1
|
Li J, Cui J, Li X, Zhu D, Chen Z, Huang X, Wang Y, Wu Q, Tian Y. TMBIM-2 orchestrates systemic mitochondrial stress response via facilitating Ca2+ oscillations. J Cell Biol 2025; 224:e202408050. [PMID: 40100072 PMCID: PMC11917168 DOI: 10.1083/jcb.202408050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/11/2024] [Accepted: 02/09/2025] [Indexed: 03/20/2025] Open
Abstract
Neuronal mitochondrial function is critical for orchestrating inter-tissue communication essential for overall fitness. Despite its significance, the molecular mechanism underlying the impact of prolonged mitochondrial stresses on neuronal activity and how they orchestrate metabolism and aging remains elusive. Here, we identified the evolutionarily conserved transmembrane protein XBX-6/TMBIM-2 as a key mediator in the neuronal-to-intestinal mitochondrial unfolded protein response (UPRmt). Our investigations reveal that intrinsic neuronal mitochondrial stress triggers spatiotemporal Ca2+ oscillations in a TMBIM-2-dependent manner through the Ca2+ efflux pump MCA-3. Notably, persistent Ca2+ oscillations at synapses of ADF neurons are critical for facilitating serotonin release and the subsequent activation of the neuronal-to-intestinal UPRmt. TMBIM2 expression diminishes with age; however, its overexpression counteracts the age-related decline in aversive learning behavior and extends the lifespan of Caenorhabditis elegans. These findings underscore the intricate integration of chronic neuronal mitochondrial stress into neurotransmission processes via TMBIM-2-dependent Ca2+ equilibrium, driving metabolic adaptation and behavioral changes for the regulation of aging.
Collapse
Affiliation(s)
- Jiasheng Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jimeng Cui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xinyu Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Di Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhenhua Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingfeng Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ye Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Wu P, Vandemeulebroucke L, Cai H, Braeckman BP. The Proprotein Convertase BLI-4 Is Required for Axenic Dietary Restriction Mediated Longevity in Caenorhabditis elegans. Aging Cell 2025:e70058. [PMID: 40200707 DOI: 10.1111/acel.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 02/24/2025] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
Dietary restriction (DR) is a well-established method for extending lifespan across various species, including C. elegans. Among the different DR regimens, axenic dietary restriction (ADR), in which worms are grown in a nutrient-rich sterile liquid medium, yields the most powerful lifespan extension. However, the molecular mechanisms underlying this longevity phenotype remain largely unexplored. Through a pilot screen of candidate genes, we identified the proprotein convertase BLI-4 as a crucial factor in neurons for modulating lifespan under ADR conditions. BLI-4's role appears to be specific to ADR, as it does not significantly impact longevity under other DR regimens. We further explored the involvement of different bli-4 isoforms and found that isoforms b, f, i and j redundantly contribute to the ADR-mediated lifespan extension, while the bli-4d isoform is mainly involved in development. Proteomics analysis revealed that the loss of BLI-4 function under ADR conditions specifically downregulates GOLG-2, involved in Golgi complex organization. This gene also partially mediates the longevity effects of BLI-4 under ADR conditions. Our findings highlight the importance of neuronal BLI-4 and its downstream targets in regulating lifespan extension induced by ADR in C. elegans.
Collapse
Affiliation(s)
- Ping Wu
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Lieselot Vandemeulebroucke
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| | - Huaihan Cai
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
- Overseas Pharmaceuticals, Ltd., Huangpu District, Guangzhou, China
| | - Bart P Braeckman
- Laboratory of Aging Physiology and Molecular Evolution, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
3
|
Li H, Chen J, Dong C, Chen X, Gu Y, Jiang Y, Cui J, Chen H. Behavioral and molecular neurotoxicity of thermally degraded polystyrene in Caenorhabditis elegans. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137212. [PMID: 39827801 DOI: 10.1016/j.jhazmat.2025.137212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/03/2025] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Microplastics are pervasive environmental contaminants found across diverse ecosystems, inducing toxic effects in a wide range of organisms. However, the neurotoxic effects of thermally degraded polystyrene (T-PS) and its underlying mechanisms remain poorly unexplored. In this study, Caenorhabditis elegans was exposed to environmentally relevant concentrations of T-PS (0.1-100 μg/L), and endpoints including locomotion behaviors, neuronal development, neurotransmitter levels, and gene expression were assessed. Significant alterations in morphology, crystallinity, elemental composition, and functional groups were observed in T-PS compared to virgin polystyrene (V-PS), indicating that thermal degradation modifies the physicochemical properties of V-PS. Exposure to 10-100 μg/L T-PS resulted in a more pronounced decrease in head thrashes, body bends, forward turns, and backward turns compared to V-PS. In transgenic nematodes, T-PS exposure significantly impacted fluorescence intensity and the percentage of worms exhibiting neurodegeneration in serotonergic, cholinergic, dopaminergic, and γ-aminobutyric acid (GABA) neurons. Correspondingly, marked reductions were observed in the levels of dopamine, serotonin, GABA, and choline neurotransmitters, alongside significant declines in neurotransmitter-related gene expression (e.g., dat-1, tph-1, unc-30, and cha-1). Pearson's correlation analysis revealed a significant positive association between these genes and locomotion behaviors. Furthermore, the absence of locomotion behavior impairment in dat-1 (ok157), tph-1 (mg280), unc-30 (e191), and cha-1 (e1152) mutants highlights the pivotal roles of these genes in mediating T-PS-induced neurotoxicity in C. elegans. This study enhances our understanding of the neurotoxic mechanisms of T-PS at environmental concentrations, providing valuable insights into its potential environmental health risks.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jinyu Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenyin Dong
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environment Sciences, Shanghai 200233, China
| | - Xiaoxia Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jingwen Cui
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Li G, Dong S, Liu C, Yang J, Rensen PCN, Wang Y. Serotonin signaling to regulate energy metabolism: a gut microbiota perspective. LIFE METABOLISM 2025; 4:loae039. [PMID: 39926388 PMCID: PMC11803461 DOI: 10.1093/lifemeta/loae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/11/2024] [Accepted: 11/21/2024] [Indexed: 02/11/2025]
Abstract
Serotonin is one of the most potent gastrointestinal, peripheral, and neuronal signaling molecules and plays a key role in regulating energy metabolism. Accumulating evidence has shown the complex interplay between gut microbiota and host energy metabolism. In this review, we summarize recent findings on the role of gut microbiota in serotonin metabolism and discuss the complicated mechanisms by which serotonin, working in conjunction with the gut microbiota, affects total body energy metabolism in the host. Gut microbiota affects serotonin synthesis, storage, release, transport, and catabolism. In addition, serotonin plays an indispensable role in regulating host energy homeostasis through organ crosstalk and microbe-host communication, particularly with a wide array of serotonergic effects mediated by diverse serotonin receptors with unique tissue specificity. This fresh perspective will help broaden the understanding of serotonergic signaling in modulating energy metabolism, thus shedding light on the design of innovative serotonin-targeting strategies to treat metabolic diseases.
Collapse
Affiliation(s)
- Guoli Li
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijing Dong
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chunhao Liu
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Jing Yang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Patrick C N Rensen
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Yanan Wang
- Med-X Institute, Center for Immunological and Metabolic Diseases, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Endocrinology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
5
|
Muirhead CS, Guerra S, Fox BW, Schroeder FC, Srinivasan J. Serotonergic signaling governs C. elegans sensory response to conflicting olfactory stimuli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644218. [PMID: 40166147 PMCID: PMC11957155 DOI: 10.1101/2025.03.19.644218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neural circuits that consolidate sensory cues are essential for neurological functioning. Neural circuits that perform sensory integration can vary greatly because the sensory processing regions of the brain employ various neural motifs. Here, we investigate a neural circuit that mediates the response to conflicting olfactory stimuli in C. elegans . We concurrently expose animals to an aversive dispersal pheromone, osas#9, and an attractive bacterial extract. While worms usually avoid osas#9 alone, they suppress this avoidance behavior in the presence of a bacterial extract. Loss-of-function mutants and cell-specific rescues reveal that serotonergic signaling from the ADF neuron is essential for bacterial extract-induced osas#9 avoidance attenuation. The inhibitory serotonin receptor, MOD-1, which is widely expressed on interneurons and motor neurons, is required for this sensory integration, suggesting that serotonin acts in an inhibitory manner. By performing calcium imaging on the ADF neurons in synaptic signaling ( unc-13 ) and peptidergic ( unc-31 ) signaling mutant backgrounds, we show that the ADF neurons require input from other neurons, likely the ASK neurons, to respond to food extracts. We reveal a cue integration neural circuit in which serotonergic signaling at the sensory neuron level silences an aversive neural signal. Significance Animals use sensory cues to make behavioral choices and sometimes, these cues convey opposite information. The nervous system consolidates competing sensory cues to create a coherent response to external stimuli. The neural circuits that govern this process are important, and still largely unknown. We use C. elegans, a soil-dwelling nematode, to uncover a neural circuit governing the consolidation of competing cues by concurrently exposing worms to positive and negative stimuli . We find that the neurotransmitter serotonin can suppress aversive neural signals created by negative stimuli. These results show the important neurological role that serotonin plays in modulating neural signals.
Collapse
|
6
|
Chai CM, Taylor SR, Tischbirek CH, Wong WR, Cai L, Miller DM, Sternberg PW. The forkhead transcription factor FKH-7/FOXP acts in chemosensory neurons to regulate developmental decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638733. [PMID: 40027766 PMCID: PMC11870486 DOI: 10.1101/2025.02.17.638733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Autism is a complex neurodevelopmental disorder with many associated genetic factors, including the forkhead transcription factor FOXP1. Although FOXP1's neuronal role is well-studied, the specific molecular consequences of different FOXP1 pathogenic variants in physiologically-relevant contexts are unknown. Here we ascribe the first function to Caenorhabditis elegans FKH-7/FOXP, which acts in two chemosensory neuron classes to promote the larval decision to enter the alternative, developmentally-arrested dauer life stage. We demonstrate that human FOXP1 can functionally substitute for C. elegans FKH-7 in these neurons and that engineering analogous FOXP1 hypomorphic missense mutations in the endogenous fkh-7 locus also impairs developmental decision-making. In a fkh-7/FOXP1 missense variant, single-cell transcriptomics identifies downregulated expression of autism-associated kcnl-2/KCNN2 calcium-activated potassium channel in a serotonergic sensory neuron. Our findings establish a novel framework linking two evolutionarily-conserved autism-associated genes for deeper characterization of variant-specific molecular pathology at single neuron resolution in the context of a developmental decision-making paradigm.
Collapse
Affiliation(s)
- Cynthia M. Chai
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
- Present address: Department of Biological Sciences, Columbia University, 1212 Amsterdam Ave, New York, NY 10027, USA
| | - Seth R. Taylor
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Present address: Department of Cell Biology & Physiology, Brigham Young University, 4005 Life Sciences Building, Provo, UT 84602, USA
| | - Carsten H. Tischbirek
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Wan-Rong Wong
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - Long Cai
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
| | - David M. Miller
- Department of Cell & Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
- Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN 37240, USA
| | - Paul W. Sternberg
- Division of Biology & Biological Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
- Lead contact
| |
Collapse
|
7
|
Huayta J, Seay S, Laster J, Rivera NA, Joyce AS, Ferguson PL, Hsu-Kim H, Meyer JN. Assessment of developmental neurotoxicology-associated alterations in neuronal architecture and function using Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.11.632560. [PMID: 39868199 PMCID: PMC11761668 DOI: 10.1101/2025.01.11.632560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Few of the many chemicals that regulatory agencies are charged with assessing for risk have been carefully tested for developmental neurotoxicity (DNT). To speed up testing efforts, as well as to reduce the use of vertebrate animals, great effort is being devoted to alternate laboratory models for testing DNT. A major mechanism of DNT is altered neuronal architecture resulting from chemical exposure during neurodevelopment. Caenorhabditis elegans is a nematode that has been extensively studied by neurobiologists and developmental biologists, and to a lesser extent by neurotoxicologists. The developmental trajectory of the nervous system in C. elegans is easily visualized, normally entirely invariant, and fully mapped. Therefore, we hypothesized that C. elegans could be a powerful in vivo model to test chemicals for the potential to alter developmental patterning of neuronal architecture. To test whether this might be true, we developed a novel C. elegans DNT testing paradigm that includes exposure throughout development, examines all major neurotransmitter neuronal types for architectural alterations, and tests behaviors specific to dopaminergic, cholinergic, and glutamatergic functions. We used this paradigm to characterize the effects of early-life exposures to the developmental neurotoxicants lead, cadmium, and benzo(a)pyrene (BaP) on dopaminergic, cholinergic, and glutamatergic architecture. We also assessed whether exposures would alter neuronal specification as assessed by expression of reporter genes diagnostic of specific neurotransmitters. We identified no cases in which the apparent neurotransmitter type of the neurons we examined changed, but many in which neuronal morphology was altered. We also found that neuron-specific behaviors were altered during C. elegans mid-adulthood for populations with measured morphological neurodegeneration in earlier stages. The functional changes were consistent with the morphological changes we observed in terms of type of neuron affected. We identified changes consistent with those reported in the mammalian DNT literature, strengthening the case for C. elegans as a DNT model, and made novel observations that should be followed up in future studies.
Collapse
Affiliation(s)
- Javier Huayta
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Sarah Seay
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Joseph Laster
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Nelson A Rivera
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Abigail S Joyce
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - P Lee Ferguson
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Heileen Hsu-Kim
- Pratt School of Engineering, Duke University, Durham, North Carolina, USA
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
8
|
Li L, Ma R, Yuan Y, Yao Q, Han Y, Cao H, Qi J. Neurotoxicity induced by aged microplastics from plastic bowls: Abnormal neurotransmission in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175939. [PMID: 39218100 DOI: 10.1016/j.scitotenv.2024.175939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The use of plastic bowls (PB) has garnered increasing scrutiny due to the inevitable generation of microplastics (MPs) throughout their lifecycle. Despite this concern, there exists a limited understanding of the behaviors, toxicological effects, and mechanisms associated with aged PB (A-PB). This research investigated the photoaging properties of A-PB following ultraviolet irradiation and evaluated the neurotoxic impact of exposure to A-PB at environmentally relevant concentrations (0.001-1 mg/L) on Caenorhabditis elegans. Significant alterations in the crystallinity, elemental composition, and functional groups of A-PB were observed compared to virgin PB (V-PB), along with the emergence of environmentally persistent free radicals and reactive oxygen species. Toxicity assessments revealed that exposure to 0.1-1 mg/L A-PB induced greater neurotoxicity on locomotion behaviors compared to V-PB, as evidenced by marked reductions in head thrashes, body bends, wavelength, and mean amplitude. Exposure to A-PB also altered the fluorescence intensities and neurodegeneration percentage of dopaminergic, serotonergic, and GABAergic neurons, suggesting neuronal damage in the nematodes. Correspondingly, decreases in the levels of dopamine, serotonin, and GABA were noted together with significant drops in the expression of neurotransmitter-related genes (e.g., dat-1, tph-1, and unc-47). Correlation analyses established a significant positive relationship between these genes and locomotion behaviors. Further exploration showed the absence of locomotion behaviors in dat-1 (ok157), tph-1 (mg280), and unc-47 (e307) mutants, underscoring the pivotal roles of the dat-1, tph-1, and unc-47 genes in mediating neurotoxicity in C. elegans. This study sheds light on the photoaging characteristics and heightened toxicity of A-PB, elucidating the mechanisms driving A-PB-induced neurotoxicity.
Collapse
Affiliation(s)
- Liangzhong Li
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510630, China
| | - Ruixue Ma
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Yuan Yuan
- Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Qian Yao
- Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510630, China
| | - Yajing Han
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Hanlin Cao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China.
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| |
Collapse
|
9
|
Butt A, Van Damme S, Santiago E, Olson A, Beets I, Koelle MR. Neuropeptide and serotonin co-transmission sets the activity pattern in the C. elegans egg-laying circuit. Curr Biol 2024; 34:4704-4714.e5. [PMID: 39395419 DOI: 10.1016/j.cub.2024.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/08/2024] [Accepted: 07/17/2024] [Indexed: 10/14/2024]
Abstract
Neurons typically release both a neurotransmitter and one or more neuropeptides, but how these signals are integrated within neural circuits to generate and tune behaviors remains poorly understood. We studied how the two hermaphrodite-specific neurons (HSNs) activate the egg-laying circuit of Caenorhabditis elegans by releasing both the neurotransmitter serotonin and NLP-3 neuropeptides. Egg laying occurs in a temporal pattern with approximately 2-min active phases, during which eggs are laid, separated by approximately 20-min inactive phases, during which no eggs are laid. To understand how serotonin and NLP-3 neuropeptides together help produce this behavior pattern, we identified the G-protein-coupled receptor neuropeptide receptor 36 (NPR-36) as an NLP-3 neuropeptide receptor using genetic and molecular experiments. We found that NPR-36 is expressed in, and promotes egg laying within, the egg-laying muscle cells, the same cells where two serotonin receptors also promote egg laying. During the active phase, when HSN activity is high, we found that serotonin and NLP-3 neuropeptides each have a different effect on the timing of egg laying. During the inactive phase, HSN activity is low, which may result in release of only serotonin, yet mutants lacking either serotonin or nlp-3 signaling have longer inactive phases. This suggests that NLP-3 peptide signaling may persist through the inactive phase to help serotonin signaling terminate the inactive phase. We propose a model for neural circuit function in which multiple signals with short- and long-lasting effects compete to generate and terminate persistent internal states, thus patterning a behavior over tens of minutes.
Collapse
Affiliation(s)
- Allison Butt
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA
| | | | - Emerson Santiago
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06510, USA
| | - Andrew Olson
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Isabel Beets
- Department of Biology, KU Leuven, 3000 Leuven, Belgium
| | - Michael R Koelle
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
10
|
Wang C, Vidal B, Sural S, Loer C, Aguilar GR, Merritt DM, Toker IA, Vogt MC, Cros CC, Hobert O. A neurotransmitter atlas of C. elegans males and hermaphrodites. eLife 2024; 13:RP95402. [PMID: 39422452 PMCID: PMC11488851 DOI: 10.7554/elife.95402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the Caenorhabditis elegans nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters. However, many of these assignments have relied on multicopy reporter transgenes that may lack relevant cis-regulatory information and therefore may not provide an accurate picture of neurotransmitter usage. We analyzed the expression patterns of 16 CRISPR/Cas9-engineered knock-in reporter strains for all main types of neurotransmitters in C. elegans (glutamate, acetylcholine, GABA, serotonin, dopamine, tyramine, and octopamine) in both the hermaphrodite and the male. Our analysis reveals novel sites of expression of these neurotransmitter systems within both neurons and glia, as well as non-neural cells, most notably in gonadal cells. The resulting expression atlas defines neurons that may be exclusively neuropeptidergic, substantially expands the repertoire of neurons capable of co-transmitting multiple neurotransmitters, and identifies novel sites of monoaminergic neurotransmitter uptake. Furthermore, we also observed unusual co-expression patterns of monoaminergic synthesis pathway genes, suggesting the existence of novel monoaminergic transmitters. Our analysis results in what constitutes the most extensive whole-animal-wide map of neurotransmitter usage to date, paving the way for a better understanding of neuronal communication and neuronal identity specification in C. elegans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Curtis Loer
- Department of Biology, University of San DiegoSan DiegoUnited States
| | - G Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Daniel M Merritt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Itai Antoine Toker
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Merly C Vogt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Cyril C Cros
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia UniversityNew YorkUnited States
| |
Collapse
|
11
|
Peesapati RS, Austin-Byler BL, Nawaz FZ, Stevenson JB, Mais SA, Kaya RN, Hassan MG, Khanal N, Wells AC, Ghiai D, Garikapati AK, Selhub J, Kipreos ET. A specific folate activates serotonergic neurons to control C. elegans behavior. Nat Commun 2024; 15:8471. [PMID: 39349491 PMCID: PMC11442744 DOI: 10.1038/s41467-024-52738-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 09/19/2024] [Indexed: 10/02/2024] Open
Abstract
Folates are B-group vitamins that function in one-carbon metabolism. Here we show that a specific folate can activate serotonergic neurons in C. elegans to modulate behavior through a pathway that requires the folate receptor FOLR-1 and the GON-2 calcium channel. FOLR-1 and GON-2 physically interact in a heterologous system, and both are expressed in the HSN and NSM serotonergic neurons. Both the folate 10-formyl-THF and a non-metabolic pteroate induce increases in the number of Ca2+ transients in the HSN neurons and egg laying in an FOLR-1- and GON-2-dependent manner. FOLR-1 and GON-2 are required for the activation of the NSM neurons in response to 10-formyl-THF, and for full NSM-mediated stoppage of movement when starved animals encounter bacteria. Our results demonstrate that FOLR-1 acts independently of one-carbon metabolism and suggest that 10-formyl-THF acts as a dietary signal that activates serotonergic neurons to impact behavior through a pathway that involves calcium entry.
Collapse
Affiliation(s)
- Ria S Peesapati
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | | | | | | | - Stanelle A Mais
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Rabia N Kaya
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Michael G Hassan
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Nabraj Khanal
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Alexandra C Wells
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Deena Ghiai
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Anish K Garikapati
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA
| | - Jacob Selhub
- Jean Mayer USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, USA
| | - Edward T Kipreos
- Department of Cellular Biology, The University of Georgia, Athens, GA, USA.
| |
Collapse
|
12
|
Cornell R, Cao W, Harradine B, Godini R, Handley A, Pocock R. Neuro-intestinal acetylcholine signalling regulates the mitochondrial stress response in Caenorhabditis elegans. Nat Commun 2024; 15:6594. [PMID: 39097618 PMCID: PMC11297972 DOI: 10.1038/s41467-024-50973-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024] Open
Abstract
Neurons coordinate inter-tissue protein homeostasis to systemically manage cytotoxic stress. In response to neuronal mitochondrial stress, specific neuronal signals coordinate the systemic mitochondrial unfolded protein response (UPRmt) to promote organismal survival. Yet, whether chemical neurotransmitters are sufficient to control the UPRmt in physiological conditions is not well understood. Here, we show that gamma-aminobutyric acid (GABA) inhibits, and acetylcholine (ACh) promotes the UPRmt in the Caenorhabditis elegans intestine. GABA controls the UPRmt by regulating extra-synaptic ACh release through metabotropic GABAB receptors GBB-1/2. We find that elevated ACh levels in animals that are GABA-deficient or lack ACh-degradative enzymes induce the UPRmt through ACR-11, an intestinal nicotinic α7 receptor. This neuro-intestinal circuit is critical for non-autonomously regulating organismal survival of oxidative stress. These findings establish chemical neurotransmission as a crucial regulatory layer for nervous system control of systemic protein homeostasis and stress responses.
Collapse
Affiliation(s)
- Rebecca Cornell
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Wei Cao
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Bernie Harradine
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Rasoul Godini
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Ava Handley
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Roger Pocock
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
13
|
Wang C, Vidal B, Sural S, Loer C, Aguilar GR, Merritt DM, Toker IA, Vogt MC, Cros C, Hobert O. A neurotransmitter atlas of C. elegans males and hermaphrodites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573258. [PMID: 38895397 PMCID: PMC11185579 DOI: 10.1101/2023.12.24.573258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mapping neurotransmitter identities to neurons is key to understanding information flow in a nervous system. It also provides valuable entry points for studying the development and plasticity of neuronal identity features. In the C. elegans nervous system, neurotransmitter identities have been largely assigned by expression pattern analysis of neurotransmitter pathway genes that encode neurotransmitter biosynthetic enzymes or transporters. However, many of these assignments have relied on multicopy reporter transgenes that may lack relevant cis-regulatory information and therefore may not provide an accurate picture of neurotransmitter usage. We analyzed the expression patterns of 16 CRISPR/Cas9-engineered knock-in reporter strains for all main types of neurotransmitters in C. elegans (glutamate, acetylcholine, GABA, serotonin, dopamine, tyramine, and octopamine) in both the hermaphrodite and the male. Our analysis reveals novel sites of expression of these neurotransmitter systems within both neurons and glia, as well as non-neural cells. The resulting expression atlas defines neurons that may be exclusively neuropeptidergic, substantially expands the repertoire of neurons capable of co-transmitting multiple neurotransmitters, and identifies novel neurons that uptake monoaminergic neurotransmitters. Furthermore, we also observed unusual co-expression patterns of monoaminergic synthesis pathway genes, suggesting the existence of novel monoaminergic transmitters. Our analysis results in what constitutes the most extensive whole-animal-wide map of neurotransmitter usage to date, paving the way for a better understanding of neuronal communication and neuronal identity specification in C. elegans.
Collapse
Affiliation(s)
- Chen Wang
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Berta Vidal
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Surojit Sural
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Curtis Loer
- Department of Biology, University of San Diego, San Diego, California, USA
| | - G. Robert Aguilar
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Daniel M. Merritt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Itai Antoine Toker
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Merly C. Vogt
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Cyril Cros
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| | - Oliver Hobert
- Department of Biological Sciences, Howard Hughes Medical Institute, Columbia University, New York, USA
| |
Collapse
|
14
|
Yang Z, Zhang Z, Long X, Shi X, Wang D, Peng D, Ye S, Ding Z. Clarifying the Functional Role of Serotonin in Meloidogyne graminicola Host Plant Parasitism by Immunolocalization and RNA Interference. PHYTOPATHOLOGY 2024; 114:1401-1410. [PMID: 38148161 DOI: 10.1094/phyto-08-23-0290-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Serotonin (5-hydroxytryptamine) is an essential neurotransmitter involved in regulating various behaviors in plant-parasitic nematodes, including locomotion, egg laying, feeding, and mating. However, the functional role of serotonin in root-knot nematode invasion of host plants and the molecular mechanisms underlying feeding behavior remain poorly understood. In this study, we tested the effects of exogenous serotonin and the pharmacological compounds fluoxetine and methiothepin on the feeding behaviors of Meloidogyne graminicola. Our results suggested that M. graminicola possesses an endogenous serotonin signaling pathway and that serotonin plays a crucial role in modulating feeding behaviors in M. graminicola second-stage juveniles. We also identified and cloned the serotonin synthesis enzyme tryptophan hydroxylase (Mg-tph-1) in M. graminicola and investigated the role of endogenous serotonin by generating RNA interference nematodes in Mg-tph-1. Silencing Mg-tph-1 substantially reduced nematode invasion, development, and reproduction. According to the immunostaining results, we speculated that these serotonin immunoreactive cells near the nerve ring in M. graminicola are likely homologous to Caenorhabditis elegans ADFs, NSMs, and RIH serotonergic neurons. Furthermore, we investigated the impact of phytoserotonin on nematode invasion and development in rice by overexpressing OsTDC-3 or supplementing rice plants with tryptamine and found that an increase in phytoserotonin increases nematode pathogenicity. Overall, our study provides insights into the essential role of serotonin in M. graminicola host plant parasitism and proposes that the serotonergic signaling pathway could be a potential target for controlling plant-parasitic nematodes.
Collapse
Affiliation(s)
- Zhuhong Yang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
- Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, P.R. China
| | - Zixu Zhang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Xiping Long
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Xuqi Shi
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Di Wang
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests/Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P.R. China
| | - Shan Ye
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
- Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, P.R. China
| | - Zhong Ding
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, P.R. China
- Hunan Provincial Engineering and Technology Research Center for Biopesticide and Formulation Processing, Changsha 410128, P.R. China
| |
Collapse
|
15
|
Aprison EZ, Dzitoyeva S, Ruvinsky I. The roles of TGFβ and serotonin signaling in regulating proliferation of oocyte precursors and germline aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.08.593208. [PMID: 38766220 PMCID: PMC11100717 DOI: 10.1101/2024.05.08.593208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The decline of oocyte quality in aging but otherwise relatively healthy individuals compels a search for underlying mechanisms. Building upon a finding that exposure to male pheromone ascr#10 improves oocyte quality in C. elegans, we uncovered a regulatory cascade that promotes proliferation of oocyte precursors in adults and regulates oocyte quality. We found that the male pheromone promotes proliferation of oocyte precursors by upregulating LAG-2, a ligand of the Notch-like pathway in the germline stem cell niche. LAG-2 is upregulated by a TGFβ-like ligand DAF-7 revealing similarity of regulatory mechanisms that promote germline proliferation in adults and larvae. A serotonin circuit that also regulates food search and consumption upregulates DAF-7 specifically in adults. The serotonin/DAF-7 signaling promotes germline expansion to compensate for oocyte expenditure which is increased by the male pheromone. Finally, we show that the earliest events in reproductive aging may be due to declining expression of LAG-2 and DAF-7. Our findings highlight neuronal signals that promote germline proliferation in response to the environment and argue that deteriorating oocyte quality may be due to reduced neuronal expression of key germline regulators.
Collapse
Affiliation(s)
- Erin Z. Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
16
|
Tsai SH, Wu YC, Palomino DF, Schroeder FC, Pan CL. Peripheral peroxisomal β-oxidation engages neuronal serotonin signaling to drive stress-induced aversive memory in C. elegans. Cell Rep 2024; 43:113996. [PMID: 38520690 PMCID: PMC11087011 DOI: 10.1016/j.celrep.2024.113996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 02/06/2024] [Accepted: 03/08/2024] [Indexed: 03/25/2024] Open
Abstract
Physiological dysfunction confers negative valence to coincidental sensory cues to induce the formation of aversive associative memory. How peripheral tissue stress engages neuromodulatory mechanisms to form aversive memory is poorly understood. Here, we show that in the nematode C. elegans, mitochondrial disruption induces aversive memory through peroxisomal β-oxidation genes in non-neural tissues, including pmp-4/very-long-chain fatty acid transporter, dhs-28/3-hydroxylacyl-CoA dehydrogenase, and daf-22/3-ketoacyl-CoA thiolase. Upregulation of peroxisomal β-oxidation genes under mitochondrial stress requires the nuclear hormone receptor NHR-49. Importantly, the memory-promoting function of peroxisomal β-oxidation is independent of its canonical role in pheromone production. Peripheral signals derived from the peroxisomes target NSM, a critical neuron for memory formation under stress, to upregulate serotonin synthesis and remodel evoked responses to sensory cues. Our genetic, transcriptomic, and metabolomic approaches establish peroxisomal lipid signaling as a crucial mechanism that connects peripheral mitochondrial stress to central serotonin neuromodulation in aversive memory formation.
Collapse
Affiliation(s)
- Shang-Heng Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Yu-Chun Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan; Center for Precision Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Chun-Liang Pan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei 10002, Taiwan.
| |
Collapse
|
17
|
Ebert MS, Bargmann CI. Evolution remodels olfactory and mating-receptive behaviors in the transition from female to hermaphrodite reproduction. Curr Biol 2024; 34:969-979.e4. [PMID: 38340714 DOI: 10.1016/j.cub.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
Male/hermaphrodite species have arisen multiple times from a male/female ancestral state in nematodes, providing a model to study behavioral adaptations to different reproductive strategies. Here, we examined the mating behaviors of male/female (gonochoristic) Caenorhabditis species in comparison with male/hermaphrodite (androdiecious) close relatives. We find that females from two species in the Elegans group chemotax to volatile odor from males, but hermaphrodites do not. Females, but not hermaphrodites, also display known mating-receptive behaviors such as sedation when male reproductive structures contact the vulva. Focusing on the male/female species C. nigoni, we show that female chemotaxis to males is limited to adult females approaching adult or near-adult males and relies upon the AWA neuron-specific transcription factor ODR-7, as does male chemotaxis to female odor as previously shown in C. elegans. However, female receptivity during mating contact is odr-7 independent. All C. nigoni female behaviors are suppressed by mating and all are absent in young hermaphrodites from the sister species C. briggsae. However, latent receptivity during mating contact can be uncovered in mutant or aged C. briggsae hermaphrodites that lack self-sperm. These results reveal two mechanistically distinct components of the shift from female to hermaphrodite behavior: the loss of female-specific odr-7-dependent chemotaxis and a sperm-dependent state of reduced receptivity to mating contact. Hermaphrodites from a second androdioecious species, C. tropicalis, recover all female behaviors upon aging, including chemotaxis to males. Regaining mating receptivity after sperm depletion could maximize hermaphrodite fitness across their lifespan.
Collapse
Affiliation(s)
- Margaret S Ebert
- The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | |
Collapse
|
18
|
Nair T, Weathers BA, Stuhr NL, Nhan JD, Curran SP. Serotonin deficiency from constitutive SKN-1 activation drives pathogen apathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.10.579755. [PMID: 38405962 PMCID: PMC10888766 DOI: 10.1101/2024.02.10.579755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
When an organism encounters a pathogen, the host innate immune system activates to defend against pathogen colonization and toxic xenobiotics produced. C. elegans employ multiple defense systems to ensure survival when exposed to Pseudomonas aeruginosa including activation of the cytoprotective transcription factor SKN-1/NRF2. Although wildtype C. elegans quickly learn to avoid pathogens, here we describe a peculiar apathy-like behavior towards PA14 in animals with constitutive activation of SKN-1, whereby animals choose not to leave and continue to feed on the pathogen even when a non-pathogenic and healthspan-promoting food option is available. Although lacking the urgency to escape the infectious environment, animals with constitutive SKN-1 activity are not oblivious to the presence of the pathogen and display the typical pathogen-induced intestinal distension and eventual demise. SKN-1 activation, specifically in neurons and intestinal tissues, orchestrates a unique transcriptional program which leads to defects in serotonin signaling that is required from both neurons and non-neuronal tissues. Serotonin depletion from SKN-1 activation limits pathogen defense capacity, drives the pathogen-associated apathy behaviors and induces a synthetic sensitivity to selective serotonin reuptake inhibitors. Taken together, our work reveals new insights into how animals perceive environmental pathogens and subsequently alter behavior and cellular programs to promote survival. KEY POINTS Identify an apathy-like behavioral response for pathogens resulting from the constitutive activation of the cytoprotective transcription factor SKN-1.Uncover the obligate role for serotonin synthesis in both neuronal and non-neuronal cells for the apathy-like state and ability of serotonin treatment to restore normal behaviors.Characterize the timing and tissue specificity of SKN-1 nuclear localization in neurons and intestinal cells in response to pathogen exposure.Define the unique and context-specific transcriptional signatures of animals with constitutive SKN-1 activation when exposed to pathogenic environments.Reveal necessity for both neuronal and non-neuronal serotonin signaling in host survival from pathogen infection.
Collapse
|
19
|
Ngo LT, Huang WT, Chan MH, Su TY, Li CH, Hsiao M, Liu RS. Comprehensive Neurotoxicity of Lead Halide Perovskite Nanocrystals in Nematode Caenorhabditis elegans. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306020. [PMID: 37661358 DOI: 10.1002/smll.202306020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Indexed: 09/05/2023]
Abstract
To date, all-inorganic lead halide perovskite quantum dots have emerged as promising materials for photonic, optoelectronic devices, and biological applications, especially in solar cells, raising numerous concerns about their biosafety. Most of the studies related to the toxicity of perovskite quantum dots (PeQDs) have focused on the potential risks of hybrid perovskites by using zebrafish or human cells. So far, the neurotoxic effects and fundamental mechanisms of PeQDs remain unknown. Herein, a comprehensive methodology is designed to investigate the neurotoxicity of PeQDs by using Caenorhabditis elegans as a model organism. The results show that the accumulation of PeQDs mainly focuses on the alimentary system and head region. Acute exposure to PeQDs results in a decrease in locomotor behaviors and pharyngeal pumping, whereas chronic exposure to PeQDs causes brood decline and shortens lifespan. In addition, some abnormal issues occur in the uterus during reproduction assays, such as vulva protrusion, impaired eggs left in the vulva, and egg hatching inside the mother. Excessive reactive oxygen species formation is also observed. The neurotoxicity of PeQDs is explained by gene expression. This study provides a complete insight into the neurotoxicity of PeQD and encourages the development of novel nontoxic PeQDs.
Collapse
Affiliation(s)
- Loan Thi Ngo
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Academia Road 128, Nankang, Taipei, 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Academia Road 128, Nankang, Taipei, 115, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ting-Yi Su
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Academia Road 128, Nankang, Taipei, 115, Taiwan
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Academia Road 128, Nankang, Taipei, 115, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| |
Collapse
|
20
|
Li H, Gu Y, Jiang Y, Ding P, Chen X, Chen C, Pan R, Shi C, Wang S, Chen H. Environmentally persistent free radicals on photoaged nanopolystyrene induce neurotoxicity by affecting dopamine, glutamate, serotonin and GABA in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167684. [PMID: 37820818 DOI: 10.1016/j.scitotenv.2023.167684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Microplastics are widely detected in the environment and induce toxic effects in various organisms. However, the properties and toxicity associated with environmentally persistent free radicals (EPFRs) in photoaged nanopolystyrene (NPS) remain largely unknown. We investigated the generation of EPFRs on photoaged NPS and their neurotoxicity and underlying mechanism in Caenorhabditis elegans. The results suggested that photoaging induces the generation of EPFRs and reactive oxygen species (O2•-, •OH, and 1O2), which altered the physicochemical properties (morphology, crystallinity, and functional groups) of NPS. Acute exposure to 1 μg/L of NPS-60 (NPS with light irradiation time of 60 d) significantly decreased locomotion behaviors and neurotransmitter contents (e.g., glutamate, serotonin, dopamine, and γ-aminobutyric acid). Treatment with N-acetyl-L-cysteine (NAC) by radical quenching test significantly reduced EPFRs levels on the aged NPS, and the toxicity of NAC-quenching NPS was decreased in nematodes compared to those in photoaged NPS. EPFRs also caused dysfunction of neurotransmission-related gene expression in C. elegans. Thus, EPFRs generated on photoaged NPS contributed to neurotoxicity by affecting dopamine, glutamate, serotonin, and γ-aminobutyric acid neurotransmission. The study highlights the potential risks of photoaged NPS and the contributions of EPFRs to toxicity.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ruolin Pan
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chongli Shi
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Susu Wang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
21
|
Ishita Y, Onodera A, Ekino T, Chihara T, Okumura M. Co-option of an Astacin Metalloprotease Is Associated with an Evolutionarily Novel Feeding Morphology in a Predatory Nematode. Mol Biol Evol 2023; 40:msad266. [PMID: 38105444 PMCID: PMC10753534 DOI: 10.1093/molbev/msad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Animals consume a wide variety of food sources to adapt to different environments. However, the genetic mechanisms underlying the acquisition of evolutionarily novel feeding morphology remain largely unknown. While the nematode Caenorhabditis elegans feeds on bacteria, the satellite species Pristionchus pacificus exhibits predatory feeding behavior toward other nematodes, which is an evolutionarily novel feeding habit. Here, we found that the astacin metalloprotease Ppa-NAS-6 is required for the predatory killing by P. pacificus. Ppa-nas-6 mutants were defective in predation-associated characteristics, specifically the tooth morphogenesis and tooth movement during predation. Comparison of expression patterns and rescue experiments of nas-6 in P. pacificus and C. elegans suggested that alteration of the spatial expression patterns of NAS-6 may be vital for acquiring predation-related traits. Reporter analysis of the Ppa-nas-6 promoter in C. elegans revealed that the alteration in expression patterns was caused by evolutionary changes in cis- and trans-regulatory elements. This study suggests that the co-option of a metalloprotease is involved in an evolutionarily novel feeding morphology.
Collapse
Affiliation(s)
- Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ageha Onodera
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
22
|
Moroz LL, Romanova DY. Chemical cognition: chemoconnectomics and convergent evolution of integrative systems in animals. Anim Cogn 2023; 26:1851-1864. [PMID: 38015282 PMCID: PMC11106658 DOI: 10.1007/s10071-023-01833-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2023] [Indexed: 11/29/2023]
Abstract
Neurons underpin cognition in animals. However, the roots of animal cognition are elusive from both mechanistic and evolutionary standpoints. Two conceptual frameworks both highlight and promise to address these challenges. First, we discuss evidence that animal neural and other integrative systems evolved more than once (convergent evolution) within basal metazoan lineages, giving us unique experiments by Nature for future studies. The most remarkable examples are neural systems in ctenophores and neuroid-like systems in placozoans and sponges. Second, in addition to classical synaptic wiring, a chemical connectome mediated by hundreds of signal molecules operates in tandem with neurons and is the most information-rich source of emerging properties and adaptability. The major gap-dynamic, multifunctional chemical micro-environments in nervous systems-is not understood well. Thus, novel tools and information are needed to establish mechanistic links between orchestrated, yet cell-specific, volume transmission and behaviors. Uniting what we call chemoconnectomics and analyses of the cellular bases of behavior in basal metazoan lineages arguably would form the foundation for deciphering the origins and early evolution of elementary cognition and intelligence.
Collapse
Affiliation(s)
- Leonid L Moroz
- Department of Neuroscience, University of Florida, Gainesville, USA.
- Whitney Laboratory for Marine Bioscience, University of Florida, Saint Augustine, USA.
| | - Daria Y Romanova
- Institute of Higher Nervous Activity and Neurophysiology of RAS, Moscow, Russia
| |
Collapse
|
23
|
Chen X, Wang Z, Zheng P, Dongol A, Xie Y, Ge X, Zheng M, Dang X, Seyhan ZB, Nagaratnam N, Yu Y, Huang X. Impaired mitophagosome-lysosome fusion mediates olanzapine-induced aging. Aging Cell 2023; 22:e14003. [PMID: 37828862 PMCID: PMC10652317 DOI: 10.1111/acel.14003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
The lifespan of schizophrenia patients is significantly shorter than the general population. Olanzapine is one of the most commonly used antipsychotic drugs (APDs) for treating patients with psychosis, including schizophrenia and bipolar disorder. Despite their effectiveness in treating positive and negative symptoms, prolonged exposure to APDs may lead to accelerated aging and cognitive decline, among other side effects. Here we report that dysfunctional mitophagy is a fundamental mechanism underlying accelerated aging induced by olanzapine, using in vitro and in vivo (Caenorhabditis elegans) models. We showed that the aberrant mitophagy caused by olanzapine was via blocking mitophagosome-lysosome fusion. Furthermore, olanzapine can induce mitochondrial damage and hyperfragmentation of the mitochondrial network. The mitophagosome-lysosome fusion in olanzapine-induced aging models can be restored by a mitophagy inducer, urolithin A, which alleviates defective mitophagy, mitochondrial damage, and fragmentation of the mitochondrial network. Moreover, the mitophagy inducer ameliorated behavioral changes induced by olanzapine, including shortened lifespan, and impaired health span, learning, and memory. These data indicate that olanzapine impairs mitophagy, leading to the shortened lifespan, impaired health span, and cognitive deficits. Furthermore, this study suggests the potential application of mitophagy inducers as therapeutic strategies to reverse APD-induced adverse effects associated with accelerated aging.
Collapse
Affiliation(s)
- Xi Chen
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Zhizhen Wang
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Peng Zheng
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Anjila Dongol
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Yuanyi Xie
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Xuemei Dang
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Zehra Boz Seyhan
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Nathan Nagaratnam
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Yinghua Yu
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Jiangsu Key Laboratory of Immunity and Metabolism, Jiangsu International Laboratory of Immunity and Metabolism, Department of Pathogen Biology and ImmunologyXuzhou Medical UniversityXuzhouJiangsuChina
| | - Xu‐Feng Huang
- School of Medical, Indigenous and Health SciencesUniversity of WollongongWollongongNew South WalesAustralia
| |
Collapse
|
24
|
Wu W, Chen Z, Han J, Qian L, Wang W, Lei J, Wang H. Endocrine, genetic, and microbiome nexus of obesity and potential role of postbiotics: a narrative review. Eat Weight Disord 2023; 28:84. [PMID: 37861729 PMCID: PMC10589153 DOI: 10.1007/s40519-023-01593-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/19/2023] [Indexed: 10/21/2023] Open
Abstract
Obesity is a public health crisis, presenting a huge burden on health care and the economic system in both developed and developing countries. According to the WHO's latest report on obesity, 39% of adults of age 18 and above are obese, with an increase of 18% compared to the last few decades. Metabolic energy imbalance due to contemporary lifestyle, changes in gut microbiota, hormonal imbalance, inherent genetics, and epigenetics is a major contributory factor to this crisis. Multiple studies have shown that probiotics and their metabolites (postbiotics) supplementation have an effect on obesity-related effects in vitro, in vivo, and in human clinical investigations. Postbiotics such as the SCFAs suppress obesity by regulating metabolic hormones such as GLP-1, and PPY thus reducing feed intake and suppressing appetite. Furthermore, muramyl di-peptides, bacteriocins, and LPS have been tested against obesity and yielded promising results in both human and mice studies. These insights provide an overview of targetable pharmacological sites and explore new opportunities for the safer use of postbiotics against obesity in the future.
Collapse
Affiliation(s)
- Weiming Wu
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Zhengfang Chen
- Department of Endocrinology, Changshu First People's Hospital, Changshu, 215501, Jiangsu, People's Republic of China.
| | - Jiani Han
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Lingling Qian
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Wanqiu Wang
- Department of Endocrinology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, Jiangsu, People's Republic of China
| | - Jiacai Lei
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China
| | - Huaguan Wang
- Department of Gastroenterology, Hangzhou Ninth People's Hospital, Hangzhou, 310005, Zhejiang, People's Republic of China.
| |
Collapse
|
25
|
Tee LF, Young JJ, Maruyama K, Kimura S, Suzuki R, Endo Y, Kimura KD. Electric shock causes a fleeing-like persistent behavioral response in the nematode Caenorhabditis elegans. Genetics 2023; 225:iyad148. [PMID: 37595066 PMCID: PMC10550322 DOI: 10.1093/genetics/iyad148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/27/2023] [Indexed: 08/20/2023] Open
Abstract
Behavioral persistency reflects internal brain states, which are the foundations of multiple brain functions. However, experimental paradigms enabling genetic analyses of behavioral persistency and its associated brain functions have been limited. Here, we report novel persistent behavioral responses caused by electric stimuli in the nematode Caenorhabditis elegans. When the animals on bacterial food are stimulated by alternating current, their movement speed suddenly increases 2- to 3-fold, persisting for more than 1 minute even after a 5-second stimulation. Genetic analyses reveal that voltage-gated channels in the neurons are required for the response, possibly as the sensors, and neuropeptide signaling regulates the duration of the persistent response. Additional behavioral analyses implicate that the animal's response to electric shock is scalable and has a negative valence. These properties, along with persistence, have been recently regarded as essential features of emotion, suggesting that C. elegans response to electric shock may reflect a form of emotion, akin to fear.
Collapse
Affiliation(s)
- Ling Fei Tee
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Jared J Young
- Mills College at Northeastern University, Oakland, CA 94613, USA
| | - Keisuke Maruyama
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Sota Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Ryoga Suzuki
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Yuto Endo
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koutarou D Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
26
|
Arellano Spadaro J, Hishida Y, Matsunaga Y, van Es‐Remers M, Korthout H, Kim HK, Poppelaars E, Keizer H, Iliopoulou E, van Duijn B, Wildwater M, van Rijnberk L. 3'sialyllactose and 6'sialyllactose enhance performance in endurance-type exercise through metabolic adaptation. Food Sci Nutr 2023; 11:6199-6212. [PMID: 37823127 PMCID: PMC10563706 DOI: 10.1002/fsn3.3559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/31/2023] [Accepted: 06/30/2023] [Indexed: 10/13/2023] Open
Abstract
Human milk oligosaccharides (HMOs) belong to a group of multifunctional glycans that are abundantly present in human breast milk. While health effects of neutral oligosaccharides have been investigated extensively, a lot remains unknown regarding health effects of acidic oligosaccharides, such as the two sialyllactoses (SLs), 3'sialyllactose (3'SL), and 6'sialyllactose (6'SL). We utilized Caenorhabditis elegans (C. elegans) to investigate the effects of SLs on exercise performance. Using swimming as an endurance-type exercise, we found that SLs decrease exhaustion, signifying an increase in endurance that is strongest for 6'SL. Through an unbiased metabolomics approach, we identified changes in energy metabolism that correlated with endurance performance. Further investigation suggested that these metabolic changes were related to adaptations of muscle mitochondria that facilitated a shift from beta oxidation to glycogenolysis during exercise. We found that the effect of SLs on endurance performance required AMPK- (aak-1/aak-2) and adenosine receptor (ador-1) signaling. We propose a model where SLs alter the metabolic status in the gut, causing a signal from the intestine to the nervous system toward muscle cells, where metabolic adaptation increases exercise performance. Together, our results underline the potential of SLs in exercise-associated health and contribute to our understanding of the molecular processes involved in nutritionally-induced health benefits.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Bert van Duijn
- Fytagoras B.V.LeidenThe Netherlands
- Institute Biology LeidenLeiden UniversityLeidenThe Netherlands
| | | | | |
Collapse
|
27
|
Muthaiyan Shanmugam M, Chaudhuri J, Sellegounder D, Sahu AK, Guha S, Chamoli M, Hodge B, Bose N, Amber C, Farrera DO, Lithgow G, Sarpong R, Galligan JJ, Kapahi P. Methylglyoxal-derived hydroimidazolone, MG-H1, increases food intake by altering tyramine signaling via the GATA transcription factor ELT-3 in Caenorhabditis elegans. eLife 2023; 12:e82446. [PMID: 37728328 PMCID: PMC10611433 DOI: 10.7554/elife.82446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
The Maillard reaction, a chemical reaction between amino acids and sugars, is exploited to produce flavorful food ubiquitously, from the baking industry to our everyday lives. However, the Maillard reaction also occurs in all cells, from prokaryotes to eukaryotes, forming advanced glycation end-products (AGEs). AGEs are a heterogeneous group of compounds resulting from the irreversible reaction between biomolecules and α-dicarbonyls (α-DCs), including methylglyoxal (MGO), an unavoidable byproduct of anaerobic glycolysis and lipid peroxidation. We previously demonstrated that Caenorhabditis elegans mutants lacking the glod-4 glyoxalase enzyme displayed enhanced accumulation of α-DCs, reduced lifespan, increased neuronal damage, and touch hypersensitivity. Here, we demonstrate that glod-4 mutation increased food intake and identify that MGO-derived hydroimidazolone, MG-H1, is a mediator of the observed increase in food intake. RNAseq analysis in glod-4 knockdown worms identified upregulation of several neurotransmitters and feeding genes. Suppressor screening of the overfeeding phenotype identified the tdc-1-tyramine-tyra-2/ser-2 signaling as an essential pathway mediating AGE (MG-H1)-induced feeding in glod-4 mutants. We also identified the elt-3 GATA transcription factor as an essential upstream regulator for increased feeding upon accumulation of AGEs by partially controlling the expression of tdc-1 gene. Furthermore, the lack of either tdc-1 or tyra-2/ser-2 receptors suppresses the reduced lifespan and rescues neuronal damage observed in glod-4 mutants. Thus, in C. elegans, we identified an elt-3 regulated tyramine-dependent pathway mediating the toxic effects of MG-H1 AGE. Understanding this signaling pathway may help understand hedonistic overfeeding behavior observed due to modern AGE-rich diets.
Collapse
Affiliation(s)
| | | | | | | | - Sanjib Guha
- The Buck Institute for Research on AgingNovatoUnited States
| | - Manish Chamoli
- The Buck Institute for Research on AgingNovatoUnited States
| | - Brian Hodge
- The Buck Institute for Research on AgingNovatoUnited States
| | - Neelanjan Bose
- The Buck Institute for Research on AgingNovatoUnited States
| | - Charis Amber
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - Dominique O Farrera
- Department of Pharmacology and Toxicology, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Gordon Lithgow
- The Buck Institute for Research on AgingNovatoUnited States
| | - Richmond Sarpong
- Department of Chemistry, University of California, BerkeleyBerkeleyUnited States
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of ArizonaTucsonUnited States
| | - Pankaj Kapahi
- The Buck Institute for Research on AgingNovatoUnited States
- Department of Urology, University of California, San FranciscoSan FranciscoUnited States
| |
Collapse
|
28
|
Liu J, Zhang P, Zheng Z, Afridi MI, Zhang S, Wan Z, Zhang X, Stingelin L, Wang Y, Tu H. GABAergic signaling between enteric neurons and intestinal smooth muscle promotes innate immunity and gut defense in Caenorhabditis elegans. Immunity 2023; 56:1515-1532.e9. [PMID: 37437538 DOI: 10.1016/j.immuni.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The nervous system is critical for intestinal homeostasis and function, but questions remain regarding its impact on gut immune defense. By screening the major neurotransmitters of C. elegans, we found that γ-aminobutyric acid (GABA) deficiency enhanced susceptibility to pathogenic Pseudomonas aeruginosa PA14 infection. GABAergic signaling between enteric neurons and intestinal smooth muscle promoted gut defense in a PMK-1/p38-dependent, but IIS/DAF-16- and DBL-1/TGF-β-independent, pathway. Transcriptomic profiling revealed that the neuropeptide, FLP-6, acted downstream of enteric GABAergic signaling. Further data determined that FLP-6 was expressed and secreted by intestinal smooth muscle cells and functioned as a paracrine molecule on the intestinal epithelium. FLP-6 suppressed the transcription factors ZIP-10 and KLF-1 that worked in parallel and converged to the PMK-1/p38 pathway in the intestinal epithelia for innate immunity and gut defense. Collectively, these findings uncover an enteric neuron-muscle-epithelium axis that may be evolutionarily conserved in higher organisms.
Collapse
Affiliation(s)
- Junqiang Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Pei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Zhongfan Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Muhammad Irfan Afridi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Shan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Zhiqing Wan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Xiumei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Lukas Stingelin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Yirong Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China
| | - Haijun Tu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, Hunan, China.
| |
Collapse
|
29
|
Ma T, Pan X, Wang T, Li X, Luo Y. Toxicity of Per- and Polyfluoroalkyl Substances to Nematodes. TOXICS 2023; 11:593. [PMID: 37505559 PMCID: PMC10385831 DOI: 10.3390/toxics11070593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of compounds that persist in the environment globally. Besides being transported to the soil and sediments, which act as their sinks, PFASs can be transferred to several species of higher organisms directly or via bacteria, eliciting a wide range of adverse effects. Caenorhabditis elegans has been widely used in toxicological studies and life science research owing to its numerous advantages over traditional vertebrate models; notably, C. elegans has 65% conserved human-disease-associated genes and does not require ethical approvals for experimental use. This review covers a range of topics, from reported accumulation characteristics and lethal concentrations of PFAS in C. elegans to the mechanisms underlying the toxicity of PFAS at different levels, including reproductive, developmental, cellular, neurologic, oxidative, metabolic, immune, and endocrine toxicities. Additionally, the toxicity levels of some PFAS substitutes are summarized. Lastly, we discuss the toxicological mechanisms of these PFAS substitutes and the importance and promising potential of nematodes as in vivo models for life science research, epidemiological studies (obesity, aging, and Alzheimer's disease research), and toxicological investigations of PFASs and other emerging pollutants compared with other soil animals or model organisms.
Collapse
Affiliation(s)
- Tingting Ma
- Wenzhou Key Laboratory of Soil Pollution Prevention and Control, Zhejiang Industry and Trade Vocation College, Wenzhou 325002, China
- College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xia Pan
- Wenzhou Key Laboratory of Soil Pollution Prevention and Control, Zhejiang Industry and Trade Vocation College, Wenzhou 325002, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Tiantian Wang
- College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Xiuhua Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
30
|
Aprison EZ, Dzitoyeva S, Ruvinsky I. Serotonergic signaling plays a deeply conserved role in improving oocyte quality. Dev Biol 2023; 499:24-30. [PMID: 37121310 PMCID: PMC10247452 DOI: 10.1016/j.ydbio.2023.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Declining germline quality is a major cause of reproductive senescence. Potential remedies could be found by studying regulatory pathways that promote germline quality. Several lines of evidence, including a C. elegans male pheromone ascr#10 that counteracts the effects of germline aging in hermaphrodites, suggest that the nervous system plays an important role in regulating germline quality. Inspired by the fact that serotonin mediates ascr#10 signaling, here we show that serotonin reuptake inhibitors recapitulate the effects of ascr#10 on the germline and promote healthy oocyte aging in C. elegans. Surprisingly, we found that pharmacological increase of serotonin signaling stimulates several developmental processes in D. melanogaster, including improved oocyte quality, although underlying mechanisms appear to be different between worms and flies. Our results reveal a plausibly conserved role for serotonin in maintaining germline quality and identify a class of therapeutic interventions using available compounds that could efficiently forestall reproductive aging.
Collapse
Affiliation(s)
- Erin Z Aprison
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Svetlana Dzitoyeva
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
| | - Ilya Ruvinsky
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
31
|
Olson AC, Butt AM, Christie NTM, Shelar A, Koelle MR. Multiple Subthreshold GPCR Signals Combined by the G-Proteins Gα q and Gα s Activate the Caenorhabditis elegans Egg-Laying Muscles. J Neurosci 2023; 43:3789-3806. [PMID: 37055179 PMCID: PMC10219013 DOI: 10.1523/jneurosci.2301-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/21/2023] [Accepted: 04/07/2023] [Indexed: 04/15/2023] Open
Abstract
Individual neurons or muscle cells express many G-protein-coupled receptors (GPCRs) for neurotransmitters and neuropeptides, yet it remains unclear how cells integrate multiple GPCR signals that all must activate the same few G-proteins. We analyzed this issue in the Caenorhabditis elegans egg-laying system, where multiple GPCRs on muscle cells promote contraction and egg laying. We genetically manipulated individual GPCRs and G-proteins specifically in these muscle cells within intact animals and then measured egg laying and muscle calcium activity. Two serotonin GPCRs on the muscle cells, Gαq-coupled SER-1 and Gαs-coupled SER-7, together promote egg laying in response to serotonin. We found that signals produced by either SER-1/Gαq or SER-7/Gαs alone have little effect, but these two subthreshold signals combine to activate egg laying. We then transgenically expressed natural or designer GPCRs in the muscle cells and found that their subthreshold signals can also combine to induce muscle activity. However, artificially inducing strong signaling through just one of these GPCRs can be sufficient to induce egg laying. Knocking down Gαq and Gαs in the egg-laying muscle cells induced egg-laying defects that were stronger than those of a SER-1/SER-7 double knockout, indicating that additional endogenous GPCRs also activate the muscle cells. These results show that in the egg-laying muscles multiple GPCRs for serotonin and other signals each produce weak effects that individually do not result in strong behavioral outcomes. However, they combine to produce sufficient levels of Gαq and Gαs signaling to promote muscle activity and egg laying.SIGNIFICANCE STATEMENT How can neurons and other cells gather multiple independent pieces of information from the soup of chemical signals in their environment and compute an appropriate response? Most cells express >20 GPCRs that each receive one signal and transmit that information through three main types of G-proteins. We analyzed how this machinery generates responses by studying the egg-laying system of C. elegans, where serotonin and multiple other signals act through GPCRs on the egg-laying muscles to promote muscle activity and egg laying. We found that individual GPCRs within an intact animal each generate effects too weak to activate egg laying. However, combined signaling from multiple GPCR types reaches a threshold capable of activating the muscle cells.
Collapse
Affiliation(s)
- Andrew C Olson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Allison M Butt
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Nakeirah T M Christie
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Ashish Shelar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| | - Michael R Koelle
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06510
| |
Collapse
|
32
|
Liu Z, Cheng L, Yang B, Cao Z, Sun M, Feng Y, Xu A. Effects of moderate static magnetic fields on the lipogenesis and lipolysis in different genders of Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115005. [PMID: 37210995 DOI: 10.1016/j.ecoenv.2023.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
With the rapid development of magnetic technology, the biological effects of moderate static magnetic fields (SMFs) have attracted increasing research interest due to their potential medical diagnosis and treatment application. The present study explored the effects of moderate SMFs on the lipid metabolism of Caenorhabditis elegans (C. elegans) in different genders including male, female, and hermaphrodite. We found that the fat content was significantly decreased by moderate SMFs in wild-type N2 worms, which was associated with their development stages. The diameters of lipid droplets in N2 worms, him-5 worms, and fog-2 worms were greatly decreased by 19.23%, 15.38%, and 23.07% at young adult stage under 0.5 T SMF, respectively. The mRNA levels of lipolysis related genes atgl-1 and nhr-76 were significantly up-regulated by SMF exposure, while the mRNA levels of the lipogenesis related genes fat-6, fat-7, and sbp-1 were down-regulated by SMF, whereas the concentration of β-oxidase was increased. There was a slight effect of SMF on the mRNA levels of β-oxidation related genes. Moreover, the insulin and serotonin pathway were regulated by SMF, instead of the TOR pathway. In wild-type worms, we found that their lifespan was prolonged by exposure to 0.5 T SMF. Our data suggested that moderate SMFs could significantly modify the lipogenesis and lipolysis process in C. elegans in a gender and development stage-dependent manner, which could provide a novel insight into understanding the function of moderate SMFs in living organisms.
Collapse
Affiliation(s)
- Zicheng Liu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Meng Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - Yu Feng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, Hefei, Anhui 230031, China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei, Anhui 230031, China; High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui 230031, China.
| |
Collapse
|
33
|
Yu J, Vogt MC, Fox BW, Wrobel CJJ, Fajardo Palomino D, Curtis BJ, Zhang B, Le HH, Tauffenberger A, Hobert O, Schroeder FC. Parallel pathways for serotonin biosynthesis and metabolism in C. elegans. Nat Chem Biol 2023; 19:141-150. [PMID: 36216995 PMCID: PMC9898190 DOI: 10.1038/s41589-022-01148-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 08/19/2022] [Indexed: 02/06/2023]
Abstract
The neurotransmitter serotonin plays a central role in animal behavior and physiology, and many of its functions are regulated via evolutionarily conserved biosynthesis and degradation pathways. Here we show that in Caenorhabditis elegans, serotonin is abundantly produced in nonneuronal tissues via phenylalanine hydroxylase, in addition to canonical biosynthesis via tryptophan hydroxylase in neurons. Combining CRISPR-Cas9 genome editing, comparative metabolomics and synthesis, we demonstrate that most serotonin in C. elegans is incorporated into N-acetylserotonin-derived glucosides, which are retained in the worm body and further modified via the carboxylesterase CEST-4. Expression patterns of CEST-4 suggest that serotonin or serotonin derivatives are transported between different tissues. Last, we show that bacterial indole production interacts with serotonin metabolism via CEST-4. Our results reveal a parallel pathway for serotonin biosynthesis in nonneuronal cell types and further indicate that serotonin-derived metabolites may serve distinct signaling functions and contribute to previously described serotonin-dependent phenotypes.
Collapse
Affiliation(s)
- Jingfang Yu
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Merly C Vogt
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA
| | - Bennett W Fox
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Chester J J Wrobel
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Diana Fajardo Palomino
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Brian J Curtis
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Bingsen Zhang
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Henry H Le
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Arnaud Tauffenberger
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Oliver Hobert
- Department of Biological Sciences, Columbia University, Howard Hughes Medical Institute, New York, NY, USA.
| | - Frank C Schroeder
- Boyce Thompson Institute and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
34
|
Gómez-Canela C, Esquius F, Barata C. The role of serotonergic signaling on phototactic and locomotor behavior in Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159042. [PMID: 36174704 DOI: 10.1016/j.scitotenv.2022.159042] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/29/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
The role of serotonin in Daphnia magna phototactic and locomotor behavior was assessed using reverse genetics and pharmacological treatments with serotonin and fluoxetine. The study was conducted with four clones: the wild type clone and three CRISPR D. magna ones with mutations in the tryptophan hydrolase gene (TRH) that is involved in serotonin synthesis. These included clones TRHA- and TRHB- with mutations in both alleles that lack serotonin and the mono-allelic mutant TRH+, that has serotonin. Obtained results indicated that animals lacking serotonin showed an increased negative phototactism and locomotor activity upon light stimuli and a reduced response to fish kairomones relative to the wild type and TRH+ individuals. Exposure to exogenous serotonin re-established the phototactism and locomotor activity of TRH- individuals to those of the wild type but did not affect phototactic responses to fish kairomones. Unexpectedly, fluoxetine was able to modify locomotor activity and phototactic behavior against fish kairomones in TRH- individuals lacking serotonin, and also it increased the concentrations of acethylcholine and GABA in exposed animals, which support the argument that fluoxetine may also affect other neurological pathways.
Collapse
Affiliation(s)
- Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain
| | - Ferran Esquius
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Barcelona, Spain; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017 Barcelona, Spain
| | - Carlos Barata
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA, CSIC), Jordi Girona 18, 08017 Barcelona, Spain.
| |
Collapse
|
35
|
Lazaro-Pena MI, Cornwell AB, Diaz-Balzac CA, Das R, Macoretta N, Thakar J, Samuelson AV. Homeodomain-interacting protein kinase maintains neuronal homeostasis during normal Caenorhabditis elegans aging and systemically regulates longevity from serotonergic and GABAergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523661. [PMID: 36711523 PMCID: PMC9882034 DOI: 10.1101/2023.01.11.523661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aging and the age-associated decline of the proteome is determined in part through neuronal control of evolutionarily conserved transcriptional effectors, which safeguard homeostasis under fluctuating metabolic and stress conditions by regulating an expansive proteostatic network. We have discovered the Caenorhabditis elegans h omeodomain-interacting p rotein k inase (HPK-1) acts as a key transcriptional effector to preserve neuronal integrity, function, and proteostasis during aging. Loss of hpk-1 results in drastic dysregulation in expression of neuronal genes, including genes associated with neuronal aging. During normal aging hpk-1 expression increases throughout the nervous system more broadly than any other kinase. Within the aging nervous system, hpk-1 is co-expressed with key longevity transcription factors, including daf-16 (FOXO), hlh-30 (TFEB), skn-1 (Nrf2), and hif-1 , which suggests hpk-1 expression mitigates natural age-associated physiological decline. Consistently, pan-neuronal overexpression of hpk-1 extends longevity, preserves proteostasis both within and outside of the nervous system, and improves stress resistance. Neuronal HPK-1 improves proteostasis through kinase activity. HPK-1 functions cell non-autonomously within serotonergic and GABAergic neurons to improve proteostasis in distal tissues by specifically regulating distinct components of the proteostatic network. Increased serotonergic HPK-1 enhances the heat shock response and survival to acute stress. In contrast, GABAergic HPK-1 induces basal autophagy and extends longevity. Our work establishes hpk-1 as a key neuronal transcriptional regulator critical for preservation of neuronal function during aging. Further, these data provide novel insight as to how the nervous system partitions acute and chronic adaptive response pathways to delay aging by maintaining organismal homeostasis.
Collapse
|
36
|
Application of Caenorhabditis elegans in Lipid Metabolism Research. Int J Mol Sci 2023; 24:ijms24021173. [PMID: 36674689 PMCID: PMC9860639 DOI: 10.3390/ijms24021173] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/01/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Over the last decade, the development and prevalence of obesity have posed a serious public health risk, which has prompted studies on the regulation of adiposity. With the ease of genetic manipulation, the diversity of the methods for characterizing body fat levels, and the observability of feeding behavior, Caenorhabditis elegans (C. elegans) is considered an excellent model for exploring energy homeostasis and the regulation of the cellular fat storage. In addition, the homology with mammals in the genes related to the lipid metabolism allows many aspects of lipid modulation by the regulators of the central nervous system to be conserved in this ideal model organism. In recent years, as the complex network of genes that maintain an energy balance has been gradually expanded and refined, the regulatory mechanisms of lipid storage have become clearer. Furthermore, the development of methods and devices to assess the lipid levels has become a powerful tool for studies in lipid droplet biology and the regulation of the nematode lipid metabolism. Herein, based on the rapid progress of C. elegans lipid metabolism-related studies, this review outlined the lipid metabolic processes, the major signaling pathways of fat storage regulation, and the primary experimental methods to assess the lipid content in nematodes. Therefore, this model system holds great promise for facilitating the understanding, management, and therapies of human obesity and other metabolism-related diseases.
Collapse
|
37
|
Fidalgo S, Yeoman MS. Age-Related Changes in Central Nervous System 5-Hydroxytryptamine Signalling and Its Potential Effects on the Regulation of Lifespan. Subcell Biochem 2023; 102:379-413. [PMID: 36600141 DOI: 10.1007/978-3-031-21410-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Serotonin or 5-hydroxytryptamine (5-HT) is an important neurotransmitter in the central nervous system and the periphery. Most 5-HT (~99%) is found in the periphery where it regulates the function of the gastrointestinal (GI) tract and is an important regulator of platelet aggregation. However, the remaining 1% that is found in the central nervous system (CNS) can regulate a range of physiological processes such as learning and memory formation, mood, food intake, sleep, temperature and pain perception. More recent work on the CNS of invertebrate model systems has shown that 5-HT can directly regulate lifespan.This chapter will focus on detailing how CNS 5-HT signalling is altered with increasing age and the potential consequences this has on its ability to regulate lifespan.
Collapse
Affiliation(s)
| | - Mark S Yeoman
- Centre for Stress and Age-Related Disease, School of Applied Sciences, University of Brighton, Brighton, United Kingdom.
| |
Collapse
|
38
|
Rosikon KD, Bone MC, Lawal HO. Regulation and modulation of biogenic amine neurotransmission in Drosophila and Caenorhabditis elegans. Front Physiol 2023; 14:970405. [PMID: 36875033 PMCID: PMC9978017 DOI: 10.3389/fphys.2023.970405] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Neurotransmitters are crucial for the relay of signals between neurons and their target. Monoamine neurotransmitters dopamine (DA), serotonin (5-HT), and histamine are found in both invertebrates and mammals and are known to control key physiological aspects in health and disease. Others, such as octopamine (OA) and tyramine (TA), are abundant in invertebrates. TA is expressed in both Caenorhabditis elegans and Drosophila melanogaster and plays important roles in the regulation of essential life functions in each organism. OA and TA are thought to act as the mammalian homologs of epinephrine and norepinephrine respectively, and when triggered, they act in response to the various stressors in the fight-or-flight response. 5-HT regulates a wide range of behaviors in C. elegans including egg-laying, male mating, locomotion, and pharyngeal pumping. 5-HT acts predominantly through its receptors, of which various classes have been described in both flies and worms. The adult brain of Drosophila is composed of approximately 80 serotonergic neurons, which are involved in modulation of circadian rhythm, feeding, aggression, and long-term memory formation. DA is a major monoamine neurotransmitter that mediates a variety of critical organismal functions and is essential for synaptic transmission in invertebrates as it is in mammals, in which it is also a precursor for the synthesis of adrenaline and noradrenaline. In C. elegans and Drosophila as in mammals, DA receptors play critical roles and are generally grouped into two classes, D1-like and D2-like based on their predicted coupling to downstream G proteins. Drosophila uses histamine as a neurotransmitter in photoreceptors as well as a small number of neurons in the CNS. C. elegans does not use histamine as a neurotransmitter. Here, we review the comprehensive set of known amine neurotransmitters found in invertebrates, and discuss their biological and modulatory functions using the vast literature on both Drosophila and C. elegans. We also suggest the potential interactions between aminergic neurotransmitters systems in the modulation of neurophysiological activity and behavior.
Collapse
Affiliation(s)
- Katarzyna D Rosikon
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Megan C Bone
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| | - Hakeem O Lawal
- Neuroscience Program, Department of Biological Sciences, Delaware State University, Dover, DE, United States
| |
Collapse
|
39
|
De Gregorio R, Subah G, Chan JC, Speranza L, Zhang X, Ramakrishnan A, Shen L, Maze I, Stanton PK, Sze JY. Sex-biased effects on hippocampal circuit development by perinatal SERT expression in CA3 pyramidal neurons. Development 2022; 149:dev200549. [PMID: 36178075 PMCID: PMC10655925 DOI: 10.1242/dev.200549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 09/08/2022] [Indexed: 11/20/2022]
Abstract
Neurodevelopmental disorders ranging from autism to intellectual disability display sex-biased prevalence and phenotypical presentations. Despite increasing knowledge about temporospatial cortical map development and genetic variants linked to neurodevelopmental disorders, when and how sex-biased neural circuit derailment may arise in diseased brain remain unknown. Here, we identify in mice that serotonin uptake transporter (SERT) in non-serotonergic neurons - hippocampal and prefrontal pyramidal neurons - confers sex-biased effects specifically during neural circuit development. A set of gradient-patterned CA3 pyramidal neurons transiently express SERT to clear extracellular serotonin, coinciding with hippocampal synaptic circuit establishment. Ablating pyramidal neuron SERT (SERTPyramidΔ) alters dendritic spine developmental trajectory in the hippocampus, and precipitates sex-biased impairments in long-term activity-dependent hippocampal synaptic plasticity and cognitive behaviors. Transcriptomic analyses identify sex-biased alterations in gene sets associated with autism, dendritic spine structure, synaptic function and male-specific enrichment of dysregulated genes in glial cells in early postnatal SERTPyramidΔ hippocampus. Our data suggest that SERT function in these pyramidal neurons underscores a temporal- and brain region-specific regulation of normal sex-dimorphic circuit development and a source for sex-biased vulnerability to cognitive and behavioral impairments. This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Roberto De Gregorio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Galadu Subah
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Jennifer C. Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Luisa Speranza
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xiaolei Zhang
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Ian Maze
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, NY 10029, USA
| | - Patric K. Stanton
- Department of Cell Biology & Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | - Ji Y. Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
40
|
Servello FA, Fernandes R, Eder M, Harris N, Martin OMF, Oswal N, Lindberg A, Derosiers N, Sengupta P, Stroustrup N, Apfeld J. Neuronal temperature perception induces specific defenses that enable C. elegans to cope with the enhanced reactivity of hydrogen peroxide at high temperature. eLife 2022; 11:e78941. [PMID: 36226814 PMCID: PMC9635881 DOI: 10.7554/elife.78941] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hydrogen peroxide is the most common reactive chemical that organisms face on the microbial battlefield. The rate with which hydrogen peroxide damages biomolecules required for life increases with temperature, yet little is known about how organisms cope with this temperature-dependent threat. Here, we show that Caenorhabditis elegans nematodes use temperature information perceived by sensory neurons to cope with the temperature-dependent threat of hydrogen peroxide produced by the pathogenic bacterium Enterococcus faecium. These nematodes preemptively induce the expression of specific hydrogen peroxide defenses in response to perception of high temperature by a pair of sensory neurons. These neurons communicate temperature information to target tissues expressing those defenses via an insulin/IGF1 hormone. This is the first example of a multicellular organism inducing their defenses to a chemical when they sense an inherent enhancer of the reactivity of that chemical.
Collapse
Affiliation(s)
| | - Rute Fernandes
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Matthias Eder
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Nathan Harris
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Olivier MF Martin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Natasha Oswal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Anders Lindberg
- Biology Department, Northeastern UniversityBostonUnited States
| | | | - Piali Sengupta
- Department of Biology, Brandeis UniversityWalthamUnited States
| | - Nicholas Stroustrup
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and TechnologyBarcelonaSpain
- Universitat Pompeu Fabra (UPF)BarcelonaSpain
| | - Javier Apfeld
- Biology Department, Northeastern UniversityBostonUnited States
- Bioengineering Department, Northeastern UniversityBostonUnited States
| |
Collapse
|
41
|
Liu M, Gao X, Shan S, Li Y, Wang J, Lu W. Eleutheroside E reduces intestinal fat accumulation in Caenorhabditis elegans through neuroendocrine signals. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:5219-5228. [PMID: 35297055 DOI: 10.1002/jsfa.11875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Acanthopanax senticosus, a small woody shrub of the family Araliaceae, can be used as a functional food with multiple biological activities. Eleutheroside E (EE), an important active component of A. senticosus, has significant effects on neurological diseases. However, whether EE can regulate lipid metabolism has not been reported. The brain can mediate communication between neurons and intestinal cells through long-distance neuroendocrine signals. We speculated that EE might regulate the intestinal lipid metabolism of Caenorhabditis elegans through neuroendocrine signals. RESULTS First, we found that EE reduced the intestinal fat content of C. elegans, without affecting development, reproduction, food intake or movement. In addition, EE significantly regulated genes and metabolites related to lipid metabolism. EE extensively affected fatty acid synthesis, β-oxidation and lipolysis processes, and regulated the content of various fatty acid and lipid metabolism intermediates. We finally proved that EE reduced intestinal fat storage through serotonin and neuropeptide flp-7-npr-22 pathways in the nervous system. CONCLUSION EE is expected to be a functional food that regulates lipid metabolism. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mengyao Liu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Xin Gao
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Shan Shan
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| | - Yongzhi Li
- Key Laboratory of Astronaut Health Center, China Astronaut Research and Training Center, Beijing, China
| | - Jiaping Wang
- Key Laboratory of Astronaut Health Center, China Astronaut Research and Training Center, Beijing, China
| | - Weihong Lu
- Institute of Extreme Environment Nutrition and Protection, Harbin Institute of Technology, Harbin, China
- National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin, China
- School of Chemical Engineering and Chemistry, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
42
|
Head-tail-head neural wiring underlies gut fat storage in Caenorhabditis elegans temperature acclimation. Proc Natl Acad Sci U S A 2022; 119:e2203121119. [PMID: 35914124 PMCID: PMC9371718 DOI: 10.1073/pnas.2203121119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Animals maintain the ability to survive and reproduce by acclimating to environmental temperatures. We showed here that Caenorhabditis elegans exhibited temperature acclimation plasticity, which was regulated by a head-tail-head neural circuitry coupled with gut fat storage. After experiencing cold, C. elegans individuals memorized the experience and were prepared against subsequent cold stimuli. The cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) regulated temperature acclimation in the ASJ thermosensory neurons and RMG head interneurons, where it modulated ASJ thermosensitivity in response to past cultivation temperature. The PVQ tail interneurons mediated the communication between ASJ and RMG via glutamatergic signaling. Temperature acclimation occurred via gut fat storage regulation by the triglyceride lipase ATGL-1, which was activated by a neuropeptide, FLP-7, downstream of CREB. Thus, a head-tail-head neural circuit coordinated with gut fat influenced experience-dependent temperature acclimation.
Collapse
|
43
|
Dangol A, Shavit R, Yaakov B, Strickler SR, Jander G, Tzin V. Characterizing serotonin biosynthesis in Setaria viridis leaves and its effect on aphids. PLANT MOLECULAR BIOLOGY 2022; 109:533-549. [PMID: 35020104 DOI: 10.1007/s11103-021-01239-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
A combined transcriptomic and metabolic analysis of Setaria viridis leaves responding to aphid infestation was used to identify genes related to serotonin biosynthesis. Setaria viridis (green foxtail), a short life-cycle C4 plant in the Poaceae family, is the wild ancestor of Setaria italica (foxtail millet), a resilient crop that provides good yields in dry and marginal land. Although S. viridis has been studied extensively in the last decade, the molecular mechanisms of insect resistance in this species remain under-investigated. To address this issue, we performed a metabolic analysis of S. viridis and discovered that these plants accumulate the tryptophan-derived compounds tryptamine and serotonin. To elucidate the defensive functions of serotonin, Rhophalosiphum padi (bird cherry-oat aphids) were exposed to this compound, either by exogenous application to the plant medium or with artificial diet bioassays. In both cases, exposure to serotonin increased aphid mortality. To identify genes that are involved in serotonin biosynthesis, we conducted a transcriptome analysis and identified several predicted S. viridis tryptophan decarboxylase (TDC) and tryptamine 5-hydroxylase (T5H) genes. Two candidate genes were ectopically expressed in Nicotiana tabacum, where SvTDC1 (Sevir.6G066200) had tryptophan decarboxylase activity, and SvT5H1 (Sevir.8G219600) had tryptamine hydroxylase activity. Moreover, the function of the SvTDC1 gene was validated using virus-induced gene silencing in S. italica, which caused a reduction in serotonin levels. This study provides the first evidence of serotonin biosynthesis in Setaria leaves. The biosynthesis of serotonin may play an important role in defense responses and could prove to be useful for developing more pest-tolerant Setaria italica cultivars.
Collapse
Affiliation(s)
- Anuma Dangol
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | | | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
44
|
Miller HA, Huang S, Dean ES, Schaller ML, Tuckowski AM, Munneke AS, Beydoun S, Pletcher SD, Leiser SF. Serotonin and dopamine modulate aging in response to food odor and availability. Nat Commun 2022; 13:3271. [PMID: 35672307 PMCID: PMC9174215 DOI: 10.1038/s41467-022-30869-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2022] [Indexed: 01/27/2023] Open
Abstract
An organism's ability to perceive and respond to changes in its environment is crucial for its health and survival. Here we reveal how the most well-studied longevity intervention, dietary restriction, acts in-part through a cell non-autonomous signaling pathway that is inhibited by the presence of attractive smells. Using an intestinal reporter for a key gene induced by dietary restriction but suppressed by attractive smells, we identify three compounds that block food odor effects in C. elegans, thereby increasing longevity as dietary restriction mimetics. These compounds clearly implicate serotonin and dopamine in limiting lifespan in response to food odor. We further identify a chemosensory neuron that likely perceives food odor, an enteric neuron that signals through the serotonin receptor 5-HT1A/SER-4, and a dopaminergic neuron that signals through the dopamine receptor DRD2/DOP-3. Aspects of this pathway are conserved in D. melanogaster. Thus, blocking food odor signaling through antagonism of serotonin or dopamine receptors is a plausible approach to mimic the benefits of dietary restriction.
Collapse
Affiliation(s)
- Hillary A Miller
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shijiao Huang
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Elizabeth S Dean
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Megan L Schaller
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Angela M Tuckowski
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Allyson S Munneke
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Safa Beydoun
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott D Pletcher
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Scott F Leiser
- Molecular & Integrative Physiology Department, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
45
|
Briggs AM, Hambly MG, Simão-Gurge RM, Garrison SM, Khaku Z, Van Susteren G, Lewis EE, Riffell JA, Luckhart S. Anopheles stephensi Feeding, Flight Behavior, and Infection With Malaria Parasites are Altered by Ingestion of Serotonin. Front Physiol 2022; 13:911097. [PMID: 35747317 PMCID: PMC9209645 DOI: 10.3389/fphys.2022.911097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
Approximately 3.4 billion people are at risk of malaria, a disease caused by infection with Plasmodium spp. parasites, which are transmitted by Anopheles mosquitoes. Individuals with severe falciparum malaria often exhibit changes in circulating blood levels of biogenic amines, including reduced serotonin or 5-hydroxytryptamine (5-HT), and these changes are associated with disease pathology. In insects, 5-HT functions as an important neurotransmitter for many behaviors and biological functions. In Anopheles stephensi, we show that 5-HT is localized to innervation in the head, thorax, and midgut, suggesting a gut-to-brain signaling axis that could support the effects of ingested 5-HT on mosquito biology and behavioral responses. Given the changes in blood levels of 5-HT associated with severe malaria and the key roles that 5-HT plays in insect neurophysiology, we investigated the impact of ingesting blood with healthy levels of 5-HT (1.5 µM) or malaria-associated levels of 5-HT (0.15 µM) on various aspects of A. stephensi biology. In these studies, we provisioned 5-HT and monitored fecundity, lifespan, flight behavior, and blood feeding of A. stephensi. We also assessed the impact of 5-HT ingestion on infection of A. stephensi with the mouse malaria parasite Plasmodium yoelii yoelii 17XNL and the human malaria parasite Plasmodium falciparum. Our data show that ingestion of 5-HT associated with severe malaria increased mosquito flight velocity and investigation of visual objects in response to host odor (CO2). 5-HT ingestion in blood at levels associated with severe malaria also increased the tendency to take a second blood meal 4 days later in uninfected A. stephensi. In mosquitoes infected with P. y. yoelii 17XNL, feeding tendency was decreased when midgut oocysts were present but increased when sporozoites were present. In addition to these effects, treatment of A. stephensi with 5-HT associated with severe malaria increased infection success with P. y. yoelii 17XNL compared to control, while treatment with healthy levels of 5-HT decreased infection success with P. falciparum. These changes in mosquito behavior and infection success could be used as a basis to manipulate 5-HT signaling in vector mosquitoes for improved control of malaria parasite transmission.
Collapse
Affiliation(s)
- Anna M. Briggs
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Malayna G. Hambly
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Raquel M. Simão-Gurge
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Sarah M. Garrison
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Zainab Khaku
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Grace Van Susteren
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Edwin E. Lewis
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
| | - Jeffrey A. Riffell
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID, United States
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| |
Collapse
|
46
|
Cheng L, Yang B, Du H, Zhou T, Li Y, Wu J, Cao Z, Xu A. Moderate intensity of static magnetic fields can alter the avoidance behavior and fat storage of Caenorhabditis elegans via serotonin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43102-43113. [PMID: 35092591 DOI: 10.1007/s11356-022-18898-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Man-made static magnetic fields (SMFs) widely exist in human life as a physical environmental factor. However, the biological responses to moderate SMFs exposure and their underlying mechanisms are largely unknown. The present study was focused on exploring the nervous responses to moderate-intensity SMFs at 0.5 T and 1 T in Caenorhabditis elegans (C. elegans). We found that SMFs at either 0.5 T or 1 T had no statistically significant effects on the locomotor behaviors, while the 1 T magnetic field increased pharyngeal pumping. The avoidance behavior of the pathogenic Pseudomonas aeruginosa was greatly decreased in either 0.5 T or 1 T SMFs exposed nematodes, and the learning index was reducede from 0.52 ± 0.11 to 0.23 ± 0.17 and 0.16 ± 0.11, respectively. The total serotonin level was increased by 17.08% and 16.45% with the treatment of 0.5 T and 1 T SMF, compared to the control group; however, there were minimal effects of SMFs on other three neurotransmitters including choline, γ-aminobutyric acid (GABA), dopamine. RT-qPCR was used to further investigate the expression of serotonin-related genes, including rate-limiting enzymes, transcription factors and transport receptors. The expression levels of tph-1 and unc-86 genes were increased by SMF exposure, while those of ocr-2, osm-9, ser-1 and mod-1 genes were decreased. With the staining of lipid in either wild-type N2 or tph-1 mutants, we found that 0.5 T and 1 T SMFs decreased fat storage in C. elegans via serotonin pathway. Our study demonstrated that moderate-intensity SMFs induced neurobehavioral disorder and the reduction of fat storage by disturbing the secretion of serotonin in C. elegans, which provided new insights into elucidating nervous responses of C. elegans to moderate-intensity SMFs.
Collapse
Affiliation(s)
- Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Hua Du
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Tong Zhou
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Jiajie Wu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhenxiao Cao
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - An Xu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| |
Collapse
|
47
|
Chai CM, Torkashvand M, Seyedolmohadesin M, Park H, Venkatachalam V, Sternberg PW. Interneuron control of C. elegans developmental decision-making. Curr Biol 2022; 32:2316-2324.e4. [PMID: 35447086 DOI: 10.1016/j.cub.2022.03.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/13/2022] [Accepted: 03/30/2022] [Indexed: 01/18/2023]
Abstract
Natural environments are highly dynamic, and this complexity challenges animals to accurately integrate external cues to shape their responses. Adaptive developmental plasticity enables organisms to remodel their physiology, morphology, and behavior to better suit the predicted future environment and ultimately enhance their ecological success.1 Understanding how an animal generates a neural representation of current and forecasted environmental conditions and converts these circuit computations into a predictive adaptive physiological response may provide fundamental insights into the molecular and cellular basis of decision-making over developmentally relevant timescales. Although it is known that sensory cues usually trigger the developmental switch and that downstream inter-tissue signaling pathways enact the alternative developmental phenotype, the integrative neural mechanisms that transduce external inputs into effector pathways are less clear.2,3 In adverse environments, Caenorhabditis elegans larvae can enter a stress-resistant diapause state with arrested metabolism and reproductive physiology.4 Amphid sensory neurons feed into both rapid chemotactic and short-term foraging mode decisions, mediated by amphid and pre-motor interneurons, as well as the long-term diapause entry decision. Here, we identify amphid interneurons that integrate pheromone cues and propagate this information via a neuropeptidergic pathway to influence larval developmental fate, bypassing the pre-motor system. AIA interneuron-derived FLP-2 neuropeptide signaling promotes reproductive growth, and AIA activity is suppressed by pheromones. FLP-2 signaling is inhibited by upstream glutamatergic transmission via the metabotropic receptor MGL-1 and mediated by the broadly expressed neuropeptide G-protein-coupled receptor NPR-30. Thus, metabotropic signaling allows the reuse of parts of a sensory system for a decision with a distinct timescale.
Collapse
Affiliation(s)
- Cynthia M Chai
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| | - Mahdi Torkashvand
- Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | | | - Heenam Park
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA
| | - Vivek Venkatachalam
- Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA.
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, USA.
| |
Collapse
|
48
|
Kalis AK, Sterrett MC, Armstrong C, Ballmer A, Burkstrand K, Chilson E, Emlen E, Ferrer E, Loeb S, Olin T, Tran K, Wheeler A, Ross Wolff J. Hox proteins interact to pattern neuronal subtypes in Caenorhabditis elegans males. Genetics 2022; 220:iyac010. [PMID: 35137058 PMCID: PMC8982040 DOI: 10.1093/genetics/iyac010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/10/2022] [Indexed: 11/14/2022] Open
Abstract
Hox transcription factors are conserved regulators of neuronal subtype specification on the anteroposterior axis in animals, with disruption of Hox gene expression leading to homeotic transformations of neuronal identities. We have taken advantage of an unusual mutation in the Caenorhabditis elegans Hox gene lin-39, lin-39(ccc16), which transforms neuronal fates in the C. elegans male ventral nerve cord in a manner that depends on a second Hox gene, mab-5. We have performed a genetic analysis centered around this homeotic allele of lin-39 in conjunction with reporters for neuronal target genes and protein interaction assays to explore how LIN-39 and MAB-5 exert both flexibility and specificity in target regulation. We identify cis-regulatory modules in neuronal reporters that are both region-specific and Hox-responsive. Using these reporters of neuronal subtype, we also find that the lin-39(ccc16) mutation disrupts neuronal fates specifically in the region where lin-39 and mab-5 are coexpressed, and that the protein encoded by lin-39(ccc16) is active only in the absence of mab-5. Moreover, the fates of neurons typical to the region of lin-39-mab-5 coexpression depend on both Hox genes. Our genetic analysis, along with evidence from Bimolecular Fluorescence Complementation protein interaction assays, supports a model in which LIN-39 and MAB-5 act at an array of cis-regulatory modules to cooperatively activate and to individually activate or repress neuronal gene expression, resulting in regionally specific neuronal fates.
Collapse
Affiliation(s)
- Andrea K Kalis
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | - Maria C Sterrett
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Cecily Armstrong
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | | | - Kylie Burkstrand
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | - Elizabeth Chilson
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | - Estee Emlen
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Emma Ferrer
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Seanna Loeb
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | - Taylor Olin
- Department of Biology, St. Catherine University, St. Paul, MN 55105, USA
| | - Kevin Tran
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | - Andrew Wheeler
- Department of Biology, Carleton College, Northfield, MN 55057, USA
| | | |
Collapse
|
49
|
A serotonergic circuit regulates aversive associative learning under mitochondrial stress in
C. elegans. Proc Natl Acad Sci U S A 2022; 119:e2115533119. [PMID: 35254908 PMCID: PMC8931235 DOI: 10.1073/pnas.2115533119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Significance
Physiological stress triggers avoidance behavior, allowing the animals to stay away from potential threats and optimize their chance of survival. Mitochondrial disruption, a common physiological stress in diverse species, induces the nematode
Caenorhabditis elegans
to avoid non-pathogenic bacteria through a serotonergic neuronal circuit. We find that distinct neurons, communicated through serotonin and a specific serotonin receptor, are required for the formation and retrieval of this learned aversive behavior. This learned avoidance behavior is associated with increased serotonin synthesis, altered neuronal response property, and reprogramming of locomotion patterns. The circuit and neuromodulatory mechanisms described here offer important insights for stress-induced avoidance behavior.
Collapse
|
50
|
Jeong H, Park JY, Lee JH, Baik JH, Kim CY, Cho JY, Driscoll M, Paik YK. Deficiency in RCAT-1 Function Causes Dopamine Metabolism Related Behavioral Disorders in Caenorhabditis elegans. Int J Mol Sci 2022; 23:ijms23042393. [PMID: 35216508 PMCID: PMC8879058 DOI: 10.3390/ijms23042393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/13/2022] [Accepted: 02/18/2022] [Indexed: 02/04/2023] Open
Abstract
When animals are faced with food depletion, food search-associated locomotion is crucial for their survival. Although food search-associated locomotion is known to be regulated by dopamine, it has yet to investigate the potential molecular mechanisms governing the regulation of genes involved in dopamine metabolism (e.g., cat-1, cat-2) and related behavioral disorders. During the studies of the pheromone ascaroside, a signal of starvation stress in C. elegans, we identified R02D3.7, renamed rcat-1 (regulator of cat genes-1), which had previously been shown to bind to regulatory sequences of both cat-1 and cat-2 genes. It was found that RCAT-1 (R02D3.7) is expressed in dopaminergic neurons and functions as a novel negative transcriptional regulator for cat-1 and cat-2 genes. When a food source becomes depleted, the null mutant, rcat-1(ok1745), exhibited an increased frequency of high-angled turns and intensified area restricted search behavior compared to the wild-type animals. Moreover, rcat-1(ok1745) also showed defects in state-dependent olfactory adaptation and basal slowing response, suggesting that the mutants are deficient in either sensing food or locomotion toward food. However, rcat-1(ok1745) has normal cuticular structures and locomotion genes. The discovery of rcat-1 not only identifies a new subtype of dopamine-related behaviors but also provides a potential therapeutic target in Parkinson’s disease.
Collapse
Affiliation(s)
- Haelim Jeong
- Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea; (H.J.); (J.-H.L.)
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Korea; (J.Y.P.); (C.-Y.K.); (J.-Y.C.)
| | - Jun Young Park
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Korea; (J.Y.P.); (C.-Y.K.); (J.-Y.C.)
| | - Ji-Hyun Lee
- Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea; (H.J.); (J.-H.L.)
| | - Ja-Hyun Baik
- Department of Life Sciences, Korea University, Seoul 02841, Korea;
| | - Chae-Yeon Kim
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Korea; (J.Y.P.); (C.-Y.K.); (J.-Y.C.)
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul 03722, Korea
| | - Jin-Young Cho
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Korea; (J.Y.P.); (C.-Y.K.); (J.-Y.C.)
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul 03722, Korea
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08855, USA;
| | - Young-Ki Paik
- Department of Biochemistry, College of Life Sciences and Biotechnology, Yonsei University, Seoul 03722, Korea; (H.J.); (J.-H.L.)
- Yonsei Proteome Research Center, Yonsei University, Seoul 03722, Korea; (J.Y.P.); (C.-Y.K.); (J.-Y.C.)
- Interdisciplinary Program in Integrative Omics for Biomedical Science, Yonsei University, Seoul 03722, Korea
- Correspondence: ; Tel.: +82-2-2123-4242
| |
Collapse
|