Sciences, The University of Wisconsin, Madison, WI, USA
| |
Collapse
|
14
|
Feng X, Guang S. Functions and applications of RNA interference and small regulatory RNAs. Acta Biochim Biophys Sin (Shanghai) 2024; 57:119-130. [PMID: 39578714 PMCID: PMC11802346 DOI: 10.3724/abbs.2024196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/03/2024] [Indexed: 11/24/2024] Open
Abstract
Small regulatory RNAs play a variety of crucial roles in eukaryotes, influencing gene regulation, developmental timing, antiviral defense, and genome integrity via a process termed RNA interference (RNAi). This process involves Argonaute/small RNA (AGO/sRNA) complexes that target transcripts via sequence complementarity and modulate gene expression and epigenetic modifications. RNAi is a highly conserved gene regulatory phenomenon that recognizes self- and non-self nucleic acids, thereby defending against invasive sequences. Since its discovery, RNAi has been widely applied in functional genomic studies and a range of practical applications. In this review, we focus on the current understanding of the biological roles of the RNAi pathway in transposon silencing, fertility, developmental regulation, immunity, stress responses, and acquired transgenerational inheritance. Additionally, we provide an overview of the applications of RNAi technology in biomedical research, agriculture, and therapeutics.
Collapse
Affiliation(s)
- Xuezhu Feng
- School of Basic Medical SciencesAnhui Medical UniversityHefei230032China
| | - Shouhong Guang
- Department of Obstetrics and Gynecologythe First Affiliated Hospital of USTCThe USTC RNA InstituteMinistry of Education Key Laboratory for Membraneless Organelles & Cellular DynamicsHefei National Research Center for Physical Sciences at the MicroscaleCenter for Advanced Interdisciplinary Science and Biomedicine of IHMSchool of Life SciencesDivision of Life Sciences and MedicineBiomedical Sciences and Health Laboratory of Anhui ProvinceUniversity of Science and Technology of ChinaHefei230027China
| |
Collapse
|
15
|
Grönniger E, Max H, Lyko F. Skin Rejuvenation by Modulation of DNA Methylation. Exp Dermatol 2024; 33:e70005. [PMID: 39440959 DOI: 10.1111/exd.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 10/25/2024]
Abstract
Skin aging is driven by a complex set of cellular pathways. Among these, epigenetic mechanisms have garnered particular attention, because of their sensitivity to environmental and lifestyle factors. DNA methylation represents the longest known and best understood epigenetic mechanism. We explain how DNA methylation might function as an interface between the environment and the genome of human skin. Exposures to different environmental factors and lifestyles are known to modulate age-related methylation patterns, as illustrated by their effect on DNA methylation clocks. Human skin provides a particularly well-suited tissue for understanding age-related methylation changes and it has been shown recently that modulation of DNA methylation can induce skin rejuvenation. We explain how the use of mildly demethylating agents can be safeguarded to ensure the specific removal of age-related DNA methylation changes. We also identify important areas of future research, leading to a deeper understanding of the mechanisms that drive epigenetic aging and to the development of further refined intervention strategies.
Collapse
Affiliation(s)
| | - Heiner Max
- Research & Development, Beiersdorf AG, Hamburg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
16
|
Longtin A, Watowich MM, Sadoughi B, Petersen RM, Brosnan SF, Buetow K, Cai Q, Gurven MD, Highland HM, Huang YT, Kaplan H, Kraft TS, Lim YAL, Long J, Melin AD, Roberson J, Ng KS, Stieglitz J, Trumble BC, Venkataraman VV, Wallace IJ, Wu J, Snyder-Mackler N, Jones A, Bick AG, Lea AJ. Cost-effective solutions for high-throughput enzymatic DNA methylation sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612068. [PMID: 39314398 PMCID: PMC11419010 DOI: 10.1101/2024.09.09.612068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Characterizing DNA methylation patterns is important for addressing key questions in evolutionary biology, geroscience, and medical genomics. While costs are decreasing, whole-genome DNA methylation profiling remains prohibitively expensive for most population-scale studies, creating a need for cost-effective, reduced representation approaches (i.e., assays that rely on microarrays, enzyme digests, or sequence capture to target a subset of the genome). Most common whole genome and reduced representation techniques rely on bisulfite conversion, which can damage DNA resulting in DNA loss and sequencing biases. Enzymatic methyl sequencing (EM-seq) was recently proposed to overcome these issues, but thorough benchmarking of EM-seq combined with cost-effective, reduced representation strategies has not yet been performed. To do so, we optimized Targeted Methylation Sequencing protocol (TMS)-which profiles ∼4 million CpG sites-for miniaturization, flexibility, and multispecies use at a cost of ∼$80. First, we tested modifications to increase throughput and reduce cost, including increasing multiplexing, decreasing DNA input, and using enzymatic rather than mechanical fragmentation to prepare DNA. Second, we compared our optimized TMS protocol to commonly used techniques, specifically the Infinium MethylationEPIC BeadChip (n=55 paired samples) and whole genome bisulfite sequencing (n=6 paired samples). In both cases, we found strong agreement between technologies (R² = 0.97 and 0.99, respectively). Third, we tested the optimized TMS protocol in three non-human primate species (rhesus macaques, geladas, and capuchins). We captured a high percentage (mean=77.1%) of targeted CpG sites and produced methylation level estimates that agreed with those generated from reduced representation bisulfite sequencing (R² = 0.98). Finally, we applied our protocol to profile age-associated DNA methylation variation in two subsistence-level populations-the Tsimane of lowland Bolivia and the Orang Asli of Peninsular Malaysia-and found age-methylation patterns that were strikingly similar to those reported in high income cohorts, despite known differences in age-health relationships between lifestyle contexts. Altogether, our optimized TMS protocol will enable cost-effective, population-scale studies of genome-wide DNA methylation levels across human and non-human primate species.
Collapse
|
17
|
Yi SV. Epigenetics Research in Evolutionary Biology: Perspectives on Timescales and Mechanisms. Mol Biol Evol 2024; 41:msae170. [PMID: 39235767 PMCID: PMC11376073 DOI: 10.1093/molbev/msae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024] Open
Abstract
Epigenetics research in evolutionary biology encompasses a variety of research areas, from regulation of gene expression to inheritance of environmentally mediated phenotypes. Such divergent research foci can occasionally render the umbrella term "epigenetics" ambiguous. Here I discuss several areas of contemporary epigenetics research in the context of evolutionary biology, aiming to provide balanced views across timescales and molecular mechanisms. The importance of epigenetics in development is now being assessed in many nonmodel species. These studies not only confirm the importance of epigenetic marks in developmental processes, but also highlight the significant diversity in epigenetic regulatory mechanisms across taxa. Further, these comparative epigenomic studies have begun to show promise toward enhancing our understanding of how regulatory programs evolve. A key property of epigenetic marks is that they can be inherited along mitotic cell lineages, and epigenetic differences that occur during early development can have lasting consequences on the organismal phenotypes. Thus, epigenetic marks may play roles in short-term (within an organism's lifetime or to the next generation) adaptation and phenotypic plasticity. However, the extent to which observed epigenetic variation occurs independently of genetic influences remains uncertain, due to the widespread impact of genetics on epigenetic variation and the limited availability of comprehensive (epi)genomic resources from most species. While epigenetic marks can be inherited independently of genetic sequences in some species, there is little evidence that such "transgenerational inheritance" is a general phenomenon. Rather, molecular mechanisms of epigenetic inheritance are highly variable between species.
Collapse
Affiliation(s)
- Soojin V Yi
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
18
|
Holuka C, Grova N, Charalambous EG, Le Cléac H J, Turner JD, Mposhi A. Transgenerational impacts of early life adversity: from health determinants, implications to epigenetic consequences. Neurosci Biobehav Rev 2024; 164:105785. [PMID: 38945418 DOI: 10.1016/j.neubiorev.2024.105785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/09/2024] [Accepted: 06/23/2024] [Indexed: 07/02/2024]
Abstract
Exposure to different environmental factors, social and socioeconomic factors promotes development of the early-life adversity (ELA) phenotype. The persistence of this phenotype across generations is an interesting phenomenon that remains unexplored. Of late many studies have focused on disease-associated outcomes of ELA following exposure during childhood but the persistence of epigenetic imprints transmitted by ELA exposed parents to their offspring remains poorly described. It is possible that both parents are able to transmit ELA-associated genetic imprints to their offspring via transgenerational inheritance mechanisms. Here, we highlight the role of the mother and father in the biological process of conception, from epigenetic reprogramming cycles to later environmental exposures. We explain some of the known determinants of ELA (pollution, socioeconomic challenges, infections, etc.) and their disease-associated outcomes. Finally, we highlight the role of epigenetics, mitochondria and ncRNAs as mechanisms mediating transgenerational inheritance. Whether these transgenerational inheritance mechanisms occur in the human context remains unclear but there is a large body of suggestive evidence in non-human models that points out to its existence.
Collapse
Affiliation(s)
- Cyrielle Holuka
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg; Faculty of Science, University of Luxembourg, Belval L-4365, Luxembourg
| | - Nathalie Grova
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg; UMR Inserm 1256 nGERE, Nutrition-Génétique et exposition aux risques environnementaux, Institute of Medical Research (Pôle BMS) - University of Lorraine, B.P. 184, Nancy 54511, France
| | - Eleftheria G Charalambous
- Department of Psychiatry and Psychotherapy, University Medecine Greifswald, Ellernholzstr. 1-2, Greifswald 17489, Germany; Department of Psychology, University of Cyprus, Nicosia 2109, Cyprus
| | - Jeanne Le Cléac H
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg; Faculty of Science, University of Luxembourg, Belval L-4365, Luxembourg
| | - Jonathan D Turner
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg.
| | - Archibold Mposhi
- Immune Endocrine Epigenetics Research Group, Department of Infection and Immunity, Luxembourg Institute of Health, Luxembourg
| |
Collapse
|
19
|
Hu P, Hao Y, Tang W, Diering GH, Zou F, Kafri T. Analysis of hepatic lentiviral vector transduction; implications for preclinical studies and clinical gene therapy protocols. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.20.608805. [PMID: 39229157 PMCID: PMC11370356 DOI: 10.1101/2024.08.20.608805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Lentiviral vector-transduced T-cells were approved by the FDA as gene therapy anti-cancer medications. Little is known about the host genetic variation effects on the safety and efficacy of the lentiviral vector gene delivery system. To narrow this knowledge-gap, we characterized hepatic gene delivery by lentiviral vectors across the Collaborative Cross (CC) mouse genetic reference population. For 24 weeks, we periodically measured hepatic luciferase expression from lentiviral vectors in 41 CC mouse strains. Hepatic and splenic vector copy numbers were determined. We report that CC mouse strains showed highly diverse outcomes following lentiviral gene delivery. For the first time, moderate correlation between mouse strain-specific sleeping patterns and transduction efficiency was observed. We associated two quantitative trait loci (QTLs) with intra-strain variations in transduction phenotypes, which mechanistically relates to the phenomenon of metastable epialleles. An additional QTL was associated with the kinetics of hepatic transgene expression. Genes comprised in the above QTLs are potential targets to personalize gene therapy protocols. Importantly, we identified two mouse strains that open new directions in characterizing continuous viral vector silencing and HIV latency. Our findings suggest that wide-range patient-specific outcomes of viral vector-based gene therapy should be expected. Thus, novel escalating dose-based clinical protocols should be considered.
Collapse
Affiliation(s)
- Peirong Hu
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Yajing Hao
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- These authors contributed equally
| | - Wei Tang
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Graham H. Diering
- Department of Cell Biology and Physiology and UNC Neuroscience Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Carolina Institute for developmental disabilities, 27510 Carrboro, North Carolina
| | - Fei Zou
- Department of Biostatistics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Genetics, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
| | - Tal Kafri
- Gene Therapy Center, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 27599 Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, 27599 Chapel Hill, North Carolina
| |
Collapse
|
20
|
Arivarasan VK, Diwakar D, Kamarudheen N, Loganathan K. Current approaches in CRISPR-Cas systems for diabetes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 210:95-125. [PMID: 39824586 DOI: 10.1016/bs.pmbts.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
In the face of advancements in health care and a shift towards healthy lifestyle, diabetes mellitus (DM) still presents as a global health challenge. This chapter explores recent advancements in the areas of genetic and molecular underpinnings of DM, addressing the revolutionary potential of CRISPR-based genome editing technologies. We delve into the multifaceted relationship between genes and molecular pathways contributing to both type1 and type 2 diabetes. We highlight the importance of how improved genetic screening and the identification of susceptibility genes are aiding in early diagnosis and risk stratification. The spotlight then shifts to CRISPR-Cas9, a robust genome editing tool capable of various applications including correcting mutations in type 1 diabetes, enhancing insulin production in T2D, modulating genes associated with metabolism of glucose and insulin sensitivity. Delivery methods for CRISPR to targeted tissues and cells are explored, including viral and non-viral vectors, alongside the exciting possibilities offered by nanocarriers. We conclude by discussing the challenges and ethical considerations surrounding CRISPR-based therapies for DM. These include potential off-target effects, ensuring long-term efficacy and safety, and navigating the ethical implications of human genome modification. This chapter offers a comprehensive perspective on how genetic and molecular insights, coupled with the transformative power of CRISPR, are paving the way for potential cures and novel therapeutic approaches for DM.
Collapse
Affiliation(s)
- Vishnu Kirthi Arivarasan
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Diksha Diwakar
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Neethu Kamarudheen
- The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | | |
Collapse
|
21
|
Diba Lahmidi M, Le Noc M, Dali O, Kernanec PY, Merret PE, Jaulin C, Smagulova F. Sex-specific transgenerational effects on murine thyroid gland imposed by ancestral exposure to neonicotinoid thiacloprid. Sci Rep 2024; 14:13047. [PMID: 38844538 PMCID: PMC11156953 DOI: 10.1038/s41598-024-63986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 06/04/2024] [Indexed: 06/09/2024] Open
Abstract
Neonicotinoids, a relatively new widely used class of insecticide is used in agriculture to control insect populations. We examined the capacity of ancestral exposure to the neonicotinoid thiacloprid (thia) to induce transgenerational effects on thyroid tissue. Pregnant outbred Swiss female mice were exposed to thia at embryonic days E6.5 to E15.5 using 0, 0.6, and 6 mg/kg/day doses. Thyroid paraffin sections were prepared for morphology analysis. We apply ELISA method to measure T4 and TSH levels, RT-qPCR for gene expression analysis, ChIP-qPCR techniques for sperm histone H3K4me3 analysis, and immunofluorescence microscopy and western blots for protein detection. We observed an alteration in the morphology of thyroids in both males and females in the F3 generation. We observed an increase in T4 hormone in F1 females and a significant T4 level decrease in F3 males. T4 changes in F1 females were associated with a TSH increase. We found that the amount of Iodothyronine Deiodinase 1 (DIO1) (an enzyme converting T4 to T3) was decreased in both F1 and F3 generations in female thyroids. GNAS protein which is important for thyroid function has increased in female thyroids. Gene expression analysis showed that the expression of genes encoding thyroid gland development, chromatin, biosynthesis and transport factors were affected in the thyroid gland in both sexes in F1 and F3. The analysis of sperm histone H3K4me3 showed that H3K4me3 occupancy at the Dio1 locus has decreased while Thyroglobulin (Tg) and Matrix Metallopeptidase 2 (Mmp2) genes have increased H3K4me3 occupancy in the sperm of F3 mice. Besides, DNA methylation analysis of our previously published datasets showed that, in the sperm of F1 and F3 thia-derived mice, several genes related to thyroid function show consistent alterations. Our data suggest that ancestral exposure to thiacloprid affects thyroid function not only in exposed but also in indirectly exposed F3 generation.
Collapse
Affiliation(s)
- Mariam Diba Lahmidi
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Morgane Le Noc
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Ouzna Dali
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Pierre-Yves Kernanec
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Pierre-Etienne Merret
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Christian Jaulin
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France
| | - Fatima Smagulova
- Université de Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, 35000, Rennes, France.
- Irset-Inserm UMR 1085, 9 Avenue du Prof. Léon Bernard, 35000, Rennes, France.
| |
Collapse
|
22
|
Balard A, Baltazar-Soares M, Eizaguirre C, Heckwolf MJ. An epigenetic toolbox for conservation biologists. Evol Appl 2024; 17:e13699. [PMID: 38832081 PMCID: PMC11146150 DOI: 10.1111/eva.13699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Ongoing climatic shifts and increasing anthropogenic pressures demand an efficient delineation of conservation units and accurate predictions of populations' resilience and adaptive potential. Molecular tools involving DNA sequencing are nowadays routinely used for these purposes. Yet, most of the existing tools focusing on sequence-level information have shortcomings in detecting signals of short-term ecological relevance. Epigenetic modifications carry valuable information to better link individuals, populations, and species to their environment. Here, we discuss a series of epigenetic monitoring tools that can be directly applied to various conservation contexts, complementing already existing molecular monitoring frameworks. Focusing on DNA sequence-based methods (e.g. DNA methylation, for which the applications are readily available), we demonstrate how (a) the identification of epi-biomarkers associated with age or infection can facilitate the determination of an individual's health status in wild populations; (b) whole epigenome analyses can identify signatures of selection linked to environmental conditions and facilitate estimating the adaptive potential of populations; and (c) epi-eDNA (epigenetic environmental DNA), an epigenetic-based conservation tool, presents a non-invasive sampling method to monitor biological information beyond the mere presence of individuals. Overall, our framework refines conservation strategies, ensuring a comprehensive understanding of species' adaptive potential and persistence on ecologically relevant timescales.
Collapse
Affiliation(s)
- Alice Balard
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | | | - Christophe Eizaguirre
- School of Biological and Behavioural Sciences Queen Mary University of London London UK
| | - Melanie J Heckwolf
- Department of Ecology Leibniz Centre for Tropical Marine Research Bremen Germany
| |
Collapse
|
23
|
Lin X, Yin J, Wang Y, Yao J, Li QQ, Latzel V, Bossdorf O, Zhang YY. Environment-induced heritable variations are common in Arabidopsis thaliana. Nat Commun 2024; 15:4615. [PMID: 38816460 PMCID: PMC11139905 DOI: 10.1038/s41467-024-49024-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/17/2024] [Indexed: 06/01/2024] Open
Abstract
Parental or ancestral environments can induce heritable phenotypic changes, but whether such environment-induced heritable changes are a common phenomenon remains unexplored. Here, we subject 14 genotypes of Arabidopsis thaliana to 10 different environmental treatments and observe phenotypic and genome-wide gene expression changes over four successive generations. We find that all treatments caused heritable phenotypic and gene expression changes, with a substantial proportion stably transmitted over all observed generations. Intriguingly, the susceptibility of a genotype to environmental inductions could be predicted based on the transposon abundance in the genome. Our study thus challenges the classic view that the environment only participates in the selection of heritable variation and suggests that the environment can play a significant role in generating of heritable variations.
Collapse
Affiliation(s)
- Xiaohe Lin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Junjie Yin
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Yifan Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Jing Yao
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Qingshun Q Li
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
- Biomedical Sciences, College of Dental Medicine, Western University of Health Sciences, Pomona, CA, USA
| | - Vit Latzel
- Institute of Botany of the CAS, Zamek 1, 252 43, Pruhonice, Czech Republic
| | - Oliver Bossdorf
- Institute of Evolution & Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
24
|
Mann MRW, Suzuki M, Keller Valsecchi CI. Editorial: In celebration of women in developmental epigenetics. Front Cell Dev Biol 2024; 12:1416081. [PMID: 38859963 PMCID: PMC11163029 DOI: 10.3389/fcell.2024.1416081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Affiliation(s)
- Mellissa R. W. Mann
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Masako Suzuki
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | | |
Collapse
|
25
|
Boyboy BAG, Ichiyanagi K. Insertion of short L1 sequences generates inter-strain histone acetylation differences in the mouse. Mob DNA 2024; 15:11. [PMID: 38730323 PMCID: PMC11084082 DOI: 10.1186/s13100-024-00321-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Gene expression divergence between populations and between individuals can emerge from genetic variations within the genes and/or in the cis regulatory elements. Since epigenetic modifications regulate gene expression, it is conceivable that epigenetic variations in cis regulatory elements can also be a source of gene expression divergence. RESULTS In this study, we compared histone acetylation (namely, H3K9ac) profiles in two mouse strains of different subspecies origin, C57BL/6 J (B6) and MSM/Ms (MSM), as well as their F1 hybrids. This identified 319 regions of strain-specific acetylation, about half of which were observed between the alleles of F1 hybrids. While the allele-specific presence of the interferon regulatory factor 3 (IRF3) binding sequence was associated with allele-specific histone acetylation, we also revealed that B6-specific insertions of a short 3' fragment of LINE-1 (L1) retrotransposon occur within or proximal to MSM-specific acetylated regions. Furthermore, even in hyperacetylated domains, flanking regions of non-polymorphic 3' L1 fragments were hypoacetylated, suggesting a general activity of the 3' L1 fragment to induce hypoacetylation. Indeed, we confirmed the binding of the 3' region of L1 by three Krüppel-associated box domain-containing zinc finger proteins (KZFPs), which interact with histone deacetylases. These results suggest that even a short insertion of L1 would be excluded from gene- and acetylation-rich regions by natural selection. Finally, mRNA-seq analysis for F1 hybrids was carried out, which disclosed a link between allele-specific promoter/enhancer acetylation and gene expression. CONCLUSIONS This study disclosed a number of genetic changes that have changed the histone acetylation levels during the evolution of mouse subspecies, a part of which is associated with gene expression changes. Insertions of even a very short L1 fragment can decrease the acetylation level in their neighboring regions and thereby have been counter-selected in gene-rich regions, which may explain a long-standing mystery of discrete genomic distribution of LINEs and SINEs.
Collapse
Affiliation(s)
- Beverly Ann G Boyboy
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
26
|
Stanton E, Sheridan S, Urata M, Chai Y. From Bedside to Bench and Back: Advancing Our Understanding of the Pathophysiology of Cleft Palate and Implications for the Future. Cleft Palate Craniofac J 2024; 61:759-773. [PMID: 36457208 DOI: 10.1177/10556656221142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE To provide a comprehensive understanding of the pathophysiology of cleft palate (CP) and future perspectives. DESIGN Literature review. SETTING Setting varied across studies by level of care and geographical locations. INTERVENTIONS No interventions were performed. MAIN OUTCOME MEASURE(S) Primary outcome measures were to summarize our current understanding of palatogenesis in humans and animal models, the pathophysiology of CP, and potential future treatment modalities. RESULTS Animal research has provided considerable insight into the pathophysiology, molecular and cellular mechanisms of CP that have allowed for the development of novel treatment strategies. However, much work has yet to be done to connect our mouse model investigations and discoveries to CP in humans. The success of innovative strategies for tissue regeneration in mice provides promise for an exciting new avenue for improved and more targeted management of cleft care with precision medicine in patients. However, significant barriers to clinical translation remain. Among the most notable challenges include the differences in some aspects of palatogenesis and tissue repair between mice and humans, suggesting that potential therapies that have worked in animal models may not provide similar benefits to humans. CONCLUSIONS Increased translation of pathophysiological and tissue regeneration studies to clinical trials will bridge a wide gap in knowledge between animal models and human disease. By enhancing interaction between basic scientists and clinicians, and employing our animal model findings of disease mechanisms in concert with what we glean in the clinic, we can generate a more targeted and improved treatment algorithm for patients with CP.
Collapse
Affiliation(s)
- Eloise Stanton
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Samuel Sheridan
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Mark Urata
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA, USA
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Harris JC, Trigg NA, Goshu B, Yokoyama Y, Dohnalová L, White EK, Harman A, Murga-Garrido SM, Ting-Chun Pan J, Bhanap P, Thaiss CA, Grice EA, Conine CC, Kambayashi T. The microbiota and T cells non-genetically modulate inherited phenotypes transgenerationally. Cell Rep 2024; 43:114029. [PMID: 38573852 PMCID: PMC11102039 DOI: 10.1016/j.celrep.2024.114029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/21/2024] [Accepted: 03/18/2024] [Indexed: 04/06/2024] Open
Abstract
The host-microbiota relationship has evolved to shape mammalian physiology, including immunity, metabolism, and development. Germ-free models are widely used to study microbial effects on host processes such as immunity. Here, we find that both germ-free and T cell-deficient mice exhibit a robust sebum secretion defect persisting across multiple generations despite microbial colonization and T cell repletion. These phenotypes are inherited by progeny conceived during in vitro fertilization using germ-free sperm and eggs, demonstrating that non-genetic information in the gametes is required for microbial-dependent phenotypic transmission. Accordingly, gene expression in early embryos derived from gametes from germ-free or T cell-deficient mice is strikingly and similarly altered. Our findings demonstrate that microbial- and immune-dependent regulation of non-genetic information in the gametes can transmit inherited phenotypes transgenerationally in mice. This mechanism could rapidly generate phenotypic diversity to enhance host adaptation to environmental perturbations.
Collapse
Affiliation(s)
- Jordan C Harris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Natalie A Trigg
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bruktawit Goshu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuichi Yokoyama
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lenka Dohnalová
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ellen K White
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adele Harman
- Transgenic Core, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sofía M Murga-Garrido
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jamie Ting-Chun Pan
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Preeti Bhanap
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christoph A Thaiss
- Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth A Grice
- Department of Dermatology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Colin C Conine
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Departments of Genetics and Pediatrics - Penn Epigenetics Institute, Institute of Regenerative Medicine, and Center for Research on Reproduction and Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Yeung-Luk BH, Wally A, Swaby C, Jauregui S, Lee E, Zhang R, Chen D, Luk SH, Upadya N, Tieng E, Wilmsen K, Sherman E, Sudhakar D, Luk M, Shrivastav AK, Cao S, Ghosh B, Christenson SA, Huang YJ, Ortega VE, Biswal S, Tang WY, Sidhaye VK. Epigenetic Reprogramming Drives Epithelial Disruption in Chronic Obstructive Pulmonary Disease. Am J Respir Cell Mol Biol 2024; 70:165-177. [PMID: 37976469 PMCID: PMC10914773 DOI: 10.1165/rcmb.2023-0147oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) remains a major public health challenge that contributes greatly to mortality and morbidity worldwide. Although it has long been recognized that the epithelium is altered in COPD, there has been little focus on targeting it to modify the disease course. Therefore, mechanisms that disrupt epithelial cell function in patients with COPD are poorly understood. In this study, we sought to determine whether epigenetic reprogramming of the cell-cell adhesion molecule E-cadherin, encoded by the CDH1 gene, disrupts epithelial integrity. By reducing these epigenetic marks, we can restore epithelial integrity and rescue alveolar airspace destruction. We used differentiated normal and COPD-derived primary human airway epithelial cells, genetically manipulated mouse tracheal epithelial cells, and mouse and human precision-cut lung slices to assess the effects of epigenetic reprogramming. We show that the loss of CDH1 in COPD is due to increased DNA methylation site at the CDH1 enhancer D through the downregulation of the ten-eleven translocase methylcytosine dioxygenase (TET) enzyme TET1. Increased DNA methylation at the enhancer D region decreases the enrichment of RNA polymerase II binding. Remarkably, treatment of human precision-cut slices derived from patients with COPD with the DNA demethylation agent 5-aza-2'-deoxycytidine decreased cell damage and reduced air space enlargement in the diseased tissue. Here, we present a novel mechanism that targets epigenetic modifications to reverse the tissue remodeling in human COPD lungs and serves as a proof of concept for developing a disease-modifying target.
Collapse
Affiliation(s)
| | - Ara Wally
- Department of Environmental Health and Engineering and
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Carter Swaby
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sofia Jauregui
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Esther Lee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Rachel Zhang
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Sean H Luk
- Department of Environmental Health and Engineering and
| | - Nisha Upadya
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Ethan Tieng
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Kai Wilmsen
- Department of Environmental Health and Engineering and
| | - Ethan Sherman
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Dheeksha Sudhakar
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Matthew Luk
- Department of Environmental Health and Engineering and
| | - Abhishek Kumar Shrivastav
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Shuo Cao
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | | | - Stephanie A Christenson
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Yvonne J Huang
- Department of Medicine, University of Michigan, Ann Arbor, Michigan; and
| | - Victor E Ortega
- Department of Pulmonary Medicine, Mayo Clinic, Phoenix, Arizona
| | - Shyam Biswal
- Department of Environmental Health and Engineering and
| | - Wan-Yee Tang
- Department of Environmental Health and Engineering and
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Venkataramana K Sidhaye
- Department of Environmental Health and Engineering and
- Department of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Lagarde CB, Kavalakatt J, Benz MC, Hawes ML, Arbogast CA, Cullen NM, McConnell EC, Rinderle C, Hebert KL, Khosla M, Belgodere JA, Hoang VT, Collins-Burow BM, Bunnell BA, Burow ME, Alahari SK. Obesity-associated epigenetic alterations and the obesity-breast cancer axis. Oncogene 2024; 43:763-775. [PMID: 38310162 DOI: 10.1038/s41388-024-02954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Both breast cancer and obesity can regulate epigenetic changes or be regulated by epigenetic changes. Due to the well-established link between obesity and an increased risk of developing breast cancer, understanding how obesity-mediated epigenetic changes affect breast cancer pathogenesis is critical. Researchers have described how obesity and breast cancer modulate the epigenome individually and synergistically. In this review, the epigenetic alterations that occur in obesity, including DNA methylation, histone, and chromatin modification, accelerated epigenetic age, carcinogenesis, metastasis, and tumor microenvironment modulation, are discussed. Delineating the relationship between obesity and epigenetic regulation is vital to furthering our understanding of breast cancer pathogenesis.
Collapse
Affiliation(s)
- Courtney B Lagarde
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Joachim Kavalakatt
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Megan C Benz
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Mackenzie L Hawes
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Carter A Arbogast
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Nicole M Cullen
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Emily C McConnell
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Caroline Rinderle
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Katherine L Hebert
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Maninder Khosla
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA
| | - Jorge A Belgodere
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Van T Hoang
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bridgette M Collins-Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Bruce A Bunnell
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, USA
| | - Matthew E Burow
- Department of Medicine, Section of Hematology and Oncology, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| | - Suresh K Alahari
- Department of Biochemistry and Molecular Biology, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
- Stanley S. Scott Cancer Center, LSU Health Science Center School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
31
|
Liu J, Zhong X. Epiallelic variation of non-coding RNA genes and their phenotypic consequences. Nat Commun 2024; 15:1375. [PMID: 38355746 PMCID: PMC10867003 DOI: 10.1038/s41467-024-45771-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
Epigenetic variations contribute greatly to the phenotypic plasticity and diversity. Current functional studies on epialleles have predominantly focused on protein-coding genes, leaving the epialleles of non-coding RNA (ncRNA) genes largely understudied. Here, we uncover abundant DNA methylation variations of ncRNA genes and their significant correlations with plant adaptation among 1001 natural Arabidopsis accessions. Through genome-wide association study (GWAS), we identify large numbers of methylation QTL (methylQTL) that are independent of known DNA methyltransferases and enriched in specific chromatin states. Proximal methylQTL closely located to ncRNA genes have a larger effect on DNA methylation than distal methylQTL. We ectopically tether a DNA methyltransferase MQ1v to miR157a by CRISPR-dCas9 and show de novo establishment of DNA methylation accompanied with decreased miR157a abundance and early flowering. These findings provide important insights into the genetic basis of epigenetic variations and highlight the contribution of epigenetic variations of ncRNA genes to plant phenotypes and diversity.
Collapse
Affiliation(s)
- Jie Liu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Xuehua Zhong
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
32
|
Dali O, D'Cruz S, Legoff L, Diba Lahmidi M, Heitz C, Merret PE, Kernanec PY, Pakdel F, Smagulova F. Transgenerational epigenetic effects imposed by neonicotinoid thiacloprid exposure. Life Sci Alliance 2024; 7:e202302237. [PMID: 37973188 PMCID: PMC10654101 DOI: 10.26508/lsa.202302237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023] Open
Abstract
Neonicotinoids are a widely used class of insecticides that are being applied in agricultural fields. We examined the capacity of a neonicotinoid, thiacloprid (thia), to induce transgenerational effects in male mice. Pregnant outbred Swiss female mice were exposed to thia at embryonic days E6.5-E15.5 using different doses. Testis sections were used for morphology analysis, ELISAs for testosterone level analysis, RT-qPCR and RNA-seq for gene expression analysis, MEDIP-seq and MEDIP-qPCR techniques for DNA methylation analysis, and Western blot for a protein analysis. The number of meiotic double-strand breaks and the number of incomplete synapsed chromosomes were higher in the thia 6-treated group of F3 males. Genome-wide analysis of DNA methylation in spermatozoa revealed that differentially methylated regions were found in all three generations at the promoters of germ cell reprogramming responsive genes and many superenhancers that are normally active in embryonic stem cells, testis, and brain. DNA methylation changes induced by thia exposure during embryonic period are preserved through several generations at important master regulator regions.
Collapse
Affiliation(s)
- Ouzna Dali
- University Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Shereen D'Cruz
- University Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Louis Legoff
- University Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Mariam Diba Lahmidi
- University Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Celine Heitz
- University Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Pierre-Etienne Merret
- University Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Pierre-Yves Kernanec
- University Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Farzad Pakdel
- University Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| | - Fatima Smagulova
- University Rennes, EHESP, Inserm, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, Rennes, France
| |
Collapse
|
33
|
El Hadad J, Schreiner P, Vavricka SR, Greuter T. The Genetics of Inflammatory Bowel Disease. Mol Diagn Ther 2024; 28:27-35. [PMID: 37847439 PMCID: PMC10787003 DOI: 10.1007/s40291-023-00678-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
The genetic background of inflammatory bowel disease, both Crohn's disease and ulcerative colitis, has been known for more than 2 decades. In the last 20 years, genome-wide association studies have dramatically increased our knowledge on the genetics of inflammatory bowel disease with more than 200 risk genes having been identified. Paralleling this increasing knowledge, the armamentarium of inflammatory bowel disease medications has been growing constantly. With more available therapeutic options, treatment decisions become more complex, with still many patients experiencing a debilitating disease course and a loss of response to treatment over time. With a better understanding of the disease, more effective personalized treatment strategies are looming on the horizon. Genotyping has long been considered a strategy for treatment decisions, such as the detection of thiopurine S-methyltransferase and nudix hydrolase 15 polymorphisms before the initiation of azathioprine. However, although many risk genes have been identified in inflammatory bowel disease, a substantial impact of genetic risk assessment on therapeutic strategies and disease outcome is still missing. In this review, we discuss the genetic background of inflammatory bowel disease, with a particular focus on the latest advances in the field and their potential impact on management decisions.
Collapse
Affiliation(s)
- Jasmina El Hadad
- Department of Internal Medicine, Triemli Hospital, Zurich, Switzerland
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Philipp Schreiner
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Stephan R Vavricka
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
- Center for Gastroenterology and Hepatology, Zurich, Switzerland
| | - Thomas Greuter
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland.
- Division of Gastroenterology and Hepatology, University Hospital Lausanne-CHUV, Lausanne, Switzerland.
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, GZO Zurich Regional Health Center, Spitalstrasse 66, 8620, Wetzikon, Switzerland.
| |
Collapse
|
34
|
Braz CU, Passamonti MM, Khatib H. Characterization of genomic regions escaping epigenetic reprogramming in sheep. ENVIRONMENTAL EPIGENETICS 2023; 10:dvad010. [PMID: 38496251 PMCID: PMC10944287 DOI: 10.1093/eep/dvad010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/04/2023] [Accepted: 12/15/2023] [Indexed: 03/19/2024]
Abstract
The mammalian genome undergoes two global epigenetic reprogramming events during the establishment of primordial germ cells and in the pre-implantation embryo after fertilization. These events involve the erasure and re-establishment of DNA methylation marks. However, imprinted genes and transposable elements (TEs) maintain their DNA methylation signatures to ensure normal embryonic development and genome stability. Despite extensive research in mice and humans, there is limited knowledge regarding environmentally induced epigenetic marks that escape epigenetic reprogramming in other species. Therefore, the objective of this study was to examine the characteristics and locations of genomic regions that evade epigenetic reprogramming in sheep, as well as to explore the biological functions of the genes within these regions. In a previous study, we identified 107 transgenerationally inherited differentially methylated cytosines (DMCs) in the F1 and F2 generations in response to a paternal methionine-supplemented diet. These DMCs were found in TEs, non-repetitive regions, and imprinted and non-imprinted genes. Our findings suggest that genomic regions, rather than TEs and imprinted genes, have the propensity to escape reprogramming and serve as potential candidates for transgenerational epigenetic inheritance. Notably, 34 transgenerational methylated genes influenced by paternal nutrition escaped reprogramming, impacting growth, development, male fertility, cardiac disorders, and neurodevelopment. Intriguingly, among these genes, 21 have been associated with neural development and brain disorders, such as autism, schizophrenia, bipolar disease, and intellectual disability. This suggests a potential genetic overlap between brain and infertility disorders. Overall, our study supports the concept of transgenerational epigenetic inheritance of environmentally induced marks in mammals.
Collapse
Affiliation(s)
- Camila U Braz
- Department of Animal Sciences, University of Illinois Urbana–Champaign, Urbana, IL 61801, USA
| | - Matilde Maria Passamonti
- Department of Animal Science, Food and Nutrition, Universit’a Cattolica del Sacro Cuore, Piacenza, 29122, Italy
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
35
|
Flint J, Heffel MG, Chen Z, Mefford J, Marcus E, Chen PB, Ernst J, Luo C. Single-cell methylation analysis of brain tissue prioritizes mutations that alter transcription. CELL GENOMICS 2023; 3:100454. [PMID: 38116123 PMCID: PMC10726494 DOI: 10.1016/j.xgen.2023.100454] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/08/2023] [Accepted: 11/06/2023] [Indexed: 12/21/2023]
Abstract
Relating genetic variants to behavior remains a fundamental challenge. To assess the utility of DNA methylation marks in discovering causative variants, we examined their relationship to genetic variation by generating single-nucleus methylomes from the hippocampus of eight inbred mouse strains. At CpG sequence densities under 40 CpG/Kb, cells compensate for loss of methylated sites by methylating additional sites to maintain methylation levels. At higher CpG sequence densities, the exact location of a methylated site becomes more important, suggesting that variants affecting methylation will have a greater effect when occurring in higher CpG densities than in lower. We found this to be true for a variant's effect on transcript abundance, indicating that candidate variants can be prioritized based on CpG sequence density. Our findings imply that DNA methylation influences the likelihood that mutations occur at specific sites in the genome, supporting the view that the distribution of mutations is not random.
Collapse
Affiliation(s)
- Jonathan Flint
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| | - Matthew G Heffel
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Zeyuan Chen
- Department of Computer Science, Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Joel Mefford
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Emilie Marcus
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Patrick B Chen
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Ernst
- Department of Computer Science, Samueli School of Engineering, University of California Los Angeles, Los Angeles, CA, USA; Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Chongyuan Luo
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
36
|
Kretschmer M, Fischer V, Gapp K. When Dad's Stress Gets under Kid's Skin-Impacts of Stress on Germline Cargo and Embryonic Development. Biomolecules 2023; 13:1750. [PMID: 38136621 PMCID: PMC10742275 DOI: 10.3390/biom13121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple lines of evidence suggest that paternal psychological stress contributes to an increased prevalence of neuropsychiatric and metabolic diseases in the progeny. While altered paternal care certainly plays a role in such transmitted disease risk, molecular factors in the germline might additionally be at play in humans. This is supported by findings on changes to the molecular make up of germ cells and suggests an epigenetic component in transmission. Several rodent studies demonstrate the correlation between paternal stress induced changes in epigenetic modifications and offspring phenotypic alterations, yet some intriguing cases also start to show mechanistic links in between sperm and the early embryo. In this review, we summarise efforts to understand the mechanism of intergenerational transmission from sperm to the early embryo. In particular, we highlight how stress alters epigenetic modifications in sperm and discuss the potential for these modifications to propagate modified molecular trajectories in the early embryo to give rise to aberrant phenotypes in adult offspring.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
37
|
de Carvalho CF, Slate J, Villoutreix R, Soria-Carrasco V, Riesch R, Feder JL, Gompert Z, Nosil P. DNA methylation differences between stick insect ecotypes. Mol Ecol 2023; 32:6809-6823. [PMID: 37864542 DOI: 10.1111/mec.17165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Epigenetic mechanisms, such as DNA methylation, can influence gene regulation and affect phenotypic variation, raising the possibility that they contribute to ecological adaptation. Beginning to address this issue requires high-resolution sequencing studies of natural populations to pinpoint epigenetic regions of potential ecological and evolutionary significance. However, such studies are still relatively uncommon, especially in insects, and are mainly restricted to a few model organisms. Here, we characterize patterns of DNA methylation for natural populations of Timema cristinae adapted to two host plant species (i.e. ecotypes). By integrating results from sequencing of whole transcriptomes, genomes and methylomes, we investigate whether environmental, host and genetic differences of these stick insects are associated with methylation levels of cytosine nucleotides in the CpG context. We report an overall genome-wide methylation level for T. cristinae of ~14%, with methylation being enriched in gene bodies and impoverished in repetitive elements. Genome-wide DNA methylation variation was strongly positively correlated with genetic distance (relatedness), but also exhibited significant host-plant effects. Using methylome-environment association analysis, we pinpointed specific genomic regions that are differentially methylated between ecotypes, with these regions being enriched for genes with functions in membrane processes. The observed association between methylation variation and genetic relatedness, and with the ecologically important variable of host plant, suggests a potential role for epigenetic modification in T. cristinae adaptation. To substantiate such adaptive significance, future studies could test whether methylation can be transmitted across generations and the extent to which it responds to experimental manipulation in field and laboratory studies.
Collapse
Affiliation(s)
| | - Jon Slate
- School of Biosciences, University of Sheffield, Sheffield, UK
| | | | | | - Rüdiger Riesch
- University of Montpellier, CEFE, CNRS, EPHE, IRD, Montpellier, France
- Department of Biological Sciences, Centre for Ecology, Evolution and Behaviour, Royal Holloway University of London, Egham, UK
| | - Jeffrey L Feder
- Department of Biology, Notre Dame University, South Bend, Indiana, USA
| | | | - Patrik Nosil
- School of Biosciences, University of Sheffield, Sheffield, UK
- University of Montpellier, CEFE, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
38
|
Crisóstomo L, Oliveira PF, Alves MG. A systematic scientometric review of paternal inheritance of acquired metabolic traits. BMC Biol 2023; 21:255. [PMID: 37953286 PMCID: PMC10641967 DOI: 10.1186/s12915-023-01744-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND The concept of the inheritance of acquired traits, a foundational principle of Lamarck's evolutionary theory, has garnered renewed attention in recent years. Evidence for this phenomenon remained limited for decades but gained prominence with the Överkalix cohort study in 2002. This study revealed a link between cardiovascular disease incidence and the food availability experienced by individuals' grandparents during their slow growth periods, reigniting interest in the inheritance of acquired traits, particularly in the context of non-communicable diseases. This scientometric analysis and systematic review comprehensively explores the current landscape of paternally transmitted acquired metabolic traits. RESULTS Utilizing Scopus Advanced search and meticulous screening, we included mammalian studies that document the inheritance or modification of metabolic traits in subsequent generations of unexposed descendants. Our inclusive criteria encompass intergenerational and transgenerational studies, as well as multigenerational exposures. Predominantly, this field has been driven by a select group of researchers, potentially shaping the design and focus of existing studies. Consequently, the literature primarily comprises transgenerational rodent investigations into the effects of ancestral exposure to environmental pollutants on sperm DNA methylation. The complexity and volume of data often lead to multiple or redundant publications. This practice, while understandable, may obscure the true extent of the impact of ancestral exposures on the health of non-exposed descendants. In addition to DNA methylation, studies have illuminated the role of sperm RNAs and histone marks in paternally acquired metabolic disorders, expanding our understanding of the mechanisms underlying epigenetic inheritance. CONCLUSIONS This review serves as a comprehensive resource, shedding light on the current state of research in this critical area of science, and underscores the need for continued exploration to uncover the full spectrum of paternally mediated metabolic inheritance.
Collapse
Affiliation(s)
- Luís Crisóstomo
- Departmento de Anatomia, UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Pedro F Oliveira
- LAQV-REQUIMTE and Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - Marco G Alves
- Departmento de Anatomia, UMIB - Unidade Multidisciplinar de Investigação Biomédica, ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Laboratory for Integrative and Translational Research in Population Health (ITR), University of Porto, Porto, Portugal.
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain.
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain.
- Institute of Biomedicine - iBiMED and Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
39
|
Ross SE, Vázquez-Marín J, Gert KRB, González-Rajal Á, Dinger ME, Pauli A, Martínez-Morales JR, Bogdanovic O. Evolutionary conservation of embryonic DNA methylome remodelling in distantly related teleost species. Nucleic Acids Res 2023; 51:9658-9671. [PMID: 37615576 PMCID: PMC10570028 DOI: 10.1093/nar/gkad695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Methylation of cytosines in the CG context (mCG) is the most abundant DNA modification in vertebrates that plays crucial roles in cellular differentiation and identity. After fertilization, DNA methylation patterns inherited from parental gametes are remodelled into a state compatible with embryogenesis. In mammals, this is achieved through the global erasure and re-establishment of DNA methylation patterns. However, in non-mammalian vertebrates like zebrafish, no global erasure has been observed. To investigate the evolutionary conservation and divergence of DNA methylation remodelling in teleosts, we generated base resolution DNA methylome datasets of developing medaka and medaka-zebrafish hybrid embryos. In contrast to previous reports, we show that medaka display comparable DNA methylome dynamics to zebrafish with high gametic mCG levels (sperm: ∼90%; egg: ∼75%), and adoption of a paternal-like methylome during early embryogenesis, with no signs of prior DNA methylation erasure. We also demonstrate that non-canonical DNA methylation (mCH) reprogramming at TGCT tandem repeats is a conserved feature of teleost embryogenesis. Lastly, we find remarkable evolutionary conservation of DNA methylation remodelling patterns in medaka-zebrafish hybrids, indicative of compatible DNA methylation maintenance machinery in far-related teleost species. Overall, these results suggest strong evolutionary conservation of DNA methylation remodelling pathways in teleosts, which is distinct from the global DNA methylome erasure and reestablishment observed in mammals.
Collapse
Affiliation(s)
- Samuel E Ross
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Javier Vázquez-Marín
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Krista R B Gert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Álvaro González-Rajal
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Juan Ramon Martínez-Morales
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
40
|
Lawson HA, Liang Y, Wang T. Transposable elements in mammalian chromatin organization. Nat Rev Genet 2023; 24:712-723. [PMID: 37286742 DOI: 10.1038/s41576-023-00609-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/09/2023]
Abstract
Transposable elements (TEs) are mobile DNA elements that comprise almost 50% of mammalian genomic sequence. TEs are capable of making additional copies of themselves that integrate into new positions in host genomes. This unique property has had an important impact on mammalian genome evolution and on the regulation of gene expression because TE-derived sequences can function as cis-regulatory elements such as enhancers, promoters and silencers. Now, advances in our ability to identify and characterize TEs have revealed that TE-derived sequences also regulate gene expression by both maintaining and shaping 3D genome architecture. Studies are revealing how TEs contribute raw sequence that can give rise to the structures that shape chromatin organization, and thus gene expression, allowing for species-specific genome innovation and evolutionary novelty.
Collapse
Affiliation(s)
- Heather A Lawson
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA.
| | - Yonghao Liang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, Saint Louis, MO, USA.
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, Saint Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
41
|
Koseki H, Sharif J. Editorial overview: Epigenetic inheritance: A shortcut to environmental adaptation? Curr Opin Genet Dev 2023; 82:102094. [PMID: 37579622 DOI: 10.1016/j.gde.2023.102094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Affiliation(s)
- Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan; Department of Molecular and Cellular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
42
|
Panzeri I, Fagnocchi L, Apostle S, Tompkins M, Wolfrum E, Madaj Z, Hostetter G, Liu Y, Schaefer K, Chih-Hsiang Y, Bergsma A, Drougard A, Dror E, PERMUTE, Chandler D, Schramek D, Triche TJ, Pospisilik JA. Developmental priming of cancer susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557446. [PMID: 37745326 PMCID: PMC10515831 DOI: 10.1101/2023.09.12.557446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
DNA mutations are necessary drivers of cancer, yet only a small subset of mutated cells go on to cause the disease. To date, the mechanisms that determine which rare subset of cells transform and initiate tumorigenesis remain unclear. Here, we take advantage of a unique model of intrinsic developmental heterogeneity (Trim28+/D9) and demonstrate that stochastic early life epigenetic variation can trigger distinct cancer-susceptibility 'states' in adulthood. We show that these developmentally primed states are characterized by differential methylation patterns at typically silenced heterochromatin, and that these epigenetic signatures are detectable as early as 10 days of age. The differentially methylated loci are enriched for genes with known oncogenic potential. These same genes are frequently mutated in human cancers, and their dysregulation correlates with poor prognosis. These results provide proof-of-concept that intrinsic developmental heterogeneity can prime individual, life-long cancer risk.
Collapse
Affiliation(s)
- Ilaria Panzeri
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Luca Fagnocchi
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Stefanos Apostle
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Megan Tompkins
- Vivarium and Transgenics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Emily Wolfrum
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Galen Hostetter
- Pathology and Biorepository Core, Van Andel Institute, Grand Rapids, MI, USA
| | - Yanqing Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Kristen Schaefer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Genetics and Genome Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Yang Chih-Hsiang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA USA
| | - Alexis Bergsma
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Parkinson’s Disease Center, Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Anne Drougard
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Erez Dror
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - Daniel Schramek
- Centre for Molecular and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Timothy J. Triche
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
| | - J. Andrew Pospisilik
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, USA
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
43
|
Moore DS. Polygenic scores ignore development and epigenetics, dramatically reducing their value. Behav Brain Sci 2023; 46:e220. [PMID: 37695006 DOI: 10.1017/s0140525x22002473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Polygenic scores cannot elucidate the mechanisms that produce behavioral phenotypes (including "intelligence"). Therefore, they are unlikely to yield helpful interventions. Moreover, they are poor predictors of individuals' developmental outcomes. Burt's critique is well-supported by the details of molecular biology. Specifically, experiences affect epigenetic factors that influence phenotypes via how the genome functions, a fact that lends support to Burt's conclusions.
Collapse
Affiliation(s)
- David S Moore
- Psychology Field Group, Pitzer College, Claremont, CA, ; http://pzacad.pitzer.edu/~dmoore/
| |
Collapse
|
44
|
Orton SM, Millis K, Choate P. Epigenetics of Trauma Transmission and Fetal Alcohol Spectrum Disorder: What Does the Evidence Support? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6706. [PMID: 37681846 PMCID: PMC10487479 DOI: 10.3390/ijerph20176706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Fetal alcohol spectrum disorder (FASD) results from teratogenic impacts of alcohol consumption during pregnancy. Trauma and prenatal alcohol exposure (PAE) can both cause neurodevelopmental impairment, and it has been proposed that FASD can amplify effects of trauma. Certain PAE and trauma effects are mediated via epigenetic mechanisms. The objective of this review is to present the current evidence for epigenetics in trauma transmission as it relates to FASD, to help bridge a potential knowledge gap for social workers and related health professionals. We include a primer on epigenetic mechanisms and inheritance, followed by a summary of the current biomedical evidence supporting intergenerational and transgenerational epigenetic transmission of trauma, its relevance to FASD, the intersection with social transmission, and finally the application to social work. We propose potential models of transmission, considering where social and epigenetic pathways may intersect and/or compound across generations. Overall, we aim to provide a better understanding of epigenetic-trauma transmission for its application to health professions, in particular which beliefs are (and are not) evidence-based. We discuss the lack of research and challenges of studying epigenetic transmission in humans and identify the need for public health interventions and best practices that are based on the current evidence.
Collapse
Affiliation(s)
- Sarah M. Orton
- Faculty of Science and Technology, Department of Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| | - Kimberly Millis
- Faculty of Science and Technology, Department of Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| | - Peter Choate
- Faculty of Health, Community & Education, Department of Child Studies and Social Work, Mount Royal University, Calgary, AB T3E 6K6, Canada;
| |
Collapse
|
45
|
Elkin J, Martin A, Courtier-Orgogozo V, Santos ME. Analysis of the genetic loci of pigment pattern evolution in vertebrates. Biol Rev Camb Philos Soc 2023; 98:1250-1277. [PMID: 37017088 DOI: 10.1111/brv.12952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/08/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Vertebrate pigmentation patterns are amongst the best characterised model systems for studying the genetic basis of adaptive evolution. The wealth of available data on the genetic basis for pigmentation evolution allows for analysis of trends and quantitative testing of evolutionary hypotheses. We employed Gephebase, a database of genetic variants associated with natural and domesticated trait variation, to examine trends in how cis-regulatory and coding mutations contribute to vertebrate pigmentation phenotypes, as well as factors that favour one mutation type over the other. We found that studies with lower ascertainment bias identified higher proportions of cis-regulatory mutations, and that cis-regulatory mutations were more common amongst animals harbouring a higher number of pigment cell classes. We classified pigmentation traits firstly according to their physiological basis and secondly according to whether they affect colour or pattern, and identified that carotenoid-based pigmentation and variation in pattern boundaries are preferentially associated with cis-regulatory change. We also classified genes according to their developmental, cellular, and molecular functions. We found a greater proportion of cis-regulatory mutations in genes implicated in upstream developmental processes compared to those involved in downstream cellular functions, and that ligands were associated with a higher proportion of cis-regulatory mutations than their respective receptors. Based on these trends, we discuss future directions for research in vertebrate pigmentation evolution.
Collapse
Affiliation(s)
- Joel Elkin
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, 800 22nd St. NW, Suite 6000, Washington, DC, 20052, USA
| | | | - M Emília Santos
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, CB2 3EJ, UK
| |
Collapse
|
46
|
Liu ZW, Liu J, Liu F, Zhong X. Depositing centromere repeats induces heritable intragenic heterochromatin establishment and spreading in Arabidopsis. Nucleic Acids Res 2023; 51:6039-6054. [PMID: 37094065 PMCID: PMC10325890 DOI: 10.1093/nar/gkad306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 04/26/2023] Open
Abstract
Stable transmission of non-DNA-sequence-based epigenetic information contributes to heritable phenotypic variants and thus to biological diversity. While studies on spontaneous natural epigenome variants have revealed an association of epialleles with a wide range of biological traits in both plants and animals, the function, transmission mechanism, and stability of an epiallele over generations in a locus-specific manner remain poorly investigated. Here, we invented a DNA sequence deposition strategy to generate a locus-specific epiallele by depositing CEN180 satellite repeats into a euchromatic target locus in Arabidopsis. Using CRISPR/Cas9-mediated knock-in system, we demonstrated that depositing CEN180 repeats can induce heterochromatin nucleation accompanied by DNA methylation, H3K9me2, and changes in the nucleosome occupancy at the insertion sites. Interestingly, both DNA methylation and H3K9me2 are restricted within the depositing sites and depletion of an H3K9me2 demethylase IBM1 enables the outward heterochromatin propagation into the neighboring regions, leading to inheritable target gene silencing to persist for at least five generations. Together, these results demonstrate the promise of employing a cis-engineering system for the creation of stable and site-specific epialleles and provide important insights into functional epigenome studies and locus-specific transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Zhang-Wei Liu
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jie Liu
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Xuehua Zhong
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
47
|
Sainty R, Silver MJ, Prentice AM, Monk D. The influence of early environment and micronutrient availability on developmental epigenetic programming: lessons from the placenta. Front Cell Dev Biol 2023; 11:1212199. [PMID: 37484911 PMCID: PMC10358779 DOI: 10.3389/fcell.2023.1212199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023] Open
Abstract
DNA methylation is the most commonly studied epigenetic mark in humans, as it is well recognised as a stable, heritable mark that can affect genome function and influence gene expression. Somatic DNA methylation patterns that can persist throughout life are established shortly after fertilisation when the majority of epigenetic marks, including DNA methylation, are erased from the pre-implantation embryo. Therefore, the period around conception is potentially critical for influencing DNA methylation, including methylation at imprinted alleles and metastable epialleles (MEs), loci where methylation varies between individuals but is correlated across tissues. Exposures before and during conception can affect pregnancy outcomes and health throughout life. Retrospective studies of the survivors of famines, such as those exposed to the Dutch Hunger Winter of 1944-45, have linked exposures around conception to later disease outcomes, some of which correlate with DNA methylation changes at certain genes. Animal models have shown more directly that DNA methylation can be affected by dietary supplements that act as cofactors in one-carbon metabolism, and in humans, methylation at birth has been associated with peri-conceptional micronutrient supplementation. However, directly showing a role of micronutrients in shaping the epigenome has proven difficult. Recently, the placenta, a tissue with a unique hypomethylated methylome, has been shown to possess great inter-individual variability, which we highlight as a promising target tissue for studying MEs and mixed environmental exposures. The placenta has a critical role shaping the health of the fetus. Placenta-associated pregnancy complications, such as preeclampsia and intrauterine growth restriction, are all associated with aberrant patterns of DNA methylation and expression which are only now being linked to disease risk later in life.
Collapse
Affiliation(s)
- Rebecca Sainty
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Matt J. Silver
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew M. Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - David Monk
- Biomedical Research Centre, School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
48
|
Enriquez-Gasca R, Gould PA, Tunbak H, Conde L, Herrero J, Chittka A, Beck CR, Gifford R, Rowe HM. Co-option of endogenous retroviruses through genetic escape from TRIM28 repression. Cell Rep 2023; 42:112625. [PMID: 37294634 PMCID: PMC11980785 DOI: 10.1016/j.celrep.2023.112625] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 04/04/2023] [Accepted: 05/23/2023] [Indexed: 06/11/2023] Open
Abstract
Endogenous retroviruses (ERVs) have rewired host gene networks. To explore the origins of co-option, we employed an active murine ERV, IAPEz, and an embryonic stem cell (ESC) to neural progenitor cell (NPC) differentiation model. Transcriptional silencing via TRIM28 maps to a 190 bp sequence encoding the intracisternal A-type particle (IAP) signal peptide, which confers retrotransposition activity. A subset of "escapee" IAPs (∼15%) exhibits significant genetic divergence from this sequence. Canonical repressed IAPs succumb to a previously undocumented demarcation by H3K9me3 and H3K27me3 in NPCs. Escapee IAPs, in contrast, evade repression in both cell types, resulting in their transcriptional derepression, particularly in NPCs. We validate the enhancer function of a 47 bp sequence within the U3 region of the long terminal repeat (LTR) and show that escapee IAPs convey an activating effect on nearby neural genes. In sum, co-opted ERVs stem from genetic escapees that have lost vital sequences required for both TRIM28 restriction and autonomous retrotransposition.
Collapse
Affiliation(s)
- Rocio Enriquez-Gasca
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| | - Poppy A Gould
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Hale Tunbak
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Lucia Conde
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6DD, UK
| | - Javier Herrero
- Bill Lyons Informatics Centre, UCL Cancer Institute, London WC1E 6DD, UK
| | - Alexandra Chittka
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | - Christine R Beck
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, The Jackson Laboratory for Genomic Medicine, Connecticut, JAX CT, Farmington, CT 06032, USA
| | - Robert Gifford
- MRC-University of Glasgow Centre for Virus Research, Glasgow G611QH, UK
| | - Helen M Rowe
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK.
| |
Collapse
|
49
|
Galbraith JD, Hayward A. The influence of transposable elements on animal colouration. Trends Genet 2023:S0168-9525(23)00091-4. [PMID: 37183153 DOI: 10.1016/j.tig.2023.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/16/2023]
Abstract
Transposable elements (TEs) are mobile genetic sequences present within host genomes. TEs can contribute to the evolution of host traits, since transposition is mutagenic and TEs often contain host regulatory and protein coding sequences. We review cases where TEs influence animal colouration, reporting major patterns and outstanding questions. TE-induced colouration phenotypes typically arise via introduction of novel regulatory sequences and splice sites, affecting pigment cell development or pigment synthesis. We discuss if particular TE types may be more frequently involved in the evolution of colour variation in animals, given that examples involving long terminal repeat (LTR) elements appear to dominate. Currently, examples of TE-induced colouration phenotypes in animals mainly concern model and domesticated insect and mammal species. However, several influential recent examples, coupled with increases in genome sequencing, suggest cases reported from wild species will increase considerably.
Collapse
Affiliation(s)
- James D Galbraith
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| | - Alexander Hayward
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK.
| |
Collapse
|
50
|
Ferraj A, Audano PA, Balachandran P, Czechanski A, Flores JI, Radecki AA, Mosur V, Gordon DS, Walawalkar IA, Eichler EE, Reinholdt LG, Beck CR. Resolution of structural variation in diverse mouse genomes reveals chromatin remodeling due to transposable elements. CELL GENOMICS 2023; 3:100291. [PMID: 37228752 PMCID: PMC10203049 DOI: 10.1016/j.xgen.2023.100291] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 05/25/2023]
Abstract
Diverse inbred mouse strains are important biomedical research models, yet genome characterization of many strains is fundamentally lacking in comparison with humans. In particular, catalogs of structural variants (SVs) (variants ≥ 50 bp) are incomplete, limiting the discovery of causative alleles for phenotypic variation. Here, we resolve genome-wide SVs in 20 genetically distinct inbred mice with long-read sequencing. We report 413,758 site-specific SVs affecting 13% (356 Mbp) of the mouse reference assembly, including 510 previously unannotated coding variants. We substantially improve the Mus musculus transposable element (TE) callset, and we find that TEs comprise 39% of SVs and account for 75% of altered bases. We further utilize this callset to investigate how TE heterogeneity affects mouse embryonic stem cells and find multiple TE classes that influence chromatin accessibility. Our work provides a comprehensive analysis of SVs found in diverse mouse genomes and illustrates the role of TEs in epigenetic differences.
Collapse
Affiliation(s)
- Ardian Ferraj
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Peter A. Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | | | | | - Jacob I. Flores
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Alexander A. Radecki
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Varun Mosur
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - David S. Gordon
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Isha A. Walawalkar
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Evan E. Eichler
- Howard Hughes Medical Institute and Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | - Christine R. Beck
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06032, USA
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|