1
|
Vázquez R, Briers Y. What's in a Name? An Overview of the Proliferating Nomenclature in the Field of Phage Lysins. Cells 2023; 12:2016. [PMID: 37566095 PMCID: PMC10417350 DOI: 10.3390/cells12152016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023] Open
Abstract
In the last few years, the volume of research produced on phage lysins has grown spectacularly due to the interest in using them as alternative antimicrobials. As a result, a plethora of naming customs has sprouted among the different research groups devoted to them. While the naming diversity accounts for the vitality of the topic, on too many occasions it also creates some confusion and lack of comparability between different works. This article aims at clarifying the ambiguities found among names referring to phage lysins. We do so by tackling the naming customs historically, framing their original adoption, and employing a semantic classification to facilitate their discussion. We propose a periodization of phage lysin research that begins at the discovery era, in the early 20th century, enriches with a strong molecular biology period, and grows into a current time of markedly applied research. During these different periods, names referring to the general concepts surrounding lysins have been created and adopted, as well as other more specific terms related to their structure and function or, finally, names that have been coined for the antimicrobial application and engineering of phage lysins. Thus, this article means to serve as an invitation to the global lysin community to take action and discuss a widely supported, standardized nomenclature.
Collapse
Affiliation(s)
- Roberto Vázquez
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| | - Yves Briers
- Laboratory of Applied Biotechnology, Department of Biotechnology, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
2
|
Feiss M, Young R, Ramsey J, Adhya S, Georgopoulos C, Hendrix RW, Hatfull GF, Gilcrease EB, Casjens SR. Hybrid Vigor: Importance of Hybrid λ Phages in Early Insights in Molecular Biology. Microbiol Mol Biol Rev 2022; 86:e0012421. [PMID: 36165780 PMCID: PMC9799177 DOI: 10.1128/mmbr.00124-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Laboratory-generated hybrids between phage λ and related phages played a seminal role in establishment of the λ model system, which, in turn, served to develop many of the foundational concepts of molecular biology, including gene structure and control. Important λ hybrids with phages 21 and 434 were the earliest of such phages. To understand the biology of these hybrids in full detail, we determined the complete genome sequences of phages 21 and 434. Although both genomes are canonical members of the λ-like phage family, they both carry unsuspected bacterial virulence gene types not previously described in this group of phages. In addition, we determined the sequences of the hybrid phages λ imm21, λ imm434, and λ h434 imm21. These sequences show that the replacements of λ DNA by nonhomologous segments of 21 or 434 DNA occurred through homologous recombination in adjacent sequences that are nearly identical in the parental phages. These five genome sequences correct a number of errors in published sequence fragments of the 21 and 434 genomes, and they point out nine nucleotide differences from Sanger's original λ sequence that are likely present in most extant λ strains in laboratory use today. We discuss the historical importance of these hybrid phages in the development of fundamental tenets of molecular biology and in some of the earliest gene cloning vectors. The 434 and 21 genomes reinforce the conclusion that the genomes of essentially all natural λ-like phages are mosaics of sequence modules from a pool of exchangeable segments.
Collapse
Affiliation(s)
- Michael Feiss
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ryland Young
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Jolene Ramsey
- Center for Phage Technology, Texas A&M AgriLife Research, College Station, Texas, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA
| | - Sankar Adhya
- Laboratory of Molecular Biology, Center for Cancer Research, The National Cancer Institute, Bethesda, Maryland, USA
| | - Costa Georgopoulos
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Roger W. Hendrix
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Pittsburgh Bacteriophage Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eddie B. Gilcrease
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Sherwood R. Casjens
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, Utah, USA
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
3
|
Boyd BM, Chevignon G, Patel V, Oliver KM, Strand MR. Evolutionary genomics of APSE: a tailed phage that lysogenically converts the bacterium Hamiltonella defensa into a heritable protective symbiont of aphids. Virol J 2021; 18:219. [PMID: 34758862 PMCID: PMC8579659 DOI: 10.1186/s12985-021-01685-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Background Most phages infect free-living bacteria but a few have been identified that infect heritable symbionts of insects or other eukaryotes. Heritable symbionts are usually specialized and isolated from other bacteria with little known about the origins of associated phages. Hamiltonella defensa is a heritable bacterial symbiont of aphids that is usually infected by a tailed, double-stranded DNA phage named APSE. Methods We conducted comparative genomic and phylogenetic studies to determine how APSE is related to other phages and prophages. Results Each APSE genome was organized into four modules and two predicted functional units. Gene content and order were near-fully conserved in modules 1 and 2, which encode predicted DNA metabolism genes, and module 4, which encodes predicted virion assembly genes. Gene content of module 3, which contains predicted toxin, holin and lysozyme genes differed among haplotypes. Comparisons to other sequenced phages suggested APSE genomes are mosaics with modules 1 and 2 sharing similarities with Bordetella-Bcep-Xylostella fastidiosa-like podoviruses, module 4 sharing similarities with P22-like podoviruses, and module 3 sharing no similarities with known phages. Comparisons to other sequenced bacterial genomes identified APSE-like elements in other heritable insect symbionts (Arsenophonus spp.) and enteric bacteria in the family Morganellaceae. Conclusions APSEs are most closely related to phage elements in the genus Arsenophonus and other bacteria in the Morganellaceae. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-021-01685-y.
Collapse
Affiliation(s)
- Bret M Boyd
- Department of Entomology, University of Georgia Athens, Athens, GA, USA. .,Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA.
| | - Germain Chevignon
- Laboratoire de Génétique et Pathologie des Mollusques Marins, IFREMER, La Tremblade, France
| | - Vilas Patel
- Department of Entomology, University of Georgia Athens, Athens, GA, USA
| | - Kerry M Oliver
- Department of Entomology, University of Georgia Athens, Athens, GA, USA
| | - Michael R Strand
- Department of Entomology, University of Georgia Athens, Athens, GA, USA.
| |
Collapse
|
4
|
Dragoš A, Priyadarshini B, Hasan Z, Strube ML, Kempen PJ, Maróti G, Kaspar C, Bose B, Burton BM, Bischofs IB, Kovács ÁT. Pervasive prophage recombination occurs during evolution of spore-forming Bacilli. ISME JOURNAL 2020; 15:1344-1358. [PMID: 33343000 DOI: 10.1038/s41396-020-00854-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 11/12/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Phages are the main source of within-species bacterial diversity and drivers of horizontal gene transfer, but we know little about the mechanisms that drive genetic diversity of these mobile genetic elements (MGEs). Recently, we showed that a sporulation selection regime promotes evolutionary changes within SPβ prophage of Bacillus subtilis, leading to direct antagonistic interactions within the population. Herein, we reveal that under a sporulation selection regime, SPβ recombines with low copy number phi3Ts phage DNA present within the B. subtilis population. Recombination results in a new prophage occupying a different integration site, as well as the spontaneous release of virulent phage hybrids. Analysis of Bacillus sp. strains suggests that SPβ and phi3T belong to a distinct cluster of unusually large phages inserted into sporulation-related genes that are equipped with a spore-related genetic arsenal. Comparison of Bacillus sp. genomes indicates that similar diversification of SPβ-like phages takes place in nature. Our work is a stepping stone toward empirical studies on phage evolution, and understanding the eco-evolutionary relationships between bacteria and their phages. By capturing the first steps of new phage evolution, we reveal striking relationship between survival strategy of bacteria and evolution of their phages.
Collapse
Affiliation(s)
- Anna Dragoš
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - B Priyadarshini
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Zahraa Hasan
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Mikael Lenz Strube
- Bacterial Ecophysiology and Biotechnology Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Paul J Kempen
- Department of Health Technology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Szeged, H-6701, Hungary
| | - Charlotte Kaspar
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | | | - Briana M Burton
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Ilka B Bischofs
- BioQuant Center of the University of Heidelberg, 69120, Heidelberg, Germany.,Max-Planck-Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Ákos T Kovács
- Bacterial Interactions and Evolution Group, Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
5
|
Gratia JP. Genetic recombinational events in prokaryotes and their viruses: insight into the study of evolution and biodiversity. Antonie van Leeuwenhoek 2017; 110:1493-1514. [DOI: 10.1007/s10482-017-0916-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/20/2017] [Indexed: 01/21/2023]
|
6
|
Flores V, Sepúlveda-Robles O, Cazares A, Kameyama L, Guarneros G. Comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25 reveals a novel siphovirus group related to phages infecting hosts of different taxonomic classes. Arch Virol 2017; 162:2345-2355. [PMID: 28462462 DOI: 10.1007/s00705-017-3366-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/12/2017] [Indexed: 12/20/2022]
Abstract
Bacteriophages (phages) are estimated to be the most abundant and diverse entities in the biosphere harboring vast amounts of novel genetic information. Despite the genetic diversity observed, many phages share common features, such as virion morphology, genome size and organization, and can readily be associated with clearly defined phage groups. However, other phages display unique genomes or, alternatively, mosaic genomes composed of regions that share homology with those of phages of diverse origins; thus, their relationships cannot be easily assessed. In this work, we present a functional and comparative genomic analysis of Pseudomonas aeruginosa phage PaMx25, a virulent member of the Siphoviridae family. The genomes of PaMx25 and a highly homologous phage NP1, bore sequence homology and synteny with the genomes of phages that infect hosts different than Pseudomonas. In order to understand the relationship of the PaMx25 genome with that of other phages, we employed several computational approaches. We found that PaMx25 and NP1 effectively bridged several phage groups. It is expected that as more phage genomes become available, more gaps will be filled, blurring the boundaries that currently separate phage groups.
Collapse
Affiliation(s)
- Víctor Flores
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Omar Sepúlveda-Robles
- Catedrático CONACyT - Coordinación de Investigación en Salud, Instituto Mexicano del Seguro Social (IMSS), Centro Médico Nacional Siglo XXI, Mexico City, Mexico
| | - Adrián Cazares
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Luis Kameyama
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico
| | - Gabriel Guarneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City, Mexico.
| |
Collapse
|
7
|
Oliveira H, Pinto G, Oliveira A, Noben JP, Hendrix H, Lavigne R, Łobocka M, Kropinski AM, Azeredo J. Characterization and genomic analyses of two newly isolated Morganella phages define distant members among Tevenvirinae and Autographivirinae subfamilies. Sci Rep 2017; 7:46157. [PMID: 28387353 PMCID: PMC5384007 DOI: 10.1038/srep46157] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/09/2017] [Indexed: 11/09/2022] Open
Abstract
Morganella morganii is a common but frequent neglected environmental opportunistic pathogen which can cause deadly nosocomial infections. The increased number of multidrug-resistant M. morganii isolates motivates the search for alternative and effective antibacterials. We have isolated two novel obligatorily lytic M. morganii bacteriophages (vB_MmoM_MP1, vB_MmoP_MP2) and characterized them with respect to specificity, morphology, genome organization and phylogenetic relationships. MP1's dsDNA genome consists of 163,095 bp and encodes 271 proteins, exhibiting low DNA (<40%) and protein (<70%) homology to other members of the Tevenvirinae. Its unique property is a >10 kb chromosomal inversion that encompass the baseplate assembly and head outer capsid synthesis genes when compared to other T-even bacteriophages. MP2 has a dsDNA molecule with 39,394 bp and encodes 55 proteins, presenting significant genomic (70%) and proteomic identity (86%) but only to Morganella bacteriophage MmP1. MP1 and MP2 are then novel members of Tevenvirinae and Autographivirinae, respectively, but differ significantly from other tailed bacteriophages of these subfamilies to warrant proposing new genera. Both bacteriophages together could propagate in 23 of 27 M. morganii clinical isolates of different origin and antibiotic resistance profiles, making them suitable for further studies on a development of bacteriophage cocktail for potential therapeutic applications.
Collapse
Affiliation(s)
- Hugo Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Graça Pinto
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Ana Oliveira
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Diepenbeek 3590, Belgium
| | - Hanne Hendrix
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, B-3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, B-3001 Leuven, Belgium
| | - Małgorzata Łobocka
- Department of Microbial Biochemistry, Institute of Biochemistry and Biophysics of the Polish Academy of Sciences, Warsaw, Poland.,Autonomous Department of Microbial Biology, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Andrew M Kropinski
- Departments of Food Science; Molecular and Cellular Biology; and, Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
8
|
Casjens SR, Grose JH. Contributions of P2- and P22-like prophages to understanding the enormous diversity and abundance of tailed bacteriophages. Virology 2016; 496:255-276. [PMID: 27372181 DOI: 10.1016/j.virol.2016.05.022] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 11/24/2022]
Abstract
We identified 9371 tailed phage prophages of 20 known types in reported complete genome sequences of 3298 bacteria in the Salmonella genus. These include 4758 P2 type and 744 P22 type prophages. The latter prophage types were found in the genome sequences of 127 and 24 bacterial host genera, increasing the known host ranges of phages in these groups by 114 and 20 genera, respectively. These prophage nucleotide sequences displayed much more diversity than was previously known from the 48 P2 and 24 P22 type authentic phages whose genomes have been sequenced. More detailed analysis of these prophage sequences indicated that major capsid protein (MCP) gene exchange between tailed phage clusters or types is extremely rare and that P22 prophage-encoded tailspikes correspond perfectly with their hosts' surface polysaccharide structure; thus, MCP and tailspike sequences accurately predict tailed phage type (and thus lifestyle) and host cell surface polysaccharide structure, respectively.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, University of Utah, Salt Lake City, UT 84112, United States; Department of Biology, University of Utah, Salt Lake City, UT 84112, United States.
| | - Julianne H Grose
- Microbiology and Molecular Biology Department, Brigham Young University, Provo, UT 84602, United States.
| |
Collapse
|
9
|
Ackermann HW. The lambda - P22 problem. BACTERIOPHAGE 2015; 5:e1017084. [PMID: 26442187 DOI: 10.1080/21597081.2015.1017084] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/02/2015] [Accepted: 02/03/2015] [Indexed: 10/23/2022]
Abstract
Lambda and P22 are members of 2 families of tailed phages and have limited genomic relationships. Both form hybrids with many phages. P22 appears as a hybrid of mixed ancestry. Despite their similarities, lambda and P22 and their relatives form 2 distinct lineages and must be classified separately.
Collapse
Affiliation(s)
- Hans-W Ackermann
- Department of Microbiology-Infectiology and Immunology; Medical School; Laval University ; Quebec, QC Canada
| |
Collapse
|
10
|
Mondal A, Chattopadhyaya R, Datta AB, Parrack P. Crystallization and X-ray analysis of the transcription-activator protein C1 of bacteriophage P22 in complex with the PRE promoter element. Acta Crystallogr F Struct Biol Commun 2015; 71:1286-91. [PMID: 26457520 PMCID: PMC4601593 DOI: 10.1107/s2053230x15015708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/21/2015] [Indexed: 11/10/2022] Open
Abstract
The transcription-activator protein C1 of the temperate phage P22 of Salmonella typhimurium plays a key role in the lytic versus lysogenic switch of the phage. A homotetramer of 92-residue polypeptides, C1 binds to an approximate direct repeat similar to the transcription activator CII of coliphage λ. Despite this and several other similarities, including 57% sequence identity to coliphage CII, many biochemical observations on P22 C1 cannot be explained based on the structure of CII. To understand the molecular basis of these differences, C1 was overexpressed and purified and subjected to crystallization trials. Although no successful hits were obtained for the apoprotein, crystals could be obtained when the protein was subjected to crystallization trials in complex with a 23-mer promoter DNA fragment (PRE). These crystals diffracted very well at the home source, allowing the collection of a 2.2 Å resolution data set. The C1-DNA crystals belonged to space group P21, with unit-cell parameters a = 87.27, b = 93.58, c = 111.16 Å, β = 94.51°. Solvent-content analysis suggests that the asymmetric unit contains three tetramer-DNA complexes. The three-dimensional structure is expected to shed light on the mechanism of activation by C1 and the molecular basis of its specificity.
Collapse
Affiliation(s)
- Avisek Mondal
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VIIM, Kolkata 700 054, India
| | | | - Ajit Bikram Datta
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VIIM, Kolkata 700 054, India
| | - Pradeep Parrack
- Department of Biochemistry, Bose Institute, P-1/12, CIT Scheme VIIM, Kolkata 700 054, India
| |
Collapse
|
11
|
Comparative genomic and morphological analyses of Listeria phages isolated from farm environments. Appl Environ Microbiol 2015; 80:4616-25. [PMID: 24837381 DOI: 10.1128/aem.00720-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The genus Listeria is ubiquitous in the environment and includes the globally important food-borne pathogen Listeria monocytogenes. While the genomic diversity of Listeria has been well studied, considerably less is known about the genomic and morphological diversity of Listeria bacteriophages. In this study, we sequenced and analyzed the genomes of 14 Listeria phages isolated mostly from New York dairy farm environments as well as one related Enterococcus faecalis phage to obtain information on genome characteristics and diversity. We also examined 12 of the phages by electron microscopy to characterize their morphology. These Listeria phages, based on gene orthology and morphology, together with previously sequenced Listeria phages could be classified into five orthoclusters, including one novel orthocluster. One orthocluster (orthocluster I) consists of large genome (~135-kb) myoviruses belonging to the genus “Twort-like viruses,” three orthoclusters (orthoclusters II to IV) contain small-genome (36- to 43-kb) siphoviruses with icosahedral heads, and the novel orthocluster V contains medium-sized-genome (~66-kb) siphoviruses with elongated heads. A novel orthocluster (orthocluster VI) of E. faecalis phages, with medium-sized genomes (~56 kb), was identified, which grouped together and shares morphological features with the novel Listeria phage orthocluster V. This new group of phages (i.e., orthoclusters V and VI) is composed of putative lytic phages that may prove to be useful in phage-based applications for biocontrol, detection, and therapeutic purposes.
Collapse
|
12
|
Conservation of gene cassettes among diverse viruses of the human gut. PLoS One 2012; 7:e42342. [PMID: 22900013 PMCID: PMC3416800 DOI: 10.1371/journal.pone.0042342] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/03/2012] [Indexed: 01/13/2023] Open
Abstract
Viruses are a crucial component of the human microbiome, but large population sizes, high sequence diversity, and high frequencies of novel genes have hindered genomic analysis by high-throughput sequencing. Here we investigate approaches to metagenomic assembly to probe genome structure in a sample of 5.6 Gb of gut viral DNA sequence from six individuals. Tests showed that a new pipeline based on DeBruijn graph assembly yielded longer contigs that were able to recruit more reads than the equivalent non-optimized, single-pass approach. To characterize gene content, the database of viral RefSeq proteins was compared to the assembled viral contigs, generating a bipartite graph with functional cassettes linking together viral contigs, which revealed a high degree of connectivity between diverse genomes involving multiple genes of the same functional class. In a second step, open reading frames were grouped by their co-occurrence on contigs in a database-independent manner, revealing conserved cassettes of co-oriented ORFs. These methods reveal that free-living bacteriophages, while usually dissimilar at the nucleotide level, often have significant similarity at the level of encoded amino acid motifs, gene order, and gene orientation. These findings thus connect contemporary metagenomic analysis with classical studies of bacteriophage genomic cassettes. Software is available at https://sourceforge.net/projects/optitdba/.
Collapse
|
13
|
Casjens SR, Thuman-Commike PA. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 2011; 411:393-415. [PMID: 21310457 DOI: 10.1016/j.virol.2010.12.046] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Revised: 12/20/2010] [Accepted: 12/23/2010] [Indexed: 01/06/2023]
Abstract
The mosaic composition of the genomes of dsDNA tailed bacteriophages (Caudovirales) is well known. Observations of this mosaicism have generally come from comparisons of small numbers of often rather distantly related phages, and little is known about the frequency or detailed nature of the processes that generate this kind of diversity. Here we review and examine the mosaicism within fifty-seven clusters of virion assembly genes from bacteriophage P22 and its "close" relatives. We compare these orthologous gene clusters, discuss their surprising diversity and document horizontal exchange of genetic information between subgroups of the P22-like phages as well as between these phages and other phage types. We also point out apparent restrictions in the locations of mosaic sequence boundaries in this gene cluster. The relatively large sample size and the fact that phage P22 virion structure and assembly are exceptionally well understood make the conclusions especially informative and convincing.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| | | |
Collapse
|
14
|
Casjens SR. Diversity among the tailed-bacteriophages that infect the Enterobacteriaceae. Res Microbiol 2008; 159:340-8. [PMID: 18550341 PMCID: PMC2607141 DOI: 10.1016/j.resmic.2008.04.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/14/2008] [Indexed: 11/23/2022]
Abstract
Complete genome sequences have been determined for 73 tailed-phages that infect members of the bacterial Enterobacteriaceae family. Biological criteria such as genome size, gene organization and gene orientation were used to place these phages into categories. There are 13 such categories, some of which are themselves extremely diverse. The relationships between and within these categories are discussed with an emphasis on the head assembly genes. Although some of them are clearly homologues, suggesting a very ancient origin, there is little evidence for exchange of individual head genes between these phage categories. More recent horizontal exchange of phage tail fiber and early proteins between the categories occurs, but is probably not extremely rapid.
Collapse
Affiliation(s)
- Sherwood R Casjens
- Department of Pathology, Room 5200K EEJMRB, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
15
|
Breitbart M, Rohwer F. Here a virus, there a virus, everywhere the same virus? Trends Microbiol 2005; 13:278-84. [PMID: 15936660 DOI: 10.1016/j.tim.2005.04.003] [Citation(s) in RCA: 514] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 04/12/2005] [Accepted: 04/21/2005] [Indexed: 11/21/2022]
Abstract
There are an estimated 10(31) viruses on Earth, most of which are phages that infect bacteria. Metagenomic analyses have shown that environmental viral communities are incredibly diverse. There are an estimated 5000 viral genotypes in 200 liters of seawater and possibly a million different viral genotypes in one kilogram of marine sediment. By contrast, some culturing and molecular studies have found that viruses move between different biomes. Together, these findings suggest that viral diversity could be high on a local scale but relatively limited globally. Also, by moving between environments, viruses can facilitate horizontal gene transfer.
Collapse
Affiliation(s)
- Mya Breitbart
- Biology Department, LS301, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182 USA
| | | |
Collapse
|
16
|
Rakonjac J, O'Toole PW, Lubbers M. Isolation of lactococcal prolate phage-phage recombinants by an enrichment strategy reveals two novel host range determinants. J Bacteriol 2005; 187:3110-21. [PMID: 15838038 PMCID: PMC1082804 DOI: 10.1128/jb.187.9.3110-3121.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Virulent lactococcal prolate (or c2-like) phages are the second most common phage group that causes fermentation failure in the dairy industry. We have mapped two host range determinants in two lactococcal prolate phages, c2 and 923, for the host strains MG1363 and 112. Each phage replicates on only one of the two host strains: c2 on MG1363 and 923 on 112. Phage-phage recombinants that replicated on both strains were isolated by a new method that does not require direct selection but rather employs an enrichment protocol. After initial mixed infection of strain 112, two rotations, the first of which was carried out on strain MG1363 and the second on 112, permitted continuous amplification of double-plating recombinants while rendering one of the parent phages unamplified in each of the two rotations. Mapping of the recombination endpoints showed that the presence of the N-terminal two-thirds of the tail protein L10 of phage c2 and a 1,562-bp cosR-terminal fragment of phage 923 genome overcame blocks of infection in strains MG1363 and 112, respectively. Both infection inhibition mechanisms act at the stage of DNA entry; in strain MG1363, the infection block acts early, before phage DNA enters the cytoplasm, and in strain 112, it acts late, after most of the DNA has entered the cell but before it undergoes cos-end ligation. These are the first reported host range determinants in bacteriophage of lactic acid bacteria required for overcoming inhibition of infection at the stage of DNA entry and cos-end ligation.
Collapse
Affiliation(s)
- Jasna Rakonjac
- Institute of Molecular BioSciences, Massey University, Private Bag 11-222, Palmerston North, New Zealand.
| | | | | |
Collapse
|
17
|
Abstract
The study of the bacteriophage lambda has been critical to the discipline of molecular biology. It was the source of key discoveries in the mechanisms of, among other processes, gene regulation, recombination, and transcription initiation and termination. We trace here the events surrounding these findings and draw on the recollections of the participants. We show how a particular atmosphere of interactions among creative scientists yielded spectacular insights into how living things work.
Collapse
Affiliation(s)
- Max E Gottesman
- Institute of Cancer Research, Columbia University, New York, NY 10032, USA.
| | | |
Collapse
|
18
|
Affiliation(s)
- David Botstein
- Lewis-Sigler Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
19
|
Affiliation(s)
- Daniel Nelson
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, 1230 York Ave., New York, NY 10021, USA.
| |
Collapse
|
20
|
|
21
|
Dunham MJ, Badrane H, Ferea T, Adams J, Brown PO, Rosenzweig F, Botstein D. Characteristic genome rearrangements in experimental evolution of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 2002; 99:16144-9. [PMID: 12446845 PMCID: PMC138579 DOI: 10.1073/pnas.242624799] [Citation(s) in RCA: 423] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome rearrangements, especially amplifications and deletions, have regularly been observed as responses to sustained application of the same strong selective pressure in microbial populations growing in continuous culture. We studied eight strains of budding yeast (Saccharomyces cerevisiae) isolated after 100-500 generations of growth in glucose-limited chemostats. Changes in DNA copy number were assessed at single-gene resolution by using DNA microarray-based comparative genomic hybridization. Six of these evolved strains were aneuploid as the result of gross chromosomal rearrangements. Most of the aneuploid regions were the result of translocations, including three instances of a shared breakpoint on chromosome 14 immediately adjacent to CIT1, which encodes the citrate synthase that performs a key regulated step in the tricarboxylic acid cycle. Three strains had amplifications in a region of chromosome 4 that includes the high-affinity hexose transporters; one of these also had the aforementioned chromosome 14 break. Three strains had extensive overlapping deletions of the right arm of chromosome 15. Further analysis showed that each of these genome rearrangements was bounded by transposon-related sequences at the breakpoints. The observation of repeated, independent, but nevertheless very similar, chromosomal rearrangements in response to persistent selection of growing cells parallels the genome rearrangements that characteristically accompany tumor progression.
Collapse
Affiliation(s)
- Maitreya J Dunham
- Department of Genetics, and Howard Hughes Medical Institute and Department of Biochemistry, Stanford University Medical School, Stanford, CA 94305, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Rohwer F, Edwards R. The Phage Proteomic Tree: a genome-based taxonomy for phage. J Bacteriol 2002; 184:4529-35. [PMID: 12142423 PMCID: PMC135240 DOI: 10.1128/jb.184.16.4529-4535.2002] [Citation(s) in RCA: 395] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Accepted: 05/06/2002] [Indexed: 11/20/2022] Open
Abstract
There are approximately 10(31) phage in the biosphere, making them the most abundant biological entities on the planet. Despite their great numbers and ubiquitous presence, very little is known about phage biodiversity, biogeography, or phylogeny. Information is limited, in part, because the current ICTV taxonomical system is based on culturing phage and measuring physical parameters of the free virion. No sequence-based taxonomic systems have previously been established for phage. We present here the "Phage Proteomic Tree," which is based on the overall similarity of 105 completely sequenced phage genomes. The Phage Proteomic Tree places phage relative to both their near neighbors and all other phage included in the analysis. This method groups phage into taxa that predicts several aspects of phage biology and highlights genetic markers that can be used for monitoring phage biodiversity. We propose that the Phage Proteomic Tree be used as the basis of a genome-based taxonomical system for phage.
Collapse
Affiliation(s)
- Forest Rohwer
- Department of Biology, San Diego State University, San Diego, California 92182-4614, USA
| | | |
Collapse
|
23
|
Hambly E, Tétart F, Desplats C, Wilson WH, Krisch HM, Mann NH. A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc Natl Acad Sci U S A 2001; 98:11411-6. [PMID: 11553768 PMCID: PMC58743 DOI: 10.1073/pnas.191174498] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequence analysis of a 10-kb region of the genome of the marine cyanomyovirus S-PM2 reveals a homology to coliphage T4 that extends as a contiguous block from gene (g)18 to g23. The order of the S-PM2 genes in this region is similar to that of T4, but there are insertions and deletions of small ORFs of unknown function. In T4, g18 codes for the tail sheath, g19, the tail tube, g20, the head portal protein, g21, the prohead core protein, g22, a scaffolding protein, and g23, the major capsid protein. Thus, the entire module that determines the structural components of the phage head and contractile tail is conserved between T4 and this cyanophage. The significant differences in the morphology of these phages must reflect the considerable divergence of the amino acid sequence of their homologous virion proteins, which uniformly exceeds 50%. We suggest that their enormous diversity in the sea could be a result of genetic shuffling between disparate phages mediated by such commonly shared modules. These conserved sequences could facilitate genetic exchange by providing partially homologous substrates for recombination between otherwise divergent phage genomes. Such a mechanism would thus expand the pool of phage genes accessible by recombination to all those phages that share common modules.
Collapse
Affiliation(s)
- E Hambly
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom
| | | | | | | | | | | |
Collapse
|
24
|
Clark AJ, Inwood W, Cloutier T, Dhillon TS. Nucleotide sequence of coliphage HK620 and the evolution of lambdoid phages. J Mol Biol 2001; 311:657-79. [PMID: 11518522 DOI: 10.1006/jmbi.2001.4868] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HK620 is a temperate lambdoid bacteriophage that adsorbs to the O-antigen of its host, Escherichia coli H. The genome of a temperature-sensitive clear-plaque mutant consists of 38,297 nucleotides in which we recognize 60 open reading frames (orfs). Eighteen of these lie in a region of the genome that we call the virion structure domain. The other 42 orfs lie in what we call the metabolic domain. Virions of HK620 resemble those of phage P22. The virion structural orfs encode three kinds of putative proteins relative to the virion proteins of P22: (1) those that are nearly (about 90 %) identical; (2) those that are weakly (about 30 %) identical; and (3) those composed of nearly and weakly identical segments. We hypothesize that these composite proteins form bridges between the virion proteins of the other two kinds. Three of the putative virion proteins that are only weakly identical to P22 proteins are 71, 60 and 79 % identical to proteins encoded by the phage APSE-1, whose virions also resemble those of P22. Because the hosts of APSE-1 and HK620 have been separated from each other by an estimated 200 My, we propose using the amino acid differences that have accumulated in these proteins to estimate a biological clock for temperate lambdoid phages. The putative transcriptional regulatory gene circuitry of HK620 seems to resemble that of phage lambda. Integration, on the other hand, resembles that of satellite phage P4 in that the attP sequence lies between the leftward promoter and int rather than downstream of int. Comparing the metabolic domains of several lambdoid phage genomes reveals seven short conserved sequences roughly defining boundaries of functional modules. We propose that these boundary sequences are foci of genetic recombination that serve to assort the modules and make the metabolic domain highly mosaic genetically.
Collapse
Affiliation(s)
- A J Clark
- Department of Molecular and Cell Biology, Division of Life Sciences, MS74-157, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
25
|
Mosig G, Gewin J, Luder A, Colowick N, Vo D. Two recombination-dependent DNA replication pathways of bacteriophage T4, and their roles in mutagenesis and horizontal gene transfer. Proc Natl Acad Sci U S A 2001; 98:8306-11. [PMID: 11459968 PMCID: PMC37436 DOI: 10.1073/pnas.131007398] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two major pathways of recombination-dependent DNA replication, "join-copy" and "join-cut-copy," can be distinguished in phage T4: join-copy requires only early and middle genes, but two late proteins, endonuclease VII and terminase, are uniquely important in the join-cut-copy pathway. In wild-type T4, timing of these pathways is integrated with the developmental program and related to transcription and packaging of DNA. In primase mutants, which are defective in origin-dependent lagging-strand DNA synthesis, the late pathway can bypass the lack of primers for lagging-strand DNA synthesis. The exquisitely regulated synthesis of endo VII, and of two proteins from its gene, explains the delay of recombination-dependent DNA replication in primase (as well as topoisomerase) mutants, and the temperature-dependence of the delay. Other proteins (e.g., the single-stranded DNA binding protein and the products of genes 46 and 47) are important in all recombination pathways, but they interact differently with other proteins in different pathways. These homologous recombination pathways contribute to evolution because they facilitate acquisition of any foreign DNA with limited sequence homology during horizontal gene transfer, without requiring transposition or site-specific recombination functions. Partial heteroduplex repair can generate what appears to be multiple mutations from a single recombinational intermediate. The resulting sequence divergence generates barriers to formation of viable recombinants. The multiple sequence changes can also lead to erroneous estimates in phylogenetic analyses.
Collapse
Affiliation(s)
- G Mosig
- Department of Molecular Biology, Vanderbilt University, Nashville, TN 37235, USA.
| | | | | | | | | |
Collapse
|
26
|
Fattah KR, Mizutani S, Fattah FJ, Matsushiro A, Sugino Y. A comparative study of the immunity region of lambdoid phages including Shiga-toxin-converting phages: molecular basis for cross immunity. Genes Genet Syst 2000; 75:223-32. [PMID: 11245215 DOI: 10.1266/ggs.75.223] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Comparison of eight lambdoid phages, including three Shiga-toxin converting phages, has been carried out with respect to the immunity region, especially the recognition helices of their repressor and CRO proteins on the one hand, and operator sequences on the other. Some as yet unassigned components of the regulatory circuits have been inferred by computer search. The cross immunity phenomenon shown by phages VT2-Sa and lambda is explained on the basis of similarity in their sequences. In addition, the similarity of 933W and HK022 in the sequences of their recognition helices of repressor and CRO, on the one hand, and operators, on the other, has led us to predict that they will have identical or similar immunity specificity. This homology has enabled us also to locate the OL (and consequently PL) of phage 933W that has been thought to be non-existent.
Collapse
Affiliation(s)
- K R Fattah
- Laboratory of Molecular Biology, Kansai Medical University, Hirakata, Osaka, Japan
| | | | | | | | | |
Collapse
|
27
|
Huang C, Wolfgang MC, Withey J, Koomey M, Friedman DI. Charged tmRNA but not tmRNA-mediated proteolysis is essential for Neisseria gonorrhoeae viability. EMBO J 2000; 19:1098-107. [PMID: 10698950 PMCID: PMC305648 DOI: 10.1093/emboj/19.5.1098] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
tmRNA, through its tRNA and mRNA properties, adds short peptide tags to abnormal proteins, targeting these proteins for proteolytic degradation. Although the conservation of tmRNA throughout the bacterial kingdom suggests that it must provide a strong selective advantage, it has not been shown to be essential for any bacterium. We report that tmRNA is essential in Neisseria gonorrhoeae. Although tagging per se appears to be required for gonococcal viability, tagging for proteolysis does not. This suggests that the essential roles of tmRNA in N.gonorrhoeae may include resolving stalled translation complexes and/or preventing depletion of free ribosomes. Although derivatives of N.gonorrhoeae expressing Escherichia coli tmRNA as their sole tmRNA were isolated, they appear to form colonies only after acquiring an extragenic suppressor(s).
Collapse
Affiliation(s)
- C Huang
- Graduate Program in Cellular and Molecular Biology, Medical School, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | |
Collapse
|
28
|
Abstract
Experimental dissection of bacterial genomes requires a well-developed set of genetic tools, but many bacteria lack the essential tools required for genetic analysis. Recombination of a region of chromosomal DNA from poorly characterized donor bacteria with the chromosome of a suitable surrogate host creates a genetically malleable hybrid, providing a short-cut for the detailed genetic analysis of the substituted genes. However, recombination between closely related but nonidentical DNA sequences ("homeologous recombination") is strongly inhibited, posing a powerful barrier to gene exchange between bacteria and a major impediment to the construction of genetic hybrids. By taking advantage of mutS and recD mutant recipients, it is possible to effectively overcome the recombination barrier, allowing construction of genetic hybrids in a related surrogate host. Once stably recombined into the recipient chromosome, the donor DNA can be studied with all the genetic tools available in the surrogate host. In addition to facilitating standard genetic analysis, use of a surrogate host can provide novel approaches to study the physiological roles of unique genes from poorly characterized bacteria.
Collapse
Affiliation(s)
- S Maloy
- Department of Microbiology, University of Illinois, B103 Chemical and Life Sciences Laboratory, 601 South Goodwin Avenue, Urbana, Illinois 61801, USA.
| | | |
Collapse
|
29
|
Tétart F, Desplats C, Krisch HM. Genome plasticity in the distal tail fiber locus of the T-even bacteriophage: recombination between conserved motifs swaps adhesin specificity. J Mol Biol 1998; 282:543-56. [PMID: 9737921 DOI: 10.1006/jmbi.1998.2047] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adsorption specificity of the T-even phages is determined by the protein sequence near the tip of the long tail fibers. These adhesin sequences are highly variable in both their sequence and specificity for bacterial receptors. The tail fiber adhesin domains are located in different genes in closely related phages of the T-even type. In phage T4, the adhesin sequence is encoded by the C-terminal domain of the large tail fiber gene (gene 37), but in T2, the adhesin is a separate gene product (gene 38) that binds to the tip of T2 tail fibers. Analysis of phage T6 and Ac3 sequences reveals additional variant forms of this locus. The tail fiber host specificity determinants can be exchanged, although the different loci have only limited homology. Chimeric fibers can be created by crossovers either between small homologies within the structural part of the fiber gene or in conserved motifs of the adhesin domain. For example, the T2 adhesin determinants are flanked by G-rich DNA motifs and exchanges involving these sequences can replace the specificity determinants. These features of the distal tail fiber loci genetically link their different forms and can mediate acquisition of diverse host range determinants, including those that allow it to cross species boundaries and infect taxonomically distant hosts.
Collapse
Affiliation(s)
- F Tétart
- Laboratoire de Microbiologie et Génétique Moléculaire, CNRS, 118 Route de Narbonne, Toulouse Cedex, UPR 9007, France
| | | | | |
Collapse
|
30
|
Dhillon TS, Poon AP, Chan D, Clark AJ. General transducing phages like Salmonella phage P22 isolated using a smooth strain of Escherichia coli as host. FEMS Microbiol Lett 1998; 161:129-33. [PMID: 9561740 DOI: 10.1111/j.1574-6968.1998.tb12938.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A smooth colony strain, resistant to phages lambda and P22, was isolated from sewage and identified as Escherichia coli (strain H). Four temperate phages plaquing on strain H were isolated from sewage. The archetype, HK620, does not plaque on strains C and K12 of E. coli nor on the LT2 strain of Salmonella enterica. Bacterial mutants resistant to a clear plaque mutant of HK620 produce rough colonies. Some are also galactose-negative, a few are histidine auxotrophs, and most show sensitivity to lambda. HK620 can transduce a wide variety of auxotrophic mutants of E. coli H to prototrophy. It can recombine with lambda but its virions resemble those of P22.
Collapse
Affiliation(s)
- T S Dhillon
- Department of Molecular and Cell Biology, University of California, Berkeley 94720-3202, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Tailed bacteriophages have a common origin and constitute an order with three families, named Caudovirales. Their structured tail is unique. Tailed phages share a series of high-level taxonomic properties and show many facultative features that are unique or rare in viruses, for example, tail appendages and unusual bases. They share with other viruses, especially herpesviruses, elements of morphogenesis and life-style that are attributed to convergent evolution. Tailed phages present three types of lysogeny, exemplified by phages lambda, Mu, and P1. Lysogeny appears as a secondary property acquired by horizontal gene transfer. Amino acid sequence alignments (notably of DNA polymerases, integrases, and peptidoglycan hydrolases) indicate frequent events of horizontal gene transfer in tailed phages. Common capsid and tail proteins have not been detected. Tailed phages possibly evolved from small protein shells with a few genes sufficient for some basal level of productive infection. This early stage can no longer be traced. At one point, this precursor phage became perfected. Some of its features were perfect enough to be transmitted until today. It is tempting to list major present-day properties of tailed phages in the past tense to construct a tentative history of these viruses: 1. Tailed phages originated in the early Precambrian, long before eukaryotes and their viruses. 2. The ur-tailed phage, already a quite evolved virus, had an icosahedral head of about 60 nm in diameter and a long non-contractile tail with sixfold symmetry. The capsid contained a single molecule of dsDNA of about 50 kb, and the tail was probably provided with a fixation apparatus. Head and tail were held together by a connector. a. The particle contained no lipids, was heavier than most viruses to come, and had a high DNA content proportional to its capsid size (about 50%). b. Most of its DNA coded for structural proteins. Morphopoietic genes clustered at one end of the genome, with head genes preceding tail genes. Lytic enzymes were probably coded for. A part of the phage genome was nonessential and possibly bacterial. Were tailed phages general transductants since the beginning? 3. The virus infected its host from the outside, injecting its DNA. Replication involved transcription in several waves and formation of DNA concatemers. Novel phages were released by burst of the infected cell after lysis of host membranes by a peptidoglycan hydrolase (and a holin?). a. Capsids were assembled from a starting point, the connector, and around a scaffold. They underwent an elaborate maturation process involving protein cleavage and capsid expansion. Heads and tails were assembled separately and joined later. b. The DNA was cut to size and entered preformed capsids by a headful mechanism. 4. Subsequently, tailed phages diversified by: a. Evolving contractile or short tails and elongated heads. b. Exchanging genes or gene fragments with other phages. c. Becoming temperate by acquiring an integrase-excisionase complex, plasmid parts, or transposons. d. Acquiring DNA and RNA polymerases and other replication enzymes. e. Exchanging lysin genes with their hosts. f. Losing the ability to form concatemers as a consequence of acquiring transposons (Mu) or proteinprimed DNA polymerases (phi 29). Present-day tailed phages appear as chimeras, but their monophyletic origin is still inscribed in their morphology, genome structure, and replication strategy. It may also be evident in the three-dimensional structure of capsid and tail proteins. It is unlikely to be found in amino acid sequences because constitutive proteins must be so old that relationships were obliterated and most or all replication-, lysogeny-, and lysis-related proteins appear to have been borrowed. However, the sum of tailed phage properties and behavior is so characteristic that tailed phages cannot be confused with other viruses.
Collapse
Affiliation(s)
- H W Ackermann
- Department of Medical Biology, Faculty of Medicine, Laval University, Quebec, Canada
| |
Collapse
|
32
|
Kadyrov FA, Shlyapnikov MG, Kryukov VM. A phage T4 site-specific endonuclease, SegE, is responsible for a non-reciprocal genetic exchange between T-even-related phages. FEBS Lett 1997; 415:75-80. [PMID: 9326373 DOI: 10.1016/s0014-5793(97)01098-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The bacteriophage T4 segE gene encoding site-specific endonuclease lies between the hoc.1 and uvsW genes. The similar region of T-even-related phage RB30 lacks the segE gene. Here we demonstrate that the phage T4 segE gene is inherited preferably by progeny of mixed infection with RB30. The preferred inheritance of the segE gene depends on its own expression and is based on a non-reciprocal homologous recombination event providing the transfer of the gene from the segE-containing to the segE-lacking allele. The SegE endonuclease cleaves DNA in a site located at the 5' end of the uvsW gene in the RB30 genome. The T4 DNA is also cleaved by the enzyme, but less efficiently. The cleavage at the RB30 site appears to initiate the observed conversion, which is stimulated by DNA homology and accompanied by co-conversion of flanking markers. Our findings provide a novel example of endonuclease-dependent generation of genetic variation in prokaryotes.
Collapse
Affiliation(s)
- F A Kadyrov
- Laboratory of Genetic Enzymology, Institute of Biochemistry and Physiology of Microorganisms of Russian Academy of Sciences, Pushchino, Moscow region.
| | | | | |
Collapse
|
33
|
Monod C, Repoila F, Kutateladze M, Tétart F, Krisch HM. The genome of the pseudo T-even bacteriophages, a diverse group that resembles T4. J Mol Biol 1997; 267:237-49. [PMID: 9096222 DOI: 10.1006/jmbi.1996.0867] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Polymerase chain reaction analysis of a large collection of bacteriophages with T-even morphology revealed four phages that are distantly related to all the others. The genomes of these pseudo T-even phages hybridized under stringent conditions to only a limited portion of the T4 genome that encodes virus head, head-to-tail joining and contractile tail genes. Except for this region, no extensive hybridization was detected between most pairs of the different pseudo T-even genomes. Sequencing of this conserved region of the pseudo T-even phage RB49 revealed substantial nucleotide sequence divergence from T4 (approximately 30% to 40%), and random genomic sequencing of this phage indicated that more than a third of its sequences had no detectable homology to T4. Among those sequences related to the T-even genes were virion structural components including the constituents of the phage base plate. Only a few sequences had homology to T4 early functions; these included ribonucleotide diphosphatase reductase, DNA ligase and the large subunit of DNA topoisomerase. The genomes of the pseudo T-even phage were digested by restriction enzymes that are unable to digest the T-even DNAs which contain glucosylated hydroxymethyl-cytosine residues. This suggests that only limited nucleotide modifications must be present in the pseudo T-even genomes. Conservation of much of the morphogenetic region of these diverse phage genomes may reflect particularly strong sequence constraints on these gene products. However, other explanations are considered, including the possibility that the various morphogenetic segments were acquired by the pseudo T-even genomes by modular evolution. These results support the notion that phage evolution may proceed within a network of both closely and distantly related genomes.
Collapse
Affiliation(s)
- C Monod
- Laboratoire de Microbiologie et Génétique Moleculaire, CNRS UPR 9007,Toulouse, France
| | | | | | | | | |
Collapse
|
34
|
Kutter E, Gachechiladze K, Poglazov A, Marusich E, Shneider M, Aronsson P, Napuli A, Porter D, Mesyanzhinov V. Evolution of T4-related phages. Virus Genes 1995; 11:285-97. [PMID: 8828153 DOI: 10.1007/bf01728666] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Much progress has been made in understanding T-even phage biology in the last 50 years. We now know the entire sequence of T4, encoding nearly 300 genes, only 69 of which have been shown to be essential under standard laboratory conditions; no specific function is yet known for about 140 of them. The origin of most phage genes is unclear, and only 42 genes in T4 have significant similarity to anything currently included in GenBank. Comparative analysis of related phages is now being used to gain insight into both the evolutionary origins and interrelationships of these phage genes, and the functions of their protein products. The genomes of phages isolated from Tbilisi hospitals, Long Island sewage plants, the Denver zoo, and Khabarovsk show basic similarity. However, these phages show substantial insertions and deletions in a number of regions relative to each other, and closer investigation of specific sequences often reveals much more complex relationships. There are only a few cases in T4-related phages in which there is evidence for evolution through DNA duplication. These include the fibrous products of genes 12, 34, and 37; head proteins gp23 and gp24; and the Alt enzyme and its downstream neighbors. T4 also contains 13 apparent relatives of group I and group II intron homing endonucleases. Distal portions of the tail fibers of various T-even phages contain segments closely related to tail-fiber regions of other DNA coliphages, such as Mu, P1, P2, and lambda. Horizontal gene transfer clearly emerges as a major factor in the evolution of at least the tail-fiber regions, where site-specific recombination probably is involved in the exchange of host-range determinants.
Collapse
Affiliation(s)
- E Kutter
- Evergreen State College, Olympia, WA 98505, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Certain lambda-P22 hybrids, providing that they express the P22 C1 protein, fail to grow in Escherichia coli with the sipB391 mutation. We show that sipB391, previously located to the 57-min region of the E. coli chromosome, is a large deletion that extends into the 3' end of ssrA, a gene encoding the small stable 10Sa RNA. This deletion, apparently created by the excision of a cryptic prophage, CP4-57 (identified by Kirby et al. [J. E. Kirby, J. E. Trempy, and S. Gottesman, J. Bacteriol. 176:2068-2081]), leaves most of ssrA intact but removes the sequence encoding the 3' end of the precursor form of 10Sa RNA. The lack of functional 10Sa RNA, resulting from either the excision of CP4-57 or insertional inactivation of ssrA, appears to be responsible for the inhibition of lambda-P22 growth in E. coli with the sipB391 mutation. We propose that 10Sa RNA acts either directly or indirectly to facilitate removal of C1 protein from its DNA target site.
Collapse
Affiliation(s)
- D M Retallack
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109
| | | | | |
Collapse
|
36
|
Abstract
A cosmid (pPR1347) carrying both the rfb gene cluster and the rfc gene of a Salmonella group B serovar has been constructed; Escherichia coli K-12 strains carrying this cosmid produce long-chain O antigen, are sensitive to phage P22, and can be transduced by P22. Some of the benefits of P22 transduction are now available for studying E. coli and potentially other genera.
Collapse
Affiliation(s)
- B L Neal
- Department of Microbiology, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
37
|
Retallack DM, Johnson LL, Ziegler SF, Strauch MA, Friedman DI. A single-base-pair mutation changes the specificities of both a transcription activation protein and its binding site. Proc Natl Acad Sci U S A 1993; 90:9562-5. [PMID: 8415741 PMCID: PMC47609 DOI: 10.1073/pnas.90.20.9562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The C1 protein of bacteriophage P22 binds to a unique site in the -35 region of the PRE promoter and activates transcription of the phage c2 repressor gene. This -35 target has an approximate direct repeat that overlaps the 5' end of the c1 coding region. We have isolated a single-base-pair mutation in this region that changes the PRE -35 target as well as the amino-terminal region of the C1 protein. Although the mutant C1 protein activates the mutant PRE promoter, it fails to activate the wild-type PRE promoter. This suggests that a single-base-pair mutation changes the specificities of both a protein and its target site. These studies also indicate that C1 binding to DNA is influenced by contacts made through residues near the amino terminus.
Collapse
Affiliation(s)
- D M Retallack
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor 48109-0620
| | | | | | | | | |
Collapse
|
38
|
Ho Y, Pfarr D, Strickler J, Rosenberg M. Characterization of the transcription activator protein C1 of bacteriophage P22. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49724-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
39
|
Loayza D, Carpousis AJ, Krisch HM. Gene 32 transcription and mRNA processing in T4-related bacteriophages. Mol Microbiol 1991; 5:715-25. [PMID: 2046553 DOI: 10.1111/j.1365-2958.1991.tb00742.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We have analysed transcription and mRNA processing for the gene 32 region of five phages related to T4. Two different organizations of gene 32 proximal promoters were found. In T4 and M1, middle- and late-mode promoters are separated by 50 nucleotides and located within an upstream open reading frame. In T2, K3, Ac3, and Ox2, the 626bp T4 sequence that includes these promoters is replaced by a 59bp sequence containing overlapping middle and late promoters. The RNase E-dependent processing of the g32 mRNAs is conserved in all of the phages. The processing site immediately upstream of g32 in T4 and M1 has been replaced in the other phages by a different sequence that is also cleaved by RNase E. The remarkable conservation of these regulatory features, despite the sequence divergences, suggests that they play an important role in the control of gene expression.
Collapse
Affiliation(s)
- D Loayza
- Department of Molecular Biology, University of Geneva, Switzerland
| | | | | |
Collapse
|
40
|
De Backer O, Colson C. Two-step cloning and expression in Escherichia coli of the DNA restriction-modification system StyLTI of Salmonella typhimurium. J Bacteriol 1991; 173:1321-7. [PMID: 1846861 PMCID: PMC207257 DOI: 10.1128/jb.173.3.1321-1327.1991] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The StyLTI restriction-modification system is common to most strains of the genus Salmonella, including Salmonella typhimurium. We report here the two-step cloning of the genes controlling the StyLTI system. The StyLTI methylase gene (mod) was cloned first. Then, the companion endonuclease gene (res) was introduced on a compatible vector. A strain of S. typhimurium sensitive to the coliphage lambda was constructed and used to select self-modifying recombinant phages from a Res- Mod+ S. typhimurium genomic library in the lambda EMBL4 cloning vector. The methylase gene of one of these phages was then subcloned in pBR328 and transferred into Escherichia coli. In the second step, the closely linked endonuclease and methylase genes were cloned together on a single DNA fragment inserted in pACYC184 and introduced into the Mod+ E. coli strain obtained in the first step. Attempts to transform Mod- E. coli or S. typhimurium strains with this Res+ Mod+ plasmid were unsuccessful, whereas transformation of Mod+ strains occurred at a normal frequency. This can be understood if the introduction of the StyLTI genes into naive hosts is lethal because of degradation of host DNA by restriction activity; in contrast to most restriction-modification systems, StyLTI could not be transferred into naive hosts without killing them. In addition, it was found that strains containing only the res gene are viable and lack restriction activity in the absence of the companion mod gene. This suggests that expression of the StyLTI endonuclease activity requires at least one polypeptide involved in the methylation activity, as is the case for types I and III restriction-modification systems but not for type II systems.
Collapse
Affiliation(s)
- O De Backer
- Département de Biologie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
41
|
Waldburger C, Gardella T, Wong R, Susskind MM. Changes in conserved region 2 of Escherichia coli sigma 70 affecting promoter recognition. J Mol Biol 1990; 215:267-76. [PMID: 2213883 DOI: 10.1016/s0022-2836(05)80345-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We describe a mutation in rpoD, the gene encoding the sigma 70 subunit of RNA polymerase, which alters the promoter specificity of the holoenzyme in vivo. The mutant sigma causes a substantial and specific increase in the activity of mutant ant and lac promoters with a T.A to C.G substitution at position -12, the first position of the -10 hexamer. The rpoD mutation is a single base-pair substitution causing a Gln----His change at position 437, which is in a domain of conserved region 2.4 that is predicted to form an alpha-helix. Gln437 would lie one turn of the alpha-helix away from Thr440, which was previously implicated in recognition of position -12. The rpoD-QH437 mutation described here lends further support to the model that region 2.4 of sigma is involved in recognition of the 5' end of the -10 hexamer. In addition, two rpoD mutations with non-specific effects on promoter recognition are described.
Collapse
Affiliation(s)
- C Waldburger
- Department of Biological Sciences, University of Southern California, Los Angeles, 90089-1340
| | | | | | | |
Collapse
|
42
|
Gratia JP. Genome organization in hybrids between prophage phi 80 and Escherichia coli virus phi gamma. RESEARCH IN VIROLOGY 1989; 140:373-88. [PMID: 2672204 DOI: 10.1016/s0923-2516(89)80117-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prophage phi 80 is used for the detection of "discrete" viruses such as phage phi gamma by genetic recombination. Several genetic events have produced a series of hybrids which are currently being characterized. Characteristic genomic properties of the parent phages are recognized in these hybrids. "lambda"-type phages contain a cos-ended DNA of a single sequence, the size of which may be altered by hybridization. "gamma"-type phages contain DNA molecules of uniform size (about 52 kb) and of variable ends; their genome is able to promote highly efficient transduction (pug type) regardless of the origin of the right arm. In both hybrids, the att site is most often a junction point between the parental genomes due to common int-promoted recombination. New evidence is provided for the formation of viable heterozygous "lambda/gamma"-type bacteriophages.
Collapse
Affiliation(s)
- J P Gratia
- Laboratoire de Microbiologie, Faculté de Médecine ULB, Bruxelles
| |
Collapse
|
43
|
Abstract
The sequence of 1416 base-pairs of the P22 PL operon was determined, linking a continuous sequence from PL through abc2. P22 mutants bearing deletions in the sequenced region were constructed and tested for their phenotypes. Plasmids were constructed to express PL operon genes singly and in combination from Plac UV5. Two previously known genes, 17 and c3, are located within this sequence. In addition, three new genes have been identified: ral, kil and arf. Genes ral and c3 are homologous, as well as functionally analogous, to lambda ral and cIII, respectively. P22 kil, like lambda kil, kills the host cell when it is expressed. The two kil genes, although analogous in cell killing and map location, have no apparent sequence homology. The functions of the P22 and lambda kil genes are unknown; however, P22 kil is essential for lytic growth in the absence of abc. Gene arf (accessory recombination function) is located just upstream from erf; it is essential for P22 growth in the absence of kil or other genes upstream in PL. The growth defect of P22 bearing a deletion that removes arf is complemented by expression of either arf or the lambda red genes from plasmids. Sequences that include the stop codon for gene 17 may form a small stem-loop structure and are nearly identical to lambda sequences that contain the stop codon for ssb, which is near lambda tL 2b. Plasmids that include the P22 structure negatively regulate kil gene expression in cis.
Collapse
Affiliation(s)
- A V Semerjian
- Department of Molecular Genetics and Microbiology, University of Massachusetts, Worcester 01655
| | | | | |
Collapse
|
44
|
Gardella T, Moyle H, Susskind MM. A mutant Escherichia coli sigma 70 subunit of RNA polymerase with altered promoter specificity. J Mol Biol 1989; 206:579-90. [PMID: 2661827 DOI: 10.1016/0022-2836(89)90567-6] [Citation(s) in RCA: 259] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A mutation is described that alters the promoter specificity of sigma 70, the primary sigma factor of Escherichia coli RNA polymerase. In strains carrying both the mutant and wild-type sigma gene (rpoD), the mutant sigma causes a large increase in the activity of mutant P22 ant promoters with A.T or C.G instead of the wild-type, consensus G.C base-pair at position -33, the third position of the consensus -35 hexamer 5'-TTGACA-3'. There is little or no effect on the activities of the wild-type and 23 other mutant ant promoters, including one with T.A at -33. The mutant sigma also activates E. coli lac promoters with A.T or C.G, but not T.A, at the corresponding position. The rpoD mutation (rpoD-RH588) changes a CGT codon to CAT. The corresponding change in sigma 70 is Arg588----His. This residue is in a region that is conserved among most sigma factors, a region that is also homologous with the helix-turn-helix motif of DNA-binding proteins. These results suggest that this region of sigma 70 is directly involved in recognition of the -35 hexamer.
Collapse
Affiliation(s)
- T Gardella
- Department of Molecular Genetics and Microbiology, University of Massachusetts Medical School, Worcester 01605
| | | | | |
Collapse
|
45
|
Poon AP, Dhillon TS. Temperate coliphage HK253: attachment site and restricted transduction of proAB mutants of Escherichia coli K-12. J Virol 1986; 60:317-9. [PMID: 3528528 PMCID: PMC253934 DOI: 10.1128/jvi.60.1.317-319.1986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Temperate coliphage HK253 integrates near the proAB locus on the Escherichia coli K-12 chromosome. It can bring about specialized transduction of proAB and phoE mutants of E. coli, but it is incapable of general transduction. One of the proline-transducing particles was found to be nondefective.
Collapse
|
46
|
Strauch MA, Baumann M, Friedman DI, Baron LS. Identification and characterization of mutations in Escherichia coli that selectively influence the growth of hybrid lambda bacteriophages carrying the immunity region of bacteriophage P22. J Bacteriol 1986; 167:191-200. [PMID: 2941412 PMCID: PMC212860 DOI: 10.1128/jb.167.1.191-200.1986] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Mutations in two Escherichia coli genes, sipA and sipB, result in a specific inhibition of the growth of certain hybrid lambdoid bacteriophages, lambda immP22, that have the early regulatory regions and adjacent genes from bacteriophage P22. The sipB391 mutation maps near minute 56 and exerts the strongest inhibitory effect on the growth of the hybrid phages. The sipA1 mutation maps near minute 72 and plays an auxiliary role: enhancing the action of sipB391. Such a role is not limited to sipA1, since there is a similar enhancement by the nusA1 and nusE71 mutations. The Sip-imposed restriction on the growth of lambda immP22 phages is not observed if the phage carries a mutation in the c1 gene. Perhaps this reflects the fact that the c1 product regulates phage DNA replication and is a major determinant in the decision governing whether the phage takes the lytic or lysogenic pathway. Consistent with this idea is the observation that lambda immP22 DNA replication is severely inhibited in bacteria carrying the sipB391 mutation. It is suggested that sip mutations exaggerate the normal role of c1 in limiting lytic growth. This causes a failure in the expression of sufficient amounts of some or all of the lytic gene products required for phage growth.
Collapse
|
47
|
Wiggins BA, Hilliker S. Genetic and DNA mapping of the late regulation and lysis genes of Salmonella bacteriophage P22 and coliphage lambda. J Virol 1985; 56:1030-3. [PMID: 2933531 PMCID: PMC252680 DOI: 10.1128/jvi.56.3.1030-1033.1985] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Genetic and DNA heteroduplex analyses of lambda imm22 hybrid phages were used to compare the Salmonella bacteriophage P22 and coliphage lambda genes which control late gene regulation and lysis. Homologous DNA sequences were correlated with P22 gene 23 and lambda gene Q (late gene regulation) and with P22 gene 13 and lambda gene S (lysis control). Nonhomologous DNA sequences were correlated with P22 gene 19 and lambda gene R (lysozyme and endolysin) and with the region encoding the P22 alpha and lambda 6S transcripts.
Collapse
|
48
|
Wharton RP, Ptashne M. Changing the binding specificity of a repressor by redesigning an alpha-helix. Nature 1985; 316:601-5. [PMID: 4033758 DOI: 10.1038/316601a0] [Citation(s) in RCA: 153] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We replaced amino acids on the 'outside', or solvent-exposed, surface of the DNA recognition alpha-helix of 434 repressor with the corresponding amino acids from the recognition helix of P22 repressor. The binding specificity of the resulting hybrid protein, as measured in vivo and in vitro, was that of P22 repressor.
Collapse
|
49
|
|
50
|
Desmyter A, Reeve JN, Morelli G, Trautner TA. Inversion and deletion mutants in Bacillus subtilis bacteriophage SPP1 as a consequence of cloning. MOLECULAR & GENERAL GENETICS : MGG 1985; 198:537-9. [PMID: 3925296 DOI: 10.1007/bf00332954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Properties of an inversion and a deletion mutant of B. subtilis phage SPP1 which arose during cloning are described. The results are related to the biology of this bacteriophage. In preceding communications from our laboratories (Heilmann and Reeve 1982, Behrens et al. 1983) we reported the properties of genetically engineered SPP1 bacteriophages, which could be used as cloning vehicles in B. subtilis. These phages contain a unique restriction site within a dispensable region of their genomes. In the course of cloning experiments using these phage vectors, we have occasionally observed the appearance of not only the original vector and desired hybrid phages, but also of SPP1 phages which had undergone extensive genomic rearrangements. Properties of two such phages, SPP1 inv1, which was found to contain a large inversion and of SPP1 delV, a deletion mutant, which defines an additional dispensable region of the SPP1 genome, are described in this communication.
Collapse
|