1
|
Sankar S, Kalidass B, Indrakumar J, Kodiveri Muthukaliannan G. NSAID-encapsulated nanoparticles as a targeted therapeutic platform for modulating chronic inflammation and inhibiting cancer progression: a review. Inflammopharmacology 2025:10.1007/s10787-025-01760-8. [PMID: 40285986 DOI: 10.1007/s10787-025-01760-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025]
Abstract
Recent advancements in nanotechnology have significantly advanced nanocarrier-mediated drug delivery systems, promoting therapeutic outcomes in mitigating chronic inflammation and cancer. Nanomaterials offer significant advantages over traditional small-molecule drugs, including a high surface-area-to-volume ratio, tunable structural features, and extended bloodstream circulation time. Chronic inflammation is a well-established mechanism for malignant initiation, progression, and metastasis, promoting the potent strategy for cancer prevention and therapy. Numerous studies revealed that nonsteroidal anti-inflammatory drugs (NSAIDs) have the therapeutic ability to manage disease progression via amolerating angiogenesis and inducing apoptosis. However, prolonged intake of NSAIDs is often limited by adverse side-effects and systemic toxicities. The encapsulation of NSAIDs in a nanocarrier have materialized as a dynamic approach to mitigate the limitations by improving pharmacokinetics and pharmacodynamics, reducing off-target effects, and enhancing the drug stability. This review encompasses recent progress in the development of NSAID-based nanotherapeutics, focusing on pivotal mechanisms underlying nanoparticle-mediated drug delivery, such as improved tumor-specific targeting and strategies to overcome drug resistance. The ability of these nano-cargoes to accommodate anti-inflammatory strategies with advanced drug delivery platforms is critically evaluated. This review also highlights the transformative potential of NSAID-encapsulated nanoparticles as a multifaceted therapeutic venue for addressing chronic inflammation and mitigating cancer progression.
Collapse
Affiliation(s)
- Srivarshini Sankar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Bharathi Kalidass
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Janani Indrakumar
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Gothandam Kodiveri Muthukaliannan
- Department of Biotechnology, School of Bioscience and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India.
| |
Collapse
|
2
|
Golas MM, Gunawan B, Gutenberg A, Danner BC, Gerdes JS, Stadelmann C, Füzesi L, Liersch T, Sander B. Cytogenetic signatures favoring metastatic organotropism in colorectal cancer. Nat Commun 2025; 16:3261. [PMID: 40188208 PMCID: PMC11972295 DOI: 10.1038/s41467-025-58413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/21/2025] [Indexed: 04/07/2025] Open
Abstract
Colorectal carcinoma (CRC) exhibits metastatic organotropism, primarily targeting liver, lung, and rarely the brain. Here, we study chromosomal imbalances (CIs) in cohorts of primary CRCs and metastases. Brain metastases show the highest burden of CIs, including aneuploidies and focal CIs, with enrichment of +12p encoding KRAS. Compared to liver and lung metastases, brain metastases present with increased co-occurrence of KRAS mutation and amplification. CRCs with concurrent KRAS mutation and amplification display significant metabolic reprogramming with upregulation of glycolysis, alongside upregulation of cell cycle pathways, including copy number gains of MDM2 and CDK4. Evolutionary modeling suggests early acquisition of many organotropic CIs enriched in both liver and brain metastases, while brain-enriched CIs preferentially emerge later. Collectively, this study supports a model where cytogenetic events in CRCs favor site-specific metastatic colonization. These site-enriched CI patterns may serve as biomarkers for metastatic potential in precision oncology.
Collapse
Affiliation(s)
- Mariola Monika Golas
- Human Genetics, Faculty of Medicine, University of Augsburg, Augsburg, Germany.
- Comprehensive Cancer Center Augsburg, University Medical Center Augsburg, Augsburg, Germany.
| | - Bastian Gunawan
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
- Institute of Pathology Northern Hesse, Kassel, Germany
| | - Angelika Gutenberg
- Department of Neurosurgery, Asklepios Hospital Harburg, Hamburg, Germany
| | - Bernhard C Danner
- Department of Cardiac, Thoracic and Vascular Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jan S Gerdes
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
- Epilepsy Center Hamburg, Evangelical Hospital Alsterdorf, Neurology and Epileptology, Hamburg, Germany
| | - Christine Stadelmann
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Laszlo Füzesi
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Torsten Liersch
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Bjoern Sander
- Institute of Pathology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
3
|
Zhang Y, Ma Y, Zhang K, Wang Y, Sun X, Kan C, Han F. KRAS Mutations in Cancer: From Molecular Insights to Therapeutic Strategies. Am J Clin Oncol 2025:00000421-990000000-00275. [PMID: 40167108 DOI: 10.1097/coc.0000000000001192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The global burden of cancer remains a major public health challenge, with Kirsten rat sarcoma viral oncogene homolog (KRAS) emerging as the most common mutated oncogene across diverse malignancies. Once considered "undruggable" due to its unique structure, KRAS has garnered intense research focus, resulting in significant advancements. This paper aims to review recent developments in our understanding of KRAS biology, including its structural and functional aspects, and to explore the latest insights into its mutations across various cancer types. Emphasis is placed on prognosis, predictive roles, and emerging therapeutic strategies targeting KRAS. This review aspires to deepen our comprehension of KRAS and potentially enhance treatment outcomes for cancer patients harboring KRAS mutations in the future.
Collapse
Affiliation(s)
- Yuanzhu Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| | - Yujie Ma
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
| | - Kexin Zhang
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
| | - Yuqun Wang
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
| | - Xiaodong Sun
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
| | - Chengxia Kan
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
| | - Fang Han
- Department of Endocrinology and Metabolism, Shandong Provincial Key Medical and Health Discipline of Endocrinology and Laboratory of Endocrinology and Metabolic Diseases, Clinical Research Center
- Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, China
| |
Collapse
|
4
|
Nogueiras-Álvarez R, Pérez Francisco I. Pharmacogenetics in Oncology: A useful tool for individualizing drug therapy. Br J Clin Pharmacol 2024; 90:2483-2508. [PMID: 39077855 DOI: 10.1111/bcp.16181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
With the continuous development of genetics in healthcare, there has been a significant contribution to the development of precision medicine, which is ultimately aimed at improving the care of patients. Generally, drug treatments used in Oncology are characterized by a narrow therapeutic range and by their potential toxicity. Knowledge of pharmacogenomics and pharmacogenetics can be very useful in the area of Oncology, as they constitute additional tools that can help to individualize patients' treatment. This work includes a description of some genes that have been revealed to be useful in the field of Oncology, as they play a role in drug prescription and in the prediction of treatment response.
Collapse
Affiliation(s)
- Rita Nogueiras-Álvarez
- Osakidetza Basque Health Service, Galdakao-Usansolo University Hospital, Basque Country Pharmacovigilance Unit, Galdakao, Bizkaia/Vizcaya, Spain
| | - Inés Pérez Francisco
- Breast Cancer Research Group, Bioaraba Health Research Institute, Vitoria-Gasteiz, Araba/Álava, Spain
| |
Collapse
|
5
|
Chi Y, Yuan H, Fan Q, Wang Z, Niu Z, Yu J, Yuan D. Clinical-Molecular characteristics and Post-Translational modifications of colorectal cancer in north China: Implications for future targeted therapies. Gene 2024; 899:148134. [PMID: 38185290 DOI: 10.1016/j.gene.2024.148134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
This study delineated the elucidate molecular changes and their post-translational modifications (PTMs) in heterogenetic colorectal cancer (CRC) for a deeper understanding of the CRC pathophysiology and identifying potential therapeutic targets. In this retrospective study, the profiles of 13 hot spot gene mutations were analyzed and the microsatellite instability (MSI) status was determined.Employing the Circulating Single-Molecule Amplification and Resequencing Technology (cSMART) assay, the clinical-pathological features of CRC were characterized in 249 Chinese patients. PTMs were quantified online.Among the patients with CRC, the mutation frequencies of KRAS, NRAS, BRAF, PIK3CA, TP53, and APC genes were 47.8%, 3.6%, 4.8%, 13.7%, 55.8%, and 36.9%, respectively. The proportion of MSI-high (MSI-H) was 7.8%.Subsequent multiple logistic regression analysis showed significant associations including a link between lung metastasis and KRAS mutation, between liver metastasis and lymph node metastasis, between MSI-H and early-onset CRC (EOCRC) and KRAS mutation, between right-sided colon cancer and peritoneal metastasis, and between PIK3CA mutation and PTEN mutation. Patients with KRAS mutation presented with MSI-H, lung metastasis, and PIK3CA mutation. MSI-H, BRAF mutation, and PTEN mutation were more frequent in EOCRC. Phosphorylation and ubiquitylation were found in KRAS, BRAF, PTEN, and SMAD4; SUMOylation and ubiquitylation were observed in HRAS and NRAS; while phosphorylation was obvious in APC, P53, and MLH1. Notably, Phosphorylation and ubiquitylation were the two most common PTMs. The biological characteristics of CRC in Chinese patients have some unique clinical features, which can be explained by the genetic mutation profile, correlations among gene mutations and clinical characteristics. These distinctions set the Chinese patient population apart from their Western counterparts.
Collapse
Affiliation(s)
- Yajing Chi
- School of Medicine, Nankai University, Tianjin, China; Cancer Center, The General Hospital of the People's Liberation Army, Beijing, China
| | - Hongtu Yuan
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qing Fan
- Department of Pharmacy, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhendan Wang
- Department of Thoracic Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zuoxing Niu
- Department of Gastroenterology Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dandan Yuan
- Department of Gastroenterology Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
6
|
Spaan CN, de Boer RJ, Smit WL, van der Meer JH, van Roest M, Vermeulen JL, Koelink PJ, Becker MA, Go S, Silva J, Faller WJ, van den Brink GR, Muncan V, Heijmans J. Grp78 is required for intestinal Kras-dependent glycolysis proliferation and adenomagenesis. Life Sci Alliance 2023; 6:e202301912. [PMID: 37643866 PMCID: PMC10465924 DOI: 10.26508/lsa.202301912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
In development of colorectal cancer, mutations in APC are often followed by mutations in oncogene KRAS The latter changes cellular metabolism and is associated with the Warburg phenomenon. Glucose-regulated protein 78 (Grp78) is an important regulator of the protein-folding machinery, involved in processing and localization of transmembrane proteins. We hypothesize that targeting Grp78 in Apc and Kras (AK)-mutant intestines interferes with the metabolic phenotype imposed by Kras mutations. In mice with intestinal epithelial mutations in Apc, Kras G12D and heterozygosity for Grp78 (AK-Grp78 HET ) adenoma number and size is decreased compared with AK-Grp78 WT mice. Organoids from AK-Grp78 WT mice exhibited a glycolysis metabolism which was completely rescued by Grp78 heterozygosity. Expression and correct localization of glucose transporter GLUT1 was diminished in AK-Grp78 HET cells. GLUT1 inhibition restrained the increased growth observed in AK-mutant organoids, whereas AK-Grp78 HET organoids were unaffected. We identify Grp78 as a critical factor in Kras-mutated adenomagenesis. This can be attributed to a critical role for Grp78 in GLUT1 expression and localization, targeting glycolysis and the Warburg effect.
Collapse
Affiliation(s)
- Claudia N Spaan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Ruben J de Boer
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Wouter L Smit
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jonathan Hm van der Meer
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Manon van Roest
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jacqueline Lm Vermeulen
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Pim J Koelink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Marte Aj Becker
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Simei Go
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Joana Silva
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William J Faller
- Department of Oncogenomics, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Gijs R van den Brink
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Vanesa Muncan
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jarom Heijmans
- Department of Gastroenterology and Hepatology, Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, Amsterdam, Netherlands
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
7
|
Wu KC, Chen SW, Hsieh TC, Yen KY, Chang CJ, Kuo YC, Hsu YJ, Chang RF, Kao CH. Imaging prediction of KRAS mutation in patients with rectal cancer through deep metric learning using pretreatment [ 18F]Fluorodeoxyglucose positron emission tomography/computed tomography. Br J Radiol 2023; 96:20230243. [PMID: 37750945 PMCID: PMC10607399 DOI: 10.1259/bjr.20230243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/12/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
OBJECTIVES To predict KRAS mutation in rectal cancer (RC) through computer vision of [18F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) by using metric learning (ML). METHODS This study included 160 patients with RC who had undergone preoperative PET/CT. KRAS mutation was identified through polymerase chain reaction analysis. This model combined ML with the deep-learning framework to analyze PET data with or without CT images. The Batch Balance Wrapper framework and K-fold cross-validation were employed during the learning process. A receiver operating characteristic (ROC) curve analysis was performed to assess the model's predictive performance. RESULTS Genetic alterations in KRAS were identified in 82 (51%) tumors. Both PET and CT images were used, and the proposed model had an area under the ROC curve of 0.836 for its ability to predict a mutation status. The sensitivity, specificity, and accuracy were 75.3%, 79.3%, and 77.5%, respectively. When PET images alone were used, the area under the curve was 0.817, whereas the sensitivity, specificity, and accuracy were 73.2%, 79.6%, and 76.2%, respectively. CONCLUSIONS The ML model presented herein revealed that baseline 18F-FDG PET/CT images could provide supplemental information to determine KRAS mutation in RC. Additional studies are required to maximize the predictive accuracy. ADVANCES IN KNOWLEDGE The results of the ML model presented herein indicate that baseline 18F-FDG PET/CT images could provide supplemental information for determining KRAS mutation in RC.The predictive accuracy of the model was 77.5% when both image types were used and 76.2% when PET images alone were used. Additional studies are required to maximize the predictive accuracy.
Collapse
Affiliation(s)
| | | | | | | | - Chao-Jen Chang
- Artificial Intelligence Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Chieh Kuo
- Artificial Intelligence Center, China Medical University Hospital, Taichung, Taiwan
| | - Yu-Ju Hsu
- Artificial Intelligence Center, China Medical University Hospital, Taichung, Taiwan
| | | | | |
Collapse
|
8
|
Boland CR, Koi M, Hawn MT, Carethers JM, Yurgelun MB. Serendipity Strikes: How Pursuing Novel Hypotheses Shifted the Paradigm Regarding the Genetic Basis of Colorectal Cancer and Changed Cancer Therapy. Dig Dis Sci 2023; 68:3504-3513. [PMID: 37402979 PMCID: PMC11262588 DOI: 10.1007/s10620-023-08006-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/06/2023]
Abstract
In this installment of the "Paradigm Shifts in Perspective" series, the authors, all scientists who have been involved in colorectal cancer (CRC) research for most or all of their careers, have watched the field develop from early pathological descriptions of tumor formation to the current understanding of tumor pathogenesis that informs personalized therapies. We outline how our understanding of the pathogenetic basis of CRC began with seemingly isolated discoveries-initially with the mutations in RAS and the APC gene, the latter of which was initially found in the context of intestinal polyposis, to the more complex process of multistep carcinogenesis, to the chase for tumor suppressor genes, which led to the unexpected discovery of microsatellite instability (MSI). These discoveries enabled the authors to better understand how the DNA mismatch repair (MMR) system not only recognizes DNA damage but also responds to damage by DNA repair or by triggering apoptosis in the injured cell. This work served, in part, to link the earlier findings on the pathogenesis of CRC to the development of immune checkpoint inhibitors, which has been transformative-and curative-for certain types of CRCs and other cancers as well. These discoveries also highlight the circuitous routes that scientific progress takes, which can include thoughtful hypothesis testing and at other times recognizing the importance of seemingly serendipitous observations that substantially change the flow and direction of the discovery process. What has happened over the past 37 years was not predictable when this journey began, but it does speak to the power of careful scientific experimentation, following the facts, perseverance in the face of opposition, and the willingness to think outside of established paradigms.
Collapse
Affiliation(s)
| | | | - Mary T Hawn
- Department of Surgery, Stanford University School of Medicine, CJ Huang Bldg, Palo Alto, CA, 94306, USA
| | | | - Matthew B Yurgelun
- Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Yu X, Chen Y, Lu J, He K, Chen Y, Ding Y, Jin K, Wang H, Zhang H, Wang H, Teng L. Patient-derived xenograft models for gastrointestinal tumors: A single-center retrospective study. Front Oncol 2022; 12:985154. [PMID: 36465411 PMCID: PMC9716308 DOI: 10.3389/fonc.2022.985154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 10/28/2022] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Patient-derived xenograft (PDX) models have shown a great efficiency in preclinical and translational applications. Gastrointestinal (GI) tumors have a strong heterogeneity, and the engraftment rate of PDX models remarkably vary. However, the clinicopathological and molecular characteristics affecting the engraftment rate still remain elusive. METHODS A total of 312 fresh tumor tissue samples from patients with GI cancer were implanted into immunodeficient mice. The median follow-up time of patients was 37 months. Patients' characteristics were compared in terms of PDX growth and overall survival. PDX models of 3-6 generations were used for drug evaluation. RESULTS In total, 171 (54.8%, 171/312) PDX models were established, including 85 PDX models of colorectal cancer, 21 PDX models of esophageal cancer, and 65 PDX models of gastric cancer. Other than tumor site, histology, differentiation degree, and serum alpha-fetoprotein (AFP) level, no significant differences were found between transplantation of xenografts and patients' characteristics. For patients who had undergone neoadjuvant therapy, the incidence of tumor formation was higher in those with progressive disease (PD) or stable disease (SD). In gastric cancer, the results showed a higher transplantation rate in deficient mismatch repair (dMMR) tumors, and Ki-67 could be an important factor affecting the engraftment rate. The gene mutation status of RAS and BRAF, two important molecular markers in colorectal cancer, showed a high degree of consistency between patients' tumors and PDXs. However, no significant effects of these two mutations on PDX engraftment rate were observed. More importantly, in this study although KRAS mutations were detected in two clinical cases, evident tumor inhibition was still observed after cetuximab treatment in both PDX models and patients. CONCLUSION A large-scale PDX model including 171 cases was successfully established for GI tumors in our center. The relationship between clinicopathological and molecular features and engraftment rates were clarified. Furthermore, this resource provides us with profound insights into tumor heterogeneity, making these models valuable for PDX-guided treatment decisions, and offering the PDX model as a great tool for personalized treatment and translation research.
Collapse
Affiliation(s)
- Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Kuifeng He
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ketao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haibin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
10
|
Kobayashi E, Kondo S, Dochi H, Moriyama-Kita M, Hirai N, Komori T, Ueno T, Nakanishi Y, Hatano M, Endo K, Sugimoto H, Wakisaka N, Yoshizaki T. Protein Farnesylation on Nasopharyngeal Carcinoma, Molecular Background and Its Potential as a Therapeutic Target. Cancers (Basel) 2022; 14:cancers14122826. [PMID: 35740492 PMCID: PMC9220992 DOI: 10.3390/cancers14122826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Nasopharyngeal carcinoma is distinguished from other head and neck carcinomas by the association of its carcinogenesis with the Epstein–Barr virus. It is highly metastatic, and a novel therapeutic modality for metastatic nasopharyngeal carcinoma is keenly awaited. Protein farnesylation is a C-terminal lipid modification of proteins and was initially investigated as a key process in activating the RAS oncoprotein through its association with the cellular membrane structure. Since then, more and more evidence has accumulated to indicate that proteins other than RAS are also farnesylated and have significant roles in carcinogenesis. This review delineates molecular pathogenesis through protein farnesylation in the context of nasopharyngeal carcinoma and discusses the potential of farnesylation as a therapeutic target. Abstract Nasopharyngeal carcinoma (NPC) is one of the Epstein–Barr virus (EBV)-associated malignancies. NPC is highly metastatic compared to other head and neck carcinomas, and evidence has shown that the metastatic features of NPC are involved in EBV infection. The prognosis of advanced cases, especially those with distant metastasis, is still poor despite advancements in molecular research and its application to clinical settings. Thus, further advancement in basic and clinical research that may lead to novel therapeutic modalities is needed. Farnesylation is a lipid modification in the C-terminus of proteins. It enables proteins to attach to the lipid bilayer structure of cellular membranes. Farnesylation was initially identified as a key process of membrane association and activation of the RAS oncoprotein. Farnesylation is thus expected to be an ideal therapeutic target in anti-RAS therapy. Additionally, more and more molecular evidence has been reported, showing that proteins other than RAS are also farnesylated and have significant roles in cancer progression. However, although several clinical trials have been conducted in cancers with high rates of ras gene mutation, such as pancreatic carcinomas, the results were less favorable than anticipated. In contrast, favorable outcomes were reported in the results of a phase II trial on head and neck carcinoma. In this review, we provide an overview of the molecular pathogenesis of NPC in terms of the process of farnesylation and discuss the potential of anti-farnesylation therapy in the treatment of NPC.
Collapse
|
11
|
PHF13 epigenetically activates TGFβ driven epithelial to mesenchymal transition. Cell Death Dis 2022; 13:487. [PMID: 35597793 PMCID: PMC9124206 DOI: 10.1038/s41419-022-04940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 05/04/2022] [Accepted: 05/12/2022] [Indexed: 12/14/2022]
Abstract
Epigenetic alteration is a pivotal factor in tumor metastasis. PHD finger protein 13 (PHF13) is a recently identified epigenetic reader of H3K4me2/3 that functions as a transcriptional co-regulator. In this study, we demonstrate that PHF13 is required for pancreatic-cancer-cell growth and metastasis. Integrative analysis of transcriptome and epigenetic profiles provide further mechanistic insights into the epigenetic regulation of genes associated with cell metastasis during the epithelial-to-mesenchymal transition (EMT) induced by transforming growth factor β (TGFβ). Our data suggest PHF13 depletion impairs activation of TGFβ stimulated genes and correlates with a loss of active epigenetic marks (H3K4me3 and H3K27ac) at these genomic regions. These observations argue for a dependency of TGFβ target activation on PHF13. Furthermore, PHF13-dependent chromatin regions are enriched in broad H3K4me3 domains and super-enhancers, which control genes critical to cancer-cell migration and invasion, such as SNAI1 and SOX9. Overall, our data indicate a functional and mechanistic correlation between PHF13 and EMT.
Collapse
|
12
|
Negri F, Bottarelli L, de’Angelis GL, Gnetti L. KRAS: A Druggable Target in Colon Cancer Patients. Int J Mol Sci 2022; 23:4120. [PMID: 35456940 PMCID: PMC9027058 DOI: 10.3390/ijms23084120] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 12/18/2022] Open
Abstract
Mutations in KRAS are among the most frequent aberrations in cancer, including colon cancer. KRAS direct targeting is daunting due to KRAS protein resistance to small molecule inhibition. Moreover, its elevated affinity to cellular guanosine triphosphate (GTP) has made the design of specific drugs challenging. Indeed, KRAS was considered 'undruggable'. KRASG12C is the most commonly mutated variant of KRAS in non-small cell lung cancer. Currently, the achievements obtained with covalent inhibitors of this variant have given the possibility to assess the best therapeutic approach to KRAS-driven tumors. Mutation-related biochemical assets and the tissue of origin are expected to influence responses to treatment. Further attempts to obtain mutant-specific KRAS (KRASG12C) switch-II covalent inhibitors are ongoing and the results are promising. Drugs targeted to block KRAS effector pathways could be combined with direct KRAS inhibitors, immunotherapy or T cell-targeting approaches in KRAS-mutant tumors. The development of valuable combination regimens will be essential against potential mechanisms of resistance that may arise during treatment.
Collapse
Affiliation(s)
- Francesca Negri
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| | - Lorena Bottarelli
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Gian Luigi de’Angelis
- Gastroenterology and Endoscopy Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Letizia Gnetti
- Pathology Unit, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy;
| |
Collapse
|
13
|
Kolawole OR, Kashfi K. NSAIDs and Cancer Resolution: New Paradigms beyond Cyclooxygenase. Int J Mol Sci 2022; 23:1432. [PMID: 35163356 PMCID: PMC8836048 DOI: 10.3390/ijms23031432] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute inflammation or resolved inflammation is an adaptive host defense mechanism and is self-limiting, which returns the body to a state of homeostasis. However, unresolved, uncontrolled, or chronic inflammation may lead to various maladies, including cancer. Important evidence that links inflammation and cancer is that nonsteroidal anti-inflammatory drugs (NSAIDs), such as aspirin, reduce the risk and mortality from many cancers. The fact that NSAIDs inhibit the eicosanoid pathway prompted mechanistic drug developmental work focusing on cyclooxygenase (COX) and its products. The increased prostaglandin E2 levels and the overexpression of COX-2 in the colon and many other cancers provided the rationale for clinical trials with COX-2 inhibitors for cancer prevention or treatment. However, NSAIDs do not require the presence of COX-2 to prevent cancer. In this review, we highlight the effects of NSAIDs and selective COX-2 inhibitors (COXIBs) on targets beyond COX-2 that have shown to be important against many cancers. Finally, we hone in on specialized pro-resolving mediators (SPMs) that are biosynthesized locally and, in a time, -dependent manner to promote the resolution of inflammation and subsequent tissue healing. Different classes of SPMs are reviewed, highlighting aspirin's potential in triggering the production of these resolution-promoting mediators (resolvins, lipoxins, protectins, and maresins), which show promise in inhibiting cancer growth and metastasis.
Collapse
Affiliation(s)
- Oluwafunke R. Kolawole
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA;
- Graduate Program in Biology, City University of New York Graduate Center, New York, NY 10091, USA
| |
Collapse
|
14
|
Baraibar I, Mirallas O, Saoudi N, Ros J, Salvà F, Tabernero J, Élez E. Combined Treatment with Immunotherapy-Based Strategies for MSS Metastatic Colorectal Cancer. Cancers (Basel) 2021; 13:6311. [PMID: 34944931 PMCID: PMC8699573 DOI: 10.3390/cancers13246311] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, deepening knowledge of the complex interactions between the immune system and cancer cells has led to the advent of effective immunotherapies that have revolutionized the therapeutic paradigm of several cancer types. However, colorectal cancer (CRC) is one of the tumor types in which immunotherapy has proven less effective. While there is solid clinical evidence for the therapeutic role of immune checkpoint inhibitors in mismatch repair-deficient (dMMR) and in highly microsatellite instable (MSI-H) metastatic CRC (mCRC), blockade of CTLA-4 or PD-L1/PD-1 as monotherapy has not conferred any major clinical benefit to patients with MMR-proficient (pMMR) or microsatellite stable (MSS) mCRC, reflecting 95% of the CRC population. There thus remains a high unmet medical need for the development of novel immunotherapy approaches for the vast majority of patients with pMMR or MSS/MSI-low (MSI-L) mCRC. Defining the molecular mechanisms for immunogenicity in mCRC and mediating immune resistance in MSS mCRC is needed to develop predictive biomarkers and effective therapeutic combination strategies. Here we review available clinical data from combinatorial therapeutic approaches using immunotherapy-based strategies for MSS mCRC.
Collapse
Affiliation(s)
- Iosune Baraibar
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Oriol Mirallas
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
| | - Nadia Saoudi
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Javier Ros
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Francesc Salvà
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Josep Tabernero
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| | - Elena Élez
- Department of Medical Oncology, Vall d’Hebron University Hospital, Passeig de la Vall d’Hebron, 119, 08035 Barcelona, Spain; (O.M.); (N.S.); (J.R.); (F.S.); (J.T.); (E.É.)
- Vall d’Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain
| |
Collapse
|
15
|
Krishnan T, Roberts-Thomson R, Broadbridge V, Price T. Targeting Mutated KRAS Genes to Treat Solid Tumours. Mol Diagn Ther 2021; 26:39-49. [PMID: 34914038 DOI: 10.1007/s40291-021-00564-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2021] [Indexed: 02/06/2023]
Abstract
Kirsten rat sarcoma (KRAS) is one of the most frequently mutated oncogenes in solid tumours. It encodes an important signalling pathway that drives cellular proliferation and growth. It is frequently mutated in aggressive advanced solid tumours, particularly colorectal, lung and pancreatic cancer. Since the first mutated KRAS was discovered in the 1980s, decades of research to develop targeted inhibitors of mutant KRAS have fallen short of the task, until recently. Multiple agents are now in clinical trials, including specific mutant KRAS inhibitors, pan-KRAS inhibitors, therapeutic vaccines and other targeted inhibitors. Mutant-specific KRAS G12C inhibitors are the most advanced, with two inhibitors, adagrasib and sotorasib, achieving approval in 2021 for the second-line treatment of patients with KRAS G12C mutant lung cancer. In this review, we summarise the importance of mutant KRAS in solid tumours, prior attempts at inhibiting mutant KRAS, and the current promising targeted agents being investigated in clinical trials, along with future challenges.
Collapse
Affiliation(s)
- Tharani Krishnan
- Medical Oncology Department, Calvary North Adelaide Hospital, North Adelaide, SA, Australia
| | - Rachel Roberts-Thomson
- Medical Oncology Department, Calvary North Adelaide Hospital, North Adelaide, SA, Australia.,Medical Oncology Department, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - Vy Broadbridge
- Medical Oncology Department, Calvary North Adelaide Hospital, North Adelaide, SA, Australia.,Medical Oncology Department, The Queen Elizabeth Hospital, Woodville South, SA, Australia
| | - Timothy Price
- Medical Oncology Department, Calvary North Adelaide Hospital, North Adelaide, SA, Australia. .,Medical Oncology Department, The Queen Elizabeth Hospital, Woodville South, SA, Australia.
| |
Collapse
|
16
|
Saravani K, Salarzaei M, Parooie F. Effect of KRAS and BRAF mutations in metastatic colorectal cancer patients: A systematic review and meta-analysis based on tumor sidedness and KRAS subtypes. Hum Antibodies 2021; 29:275-284. [PMID: 34334388 DOI: 10.3233/hab-210451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Metastatic or recurrent colorectal cancer (MRCRC) has a poor prognosis. The aim of the present meta-analysis was to assess the prevalence of different subtypes of KRAS mutation and BRAF mutation in metastatic CRC patients, and evaluate the relationship between the tumor sidedness and prevalence of KRAS and BRAF mutation. METHODS We searched MEDLINE/PubMed, the Cochrane Library, and ClinicalTrials.gov from January 2010 to July 2020. The data were extracted independently according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). The statistical analysis was done using STATA and Meta-Disk 1.4 applications. RESULTS Overall, 6699 colorectal cancer patients were included. KRAS and BRAF mutation was reported in 28% and 6% of patients, respectively. The overall prevalence of right primary and left primary metastatic CRC patients with mutated KRAS was 40% and 60%. However, the prevalence BRAF mutated right primary and left primary metastatic CRC patients was 37% and 63%. The overall HR was 2.38 for patients with metastatic CRC who had a mutated type of KRAS. Our study showed a mean overall survival of 35.4 month for KRAS mutant and a 10.12 month survival for BRAF mutant patients with metastatic colorectal cancer patients. CONCLUSION The prevalence of KRAS and BRAF mutations varied significantly according to the location of the tumor. BRAF mutations are more commonly found in metastatic colorectal cancers on the right side. Liver was the most common site of metastases in patients with mutant KRAS and the mortality of patients with mutant KRAS was 2.3 times higher than the patients with wild types. These results help to better describe the population of mCRC patients and can have implications for improving and organizing anti-EGFR therapies. Further research is needed to assess differences in survival through mutation status and primary tumor location.
Collapse
|
17
|
Konishi H, Kashima S, Goto T, Ando K, Sakatani A, Tanaka H, Ueno N, Moriichi K, Okumura T, Fujiya M. The Identification of RNA-Binding Proteins Functionally Associated with Tumor Progression in Gastrointestinal Cancer. Cancers (Basel) 2021; 13:cancers13133165. [PMID: 34202873 PMCID: PMC8269357 DOI: 10.3390/cancers13133165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary Previous investigations described bioinformatic analyses based on the mRNA expression and somatic mutation as useful strategies for identifying cancer-associated molecules that were potential candidates of therapeutic targets. However, these data included secondary changes and non-functional alterations that do not influence tumor progression. Investigations, including our own studies, have shown that some RBPs shuttle cytoplasm and nuclei, and their affinity to RNAs is regulated by posttranslational modifications, such as phosphorylation. Therefore, the functional assessment of individual molecules is the most suitable strategy for identifying cancer-associated genes with or without expressional changes and mutations. This report showed for the first time that a functional assessment using an siRNA library was useful for identifying therapeutic targets from molecular groups, including RBPs, that had not been identified by expressional and mutational analyses. Abstract Previous investigations have indicated that RNA-binding proteins (RBPs) are key molecules for the development of organs, differentiation, cell growth and apoptosis in cancer cells as well as normal cells. A bioinformatics analysis based on the mRNA expression and a somatic mutational database revealed the association between aberrant expression/mutations of RBPs and cancer progression. However, this method failed to detect functional alterations in RBPs without changes in the expression, thus leading to false negatives. To identify major tumor-associated RBPs, we constructed an siRNA library based on the database of RBPs and assessed the influence on the growth of colorectal, pancreatic and esophageal cancer cells. A comprehensive analysis of siRNA functional screening findings using 1198 siRNAs targeting 416 RBPs identified 41 RBPs in which 50% inhibition of cell growth was observed in cancer cells. Among these RBPs, 12 showed no change in the mRNA expression and no growth suppression in non-cancerous cells when downregulated by specific siRNAs. We herein report for the first time cancer-promotive RBPs identified by a novel functional assessment using an siRNA library of RBPs combined with expressional and mutational analyses.
Collapse
Affiliation(s)
- Hiroaki Konishi
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka, Asahikawa 078-8510, Japan;
| | - Shin Kashima
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Takuma Goto
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Katsuyoshi Ando
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Aki Sakatani
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Hiroki Tanaka
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa 078-8510, Japan;
| | - Nobuhiro Ueno
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Kentaro Moriichi
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Toshikatsu Okumura
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
| | - Mikihiro Fujiya
- Department of Gastroenterology and Advanced Medical Sciences, Asahikawa Medical University, 2-1-1-1, Midorigaoka, Asahikawa 078-8510, Japan;
- Division of Metabolism and Biosystemic Science, Gastroenterology, and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Asahikawa 078-8510, Japan; (S.K.); (T.G.); (K.A.); (A.S.); (N.U.); (K.M.); (T.O.)
- Correspondence: ; Tel.: +81-166-68-2462
| |
Collapse
|
18
|
Yang F, He YW, Chai YQ, Yuan R, Zhuo Y. Engineering a high-efficient DNA amplifier for biosensing application based on perylene decorated Ag microflowers as novel electrochemiluminescence indicators. Biosens Bioelectron 2021; 182:113178. [PMID: 33773379 DOI: 10.1016/j.bios.2021.113178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/16/2021] [Accepted: 03/17/2021] [Indexed: 12/26/2022]
Abstract
DNA-based amplifiers with high programmability and accurate molecular recognition ability have become a versatile platform for target amplification. However, the random diffusion of capture probes (CPs) in most DNA amplifiers limits the target recognition efficiency, affecting the limit of detection. Herein, a high-efficient DNA amplifier was developed by localizing the CPs consisted of the unique palindromic tails and target recognition sequences on Au nanoparticle modified magnetic beads (Au@MBs). In the presence of target K-ras gene, the CPs with high local concentration and orientation could capture the target efficiently to expose their palindromic tails, which could act as primers to trigger the polymerization for target recycling. More importantly, the polymerization products could involve in the next recycle and produce abundant mimic targets (MTs) continuously, thereby achieving the detection of trace K-ras gene. Meanwhile, a novel electrochemiluminescence (ECL) indicator of a thin-layer of perylene (Pe) molecules decorated Ag microflowers (Pe@Ag MFs) was obtained based on the reaction between the perylene cation radical (Pe•+) and Ag atoms. The obtained Pe@Ag MFs exhibited desirable ECL performance because (i) a thin-layer of Pe molecules could reduce the inner filter effect and inactive emitters, (ii) the Ag MFs as coreaction accelerator could react with S2O82- to produce more SO4•- and shorten the distance between Pe•- and SO4•- to significantly enhance the ECL intensity of Pe with less energy loss. This work paves the way for the development of efficient amplification strategy and offers a paradigm for the preparation of high-efficiency ECL indicators.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yan-Wei He
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ya-Qin Chai
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Ying Zhuo
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
19
|
Chen Y, Zhang C, Zou X, Yu M, Yang B, Ji CF, Gao SY, Li J, Liu B. Identification of macrophage related gene in colorectal cancer patients and their functional roles. BMC Med Genomics 2021; 14:159. [PMID: 34120619 PMCID: PMC8201885 DOI: 10.1186/s12920-021-01010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 06/08/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Recent scientific research has enabled the identification of macrophages related-genes (MaRG), which play a key role in the control of the immune microenvironment in many human cancers. However, the functional role of MaRGs in human tumors is ill-defined. Herein, we aimed at bioinformatically exploring the molecular signatures of MaRGs in colorectal cancer. METHODS A list of MaRGs was generated and their differential expression was analyzed across multiple datasets downloaded from the publicly available functional genomics database Gene Expression Omnibus. The weighted gene co-expression network analysis (WGCNA) was also applied to identify the partner genes of these MaRGs in colorectal cancer. RESULTS After integration of the results from analyses of different datasets, we found that 29 differentially expressed MaRGs (DE-MaRGs) could be considered as CRC-related genes as obtained from the WGCNA analysis. These genes were functionally involved in positive regulation of DNA biosynthetic process and glutathione metabolism. Protein-protein interaction network analysis indicated that PDIA6, PSMA1, PRC1, RRM2, HSP90AB1, CDK4, MCM7, RFC4, and CCT5 were the hub MaRGs. The LASSO approach was used for validating the 29 MaRGs in TCGA-COAD and TCGA-READ data and the results showed that ten among the 29 genes could be considered as MaRGs significantly involved in CRC. The maftools analysis showed that MaRGs were mutated at varying degrees. The nomogram analysis indicated the correlation of these MaRGs with diverse clinical features of CRC patients. CONCLUSIONS Conclusively, the present disclosed a signature of MaRGs as potential key regulators involved in CRC pathogenesis and progression. These findings contribute not only to the understanding of the molecular mechanism of CRC pathogenesis but also to the development of adequate immunotherapies for CRC patients.
Collapse
Affiliation(s)
- Yingxiang Chen
- Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076 China
| | - Cui Zhang
- College of Pharmacy, Harbin University of Commerce, No. 138 Tongda Street, Harbin, 150076 Heilongjiang Province China
| | - Xiang Zou
- Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076 China
| | - Miao Yu
- Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076 China
| | - Bo Yang
- College of Pharmacy, Harbin University of Commerce, No. 138 Tongda Street, Harbin, 150076 Heilongjiang Province China
| | - Chen-Feng Ji
- Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076 China
| | - Shi-Yong Gao
- Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076 China
| | - Jun Li
- Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076 China
| | - Bin Liu
- Engineering Research Center for Medicine, Harbin University of Commerce, Harbin, 150076 China
| |
Collapse
|
20
|
Araujo LH, Souza BM, Leite LR, Parma SAF, Lopes NP, Malta FSV, Freire MCM. Molecular profile of KRAS G12C-mutant colorectal and non-small-cell lung cancer. BMC Cancer 2021; 21:193. [PMID: 33632153 PMCID: PMC7905642 DOI: 10.1186/s12885-021-07884-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/31/2021] [Indexed: 12/12/2022] Open
Abstract
Background KRAS is the most frequently mutated oncogene in cancer, however efforts to develop targeted therapies have been largely unsuccessful. Recently, two small-molecule inhibitors, AMG 510 and MRTX849, have shown promising activity in KRAS G12C-mutant solid tumors. The current study aims to assess the molecular profile of KRAS G12C in colorectal (CRC) and non-small-cell lung cancer (NSCLC) tested in a clinical certified laboratory. Methods CRC and NSCLC samples submitted for KRAS testing between 2017 and 2019 were reviewed. CRC samples were tested for KRAS and NRAS by pyrosequencing, while NSCLC samples were submitted to next generation sequencing of KRAS, NRAS, EGFR, and BRAF. Results The dataset comprised 4897 CRC and 4686 NSCLC samples. Among CRC samples, KRAS was mutated in 2354 (48.1%). Most frequent codon 12 mutations were G12D in 731 samples (14.9%) and G12V in 522 (10.7%), followed by G12C in 167 (3.4%). KRAS mutations were more frequent in females than males (p = 0.003), however this difference was exclusive of non-G12C mutants (p < 0.001). KRAS mutation frequency was lower in the South and North regions (p = 0.003), but again KRAS G12C did not differ significantly (p = 0.80). In NSCLC, KRAS mutations were found in 1004 samples (21.4%). As opposed to CRC samples, G12C was the most common mutation in KRAS, in 346 cases (7.4%). The frequency of KRAS G12C was higher in the South and Southeast regions (p = 0.012), and lower in patients younger than 50 years (p < 0.001). KRAS G12C mutations were largely mutually exclusive with other driver mutations; only 11 NSCLC (3.2%) and 1 CRC (0.6%) cases had relevant co-mutations. Conclusions KRAS G12C presents in frequencies higher than several other driver mutations, and may represent a large volume of patients in absolute numbers. KRAS testing should be considered in all CRC and NSCLC patients, independently of clinical or demographic characteristics. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-07884-8.
Collapse
Affiliation(s)
- Luiz Henrique Araujo
- Progenética, Grupo Pardini, Vespaziano, Brazil. .,Research & Development Sector, Grupo Pardini, Vespaziano, Brazil. .,Instituto COI de Educação e Pesquisa, Rio de Janeiro, Brazil. .,Instituto Nacional de Câncer, Rio de Janeiro, Brazil.
| | | | | | | | | | | | | |
Collapse
|
21
|
Molecular Mechanisms of Colon Cancer Progression and Metastasis: Recent Insights and Advancements. Int J Mol Sci 2020; 22:ijms22010130. [PMID: 33374459 PMCID: PMC7794761 DOI: 10.3390/ijms22010130] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), the third most common type of cancer, is the second leading cause of cancer-related mortality rates worldwide. Although modern research was able to shed light on the pathogenesis of CRC and provide enhanced screening strategies, the prevalence of CRC is still on the rise. Studies showed several cellular signaling pathways dysregulated in CRC, leading to the onset of malignant phenotypes. Therefore, analyzing signaling pathways involved in CRC metastasis is necessary to elucidate the underlying mechanism of CRC progression and pharmacotherapy. This review focused on target genes as well as various cellular signaling pathways including Wnt/β-catenin, p53, TGF-β/SMAD, NF-κB, Notch, VEGF, and JAKs/STAT3, which are associated with CRC progression and metastasis. Additionally, alternations in methylation patterns in relation with signaling pathways involved in regulating various cellular mechanisms such as cell cycle, transcription, apoptosis, and angiogenesis as well as invasion and metastasis were also reviewed. To date, understanding the genomic and epigenomic instability has identified candidate biomarkers that are validated for routine clinical use in CRC management. Nevertheless, better understanding of the onset and progression of CRC can aid in the development of early detection molecular markers and risk stratification methods to improve the clinical care of CRC patients.
Collapse
|
22
|
Zeng N, Guo Y, Xiang J. A Pterin-FAM-TAMRA Tri-color Fluorescence Biosensor to Detect the Level of KRAS Point Mutation. ANAL SCI 2020; 36:1529-1533. [PMID: 32830162 DOI: 10.2116/analsci.20p265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Monitoring the changes in the level of KRAS point mutation (the concentration fraction of the KRAS point mutated DNA to the total DNA) in clinical treatment progress can guide and greatly improve the personalized therapy and therapeutic evaluation of patients with cancer. In this work, based on FRET fluorescence quenching and apyrimidinic site-induced guanine/pterin specific binding, we developed a pterin-FAM-TAMRA tri-color fluorescence sensing system to assess the level of KRAS point mutation in one step. The responses from TAMRA displayed good and similar linear correlations in the range from 60 nM to 2 μM for all four types of DNA, resulting in a common linear equation related to the T-DNA concentration (NΔFTAMRA = 2.908cT-DNA + 0.364). Meanwhile, the responses from pterin showed excellent selectivity to W-DNA and an excellent linear correlation to the W-DNA in the concentration range from 60 nM to 1 μM (NΔFpterin = -0.364cgDNA-G + 0.034). This biosensor has an effective concentration range for detecting KRAS point mutations. Especially, because the apyrimidinic site-induced guanine/pterin binding is selective for the detection of wild-type DNA, the sensing system can be applied for clinical mutation level detection of all kinds of KRAS point mutations (G → A, G → C and G → T) in blood samples, which is crucial for the personalized therapy and therapeutic evaluation of patients with most KRAS-related cancer types.
Collapse
Affiliation(s)
- Ni Zeng
- College of Chemistry and Chemical Engineering, Central South University
| | - Yaxin Guo
- College of Chemistry and Chemical Engineering, Central South University
| | - Juan Xiang
- College of Chemistry and Chemical Engineering, Central South University
| |
Collapse
|
23
|
Different TERT Expression between Colorectal Adenoma and Serrated Polyp. ACTA ACUST UNITED AC 2020; 56:medicina56090463. [PMID: 32932803 PMCID: PMC7558296 DOI: 10.3390/medicina56090463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/16/2022]
Abstract
Background and Objectives: Telomere regulation have an association with colorectal cancer. Previous studies demonstrated its implication in colorectal carcinogenesis. This study aimed to identify the role of telomerase reverse transcriptase (TERT) in colorectal carcinogenesis and determine TERT expression and their associated genes in precancerous lesions. Materials and Methods: TERT expression in 93 colorectal precursor lesions was analyzed. This included 61 tubular adenomas (TAs) and 32 serrated polyps (SPs). Furthermore, KRAS and BRAF gene mutations and microsatellite instability were analyzed. Statistical tests were performed to analyze the relationship between variables. Results: TERT expression in TAs, when compared with those observed in paired adjacent nontumor tissues, was 0.92 ± 0.78. TERT expression levels were significantly lower in SPs (0.38 ± 0.14, p < 0.001). KRAS and BRAF mutations were mutually exclusive in TAs and SPs (p < 0.001). TERT expression tended to be associated with KRAS mutations (46.7% vs. 22.0%, p = 0.098) and low-grade tumors (35.0% vs. 16.0%, p = 0.096), but this difference was insignificant. Conclusions: TERT expression has a pivotal role in progression to TAs in colorectal tissue. Considering the association between TERT expression and KRAS mutation, therapeutic drugs targeting this pathway can be developed for cancer prevention.
Collapse
|
24
|
Gao Q, Ouyang W, Kang B, Han X, Xiong Y, Ding R, Li Y, Wang F, Huang L, Chen L, Wang D, Dong X, Zhang Z, Li Y, Ze B, Hou Y, Yang H, Ma Y, Gu Y, Chao CC. Selective targeting of the oncogenic KRAS G12S mutant allele by CRISPR/Cas9 induces efficient tumor regression. Am J Cancer Res 2020; 10:5137-5153. [PMID: 32308773 PMCID: PMC7163449 DOI: 10.7150/thno.42325] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/13/2020] [Indexed: 12/12/2022] Open
Abstract
Rationale: KRAS is one of the most frequently mutated oncogenes in cancers. The protein's picomolar affinity for GTP/GDP and smooth protein structure resulting in the absence of known allosteric regulatory sites makes its genomic-level activating mutations a difficult but attractive target. Methods: Two CRISPR systems, genome-editing CRISPR/SpCas9 and transcription-regulating dCas9-KRAB, were developed to deplete the KRAS G12S mutant allele or repress its transcription, respectively, with the goal of treating KRAS-driven cancers. Results: SpCas9 and dCas9-KRAB systems with a sgRNA targeting the mutant allele blocked the expression of the mutant KRAS gene, leading to an inhibition of cancer cell proliferation. Local adenoviral injections using SpCas9 and dCas9-KRAB systems suppressed tumor growth in vivo. The gene-depletion system (SpCas9) performed more effectively than the transcription-suppressing system (dCas9-KRAB) on tumor inhibition. Application of both Cas9 systems to wild-type KRAS tumors did not affect cell proliferation. Furthermore, through bioinformatic analysis of 31555 SNP mutations of the top 20 cancer driver genes, the data showed that our mutant-specific editing strategy could be extended to a reference list of oncogenic mutations with high editing potentials. This pipeline could be applied to analyze the distribution of PAM sequences and survey the best alternative targets for gene editing. Conclusion: We successfully developed both gene-depletion and transcription-suppressing systems to specifically target an oncogenic KRAS mutant allele that led to significant tumor regression. These findings show the potential of CRISPR-based strategies for the treatment of tumors with driver gene mutations.
Collapse
|
25
|
SMYD3: An Oncogenic Driver Targeting Epigenetic Regulation and Signaling Pathways. Cancers (Basel) 2020; 12:cancers12010142. [PMID: 31935919 PMCID: PMC7017119 DOI: 10.3390/cancers12010142] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/26/2019] [Accepted: 01/01/2020] [Indexed: 12/20/2022] Open
Abstract
SMYD3 is a member of the SMYD lysine methylase family and plays an important role in the methylation of various histone and non-histone targets. Aberrant SMYD3 expression contributes to carcinogenesis and SMYD3 upregulation was proposed as a prognostic marker in various solid cancers. Here we summarize SMYD3-mediated regulatory mechanisms, which are implicated in the pathophysiology of cancer, as drivers of distinct oncogenic pathways. We describe SMYD3-dependent mechanisms affecting cancer progression, highlighting SMYD3 interplay with proteins and RNAs involved in the regulation of cancer cell proliferation, migration and invasion. We also address the effectiveness and mechanisms of action for the currently available SMYD3 inhibitors. The findings analyzed herein demonstrate that a complex network of SMYD3-mediated cytoplasmic and nuclear interactions promote oncogenesis across different cancer types. These evidences depict SMYD3 as a modulator of the transcriptional response and of key signaling pathways, orchestrating multiple oncogenic inputs and ultimately, promoting transcriptional reprogramming and tumor transformation. Further insights into the oncogenic role of SMYD3 and its targeting of different synergistic oncogenic signals may be beneficial for effective cancer treatment.
Collapse
|
26
|
Abstract
Oncogenic activation of RAS isoforms leads tumor initiation and progression in many types of cancers and is gaining increasing interest as target for novel therapeutic strategies. In sharp contrast with other types of cancer, the importance of RAS in breast tumorigenesis has long been undermined by the low frequency of its oncogenic mutation in human breast lesions. Nevertheless, a wealth of studies over the last years have revealed how the engagement of RAS function might be mandatory downstream varied oncogenic alterations for the progression, metastatic dissemination, and therapy resistance in breast cancers. We review herein the major studies over the last three decades which have explored the controversial role of RAS proteins and their mutation status in breast tumorigenesis and have contributed to reveal their role as supporting actors, instead of as primary cause, in breast cancer.
Collapse
Affiliation(s)
- Mirco Galiè
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| |
Collapse
|
27
|
Procaccio L, Bergamo F, Manai C, Di Antonio V, Fassan M, Zagonel V, Lonardi S, Loupakis F. An overview on clinical, pathological and molecular features of lung metastases from colorectal cancer. Expert Rev Respir Med 2019; 13:635-644. [PMID: 31119959 DOI: 10.1080/17476348.2019.1620605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Introduction: Lung metastases occur in 10-20% of patients with colorectal cancer (CRC). Most of them are treated with palliative intent and have a poor prognosis. Pulmonary metastasectomy may be a curative option for carefully selected patients with 5-year survival rates ranging from 25% to 60%. However, up to 70% of patients develop recurrence after pulmonary metastasectomy. Therefore, the identification of prognostic factors is essential in CRC patients with resectable lung metastases. Areas covered: This review aims at summarizing the actual body of knowledge available on lung metastases from CRC focusing on their clinical, pathological and molecular profile. Moreover, we provide an update on experts' attitudes towards lung metastasectomy, adjuvant or perioperative chemotherapy. Expert opinion: Traditional clinical prognosticators such as the total number of pulmonary metastases, carcinoembryonic antigen (CEA) serum levels before surgery, and presence of lymph node metastases cannot provide reliable criteria to predict survival after lung metastasectomy. Indeed, research efforts have been directed in recent years toward studying the biological characteristics of lung lesions to better define prognosis and response to treatment, and ultimately shed new light on their proper local and systemic management.
Collapse
Affiliation(s)
- Letizia Procaccio
- a Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology , Istituto Oncologico Veneto IOV - IRCCS , Padova , Italia
- b Department of Surgery, Oncology and Gastroenterology , University of Padova , Padova , Italia
| | - Francesca Bergamo
- a Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology , Istituto Oncologico Veneto IOV - IRCCS , Padova , Italia
| | - Chiara Manai
- a Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology , Istituto Oncologico Veneto IOV - IRCCS , Padova , Italia
| | - Veronica Di Antonio
- a Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology , Istituto Oncologico Veneto IOV - IRCCS , Padova , Italia
| | - Matteo Fassan
- c Department of Medicine, Surgical Pathology and Cytopathology Unit , University of Padova , Padova , Italy
| | - Vittorina Zagonel
- a Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology , Istituto Oncologico Veneto IOV - IRCCS , Padova , Italia
| | - Sara Lonardi
- a Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology , Istituto Oncologico Veneto IOV - IRCCS , Padova , Italia
| | - Fotios Loupakis
- a Unit of Medical Oncology 1, Department of Clinical and Experimental Oncology , Istituto Oncologico Veneto IOV - IRCCS , Padova , Italia
| |
Collapse
|
28
|
Murugan AK, Grieco M, Tsuchida N. RAS mutations in human cancers: Roles in precision medicine. Semin Cancer Biol 2019; 59:23-35. [PMID: 31255772 DOI: 10.1016/j.semcancer.2019.06.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 05/13/2019] [Accepted: 06/07/2019] [Indexed: 02/07/2023]
Abstract
Ras proteins play a crucial role as a central component of the cellular networks controlling a variety of signaling pathways that regulate growth, proliferation, survival, differentiation, adhesion, cytoskeletal rearrangements and motility of a cell. Almost, 4 decades passed since Ras research was started and ras genes were originally discovered as retroviral oncogenes. Later on, mutations of the human RAS genes were linked to tumorigenesis. Genetic analyses found that RAS is one of the most deregulated oncogenes in human cancers. In this review, we summarize the pioneering works which allowed the discovery of RAS oncogenes, the finding of frequent mutations of RAS in various human cancers, the role of these mutations in tumorigenesis and mutation-activated signaling networks. We further describe the importance of RAS mutations in personalized or precision medicine particularly in molecular targeted therapy, as well as their use as diagnostic and prognostic markers as therapeutic determinants in human cancers.
Collapse
Affiliation(s)
- Avaniyapuram Kannan Murugan
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| | - Michele Grieco
- DiSTABiF, Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università di Napoli, via Vivaldi 43, Caserta 81100 Italy
| | - Nobuo Tsuchida
- Department of Molecular Cellular Oncology and Microbiology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8549 Japan.
| |
Collapse
|
29
|
Kim SJ, Pak K, Kim K. Diagnostic performance of F-18 FDG PET/CT for prediction of KRAS mutation in colorectal cancer patients: a systematic review and meta-analysis. Abdom Radiol (NY) 2019; 44:1703-1711. [PMID: 30603881 DOI: 10.1007/s00261-018-01891-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The purpose of the current study was to investigate the diagnostic performance of F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for the prediction of v-Ki-ras-2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation in colorectal cancer (CRC) patients through a systematic review and meta-analysis. METHODS The PubMed and EMBASE database, from the earliest available date of indexing through April 30, 2018, were searched for studies evaluating the diagnostic performance of F-18 FDG PET/CT for prediction of KRAS mutation in CRC patients. RESULTS Across 9 studies (804 patients), the pooled sensitivity for F-18 FDG PET/CT was 0.66 (95% CI 0.60-0.73) without heterogeneity (I2 = 34.1, p = 0.14) and a pooled specificity of 0.67 (95% CI 0.62-0.72) without heterogeneity (I2 = 1.63, p = 0.42). Likelihood ratio (LR) syntheses gave an overall positive likelihood ratio (LR+) of 2.0 (95% CI 1.7-2.4) and negative likelihood ratio (LR-) of 0.5 (95% CI 0.41-0.61). The pooled diagnostic odds ratio (DOR) was 4 (95% CI 3-6). Hierarchical summary receiver operating characteristic (ROC) curve indicates that the areas under the curve were 0.69 (95% CI 0.65-0.73). CONCLUSION The current meta-analysis showed the low sensitivity and specificity of F-18 FDG PET/CT for prediction of KRAS mutation in CRC patients. The DOR was very low and the likelihood ratio scatter-gram indicated that F-18 FDG PET/CT might not be useful for prediction of KRAS mutation and not for its exclusion. Therefore, cautious application and interpretation should be paid to the F-18 FDG PET/CT for prediction of KRAS mutation in CRC patients.
Collapse
|
30
|
Lv Y, Wang X, Liang L, Wang L, Lu J. SUVmax and metabolic tumor volume: surrogate image biomarkers of KRAS mutation status in colorectal cancer. Onco Targets Ther 2019; 12:2115-2121. [PMID: 30962693 PMCID: PMC6433102 DOI: 10.2147/ott.s196725] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose The objective of this study was to explore the association between KRAS mutation status and PET/CT metabolic parameters in colorectal cancer (CRC) patients. Materials and methods One hundred and sixty-four CRC patients were enrolled in this study and received PET/CT examination before operation, then KRAS mutation status was analyzed through pathologically confirmed CRC samples. The association between tumor clinical characteristics and PET/CT metabolic parameters, including maximum standardized uptake value (SUVmax), SUVmean, and metabolic tumor volume (MTV), and KRAS mutation status was analyzed using chi-squared tests, Mann-Whitney U tests, and logistic regression analysis. Results The KRAS mutation type patients exhibited high MTV and high SUVmax using a threshold of 17.8 cm3 and 8.7 respectively and the predictive accuracy was 0.772 and 0.603 respectively. High MTV (P=0.001; 95% CI: 1.119-1.296) and high SUVmax (P=0.048; 95% CI: 0.564-0.985) were independent predictors for KRAS mutation status. Conclusion MTV and SUVmax were associated with KRAS mutation type in CRC patients. PET/CT metabolic parameters can be used for supplementing KRAS mutation status prediction in CRC patients.
Collapse
Affiliation(s)
- Ying Lv
- Department of Gastroenterology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, People's Republic of China
| | - Xin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei, People's Republic of China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan 250117, Shandong, People's Republic of China
| | - Lerong Liang
- Department of Oncology, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, People's Republic of China
| | - Lei Wang
- Department of Gastrointestinal Surgery, Jinan Central Hospital Affiliated to Shandong University, Jinan 250013, Shandong, People's Republic of China,
| | - Jie Lu
- Department of Neurosurgery, Shandong Province Qianfoshan Hospital of Shandong University, Jinan 250014, Shandong, People's Republic of China,
| |
Collapse
|
31
|
Li H, Tang Y, Zhao W, Wu Z, Wang S, Yu R. Palindromic molecular beacon-based intramolecular strand-displacement amplification strategy for ultrasensitive detection of K-ras gene. Anal Chim Acta 2019; 1065:98-106. [PMID: 31005156 DOI: 10.1016/j.aca.2019.02.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/11/2019] [Accepted: 02/27/2019] [Indexed: 10/27/2022]
Abstract
The sensitive detection of tumor proto-oncogenes is indispensable because the early diagnosis and accurate treatment of genetic diseases is the key guarantee of patients' health. In this study, we proposed a novel palindromic molecular beacon (PMB) that it bases on the signal amplification strategy for ultrasensitive detection of Kras gene codon 12. PMB is designed to have two palindromic fragments at its two ends, one of which is locked via folding into a hairpin structure and the other promotes the formation of PMB duplex via intermolecular self-hybridization. Target DNA can hybridize to the loop portion of PMB and release the palindromic fragment at the 3' end. Within the PMB duplex, the two palindromic fragments released hybridize with each other and serve as polymerization primer responsible for the strand-displacement amplification (SDA). Namely, hybridized target DNA can be displaced and initiates the next round of reactions, making the polymerization/displacement/hybridization process go forward circularly. As a result, a large number of polymerization products are produced, dramatically enhancing optical signal. Because primer hybridization and polymerization-based displacement occur within PMB duplex, the reaction process is called intramolecular strand-displacement amplification (ISDA). Via utilizing the newly-proposed PMB-based ISDA strategy, the target K-ras gene could be detected down to 10 pM with a wide response range of 1 × 10-11-1.5 × 10-7 M, and point mutations are easily distinguished, realizing the ultrasensitive, highly selective detection of K-ras gene. This impressive sensing paradigm demonstrates a new concept of signal amplification for the detection of disease-related genes only via using a simple way to efficiently amplify optical signal.
Collapse
Affiliation(s)
- Hongbo Li
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| | - Yongqiong Tang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China; Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350002, PR China
| | - Weihua Zhao
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China
| | - Zaisheng Wu
- Cancer Metastasis Alert and Prevention Center, Pharmaceutical Photocatalysis of State Key Laboratory of Photocatalysis on Energy and Environment, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, 350002, PR China.
| | - Suqin Wang
- Key Laboratory of Functional Small Organic Molecule, Ministry of Education, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, PR China.
| | - Ruqin Yu
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University, Changsha, 410082, PR China
| |
Collapse
|
32
|
The role of inherited genetic variants in colorectal polyposis syndromes. ADVANCES IN GENETICS 2019; 103:183-217. [PMID: 30904095 DOI: 10.1016/bs.adgen.2018.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Colorectal carcinoma (CRC) is the third most common cancer in men and the second most common cancer in women across the world. Most CRCs occur sporadically, but in 15-35% of cases, hereditary factors are important. Some patients with an inherited predisposition to CRC will be diagnosed with a "genetic polyposis syndrome" such as familial adenomatous polyposis (FAP), MUTYH-associated polyposis (MAP), polymerase proofreading associated polyposis (PPAP), NTHL1-associated polyposis, MSH3-associated polyposis or a hamartomatous polyposis syndrome. Individuals with ≥10 colorectal polyps have traditionally been referred for genetic diagnostic testing to identify APC and MUTYH mutations which cause FAP and MAP respectively. Mutations are found in most patients with >100 adenomas but in only a minority of those with 10-100 adenomas. The reasons that diagnostic laboratories are not identifying pathogenic variants include mutations occurring outside of the open reading frames of genes, individuals exhibiting generalized mosaicism and the involvement of additional genes. It is important to identify patients with an inherited polyposis syndrome, and to define the mutations causing their polyposis, so that the individuals and their relatives can be managed appropriately.
Collapse
|
33
|
Qian F, Xiao J, Gai L, Zhu J. HMGB1-RAGE signaling facilitates Ras-dependent Yap1 expression to drive colorectal cancer stemness and development. Mol Carcinog 2018; 58:500-510. [PMID: 30456802 DOI: 10.1002/mc.22944] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 10/14/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
HMGB1-RAGE signaling plays an integral role in inflammation-driven carcinogenesis. In the present study, we showed that RAGE has direct association with K-Ras following HMGB1 exposure in colorectal cancer (CRC) cells. Immunofluorescence analysis revealed a significant co-localization between RAGE and K-Ras in HMGB1-exposed CRC cells. Moreover, we uncovered that HMGB1-mediated RAGE activation led to Yap1 accumulation in a Ras-dependent mechanism in CRC cells. HMGB1 activated the expression of Yap1 downstream stemness marker proteins CD44 and Sox2 in RAGE- and Ras-dependent manners. Furthermore, HMGB1 exposure led to the proliferation of CRC cells and the expansion of CRC stem cells. RAGE, Yap1 and CD44 were overexpressed in CRC specimens. Linear regression analysis revealed that the expression of RAGE was positively correlated with Yap1 in clinical CRC specimens. Both of RAGE and Yap1 expression were correlated with advanced histological grades, lymph node metastasis and TNM stages. Finally, we revealed that both of RAGE and Yap1 expression could predicted unfavorable prognosis in CRC patients. These findings implicated that HMGB1-RAGE signaling may promote Yap1 activation and CRC progression, shedding new light on the mechanisms underlying inflammation-driven CRC development.
Collapse
Affiliation(s)
- Fei Qian
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianjia Xiao
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China.,Department of Hepatobiliary surgery, Taizhou Hospital of Traditional Chinese Medicine, Taizhou, China
| | - Ling Gai
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianwei Zhu
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
34
|
Mayr V, Sturtzel C, Stadler M, Grissenberger S, Distel M. Fast Dynamic in vivo Monitoring of Erk Activity at Single Cell Resolution in DREKA Zebrafish. Front Cell Dev Biol 2018; 6:111. [PMID: 30320107 PMCID: PMC6170801 DOI: 10.3389/fcell.2018.00111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
Precise regulation of signaling pathways in single cells underlies tissue development, maintenance and repair in multicellular organisms, but our ability to monitor signaling dynamics in living vertebrates is currently limited. We implemented kinase translocation reporter (KTR) technology to create DREKA ("dynamic reporter of Erk activity") zebrafish, which allow one to observe Erk activity in vivo at single cell level with high temporal resolution. DREKA zebrafish faithfully reported Erk activity after muscle cell wounding and revealed the kinetics of small compound uptake. Our results promise that kinase translocation reporters can be adapted for further applications in developmental biology, disease modeling, and in vivo pharmacology in zebrafish.
Collapse
Affiliation(s)
- Vanessa Mayr
- Innovative Cancer Models, St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| | - Caterina Sturtzel
- Innovative Cancer Models, St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| | - Manuela Stadler
- Innovative Cancer Models, St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| | - Sarah Grissenberger
- Innovative Cancer Models, St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| | - Martin Distel
- Innovative Cancer Models, St. Anna Kinderkrebsforschung, Children's Cancer Research Institute, Vienna, Austria
| |
Collapse
|
35
|
Lee T, Kim K, Lee J, Park SH, Park YS, Lim HY, Kang WK, Park JO, Kim ST. Antitumor activity of sorafenib plus CDK4/6 inhibitor in pancreatic patient derived cell with KRAS mutation. J Cancer 2018; 9:3394-3399. [PMID: 30271501 PMCID: PMC6160685 DOI: 10.7150/jca.26068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/22/2018] [Indexed: 12/13/2022] Open
Abstract
KRAS mutation has been known as crucial marker for growth and maintenance of pancreatic cancer (PC) and targeting the KRAS is inevitable component for realizing precision medicine to PC. We established patient-derived tumor cells (PDCs) from patient with KRAS G12R mutant PC. Through the PDC, we investigated the therapeutic impact of sorafenib alone, LEE001 alone and the combination of sorafenib and LEE001 in KRAS mutant PC. For the validation, we also tested a cell viability assay for sorafenib, LEE001, and sorafenib plus LEE001 in KRAS G12R transfected HEK293T cells. Based on MTT proliferation assays using PDCs, values of IC50 were 6.07 uM to sorafenib and > 10.00 uM to LEE001, respectively. The value of IC50 of the combination (sorafenib plus LEE001) was 3.19 uM. Cell proliferation of PDC was significantly inhibited by sorafenib plus LEE001, as compared to sorafenib monotherapy and LEE001 monotherapy. In the validation through KRAS G12R transfected HEK293T cells, consistent to findings in PDCs, combinations of sorafenib plus LEE001 had most effective inhibitory effect in KRAS G12R transfected HEK293T cells. Furthermore, on analyzing the regulation of targeted downstream pathways upon exposure to sorafenib, LEE001, and sorafenib plus LEE001 by immunoblot assay using KRAS G12R transfected HEK293T cells, AKT phosphorylation was distinctively decreased in KRAS G12R transfected HEL293 cells after only sorafenib plus LEE001. This study suggests that the combination of RAF and CDK4/6 inhibitors might be a novel treatment strategy for KRAS G12R mutant pancreatic cancer. The antitumor effect of RAF plus CDK4/6 inhibitors also needs to be evaluated in other subtypes of KRAS mutation in pancreatic cancer.
Collapse
Affiliation(s)
- Taehyang Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyung Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeeyun Lee
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Se Hoon Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Suk Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ho Yeong Lim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Ki Kang
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Joon Oh Park
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seung Tae Kim
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
36
|
Abstract
The high prevalence of KRAS mutations in human cancers and the lack of effective treatments for patients ranks KRAS among the most highly sought-after targets for preclinical oncologists. Pharmaceutical companies and academic laboratories have tried for decades to identify small molecule inhibitors of oncogenic KRAS proteins, but little progress has been made and many have labeled KRAS undruggable. However, recent progress in in silico screening, fragment-based drug design, disulfide tethered screening, and some emerging themes in RAS biology have caused the field to reconsider previously held notions about targeting KRAS. This review will cover some of the historical efforts to identify RAS inhibitors, and some of the most promising efforts currently being pursued.
Collapse
Affiliation(s)
- Matthew Holderfield
- NCI-Ras Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21702
| |
Collapse
|
37
|
Nguyen HT, Duong HQ. The molecular characteristics of colorectal cancer: Implications for diagnosis and therapy. Oncol Lett 2018; 16:9-18. [PMID: 29928381 DOI: 10.3892/ol.2018.8679] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/22/2018] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) results from the progressive accumulation of multiple genetic and epigenetic aberrations within cells. The progression from colorectal adenoma to carcinoma is caused by three major pathways: Microsatellite instability, chromosomal instability and CpG island methylator phenotype. A growing body of scientific evidences suggests that CRC is a heterogeneous disease, and genetic characteristics of the tumors determine their prognostic outcome and response to targeted therapies. Early diagnosis and effective targeted therapies based on a current knowledge of the molecular characteristics of CRC are essential to the successful treatment of CRC. Therefore, the present review summarized the current understanding of the molecular characteristics of CRC, and discussed its implications for diagnosis and targeted therapy.
Collapse
Affiliation(s)
- Ha Thi Nguyen
- Center for Molecular Biology, Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Hong-Quan Duong
- Department of Cancer Research, Vinmec Research Institute of Stem Cell and Gene Technology, Hanoi 100000, Vietnam
| |
Collapse
|
38
|
Segura-Uribe J, Santiago-Payán H, Quintero A. Transitions and Transversions in Ki-Ras Gene in Colorectal Cancers in Mexican Patients. TUMORI JOURNAL 2018; 89:259-62. [PMID: 12908779 DOI: 10.1177/030089160308900305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aims & Background An important increase in the incidence of colorectal cancers has been detected in the last 15 years in Mexico. This fact has been attributed to several causes, including the change in diet acquired from industrialized countries. Various groups have studied the mutational pattern of oncogenes, including Ki-ras gene, in colorectal cancers from different human populations. The aim of this work was to study the prevalence of mutations at codons 12, 13 and 61 of the Ki-ras gene in 37 colorectal tumors from Mexican patients and to correlate them with clinical data. Methods Point mutations were studied in 37 colorectal cancers at codons 12 and 13 of the Ki-ras gene, using PCR followed by RFLP. We also performed PCR-SSCP to identify mutations at codon 61. We confirmed mutations by sequence analysis in all the altered codons. Results Our results indicated that 24.3% of the tumors presented mutations at codon 12, 5.4% at codon 13, and 2.7% at codon 61 of the Ki-ras gene. We found that 75% of these mutations were transitions and 25% transversions. The overall results indicated that the frequency of Ki-ras mutations in colorectal cancers in a sample of a Mexican population (Mexico City) was 32.4%, which is similar to that reported in other populations. We did not find a correlation between the Ki-ras mutations and gender, location of the tumor, or Dukes’ stage, but survival of the patient without recurrence was statistically significant. Conclusions The study of colorectal cancer indicated that in a Mexican population Ki-ras mutations were present in tumors of patients who survived without tumor recurrence. Most of them were transitions in the first and second base of codon 12.
Collapse
Affiliation(s)
- Julia Segura-Uribe
- Facultad de Química, Universidad Nacional Autónoma de México, Cd Universitaria, Coyoacan, México.
| | | | | |
Collapse
|
39
|
Kopnin B. Genetic Events Responsible for Colorectal Tumorigenesis: Achievements and Challenges. TUMORI JOURNAL 2018; 79:235-43. [PMID: 8249174 DOI: 10.1177/030089169307900401] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Colorectal carcinogenesis is a multistep process that is accompanied by accumulation of changes in proto-oncogenes and tumor-suppressor genes. APC/MCC, RAS, DCC, p53 mutations and/or allelic losses, hyperexpression of c-MYC and RB genes, as well as other genomic alterations appear at characteristic stages of tumor development and are observed in most neoplasms. However, consideration of each of these abnormalities leaves many unanswered questions. The striking data on recurrent amplification of the RB tumor-suppressor gene as well as suppressive activities of protein kinase C and activated RAS genes, at least in some colon carcinoma cell lines, suggest the unusual effects of some signalling pathways in colonic epithelial cells. The results obtained to date indicate that distinct sets of genetic changes may underlie the development of colorectal tumors.
Collapse
Affiliation(s)
- B Kopnin
- Institute of Carcinogenesis, Cancer Research Center, Moscow
| |
Collapse
|
40
|
Abstract
The presence of mutations activating the N-ras gene was investigated by the polymerase chain reaction technique in twenty patients with acute myeloblastic leukemia (AML) at onset and in four patients with Ph' positive chronic myelogeneous leukemia (CML) either in chronic phase or in blast crisis. Four remission samples and four relapses from the AML cases were also studied. Mutations were found in five out of twenty (25%) untreated AML cases at onset. No mutations were detected in the complete remission samples, two of them with N-ras mutations during the leukemic phase. Two out of the four leukemia relapses were positive for the same N-ras mutation shown at presentation, whereas no new mutations were found in the other two initially negative cases. An N-ras mutation appeared during the blast crisis of one of the four CML, which were all negative during the chronic phase. In conclusion, whereas some data appear to be consistent with a role of the N-ras mutations as initiating events in myeloid leukemias, in other cases N-ras activation seems to represent a factor involved in progression. These data suggest that a partial overlapping between initiation and progression factors could exist in naturally occurring tumors.
Collapse
Affiliation(s)
- G Saglio
- Dipartimento di Scienze Biomediche e Università di Torino, Italy
| | | | | | | | | |
Collapse
|
41
|
Abstract
Our laboratory has studied Ras and Ras-like proteins since the discovery of the Ras oncogene 35 years ago. In this review, I will give an account of what we have done in these 35 years and indicate the main papers that have guided our research. Our efforts started with the early analysis of mutant Ras in human tumors followed by deciphering of the role of Ras in signal transduction pathways. In an attempt to interfere in Ras signaling we turned to Rap proteins. These proteins are the closest relatives of Ras and were initially identified as Ras antagonists. However, our studies revealed that the Rap signaling network primarily is involved in spatiotemporal control of cell adhesion, in part through regulation of the actin cytoskeleton. More recently we returned to Ras, trying to interfere in Ras signaling by combinatorial drug testing using the organoid technology.
Collapse
Affiliation(s)
- Johannes L Bos
- Molecular Cancer Research, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
42
|
Trevisiol C, Di Fabio F, Nascimbeni R, Peloso L, Salbe C, Ferruzzi E, Salerni B, Gion M. Prognostic Value of Circulating KRAS2 Gene Mutations in Colorectal Cancer with Distant Metastases. Int J Biol Markers 2018. [DOI: 10.1177/172460080602100405] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While tissue KRAS2 mutations have been extensively investigated, the role of circulating mutant KRAS2 gene in patients with colorectal carcinoma remains obscure. The aim of the present study was to explore the prognostic significance of circulating KRAS2 gene mutational status in subjects undergoing primary treatment for colorectal cancer. Codon 12 KRAS2 mutations were examined in DNA samples extracted from the serum of 86 patients with colorectal cancer and were compared with the KRAS2 status of their primary tumors. Tissue and serum KRAS2 status was compared with other clinicopathological variables (including CEA and CA 19-9 levels) and with cancer-related survival. KRAS2 mutations were found in tissue samples of 28 patients (33%); serum KRAS2 mutations were detected in 10 of them (36%). Serum KRAS2 status was significantly associated with Dukes' stage D (p=0.001) and with preoperative CA 19-9 levels (p=0.01). At multivariate analysis, cancer-related survival was associated with Dukes' stage (p<0.0001), CEA level (p=0.02), and mutant circulating KRAS2 (p=0.01). All 7 stage D patients with serum KRAS2 mutations died of the disease within 24 months of primary treatment; cancer-related survival was significantly better in 9 stage D patients without serum KRAS2 mutations, with 5 patients (56%) alive after 24 months and 1 patient (13%) alive after 44 months. Residual disease after surgery was evident in all 7 stage D patients with mutant circulating KRAS2, and in 5 out of 9 stage D patients without serum mutations. Serum KRAS2 status may impact substantially on the management of stage D colorectal carcinoma, since it appears to correlate with prognosis in this patient subgroup.
Collapse
Affiliation(s)
- C. Trevisiol
- ABO Association, c/o Center for the Study of Biological Markers of Malignancy, General Regional Hospital ULSS 12, Venice
| | - F. Di Fabio
- Department General Surgery, University of Brescia, Brescia
| | - R. Nascimbeni
- Department General Surgery, University of Brescia, Brescia
| | - L. Peloso
- ABO Association, c/o Center for the Study of Biological Markers of Malignancy, General Regional Hospital ULSS 12, Venice
| | - C. Salbe
- ABO Association, c/o Center for the Study of Biological Markers of Malignancy, General Regional Hospital ULSS 12, Venice
| | - E. Ferruzzi
- ABO Association, c/o Center for the Study of Biological Markers of Malignancy, General Regional Hospital ULSS 12, Venice
| | - B. Salerni
- Department General Surgery, University of Brescia, Brescia
| | - M. Gion
- Center for the Study of Biological Markers of Malignancy, General Regional Hospital ULSS 12, Venice - Italy
| |
Collapse
|
43
|
Hua Y, Ju J, Wang X, Zhang B, Zhao W, Zhang Q, Feng Y, Ma W, Wan C. Screening for host proteins interacting with Escherichia coli O157:H7 EspF using bimolecular fluorescence complementation. Future Microbiol 2017; 13:37-58. [PMID: 29227212 DOI: 10.2217/fmb-2017-0087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM To screen host proteins that interact with enterohemorrhagic Escherichia coli O157:H7 EspF. MATERIALS & METHODS Flow cytometry and high-throughput sequencing were used to screen interacting proteins. Molecular function, biological processes and Kyoto Encyclopedia of Genes and Genomes pathways were studied using the DAVID online tool. Glutathione S-transferase pull down and dot blotting were used to verify the interactions. RESULTS 293 host proteins were identified to associate with EspF. They were mainly enriched in RNA splicing (p = 0.005), ribosome structure (p = 0.012), and involved in 109 types of signaling pathways. SNX9 and ANXA6 were confirmed to interact with EspF. CONCLUSION EspF interacts with ANXA6; they may form a complex to manipulate the process of phagocytosis; EspF plays a highlighted pathogenic role in enterohemorrhagic E. coli infection process.
Collapse
Affiliation(s)
- Ying Hua
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| | - Jingwei Ju
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou 510006, China
| | - Xiangyu Wang
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| | - Bao Zhang
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| | - Wei Zhao
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| | - Qiwei Zhang
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| | - Yingzhu Feng
- Guangzhou Institutes of Biomedicine & Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Wenbin Ma
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University, Guangzhou 510006, China
| | - Chengsong Wan
- Biosafety Level 3 Laboratory, School of Public Health, Southern Medical University, Guangzhou 510515, China.,Key Laboratory of Tropical Disease Research of Guangdong Provincial, Guangzhou 510515, China
| |
Collapse
|
44
|
Rice PFS, Ehrichs KG, Jones MS, Chen H, Hsu CH, Abril ER, Nagle RB, Besselsen DG, Barton JK, Ignatenko NA. Does Mutated K-RAS Oncogene Attenuate the Effect of Sulindac in Colon Cancer Chemoprevention? Cancer Prev Res (Phila) 2017; 11:16-26. [PMID: 29118162 DOI: 10.1158/1940-6207.capr-17-0230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/15/2017] [Accepted: 10/23/2017] [Indexed: 11/16/2022]
Abstract
The NSAID sulindac has been successfully used alone or in combination with other agents to suppress colon tumorigenesis in patients with genetic predisposition and also showed its efficacy in prevention of sporadic colon adenomas. At the same time, some experimental and clinical reports suggest that a mutant K-RAS oncogene may negate sulindac antitumor efficacy. To directly assess sulindac activity at suppressing premalignant lesions carrying K-RAS mutation, we utilized a novel mouse model with an inducible colon-specific expression of the mutant K-ras oncogene (K-rasG12D ). Tumor development and treatment effects were monitored by minimally invasive endoscopic Optical coherence tomography. Expression of the mutant K-ras allele accelerated azoxymethane (AOM)-induced colon carcinogenesis in C57BL/6 mice, a strain otherwise resistant to this carcinogen. Sulindac completely prevented AOM-induced tumor formation in K-ras wild-type (K-ras wt) animals. In K-rasG12D -mutant mice, a 38% reduction in tumor number, an 83% reduction in tumor volume (P ≤ 0.01) and an increase in the number of adenoma-free mice (P = 0.04) were observed. The partial response of K-RasG12D animals to sulindac treatment was evident by the decrease in mucosal thickness (P < 0.01) and delay in progression of the precancerous aberrant crypt foci to adenomas. Molecular analyses showed significant induction in cyclooxygenase 2 (COX-2), cleaved caspase-3 (CC3), and Ki-67 expression by AOM, but not sulindac treatment, in all genotypes. Our data underscore the importance of screening for K-RAS mutations in individuals with colon polyps to provide more personalized interventions targeting mutant K-RAS signaling pathways. Cancer Prev Res; 11(1); 16-26. ©2017 AACR.
Collapse
Affiliation(s)
- Photini F S Rice
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Kevin G Ehrichs
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Mykella S Jones
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona
| | - Hwudarw Chen
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Chiu-Hsieh Hsu
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, Arizona
| | - Edward R Abril
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Raymond B Nagle
- Department of Pathology, University of Arizona, Tucson, Arizona
| | | | - Jennifer K Barton
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona.,University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Natalia A Ignatenko
- University of Arizona Cancer Center, University of Arizona, Tucson, Arizona. .,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| |
Collapse
|
45
|
Fleshner P, Braunstein GD, Ovsepyan G, Tonozzi TR, Kammesheidt A. Tumor-associated DNA mutation detection in individuals undergoing colonoscopy. Cancer Med 2017; 7:167-174. [PMID: 29125240 PMCID: PMC5773968 DOI: 10.1002/cam4.1249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 02/06/2023] Open
Abstract
The majority of colorectal cancers (CRC) harbor somatic mutations and epigenetic modifications in the tumor tissue, and some of these mutations can be detected in plasma as circulating tumor DNA (ctDNA). Precancerous colorectal lesions also contain many of these same mutations. This study examined plasma for ctDNA from patients undergoing a screening or diagnostic colonoscopy to determine the sensitivity and specificity of the ctDNA panel for detecting CRC and precancerous lesions. Two hundred patients without a history of nonskin cancer had blood drawn before a colonoscopy. Plasma ctDNA was measured with a 96 mutation panel for nine cancer driver genes. The ctDNA results were correlated with the findings at colonoscopy. Of the 200 patients, 176 (88%) had wild‐type DNA, 12 (6%) had mutations detected, and 12 (6%) had indeterminate results. Colonoscopy was normal in 80% of the patients and 20% were found to have polyps. No CRC was found in this study, precluding a determination of true‐positive rate for CRC detection. Our ctDNA panel was positive in 13.2% of patients with colonic polyps found at colonoscopy, while 4.7% of patients with normal colonoscopy also had ctDNA detected, which may represent ctDNA released from a benign process, an occult tumor, or an acquired somatic mutation from clonal hematopoiesis.
Collapse
Affiliation(s)
- Phillip Fleshner
- Division of Colorectal Surgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | | | - Gayane Ovsepyan
- Division of Colorectal Surgery, Cedars-Sinai Medical Center, Los Angeles, California, 90048
| | | | | |
Collapse
|
46
|
Henkin JM, Sydara K, Xayvue M, Souliya O, Kinghorn AD, Burdette JE, Chen WL, Elkington BG, Soejarto DD. Revisiting the linkage between ethnomedical use and development of new medicines: A novel plant collection strategy towards the discovery of anticancer agents. ACTA ACUST UNITED AC 2017; 11:621-634. [PMID: 29152156 DOI: 10.5897/jmpr2017.6485] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Vietnam-Laos International Cooperative Biodiversity Group (ICBG) based at the University of Illinois at Chicago (UIC) catalyzed a country-wide network of medicinal plant preserves (MPP) and medicinal biodiversity preserves (MBP) now established in ten provinces of the Lao People's Democratic Republic (Lao PDR), which are relied upon as protected sources of ethnomedicines for local villagers and traditional healers. In collaboration with the Lao PDR's Institute of Traditional Medicine (ITM), our ongoing P01 Program Project (Ohio State University) examined the anticancer bioprospecting potential for two of the most exhaustively inventoried of these sites: the Bolikhamxay MPP and the Xiengkhouang MBP. Guided by prior voucher specimens sourced from these preserves with an overwhelming emphasis on plants employed in traditional medicine, 201 distinct samples from 96 species were collected along with proper herbarium documentation. Aliquots of these plant samples were extracted in azeotropic ethanol and evaporated to dryness for initial biological evaluation. In six samples from six different species (2.99% of the collected samples, 6.25% of taxa) it was observed that extracts exhibited notable cytotoxicity against HT-29 colon adenocarcinoma cells. The wisdom behind the utilization of HT-29 cells in this preliminary biological screen is discussed. Furthermore, comparison of screening results based on longstanding considerations and ideological underpinnings of ethnobotanical vs. "random" biodiversity-based collection approaches is detailed herein. The results of this interdisciplinary study support the hypothesis that, by privileging the initial sample set in terms of human safety and pharmacological activity, ethnobotanically driven collection for biological screening efforts can produce leads unprecedented by the strict traditional usages of plants.
Collapse
Affiliation(s)
- Joshua M Henkin
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois 60612, USA
| | - Kongmany Sydara
- Institute of Traditional Medicine, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic
| | - Mouachanh Xayvue
- Institute of Traditional Medicine, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic
| | - Onevilay Souliya
- Institute of Traditional Medicine, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic
| | - A Douglas Kinghorn
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Ohio State University, 500 W. 12th Ave., Columbus, OH 43210, USA
| | - Joanna E Burdette
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois 60612, USA
| | - Wei-Lun Chen
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois 60612, USA
| | - Bethany G Elkington
- Science and Education, Field Museum, 1400 S. Lake Shore Drive, Chicago, Illinois 60605, USA
| | - Djaja D Soejarto
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, 833 S. Wood St., Chicago, Illinois 60612, USA
| |
Collapse
|
47
|
Yoshikawa Y, Takano O, Kato I, Takahashi Y, Shima F, Kataoka T. Ras inhibitors display an anti-metastatic effect by downregulation of lysyl oxidase through inhibition of the Ras-PI3K-Akt-HIF-1α pathway. Cancer Lett 2017; 410:82-91. [PMID: 28951129 DOI: 10.1016/j.canlet.2017.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/07/2017] [Accepted: 09/17/2017] [Indexed: 02/08/2023]
Abstract
Metastasis stands as the major obstacle for the survival from cancers. Nonetheless most existing anti-cancer drugs inhibit only cell proliferation, and discovery of agents having both anti-proliferative and anti-metastatic properties would be more beneficial. We previously reported the discovery of small-molecule Ras inhibitors, represented by Kobe0065, that displayed anti-proliferative activity on xenografts of human colorectal cancer (CRC) cell line SW480 carrying the K-rasG12Vgene. Here we show that treatment of cancer cells carrying the activated ras genes with Kobe0065 or a siRNA targeting Ras downregulates the expression of lysyl oxidase (LOX), which has been implicated in metastasis. LOX expression is enhanced by co-expression of RasG12V through activation of phosphatidylinositol 3-kinase (PI3K)/Akt and concomitant accumulation of hypoxia-inducible factor (HIF)-1α. Furthermore, Kobe0065 effectively inhibits not only migration and invasion of cancer cells carrying the activated ras genes but also lung metastasis of human CRC cell line SW620 carrying the K-rasG12V gene. Collectively, these results indicate that Kobe0065 prevents metastasis through inhibition of the Ras-PI3K-Akt-HIF-1α-LOX signaling and suggest that Ras inhibitors in general might exhibit both anti-proliferative and anti-metastatic properties toward cancer cells carrying the activated ras genes.
Collapse
Affiliation(s)
- Yoko Yoshikawa
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Osamu Takano
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Ichiro Kato
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yoshihisa Takahashi
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Fumi Shima
- Drug Discovery Science, Division of Advanced Medical Science, Department of Science, Technology and Innovation, Kobe University Graduate School of Science, Technology and Innovation, Kobe, 650-0017, Japan.
| | - Tohru Kataoka
- Division of Molecular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
48
|
Shin SJ, Chun SM, Kim TI, Kim YJ, Choi HJ, Jang SJ, Kim J. Feasibility of multiplexed gene mutation detection in plasma samples of colorectal cancer patients by mass spectrometric genotyping. PLoS One 2017; 12:e0176340. [PMID: 28459822 PMCID: PMC5411034 DOI: 10.1371/journal.pone.0176340] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 04/10/2017] [Indexed: 01/06/2023] Open
Abstract
Mutation analysis of circulating tumor DNA (ctDNA) has recently been introduced as a noninvasive tumor monitoring method. In this study, we tested the mass spectrometric-based MassARRAY platform for multiplexed gene mutation analysis of plasma samples from colorectal cancer (CRC) patients. A total of 160 patients, who underwent curative resection of either primary or metastatic CRC harboring KRAS mutations between 2005 and 2012, were included. Circulating DNA was isolated from plasma was analyzed on the MassARRAY platform with or without selective amplification of mutant DNA fragments. Tumor-specific KRAS mutations were detected in 39.6% (42/106) of patients with distant metastasis, and in 5.6% (3/54) of patients without distant metastasis. Selective amplification of the mutant allele increased sensitivity to 58.5% (62/106) for patients with distant metastasis, and 16.7% (9/54) for patients without distant metastasis. These mutation detection rates were no less than those of droplet digital polymerase chain reaction. Among patients with distant metastasis, detectable plasma KRAS mutations correlated with larger primary tumors and shorter overall survival rate (P = 0.014 and P = 0.003, respectively). In addition, activating PIK3CA mutations were detected together with KRAS mutations in two plasma samples. Taken together, massARRAY platform is a cost-effective, multigene mutation profiling technique for ctDNA with reasonable sensitivity and specificity.
Collapse
Affiliation(s)
- Su-Jin Shin
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Sung-Min Chun
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Tae-Im Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Yu Jin Kim
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyun-Jeung Choi
- The Center for anti-cancer CDx, N-Bio, Seoul National University, Seoul, Republic of Korea
| | - Se Jin Jang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jihun Kim
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- Asan Institute for Life Science, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
49
|
Loopback rolling circle amplification for ultrasensitive detection of Kras gene. Talanta 2017; 164:511-517. [DOI: 10.1016/j.talanta.2016.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 02/06/2023]
|
50
|
RAS Mutation Is Associated with Decreased Survival in Patients Undergoing Repeat Hepatectomy for Colorectal Liver Metastases. J Gastrointest Surg 2017; 21:68-77. [PMID: 27334313 DOI: 10.1007/s11605-016-3189-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 06/12/2016] [Indexed: 01/31/2023]
Abstract
BACKGROUND The relationship between RAS mutation status and outcome for patients undergoing repeat hepatectomy (RH) for recurrent colorectal liver metastases (CLM) has not been defined. OBJECTIVE The objective of this study was to evaluate the relationship between RAS mutation status and outcome in patients undergoing RH for CLM. METHODS All patients who underwent RH for CLM with known RAS mutation status between January 2005 and November 2014 were identified, and the outcomes of patients with and without RAS mutations were compared. RESULTS Ninety-eight patients underwent RH, of whom 34 (35 %) harbored a RAS mutation. Wild-type (WT) and mutant RAS groups had similar clinicopathologic characteristics. Median recurrence-free survival (RFS) for patients with WT and mutant RAS was 12.2 and 6.1 months, respectively (p = 0.03). Median overall survival (OS) for the WT and mutant RAS patients were 42.5 and 26.6 months, respectively (p < 0.01). On multivariate analysis, RAS mutations [hazard ratio (HR) = 1.69, p = 0.04] were associated with worse RFS, while multiple tumors (HR = 1.92, p = 0.045) and RAS mutations (HR = 2.11, p = 0.02) predicted worse OS. CONCLUSION Patients with recurrent CLM that harbor RAS mutations have worse RFS and OS than patients with WT RAS, and RAS mutations are independently associated with worse RFS and OS. RAS mutation status should be determined prior to RH, as it may impact treatment decisions.
Collapse
|