1
|
Soni S, Kori SK, Nema P, Iyer AK, Soni V, Kashaw SK. Cell-penetrating Peptides as Keys to Endosomal Escape and Intracellular Trafficking in Nanomedicine Delivery. Curr Med Chem 2025; 32:1288-1312. [PMID: 38362688 DOI: 10.2174/0109298673278936240107121907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
This review article discusses the challenges of delivering cargoes to the cytoplasm, for example, proteins, peptides, and nucleic acids, and the mechanisms involved in endosomal escape. Endocytosis, endosomal maturation, and exocytosis pose significant barriers to effective cytoplasmic delivery. The article explores various endosomal escape mechanisms, such as the proton sponge effect, osmotic lysis, membrane fusion, pore formation, membrane destabilization/ disruption, and vesicle budding and collapse. Additionally, it discusses the role of lysosomes, glycocalyx, and molecular crowding in the cytoplasmic delivery process. Despite the recent advances in nonviral delivery systems, there is still a need to improve cytoplasmic delivery. Strategies such as fusogenic peptides, endosomolytic polymers, and cell-penetrating peptides have shown promise in improving endosomal escape and cytoplasmic delivery. More research is needed to refine these strategies and make them safer and more effective. In conclusion, the article highlights the challenges associated with cytoplasmic delivery and the importance of understanding the mechanisms involved in endosomal escape. A better understanding of these processes could result in the creation of greater effectiveness and safe delivery systems for various cargoes, including proteins, peptides, and nucleic acids.
Collapse
Affiliation(s)
- Sakshi Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Shivam K Kori
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Priyanshu Nema
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Arun K Iyer
- Use-inspired Biomaterials and Integrated Nano Delivery (U-BiND) Systems Laboratory, Department of Pharmaceutical Sciences, Wayne State University, Detroit, Michigan, USA
- Molecular Imaging Program, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Vandana Soni
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| | - Sushil K Kashaw
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour University (A Central University), Sagar (MP), India
| |
Collapse
|
2
|
Ali AE, Li LL, Courtney MJ, Pentikäinen OT, Postila PA. Atomistic simulations reveal impacts of missense mutations on the structure and function of SynGAP1. Brief Bioinform 2024; 25:bbae458. [PMID: 39311700 PMCID: PMC11418247 DOI: 10.1093/bib/bbae458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/20/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
De novo mutations in the synaptic GTPase activating protein (SynGAP) are associated with neurological disorders like intellectual disability, epilepsy, and autism. SynGAP is also implicated in Alzheimer's disease and cancer. Although pathogenic variants are highly penetrant in neurodevelopmental conditions, a substantial number of them are caused by missense mutations that are difficult to diagnose. Hence, in silico mutagenesis was performed for probing the missense effects within the N-terminal region of SynGAP structure. Through extensive molecular dynamics simulations, encompassing three 150-ns replicates for 211 variants, the impact of missense mutations on the protein fold was assessed. The effect of the mutations on the folding stability was also quantitatively assessed using free energy calculations. The mutations were categorized as potentially pathogenic or benign based on their structural impacts. Finally, the study introduces wild-type-SynGAP in complex with RasGTPase at the inner membrane, while considering the potential effects of mutations on these key interactions. This study provides structural perspective to the clinical assessment of SynGAP missense variants and lays the foundation for future structure-based drug discovery.
Collapse
Affiliation(s)
- Aliaa E Ali
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Li-Li Li
- Neuronal Signalling Laboratory and Turku Screening Unit, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Michael J Courtney
- Neuronal Signalling Laboratory and Turku Screening Unit, Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Olli T Pentikäinen
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Pekka A Postila
- MedChem.fi, Institute of Biomedicine, Integrative Physiology and Pharmacology, University of Turku, FI-20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| |
Collapse
|
3
|
Cornilescu G, Bindu L, Sternicki L, Chao FA, Gillette WK, Fer N, Colombus J, Castillo J, Bonilla PA, Van QN, Larsen E, Hong M, Burgan W, Turbyville T, Nissley DV, Liu M, Quinn R, Jean-Francois FL. Natural Product Graveoline Modulates Kirsten Rat Sarcoma Viral Oncogene Homologue (KRAS) Membrane Association: Insights from Advanced Spectroscopic Studies. ACS Pharmacol Transl Sci 2024; 7:1983-1995. [PMID: 39022364 PMCID: PMC11249638 DOI: 10.1021/acsptsci.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
The KRAS gene plays a pivotal role in numerous cancers by encoding a GTPase that upon association with the plasma membrane activates the MAPK pathway, promoting cellular proliferation. In our study, we investigated small molecules that disrupt KRAS's membrane interaction, hypothesizing that such disruption could in turn inhibit mutant RAS signaling. Native mass spectrometry screening of KRAS-FMe identified compounds with a preference for interacting with the hypervariable region (HVR), and surface plasmon resonance (SPR) further refined our selection to graveoline as a compound exhibiting preferential HVR binding. Subsequent nuclear magnetic resonance (NMR) analysis showed that graveoline's interaction with KRAS depends on C-terminal O-methylation. Moreover, our findings revealed multiple interaction sites, suggesting weak engagement with the KRAS G domain. Using nanodiscs as a membrane mimetic, further characterization through NMR and Förster resonance energy transfer (FRET) studies demonstrated graveoline's ability to perturb KRAS membrane interaction in a biochemical setting. Our biophysical approach sheds light on the intricate molecular mechanisms underlying KRAS-ligand interactions, providing valuable insights into understanding the KRAS-associated pathophysiology. These findings contribute to the translational aspect of our study, offering potential avenues for further research targeting KRAS membrane association with the potential to lead to a new class of RAS therapeutics.
Collapse
Affiliation(s)
- Gabriel Cornilescu
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Lakshman Bindu
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Louise Sternicki
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Fa-An Chao
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - William K. Gillette
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Nicole Fer
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - John Colombus
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Jean Castillo
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Pedro Andrade Bonilla
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Que N. Van
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Erik Larsen
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Min Hong
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - William Burgan
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Thomas Turbyville
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Dwight V. Nissley
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Miaomiao Liu
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Ronald Quinn
- Griffith
Institute for Drug Discovery, Griffith University, Brisbane 4111, Australia
| | - Frantz L. Jean-Francois
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| |
Collapse
|
4
|
Gu X, Zhang Y, Long D. Conserved allosteric perturbation of the GTPase domains by region 1 of Ras hypervariable regions. Biophys J 2024; 123:839-846. [PMID: 38419331 PMCID: PMC10995424 DOI: 10.1016/j.bpj.2024.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Ras proteins are important intracellular signaling hubs that can interact with numerous downstream effectors and upstream regulators through their GTPase domains (G-domains) anchored to plasma membranes by the C-terminal hypervariable regions (HVRs). The biological functions of Ras were proposed to be regulated at multiple levels including the intramolecular G-domain-HVR interactions, of which the exact mechanism and specificity are still controversial. Here, we demonstrate that the HVRs, instead of having direct contacts, can weakly perturb the G-domains via an allosteric interaction that is restricted to a ∼20 Å range and highly conserved in the tested Ras isoforms (HRas and KRas4B) and nucleotide-bound states. The origin of this allosteric perturbation has been localized to a short segment (residues 167-171) coinciding with region 1 of HVRs, which exhibits moderate to weak α-helical propensities. A charge-reversal mutation (E168K) of KRas4B in region 1, previously described in the Catalog of Somatic Mutations in Cancer database, was found to induce similar chemical shift perturbations as truncation of the HVR does. Further membrane paramagnetic relaxation enhancement (mPRE) data show that this region 1 mutation alters the membrane orientations of KRas4B and moderately increases the relative population of the signaling-compatible state.
Collapse
Affiliation(s)
- Xue Gu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yalong Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Dong Long
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei, China; Department of Chemistry, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
5
|
Tomishige N, Bin Nasim M, Murate M, Pollet B, Didier P, Godet J, Richert L, Sako Y, Mély Y, Kobayashi T. HIV-1 Gag targeting to the plasma membrane reorganizes sphingomyelin-rich and cholesterol-rich lipid domains. Nat Commun 2023; 14:7353. [PMID: 37990014 PMCID: PMC10663554 DOI: 10.1038/s41467-023-42994-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
Although the human immunodeficiency virus type 1 lipid envelope has been reported to be enriched with host cell sphingomyelin and cholesterol, the molecular mechanism of the enrichment is not well understood. Viral Gag protein plays a central role in virus budding. Here, we report the interaction between Gag and host cell lipids using different quantitative and super-resolution microscopy techniques in combination with specific probes that bind endogenous sphingomyelin and cholesterol. Our results indicate that Gag in the inner leaflet of the plasma membrane colocalizes with the outer leaflet sphingomyelin-rich domains and cholesterol-rich domains, enlarges sphingomyelin-rich domains, and strongly restricts the mobility of sphingomyelin-rich domains. Moreover, Gag multimerization induces sphingomyelin-rich and cholesterol-rich lipid domains to be in close proximity in a curvature-dependent manner. Our study suggests that Gag binds, coalesces, and reorganizes pre-existing lipid domains during assembly.
Collapse
Affiliation(s)
- Nario Tomishige
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan.
| | - Maaz Bin Nasim
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Motohide Murate
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan
| | - Brigitte Pollet
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Pascal Didier
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Julien Godet
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Ludovic Richert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France
| | - Yasushi Sako
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan
| | - Yves Mély
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
| | - Toshihide Kobayashi
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.
- Cellular Informatics Laboratory, RIKEN CPR, Wako, Saitama, Japan.
| |
Collapse
|
6
|
Rehl KM, Selvakumar J, Pitsch RL, Hoang D, Arumugam K, Harshman SW, Gorfe AA, Cho KJ. A new ferrocene derivative blocks K-Ras localization and function by oxidative modification at His95. Life Sci Alliance 2023; 6:e202302094. [PMID: 37666666 PMCID: PMC10477449 DOI: 10.26508/lsa.202302094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers harboring oncogenic mutant K-Ras. Here, we tested a novel ferrocene derivative on the growth of pancreatic ductal adenocarcinoma and non-small cell lung cancer. Our compound, which elevated cellular ROS levels, inhibited the growth of K-Ras-driven cancers, and abrogated the PM binding and signaling of K-Ras in an isoform-specific manner. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified that K-Ras His95 residue plays an important role in this process, and it is putatively oxidized by cellular ROS. Together, our study demonstrates that the redox system directly regulates K-Ras/PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced growth and metastasis of K-Ras-driven cancers.
Collapse
Affiliation(s)
- Kristen M Rehl
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Jayaraman Selvakumar
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Rhonda L Pitsch
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Don Hoang
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Kuppuswamy Arumugam
- Department of Chemistry, College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Sean W Harshman
- Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
7
|
Rao A, Ni Z, Suresh D, Mohanty C, Wang AR, Lee DL, Nickel KP, Varambally SRJ, Lambert PF, Kendziorski C, Iyer G. Targeted inhibition of BET proteins in HPV-16 associated head and neck squamous cell carcinoma reveals heterogeneous transcription response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560587. [PMID: 37873389 PMCID: PMC10592929 DOI: 10.1101/2023.10.02.560587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Integrated human papillomavirus (HPV-16) associated head and neck squamous cell carcinoma (HNSCC) tumors have worse survival outcomes compared to episomal HPV-16 HNSCC tumors. Therefore, there is a need to differentiate treatment for HPV-16 integrated HNSCC from other viral forms. We analyzed TCGA data and found that HPV+ HNSCC expressed higher transcript levels of the bromodomain and extra terminal domain (BET) family of transcriptional coregulators. However, the mechanism of BET protein-mediated transcription of viral-cellular genes in the integrated viral-HNSCC genomes needs to be better understood. We show that BET inhibition downregulates E6 significantly independent of the viral transcription factor, E2, and there was overall heterogeneity in the downregulation of viral transcription in response to the effects of BET inhibition across HPV-associated cell lines. Chemical BET inhibition was phenocopied with the knockdown of BRD4 and mirrored downregulation of viral E6 and E7 expression. Strikingly, there was heterogeneity in the reactivation of p53 levels despite E6 downregulation, while E7 downregulation did not alter Rb levels significantly. We identified that BET inhibition directly downregulated c-Myc and E2F expression and induced CDKN1A expression. Overall, our studies show that BET inhibition provokes a G1-cell cycle arrest with apoptotic activity and suggests that BET inhibition regulates both viral and cellular gene expression in HPV-associated HNSCC.
Collapse
Affiliation(s)
- Aakarsha Rao
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Zijian Ni
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dhruthi Suresh
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
| | - Chitrasen Mohanty
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Albert R. Wang
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Denis L Lee
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Kwangok P. Nickel
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Sooryanarayana Randall J. Varambally
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Paul F. Lambert
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, Madison, 53705, WI, USA
| | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gopal Iyer
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI, 53705, USA
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| |
Collapse
|
8
|
Jin H, Koh M, Lim H, Yong HY, Kim ES, Kim SY, Kim K, Jung J, Ryu WJ, Choi KY, Moon A. Lipid raft protein flotillin-1 is important for the interaction between SOS1 and H-Ras/K-Ras, leading to Ras activation. Int J Cancer 2023; 152:1933-1946. [PMID: 36691829 DOI: 10.1002/ijc.34443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 12/20/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
Ras mutations have been frequently observed in human cancer. Although there is a high degree of similarity between Ras isomers, they display preferential coupling in specific cancer types. The binding of Ras to the plasma membrane is essential for its activation and biological functions. The present study elucidated Ras isoform-specific interactions with the membrane and their role in Ras-mediated biological activities. We investigated the role of a lipid raft protein flotillin-1 (Flot-1) in the activations of Ras. We found that Flot-1 was co-localized with H-Ras, but not with N-Ras, in lipid rafts of MDA-MB-231 human breast cells. The amino-terminal hydrophobic domain (1-38) of Flot-1 interacted with the hypervariable region of H-Ras. The epidermal growth factor-stimulated activation of H-Ras required Flot-1 which was not necessary for that of N-Ras in breast cancer cells. Flot-1 interacted with son of sevenless (SOS)-1, which promotes the conversion of Ras-bound GDP to GTP. Notably, Flot-1 was crucial for the interaction between SOS1 and H-Ras/K-Ras in breast and pancreatic cancer cells. Stable knockdown of Flot-1 reduced the in vivo metastasis in a mouse xenograft model with human breast carcinoma cells. A tissue microarray composed of 61 human pancreatic cancer samples showed higher levels of Flot-1 expression in pancreatic tumor tissues compared to normal tissues, and a correlation between K-Ras and Flot-1. Taken together, our findings suggest that Flot-1 may serve as a membrane platform for the interaction of SOS1 with H-Ras/K-Ras in human cancer cells, presenting Flot-1 as a potential target for Ras-driven cancers.
Collapse
Affiliation(s)
- Hao Jin
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Minsoo Koh
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Hyesol Lim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Hae-Young Yong
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Eun-Sook Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Sun Young Kim
- Department of Chemistry, College of Science and Technology, Duksung Women's University, Seoul, Republic of Korea
| | - Kyoungmee Kim
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Joohee Jung
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| | - Won-Ji Ryu
- Avison Biomedical Research Center, Yonsei University College of Medicine, Seoul, South Korea
| | - Kang-Yell Choi
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Aree Moon
- Duksung Innovative Drug Center, College of Pharmacy, Duksung Women's University, Seoul, South Korea
| |
Collapse
|
9
|
Rehl KM, Selvakumar J, Hoang D, Arumugam K, Gorfe AA, Cho KJ. A new ferrocene derivative blocks KRAS localization and function by oxidative modification at His95. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534499. [PMID: 37034642 PMCID: PMC10081197 DOI: 10.1101/2023.03.28.534499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ras proteins are membrane-bound GTPases that regulate essential cellular processes at the plasma membrane (PM). Constitutively active mutations of K-Ras, one of the three Ras isoforms in mammalian cells, are frequently found in human cancers. Ferrocene derivatives, which elevate cellular reactive oxygen species (ROS), have shown to block the growth of non-small cell lung cancers (NSCLCs) harboring oncogenic mutant K-Ras. Here, we developed and tested a novel ferrocene derivative on the growth of human pancreatic ductal adenocarcinoma (PDAC) and NSCLC. Our compound inhibited the growth of K-Ras-dependent PDAC and NSCLC and abrogated the PM binding and signaling of K-Ras, but not other Ras isoforms. These effects were reversed upon antioxidant supplementation, suggesting a ROS-mediated mechanism. We further identified K-Ras His95 residue in the G-domain as being involved in the ferrocene-induced K-Ras PM dissociation via oxidative modification. Together, our studies demonstrate that the redox system directly regulates K-Ras PM binding and signaling via oxidative modification at the His95, and proposes a role of oncogenic mutant K-Ras in the recently described antioxidant-induced metastasis in K-Ras-driven lung cancers.
Collapse
|
10
|
Qu W, Jeong A, Zhong R, Thieschafer JS, Gram A, Li L. Deletion of Small GTPase H-Ras Rescues Memory Deficits and Reduces Amyloid Plaque-Associated Dendritic Spine Loss in Transgenic Alzheimer's Mice. Mol Neurobiol 2023; 60:495-511. [PMID: 36287323 PMCID: PMC10771223 DOI: 10.1007/s12035-022-03082-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/27/2022] [Indexed: 01/25/2023]
Abstract
Alzheimer's disease (AD) is a fatal neurodegenerative disorder, affecting millions of lives without a cure. While the molecular mechanism of AD remains obscure, emerging evidence suggests that small GTPases, a group of GTP-binding proteins that regulate a plethora of essential cellular events, modulate the pathogenic process of AD. Among those, the small GTPase H-Ras, extensively studied in cancer, regulates synaptic function, and both upstream and downstream signaling pathways of H-Ras have been implicated in AD. However, the role of H-Ras per se in AD pathogenesis had not been explored previously. In the present study, the impact of Hras deletion on cognitive function and amyloid pathology was investigated in transgenic APP/PS1 mice of AD. Behavioral assessments showed that the absence of Hras rescued spatial memory deficit in APP/PS1 mice at 9 months of age. The pathological evaluation demonstrated that Hras deletion reduced cortical amyloid deposition and astrogliosis. Furthermore, Hras deficiency protected against amyloid plaque-associated loss of dendritic spines in APP/PS1 mice. Intriguingly, canonical signaling pathways downstream of H-Ras were not affected by the absence of Hras in the brain. Unbiased transcriptomic analysis revealed that lack of H-Ras affected the expression of select genes in the brain of AD mice and identified a novel connection between H-Ras and Annexin A4, a calcium-dependent phospholipid-binding protein that has been shown to regulate membrane repair, neuroinflammation, and calcium homeostasis. Taken together, these data indicate that H-Ras modifies the pathogenic process of AD and may serve as a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Wenhui Qu
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Pathology & Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Angela Jeong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rui Zhong
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Josslen S Thieschafer
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Andrea Gram
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ling Li
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
TGFβ-induced changes in membrane curvature influence Ras oncoprotein membrane localization. Sci Rep 2022; 12:13486. [PMID: 35931724 PMCID: PMC9356053 DOI: 10.1038/s41598-022-17482-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/26/2022] [Indexed: 11/15/2022] Open
Abstract
In the course of cancer progression tumor cells undergo morphological changes that lead to increased motility and invasiveness thus promoting formation of metastases. This process called epithelial to mesenchymal transition (EMT) is triggered by transforming growth factor (TGFβ) but for gaining the full invasive potential an interplay between signaling of TGFβ and Ras GTPases is required. Ras proteins possess a lipidated domain that mediates Ras association with the plasma membrane, which is essential for Ras biological functions. Type and number of the lipid anchors are the main difference among three Ras variants—H-ras, N-ras and K-ras. The lipid anchors determine membrane partitioning of lipidated proteins into membrane areas of specific physico-chemical properties and curvature. In this study, we investigated the effect of TGFβ treatment on the subcellular localization of H-ras and K-ras. We show that TGFβ increases positive plasma membrane curvature, which is subsequently sensed by H-ras, leading to its elevated plasma membrane localization and activation. This observation suggests the existence of a novel positive feedback loop whereby the increased level of plasma membrane curvature during TGFβ induced EMT attracts more Ras molecules to the plasma membrane resulting in increased Ras activity which in turn promotes further EMT and thus ultimately enables the acquisition of full invasive potential.
Collapse
|
12
|
Agarwal NK, Kim CH, Kunkalla K, Vaghefi A, Sanchez S, Manuel S, Bilbao D, Vega F, Landgraf R. Smoothened (SMO) regulates insulin-like growth factor 1 receptor (IGF1R) levels and protein kinase B (AKT) localization and signaling. J Transl Med 2022; 102:401-410. [PMID: 34893758 PMCID: PMC8969180 DOI: 10.1038/s41374-021-00702-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
The oncoprotein Smoothened (SMO), a Frizzled-class-G-protein-coupled receptor, is the central transducer of hedgehog (Hh) signaling. While canonical SMO signaling is best understood in the context of cilia, evidence suggests that SMO has other functions in cancer biology that are unrelated to canonical Hh signaling. Herein, we provided evidence that elevated levels of human SMO show a strong correlation with elevated levels of insulin-like growth factor 1 receptor (IGF1R) and reduced survival in diffuse large B-cell lymphoma (DLBCL). As an integral component of raft microdomains, SMO plays a fundamental role in maintaining the levels of IGF1R in lymphoma and breast cancer cells as well IGF1R-associated activation of protein kinase B (AKT). Silencing of SMO increases lysosomal degradation and favors a localization of IGF1R to late endosomal compartments instead of early endosomal compartments from which much of the receptor would normally recycle. In addition, loss of SMO interferes with the lipid raft localization and retention of the remaining IGF1R and AKT, thereby disrupting the primary signaling context for IGF1R/AKT. This activity of SMO is independent of its canonical signaling and represents a novel and clinically relevant contribution to signaling by the highly oncogenic IGF1R/AKT signaling axis.
Collapse
Affiliation(s)
- Nitin K Agarwal
- Division of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston, TX
| | - Chae-Hwa Kim
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Kranthi Kunkalla
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Amineh Vaghefi
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Sandra Sanchez
- Division of Hematopathology, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Samantha Manuel
- Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL
| | - Daniel Bilbao
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL
| | - Francisco Vega
- Division of Hematopathology, The University of Texas M D Anderson Cancer Center, Houston, TX, USA.
| | - Ralf Landgraf
- Sheila and David Fuente Graduate Program in Cancer Biology, Miller School of Medicine, University of Miami, Miami, FL, USA. .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, USA. .,Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
13
|
Gupta A, Lu D, Balasubramanian H, Chi Z, Wohland T. Heptanol-mediated phase separation determines phase preference of molecules in live cell membranes. J Lipid Res 2022; 63:100220. [PMID: 35490741 PMCID: PMC9160352 DOI: 10.1016/j.jlr.2022.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
The localization of many membrane proteins within cholesterol- and sphingolipid-containing microdomains is essential for proper cell signaling and function. These membrane domains, however, are too small and dynamic to be recorded, even with modern super-resolution techniques. Therefore, the association of membrane proteins with these domains can only be detected with biochemical assays that destroy the integrity of cells require pooling of many cells and take a long time to perform. Here, we present a simple membrane fluidizer–induced clustering approach to identify the phase-preference of membrane-associated molecules in individual live cells within 10–15 min. Experiments in phase-separated bilayers and live cells on molecules with known phase preference show that heptanol hyperfluidizes the membrane and stabilizes phase separation. This results in a transition from nanosized to micronsized clusters of associated molecules allowing their identification using routine microscopy techniques. Membrane fluidizer-induced clustering is an inexpensive and easy to implement method that can be conducted at large-scale and allows easy identification of protein partitioning in live cell membranes.
Collapse
|
14
|
Abstract
DHHC3 is a DHHC-family palmitoyl acyltransferase that is responsible for many mammalian palmitoylation events. By regulating the posttranslational modification of its specific substrates, DHHC3 has shown a strong protumor effect in various cancers. In this review, the authors introduce the research progress of DHHC3 as a new antitumor target through the expression of DHHC3 in patients with tumors, substrate proteins and potential mechanisms. Recent advances in the search for protein structures and inhibitors are also reviewed. Several design strategies to facilitate the optimization of the process of drug design based on DHHC3 are also discussed.
Collapse
|
15
|
Burge RA, Hobbs GA. Not all RAS mutations are equal: A detailed review of the functional diversity of RAS hot spot mutations. Adv Cancer Res 2022; 153:29-61. [PMID: 35101234 DOI: 10.1016/bs.acr.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The RAS family of small GTPases are among the most frequently mutated oncogenes in human cancer. Approximately 20% of cancers harbor a RAS mutation, and >150 different missense mutations have been detected. Many of these mutations have mutant-specific biochemical defects that alter nucleotide binding and hydrolysis, effector interactions and cell signaling, prompting renewed efforts in the development of anti-RAS therapies, including the mutation-specific strategies. Previously viewed as undruggable, the recent FDA approval of a KRASG12C-selective inhibitor has offered real promise to the development of allele-specific RAS therapies. A broader understanding of the mutational consequences on RAS function must be developed to exploit additional allele-specific vulnerabilities. Approximately 94% of RAS mutations occur at one of three mutational "hot spots" at Gly12, Gly13 and Gln61. Further, the single-nucleotide substitutions represent >99% of these mutations. Within this scope, we discuss the mutational frequencies of RAS isoforms in cancer, mutant-specific effector interactions and biochemical properties. By limiting our analysis to this mutational subset, we simplify the analysis while only excluding a small percentage of total mutations. Combined, these data suggest that the presence or absence of select RAS mutations in human cancers can be linked to their biochemical properties. Continuing to examine the biochemical differences in each RAS-mutant protein will continue to provide additional breakthroughs in allele-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rachel A Burge
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
16
|
Gora RJ, de Jong B, van Hage P, Rhiemus MA, van Steenis F, van Noort J, Schmidt T, Schaaf MJM. Analysis of the H-Ras mobility pattern in vivo shows cellular heterogeneity inside epidermal tissue. Dis Model Mech 2021; 15:274496. [PMID: 34927194 PMCID: PMC8891639 DOI: 10.1242/dmm.049099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 12/14/2021] [Indexed: 12/04/2022] Open
Abstract
Developments in single-molecule microscopy (SMM) have enabled imaging individual proteins in biological systems, focusing on the analysis of protein mobility patterns inside cultured cells. In the present study, SMM was applied in vivo, using the zebrafish embryo model. We studied dynamics of the membrane protein H-Ras, its membrane-anchoring domain, C10H-Ras, and mutants, using total internal reflection fluorescence microscopy. Our results consistently confirm the presence of fast- and slow-diffusing subpopulations of molecules, which confine to microdomains within the plasma membrane. The active mutant H-RasV12 exhibits higher diffusion rates and is confined to larger domains than the wild-type H-Ras and its inactive mutant H-RasN17. Subsequently, we demonstrate that the structure and composition of the plasma membrane have an imperative role in modulating H-Ras mobility patterns. Ultimately, we establish that differences between cells within the same embryo largely contribute to the overall data variability. Our findings agree with a model in which the cell architecture and the protein activation state determine protein mobility, underlining the importance of SMM imaging for studying factors influencing protein dynamics in an intact living organism. This article has an associated First Person interview with the first author of the paper. Summary: Single-molecule microscopy analysis of factors altering the in vivo dynamics of H-Ras proteins in epidermal cells in living zebrafish embryos revealed that cell architecture and protein activation state determine protein mobility.
Collapse
Affiliation(s)
- Radoslaw J Gora
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Babette de Jong
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Patrick van Hage
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Mary Ann Rhiemus
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Fjodor van Steenis
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - John van Noort
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Thomas Schmidt
- Biological, Soft and Complex Systems, Leiden Institute of Physics, Leiden University, Bohrweg 2, 2333 CA, Leiden, the Netherlands
| | - Marcel J M Schaaf
- Animal Sciences and Health Cluster, Institute of Biology, Leiden University, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| |
Collapse
|
17
|
Dillon M, Lopez A, Lin E, Sales D, Perets R, Jain P. Progress on Ras/MAPK Signaling Research and Targeting in Blood and Solid Cancers. Cancers (Basel) 2021; 13:cancers13205059. [PMID: 34680208 PMCID: PMC8534156 DOI: 10.3390/cancers13205059] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The Ras-Raf-MEK-ERK signaling pathway is responsible for regulating cell proliferation, differentiation, and survival. Overexpression and overactivation of members within the signaling cascade have been observed in many solid and blood cancers. Research often focuses on targeting the pathway to disrupt cancer initiation and progression. We aimed to provide an overview of the pathway’s physiologic role and regulation, interactions with other pathways involved in cancer development, and mutations that lead to malignancy. Several blood and solid cancers are analyzed to illustrate the impact of the pathway’s dysregulation, stemming from mutation or viral induction. Finally, we summarized different approaches to targeting the pathway and the associated novel treatments being researched or having recently achieved approval. Abstract The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-ERK signaling cascade, regulates genes that control cellular development, differentiation, proliferation, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently, the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough. This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents the issue of drug target specificity within Ras pathway; not only do many drugs only affect single mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors. This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific cancers, and compare available and in-development treatments targeting the Ras pathway.
Collapse
|
18
|
Bartolacci C, Andreani C, El-Gammal Y, Scaglioni PP. Lipid Metabolism Regulates Oxidative Stress and Ferroptosis in RAS-Driven Cancers: A Perspective on Cancer Progression and Therapy. Front Mol Biosci 2021; 8:706650. [PMID: 34485382 PMCID: PMC8415548 DOI: 10.3389/fmolb.2021.706650] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/02/2021] [Indexed: 01/17/2023] Open
Abstract
HRAS, NRAS and KRAS, collectively referred to as oncogenic RAS, are the most frequently mutated driver proto-oncogenes in cancer. Oncogenic RAS aberrantly rewires metabolic pathways promoting the generation of intracellular reactive oxygen species (ROS). In particular, lipids have gained increasing attention serving critical biological roles as building blocks for cellular membranes, moieties for post-translational protein modifications, signaling molecules and substrates for ß-oxidation. However, thus far, the understanding of lipid metabolism in cancer has been hampered by the lack of sensitive analytical platforms able to identify and quantify such complex molecules and to assess their metabolic flux in vitro and, even more so, in primary tumors. Similarly, the role of ROS in RAS-driven cancer cells has remained elusive. On the one hand, ROS are beneficial to the development and progression of precancerous lesions, by upregulating survival and growth factor signaling, on the other, they promote accumulation of oxidative by-products that decrease the threshold of cancer cells to undergo ferroptosis. Here, we overview the recent advances in the study of the relation between RAS and lipid metabolism, in the context of different cancer types. In particular, we will focus our attention on how lipids and oxidative stress can either promote or sensitize to ferroptosis RAS driven cancers. Finally, we will explore whether this fine balance could be modulated for therapeutic gain.
Collapse
Affiliation(s)
| | | | | | - Pier Paolo Scaglioni
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
19
|
Motta M, Sagi-Dain L, Krumbach OHF, Hahn A, Peleg A, German A, Lissewski C, Coppola S, Pantaleoni F, Kocherscheid L, Altmüller F, Schanze D, Logeswaran T, Chahrokh-Zadeh S, Munzig A, Nakhaei-Rad S, Cavé H, Ahmadian MR, Tartaglia M, Zenker M. Activating MRAS mutations cause Noonan syndrome associated with hypertrophic cardiomyopathy. Hum Mol Genet 2021; 29:1772-1783. [PMID: 31108500 DOI: 10.1093/hmg/ddz108] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/14/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
The RASopathies are a group of genetic syndromes caused by upregulated RAS signaling. Noonan syndrome (NS), the most common entity among the RASopathies, is characterized mainly by short stature, cardiac anomalies and distinctive facial features. Mutations in multiple RAS-MAPK pathway-related genes have been associated with NS and related phenotypes. We describe two unrelated patients presenting with hypertrophic cardiomyopathy (HCM) and dysmorphic features suggestive of NS. One of them died in the neonatal period because of cardiac failure. Targeted sequencing revealed de novo MRAS variants, c.203C > T (p.Thr68Ile) and c.67G > C (p.Gly23Arg) as causative events. MRAS has only recently been related to NS based on the observation of two unrelated affected individuals with de novo variants involving the same codons here found mutated. Gly23 and Thr68 are highly conserved residues, and the corresponding codons are known hotspots for RASopathy-associated mutations in other RAS proteins. Functional analyses documented high level of activation of MRAS mutants due to impaired GTPase activity, which was associated with constitutive plasma membrane targeting, prolonged localization in non-raft microdomains, enhanced binding to PPP1CB and SHOC2 protein, and variably increased MAPK and PI3K-AKT activation. This report provides additional evidence that a narrow spectrum of activating mutations in MRAS represents another rare cause of NS, and that MRAS has to be counted among the RASopathy genes predisposing to HCM. Moreover, our findings further emphasize the relevance of the MRAS-SHOC2-PPP1CB axis in the control of MAPK signaling, and the contribution of both MAPK and PI3K-AKT pathways in MRAS functional upregulation.
Collapse
Affiliation(s)
- Marialetizia Motta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Lena Sagi-Dain
- The Human Genetic institute, Carmel Medical Center, Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa, Israel
| | - Oliver H F Krumbach
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Andreas Hahn
- Department of Child Neurology, University Hospital, Gießen, Germany
| | - Amir Peleg
- The Human Genetic institute, Carmel Medical Center, Ruth and Bruce Rappaport Faculty of Medicine, Israel Institute of Technology, Haifa, Israel
| | - Alina German
- Pediatric Department, Bnai-Zion Medical Center and Clalit Health Maintenance Organization, Haifa, Israel
| | | | - Simona Coppola
- National Centre for Rare Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Pantaleoni
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | | | | | - Denny Schanze
- Institute of Human Genetics, University Hospital, Magdeburg, Germany
| | | | | | - Anna Munzig
- Center of Human Genetics and Laboratory Diagnostics, Martinsried, Germany
| | - Saeideh Nakhaei-Rad
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Hélène Cavé
- Assistance Publique des Hôpitaux de Paris (AP-HP), Hôpital Robert Debré, Département de Génétique, 75019 Paris, France.,INSERM UMR 1131, Institut de Recherche Saint-Louis, Université de Paris, 75010 Paris, France
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich Heine University, Düsseldorf, Germany
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Martin Zenker
- Institute of Human Genetics, University Hospital, Magdeburg, Germany
| |
Collapse
|
20
|
Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu AA, Hirosawa KM, Kinoshita M, Matsumori N, Komura N, Ando H, Suzuki KGN. Defining raft domains in the plasma membrane. Traffic 2021; 21:106-137. [PMID: 31760668 DOI: 10.1111/tra.12718] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/03/2023]
Abstract
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol-based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid-ordered (Lo)-phase domains in giant unilamellar vesicles, Lo-phase-like domains formed at lower temperatures in giant PM vesicles, and detergent-resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid-like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non-raft domains, as defined here, in the PM.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - An-An Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Koichiro M Hirosawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
21
|
Shu L, Wang D, Saba NF, Chen ZG. A Historic Perspective and Overview of H-Ras Structure, Oncogenicity, and Targeting. Mol Cancer Ther 2021; 19:999-1007. [PMID: 32241873 DOI: 10.1158/1535-7163.mct-19-0660] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/02/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022]
Abstract
H-Ras is a unique isoform of the Ras GTPase family, one of the most prominently mutated oncogene families across the cancer landscape. Relative to other isoforms, though, mutations of H-Ras account for the smallest proportion of mutant Ras cancers. Yet, in recent years, there have been renewed efforts to study this isoform, especially as certain H-Ras-driven cancers, like those of the head and neck, have become more prominent. Important advances have therefore been made not only in the understanding of H-Ras structural biology but also in approaches designed to inhibit and impair its signaling activity. In this review, we outline historic and present initiatives to elucidate the mechanisms of H-Ras-dependent tumorigenesis as well as highlight ongoing developments in the quest to target this critical oncogene.
Collapse
Affiliation(s)
- Lihua Shu
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Dongsheng Wang
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| | - Zhuo G Chen
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
22
|
Koyama-Honda I, Fujiwara TK, Kasai RS, Suzuki KGN, Kajikawa E, Tsuboi H, Tsunoyama TA, Kusumi A. High-speed single-molecule imaging reveals signal transduction by induced transbilayer raft phases. J Cell Biol 2021; 219:211461. [PMID: 33053147 PMCID: PMC7563750 DOI: 10.1083/jcb.202006125] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/09/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
Using single-molecule imaging with enhanced time resolutions down to 5 ms, we found that CD59 cluster rafts and GM1 cluster rafts were stably induced in the outer leaflet of the plasma membrane (PM), which triggered the activation of Lyn, H-Ras, and ERK and continually recruited Lyn and H-Ras right beneath them in the inner leaflet with dwell lifetimes <0.1 s. The detection was possible due to the enhanced time resolutions employed here. The recruitment depended on the PM cholesterol and saturated alkyl chains of Lyn and H-Ras, whereas it was blocked by the nonraftophilic transmembrane protein moiety and unsaturated alkyl chains linked to the inner-leaflet molecules. Because GM1 cluster rafts recruited Lyn and H-Ras as efficiently as CD59 cluster rafts, and because the protein moieties of Lyn and H-Ras were not required for the recruitment, we conclude that the transbilayer raft phases induced by the outer-leaflet stabilized rafts recruit lipid-anchored signaling molecules by lateral raft-lipid interactions and thus serve as a key signal transduction platform.
Collapse
Affiliation(s)
- Ikuko Koyama-Honda
- Department of Biochemistry and Molecular Biology, Graduate School and Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Kenichi G N Suzuki
- Institute for Integrated Cell-Material Sciences, Kyoto University, Kyoto, Japan.,Institute for Glyco-core Research, Gifu University, Nagoya, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, Gifu, Japan
| | - Eriko Kajikawa
- Laboratory for Organismal Patterning, Center for Biosystems Dynamics Research, RIKEN Kobe, Kobe, Japan
| | - Hisae Tsuboi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| |
Collapse
|
23
|
Busquets-Hernández C, Triola G. Palmitoylation as a Key Regulator of Ras Localization and Function. Front Mol Biosci 2021; 8:659861. [PMID: 33816563 PMCID: PMC8010249 DOI: 10.3389/fmolb.2021.659861] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 02/22/2021] [Indexed: 11/27/2022] Open
Abstract
Ras proteins require membrane association for proper function. This process is tightly regulated by reversible palmitoylation that controls not only the distribution over different subcellular compartments but also Ras compartmentalization within membrane subdomains. As a result, there is a growing interest in protein palmitoylation and the enzymes that control this process. In this minireview, we discuss how palmitoylation affects the localization and function of Ras proteins. A better understanding of the regulatory mechanism controlling protein lipidation is expected to provide new insights into the functional role of these modifications and may ultimately lead to the development of novel therapeutic approaches.
Collapse
Affiliation(s)
| | - Gemma Triola
- Department of Biological Chemistry, Laboratory of Chemical Biology, Institute of Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| |
Collapse
|
24
|
Van QN, Prakash P, Shrestha R, Balius TE, Turbyville TJ, Stephen AG. RAS Nanoclusters: Dynamic Signaling Platforms Amenable to Therapeutic Intervention. Biomolecules 2021; 11:377. [PMID: 33802474 PMCID: PMC8000715 DOI: 10.3390/biom11030377] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 01/18/2023] Open
Abstract
RAS proteins are mutated in approximately 20% of all cancers and are generally associated with poor clinical outcomes. RAS proteins are localized to the plasma membrane and function as molecular switches, turned on by partners that receive extracellular mitogenic signals. In the on-state, they activate intracellular signal transduction cascades. Membrane-bound RAS molecules segregate into multimers, known as nanoclusters. These nanoclusters, held together through weak protein-protein and protein-lipid associations, are highly dynamic and respond to cellular input signals and fluctuations in the local lipid environment. Disruption of RAS nanoclusters results in downregulation of RAS-mediated mitogenic signaling. In this review, we discuss the propensity of RAS proteins to display clustering behavior and the interfaces that are associated with these assemblies. Strategies to therapeutically disrupt nanocluster formation or the stabilization of signaling incompetent RAS complexes are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Andrew G. Stephen
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, National Cancer Institute RAS Initiative, Inc., Frederick, MD 21702, USA; (Q.N.V.); (P.P.); (R.S.); (T.E.B.); (T.J.T.)
| |
Collapse
|
25
|
Gorfe AA, Cho KJ. Approaches to inhibiting oncogenic K-Ras. Small GTPases 2021; 12:96-105. [PMID: 31438765 PMCID: PMC7849769 DOI: 10.1080/21541248.2019.1655883] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 02/06/2023] Open
Abstract
Activating somatic K-Ras mutations are associated with >15% all human tumors and up to 90% of specific tumor types such as pancreatic cancer. Successfully inhibiting abnormal K-Ras signaling would therefore be a game changer in cancer therapy. However, K-Ras has long been considered an undruggable target for various reasons. This view is now changing by the discovery of allosteric inhibitors that directly target K-Ras and inhibit its functions, and by the identification of new mechanisms to dislodge it from the plasma membrane and thereby abrogate its cellular activities. In this review, we will discuss recent progresses and challenges to inhibiting aberrant K-Ras functions by these two approaches. We will also provide a broad overview of other approaches such as inhibition of K-Ras effectors, and offer a brief perspective on the way forward.
Collapse
Affiliation(s)
- Alemayehu A. Gorfe
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Programs of Biochemistry & Cell and Therapeutics & Pharmacology, MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| |
Collapse
|
26
|
Kiel C, Matallanas D, Kolch W. The Ins and Outs of RAS Effector Complexes. Biomolecules 2021; 11:236. [PMID: 33562401 PMCID: PMC7915224 DOI: 10.3390/biom11020236] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
RAS oncogenes are among the most commonly mutated proteins in human cancers. They regulate a wide range of effector pathways that control cell proliferation, survival, differentiation, migration and metabolic status. Including aberrations in these pathways, RAS-dependent signaling is altered in more than half of human cancers. Targeting mutant RAS proteins and their downstream oncogenic signaling pathways has been elusive. However, recent results comprising detailed molecular studies, large scale omics studies and computational modeling have painted a new and more comprehensive portrait of RAS signaling that helps us to understand the intricacies of RAS, how its physiological and pathophysiological functions are regulated, and how we can target them. Here, we review these efforts particularly trying to relate the detailed mechanistic studies with global functional studies. We highlight the importance of computational modeling and data integration to derive an actionable understanding of RAS signaling that will allow us to design new mechanism-based therapies for RAS mutated cancers.
Collapse
Affiliation(s)
- Christina Kiel
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
| | - Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Dublin 4, Ireland; (C.K.); (D.M.)
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
27
|
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity. Cells 2021; 10:cells10010166. [PMID: 33467671 PMCID: PMC7830260 DOI: 10.3390/cells10010166] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/12/2021] [Indexed: 02/08/2023] Open
Abstract
The extracellular matrix (ECM) has been identified as a critical factor affecting synaptic function. It forms a functional scaffold that provides both the structural support and the reservoir of signaling molecules necessary for communication between cellular constituents of the central nervous system (CNS). Among numerous ECM components and modifiers that play a role in the physiological and pathological synaptic plasticity, matrix metalloproteinase 9 (MMP-9) has recently emerged as a key molecule. MMP-9 may contribute to the dynamic remodeling of structural and functional plasticity by cleaving ECM components and cell adhesion molecules. Notably, MMP-9 signaling was shown to be indispensable for long-term memory formation that requires synaptic remodeling. The core regulators of the dynamic reorganization of the actin cytoskeleton and cell adhesion are the Rho family of GTPases. These proteins have been implicated in the control of a wide range of cellular processes occurring in brain physiology and pathology. Here, we discuss the contribution of Rho GTPases to MMP-9-dependent signaling pathways in the brain. We also describe how the regulation of Rho GTPases by post-translational modifications (PTMs) can influence these processes.
Collapse
|
28
|
Saeidi S, Joo S, Kim SJ, Jagadeesh ASV, Surh YJ. Interaction between Peptidyl-prolyl Cis- trans Isomerase NIMA-interacting 1 and GTP-H-Ras: Implications for Aggressiveness of Human Mammary Epithelial Cells and Drug Resistance. J Cancer Prev 2020; 25:234-243. [PMID: 33409256 PMCID: PMC7783236 DOI: 10.15430/jcp.2020.25.4.234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant activation of Ras has been implicated in aggressiveness of breast cancer. Among Ras isoforms (H-, K-, and N-), H-Ras has been known to be primarily responsible for invasion and metastasis of breast cancer cells. Phosphorylation of serine (Ser) or threonine (Thr) is a key regulatory mechanism responsible for controlling activities and functions of various proteins involved in intracellular signal transduction. Peptidyl-prolyl cis-trans isomerase NIMA-interacting 1, Pin1 changes the conformation of a subset of proteins phosphorylated on Ser/Thr that precedes proline (Pro). In this study we have found that Pin1 is highly overexpressed in human breast tumor tissues and H-Ras transformed human mammary epithelial (H-Ras MCF10A) and MDA-MB-231 breast cancer cells. Notably, Pin1 directly bound to the activated form of H-Ras harbouring a Ser/Thr-Pro motif. Pharmacologic inhibition of Pin1 reduced clonogenicity of MDA-MB-231 human breast cancer cells. Paclitaxel accelerates apoptosis in Pin1 silenced H-Ras MCF10A cells. MDR genes (MDR1 and MRP4) were significantly downregulated in MDA-MB-231 cells stably silenced for Pin1. We speculate that Pin1 interacts with GTP-H-Ras, thereby upregulating the expression of drug resistance genes, which confers survival advantage and aggressiveness of breast cancer cells under chemotherapy.
Collapse
Affiliation(s)
- Soma Saeidi
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Sihyung Joo
- College of Pharmacy, Seoul National University, Seoul, Korea
| | - Su-Jung Kim
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Achanta Sri Venkata Jagadeesh
- Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| | - Young-Joon Surh
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.,Tumor Microenvironment Global Core Research Center, College of Pharmacy, Seoul National University, Seoul, Korea.,College of Pharmacy, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
29
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
30
|
Luo L, Chen Y, Chen X, Zheng Y, Zhou V, Yu M, Burns R, Zhu W, Fu G, Felix JC, Hartley C, Damnernsawad A, Zhang J, Wen R, Drobyski WR, Gao C, Wang D. Kras-Deficient T Cells Attenuate Graft-versus-Host Disease but Retain Graft-versus-Leukemia Activity. THE JOURNAL OF IMMUNOLOGY 2020; 205:3480-3490. [PMID: 33158956 DOI: 10.4049/jimmunol.2000006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 10/08/2020] [Indexed: 12/24/2022]
Abstract
Acute graft-versus-host disease (aGVHD) is one major serious complication that is induced by alloreactive donor T cells recognizing host Ags and limits the success of allogeneic hematopoietic stem cell transplantation. In the current studies, we identified a critical role of Kras in regulating alloreactive T cell function during aGVHD. Kras deletion in donor T cells dramatically reduced aGVHD mortality and severity in an MHC-mismatched allogeneic hematopoietic stem cell transplantation mouse model but largely maintained the antitumor capacity. Kras-deficient CD4 and CD8 T cells exhibited impaired TCR-induced activation of the ERK pathway. Kras deficiency altered TCR-induced gene expression profiles, including the reduced expression of various inflammatory cytokines and chemokines. Moreover, Kras deficiency inhibited IL-6-mediated Th17 cell differentiation and impaired IL-6-induced ERK activation and gene expression in CD4 T cells. These findings support Kras as a novel and effective therapeutic target for aGVHD.
Collapse
Affiliation(s)
- Lan Luo
- Blood Research Institute, Versiti, Milwaukee, WI 53226.,Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Yuhong Chen
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Xiao Chen
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yongwei Zheng
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Vivian Zhou
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Mei Yu
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Robert Burns
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Wen Zhu
- Blood Research Institute, Versiti, Milwaukee, WI 53226.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Guoping Fu
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | - Juan C Felix
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Christopher Hartley
- Department of Pathology, Medical College of Wisconsin, Milwaukee, WI 53226; and
| | - Alisa Damnernsawad
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Jing Zhang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Renren Wen
- Blood Research Institute, Versiti, Milwaukee, WI 53226
| | | | - Chunji Gao
- Department of Hematology, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Demin Wang
- Blood Research Institute, Versiti, Milwaukee, WI 53226; .,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
31
|
Wang Y, Kilic O, Csizmar CM, Ashok S, Hougland JL, Distefano MD, Wagner CR. Engineering reversible cell-cell interactions using enzymatically lipidated chemically self-assembled nanorings. Chem Sci 2020; 12:331-340. [PMID: 34168743 PMCID: PMC8179657 DOI: 10.1039/d0sc03194a] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 10/22/2020] [Indexed: 11/21/2022] Open
Abstract
Multicellular biology is dependent on the control of cell-cell interactions. These concepts have begun to be exploited for engineering of cell-based therapies. Herein, we detail the use of a multivalent lipidated scaffold for the rapid and reversible manipulation of cell-cell interactions. Chemically self-assembled nanorings (CSANs) are formed via the oligomerization of bivalent dihydrofolate reductase (DHFR2) fusion proteins using a chemical dimerizer, bis-methotrexate. With targeting proteins fused onto the DHFR2 monomers, the CSANs can target specific cellular antigens. Here, anti-EGFR or anti-EpCAM fibronectin-DHFR2 monomers incorporating a CAAX-box sequence were enzymatically prenylated, then assembled into the corresponding CSANs. Both farnesylated and geranylgeranylated CSANs efficiently modified the cell surface of lymphocytes and remained bound to the cell surface with a half-life of >3 days. Co-localization studies revealed a preference for the prenylated nanorings to associate with lipid rafts. The presence of antigen targeting elements in these bifunctional constructs enabled them to specifically interact with target cells while treatment with trimethoprim resulted in rapid CSAN disassembly and termination of the cell-cell interactions. Hence, we were able to determine that activated PBMCs modified with the prenylated CSANs caused irreversible selective cytotoxicity toward EGFR-expressing cells within 2 hours without direct engagement of CD3. The ability to disassemble these nanostructures in a temporally controlled manner provides a unique platform for studying cell-cell interactions and T cell-mediated cytotoxicity. Overall, antigen-targeted prenylated CSANs provide a general approach for the regulation of specific cell-cell interactions and will be valuable for a plethora of fundamental and therapeutic applications.
Collapse
Affiliation(s)
- Yiao Wang
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Ozgun Kilic
- Department of Medicinal Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Clifford M Csizmar
- Department of Medicinal Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Sudhat Ashok
- Department of Chemistry, Syracuse University Syracuse New York 13244 USA
| | - James L Hougland
- Department of Chemistry, Syracuse University Syracuse New York 13244 USA
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
- Department of Medicinal Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| | - Carston R Wagner
- Department of Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
- Department of Medicinal Chemistry, University of Minnesota Minneapolis Minnesota 55455 USA
| |
Collapse
|
32
|
Garrido CM, Henkels KM, Rehl KM, Liang H, Zhou Y, Gutterman JU, Cho KJ. Avicin G is a potent sphingomyelinase inhibitor and blocks oncogenic K- and H-Ras signaling. Sci Rep 2020; 10:9120. [PMID: 32499517 PMCID: PMC7272413 DOI: 10.1038/s41598-020-65882-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/05/2020] [Indexed: 12/23/2022] Open
Abstract
K-Ras must interact primarily with the plasma membrane (PM) for its biological activity. Therefore, disrupting K-Ras PM interaction is a tractable approach to block oncogenic K-Ras activity. Here, we found that avicin G, a family of natural plant-derived triterpenoid saponins from Acacia victoriae, mislocalizes K-Ras from the PM and disrupts PM spatial organization of oncogenic K-Ras and H-Ras by depleting phosphatidylserine (PtdSer) and cholesterol contents, respectively, at the inner PM leaflet. Avicin G also inhibits oncogenic K- and H-Ras signal output and the growth of K-Ras-addicted pancreatic and non-small cell lung cancer cells. We further identified that avicin G perturbs lysosomal activity, and disrupts cellular localization and activity of neutral and acid sphingomyelinases (SMases), resulting in elevated cellular sphingomyelin (SM) levels and altered SM distribution. Moreover, we show that neutral SMase inhibitors disrupt the PM localization of K-Ras and PtdSer and oncogenic K-Ras signaling. In sum, this study identifies avicin G as a new potent anti-Ras inhibitor, and suggests that neutral SMase can be a tractable target for developing anti-K-Ras therapeutics.
Collapse
Affiliation(s)
- Christian M Garrido
- Department of Biochemistry and Molecular Biology, School of Boonshoft Medical School, Wright State University, Dayton, OH, 45435, United States
| | - Karen M Henkels
- Department of Biochemistry and Molecular Biology, School of Boonshoft Medical School, Wright State University, Dayton, OH, 45435, United States
| | - Kristen M Rehl
- Department of Biochemistry and Molecular Biology, School of Boonshoft Medical School, Wright State University, Dayton, OH, 45435, United States
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, United States
| | - Jordan U Gutterman
- Department of Systems Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, United States
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, School of Boonshoft Medical School, Wright State University, Dayton, OH, 45435, United States.
| |
Collapse
|
33
|
Wilkins JA, Kaasik K, Chalkley RJ, Burlingame AL. Characterization of Prenylated C-terminal Peptides Using a Thiopropyl-based Capture Technique and LC-MS/MS. Mol Cell Proteomics 2020; 19:1005-1016. [PMID: 32284353 PMCID: PMC7261820 DOI: 10.1074/mcp.ra120.001944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/19/2020] [Indexed: 01/16/2023] Open
Abstract
Posttranslational modifications play a critical and diverse role in regulating cellular activities. Despite their fundamentally important role in cellular function, there has been no report to date of an effective generalized approach to the targeting, extraction, and characterization of the critical c-terminal regions of natively prenylated proteins. Various chemical modification and metabolic labeling strategies in cell culture have been reported. However, their applicability is limited to cell culture systems and does not allow for analysis of tissue samples. The chemical characteristics (hydrophobicity, low abundance, highly basic charge) of many of the c-terminal regions of prenylated proteins have impaired the use of standard proteomic workflows. In this context, we sought a direct approach to the problem in order to examine these proteins in tissue without the use of labeling. Here we demonstrate that prenylated proteins can be captured on chromatographic resins functionalized with mixed disulfide functions. Protease treatment of resin-bound proteins using chymotryptic digestion revealed peptides from many known prenylated proteins. Exposure of the protease-treated resin to reducing agents and hydro organic mixtures released c-terminal peptides with intact prenyl groups along with other enzymatic modifications expected in this protein family. Database and search parameters were selected to allow for c-terminal modifications unique to these molecules such as CAAX box processing and c-terminal methylation. In summary, we present a direct approach to enrich and obtain information at a molecular level of detail about prenylation of proteins from tissue and cell extracts using high-performance LC-MS without the need for metabolic labeling and derivatization.
Collapse
Affiliation(s)
- James A Wilkins
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158.
| | - Krista Kaasik
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158
| | - Robert J Chalkley
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158
| | - Alma L Burlingame
- Mass Spectrometry Facility, Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California 94158
| |
Collapse
|
34
|
Zhao Y, Wu TY, Zhao MF, Li CJ. The balance of protein farnesylation and geranylgeranylation during the progression of nonalcoholic fatty liver disease. J Biol Chem 2020; 295:5152-5162. [PMID: 32139507 DOI: 10.1074/jbc.rev119.008897] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Protein prenylation is an essential posttranslational modification and includes protein farnesylation and geranylgeranylation using farnesyl diphosphate or geranylgeranyl diphosphate as substrates, respectively. Geranylgeranyl diphosphate synthase is a branch point enzyme in the mevalonate pathway that affects the ratio of farnesyl diphosphate to geranylgeranyl diphosphate. Abnormal geranylgeranyl diphosphate synthase expression and activity can therefore disrupt the balance of farnesylation and geranylgeranylation and alter the ratio between farnesylated and geranylgeranylated proteins. This change is associated with the progression of nonalcoholic fatty liver disease (NAFLD), a condition characterized by hepatic fat overload. Of note, differential accumulation of farnesylated and geranylgeranylated proteins has been associated with differential stages of NAFLD and NAFLD-associated liver fibrosis. In this review, we summarize key aspects of protein prenylation as well as advances that have uncovered the regulation of associated metabolic patterns and signaling pathways, such as Ras GTPase signaling, involved in NAFLD progression. Additionally, we discuss unique opportunities for targeting prenylation in NAFLD/hepatocellular carcinoma with agents such as statins and bisphosphonates to improve clinical outcomes.
Collapse
Affiliation(s)
- Yue Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,MOE Key Laboratory of Model Animal for Disease Study, Model Animals Research Center, Nanjing University, Nanjing 210093, China
| | - Tian-Yu Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Meng-Fei Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China .,MOE Key Laboratory of Model Animal for Disease Study, Model Animals Research Center, Nanjing University, Nanjing 210093, China
| |
Collapse
|
35
|
Pinigin KV, Kondrashov OV, Jiménez-Munguía I, Alexandrova VV, Batishchev OV, Galimzyanov TR, Akimov SA. Elastic deformations mediate interaction of the raft boundary with membrane inclusions leading to their effective lateral sorting. Sci Rep 2020; 10:4087. [PMID: 32139760 PMCID: PMC7058020 DOI: 10.1038/s41598-020-61110-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Liquid-ordered lipid domains represent a lateral inhomogeneity in cellular membranes. These domains have elastic and physicochemical properties different from those of the surrounding membrane. In particular, their thickness exceeds that of the disordered membrane. Thus, elastic deformations arise at the domain boundary in order to compensate for the thickness mismatch. In equilibrium, the deformations lead to an incomplete register of monolayer ordered domains: the elastic energy is minimal if domains in opposing monolayers lie on the top of each other, and their boundaries are laterally shifted by about 3 nm. This configuration introduces a region, composed of one ordered and one disordered monolayers, with an intermediate bilayer thickness. Besides, a jump in a local monolayer curvature takes place in this intermediate region, concentrating here most of the elastic stress. This region can participate in a lateral sorting of membrane inclusions by offering them an optimal bilayer thickness and local curvature conditions. In the present study, we consider the sorting of deformable lipid inclusions, undeformable peripheral and deeply incorporated peptide inclusions, and undeformable transmembrane inclusions of different molecular geometry. With rare exceptions, all types of inclusions have an affinity to the ordered domain boundary as compared to the bulk phases. The optimal lateral distribution of inclusions allows relaxing the elastic stress at the boundary of domains.
Collapse
Affiliation(s)
- Konstantin V Pinigin
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Oleg V Kondrashov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Irene Jiménez-Munguía
- National University of Science and Technology "MISiS", 4 Leninskiy prospect, Moscow, 119049, Russia
| | | | - Oleg V Batishchev
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Timur R Galimzyanov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia
| | - Sergey A Akimov
- A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy prospekt, Moscow, 119071, Russia.
| |
Collapse
|
36
|
Levental I, Levental KR, Heberle FA. Lipid Rafts: Controversies Resolved, Mysteries Remain. Trends Cell Biol 2020; 30:341-353. [PMID: 32302547 DOI: 10.1016/j.tcb.2020.01.009] [Citation(s) in RCA: 372] [Impact Index Per Article: 74.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 01/08/2023]
Abstract
The lipid raft hypothesis postulates that lipid-lipid interactions can laterally organize biological membranes into domains of distinct structures, compositions, and functions. This proposal has in equal measure exhilarated and frustrated membrane research for decades. While the physicochemical principles underlying lipid-driven domains has been explored and is well understood, the existence and relevance of such domains in cells remains elusive, despite decades of research. Here, we review the conceptual underpinnings of the raft hypothesis and critically discuss the supporting and contradicting evidence in cells, focusing on why controversies about the composition, properties, and even the very existence of lipid rafts remain unresolved. Finally, we highlight several recent breakthroughs that may resolve existing controversies and suggest general approaches for moving beyond questions of the existence of rafts and towards understanding their physiological significance.
Collapse
Affiliation(s)
- Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA.
| | - Kandice R Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, TX 70030, USA
| | - Frederick A Heberle
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA; Shull Wollan Center, Oak Ridge National Laboratory, Oak Ridge, TN 33830, USA
| |
Collapse
|
37
|
Griffié J, Peters R, Owen DM. An agent-based model of molecular aggregation at the cell membrane. PLoS One 2020; 15:e0226825. [PMID: 32032349 PMCID: PMC7006917 DOI: 10.1371/journal.pone.0226825] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 12/22/2022] Open
Abstract
Molecular clustering at the plasma membrane has long been identified as a key process and is associated with regulating signalling pathways across cell types. Recent advances in microscopy, in particular the rise of super-resolution, have allowed the experimental observation of nanoscale molecular clusters in the plasma membrane. However, modelling approaches capable of recapitulating these observations are in their infancy, partly because of the extremely complex array of biophysical factors which influence molecular distributions and dynamics in the plasma membrane. We propose here a highly abstracted approach: an agent-based model dedicated to the study of molecular aggregation at the plasma membrane. We show that when molecules are modelled as though they can act (diffuse) in a manner which is influenced by their molecular neighbourhood, many of the distributions observed in cells can be recapitulated, even though such sensing and response is not possible for real membrane molecules. As such, agent-based offers a unique platform which may lead to a new understanding of how molecular clustering in extremely complex molecular environments can be abstracted, simulated and interpreted using simple rules.
Collapse
Affiliation(s)
- Juliette Griffié
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
- * E-mail: (JG); (DO)
| | - Ruby Peters
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
| | - Dylan M. Owen
- Department of Physics and Randall Centre for Cell and Molecular Biophysics, King’s College London, London, England, United Kingdom
- * E-mail: (JG); (DO)
| |
Collapse
|
38
|
Li FY, Zhang ZF, Voss S, Wu YW, Zhao YF, Li YM, Chen YX. Inhibition of K-Ras4B-plasma membrane association with a membrane microdomain-targeting peptide. Chem Sci 2019; 11:826-832. [PMID: 34123058 PMCID: PMC8145430 DOI: 10.1039/c9sc04726c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The association of K-Ras4B protein with plasma membrane (PM) is required for its signaling activity. Thus, direct inhibition of K-Ras4B–PM interaction could be a potential anti-Ras therapeutic strategy. However, it remains challenging to modulate such protein–PM interaction. Based on Ras isoform-specific PM microdomain localization patterns, we have developed a potent and isoform-selective peptide inhibitor, Memrasin, for detachment of K-Ras4B from the PM. Memrasin is one of the first direct inhibitors of K-Ras4B–PM interaction, and consists of a membrane ld region-binding sequence derived from the C-terminal region of K-Ras4B and an endosome-escape enhancing motif that can aggregate on membrane. It forms peptide-enriched domains in the ld region, abrogates the tethering of K-Ras4B to the PM and accordingly impairs Ras signaling activity, thereby efficiently decreasing the viability of several human lung cancer cells in a dose-responsive and K-Ras dependent manner. Memrasin provides a useful tool for exploring the biological function of K-Ras4B on or off the PM and a potential starting point for further development into anti-Ras therapeutics. A membrane ld microdomain-targeting hybrid peptide displays potent inhibition effect toward K-Ras4B-plasma membrane interaction and impairs Ras signaling output.![]()
Collapse
Affiliation(s)
- Fang-Yi Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zhen-Feng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences No. 1 West Beichen Road, Chaoyang District Beijing 100101 China
| | - Stephanie Voss
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Str. 15 44227 Dortmund Germany.,Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany
| | - Yao-Wen Wu
- Chemical Genomics Centre of the Max Planck Society Otto-Hahn-Str. 15 44227 Dortmund Germany.,Max-Planck-Institute of Molecular Physiology Otto-Hahn-Str. 11 44227 Dortmund Germany.,Department of Chemistry, Umeå University 90187 Umeå Sweden
| | - Yu-Fen Zhao
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yan-Mei Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
39
|
Jung J, Venkatachalam K. TRPML1 and RAS-driven cancers - exploring a link with great therapeutic potential. Channels (Austin) 2019; 13:374-381. [PMID: 31526156 PMCID: PMC6768051 DOI: 10.1080/19336950.2019.1666457] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 12/05/2022] Open
Abstract
Activating mutations in the RAS family of proto-oncogenes represent some of the leading causes of cancer. Unmitigated proliferation of cells harboring oncogenic RAS mutations is accompanied by a massive increase in cellular bioenergetic demands, which offers unique opportunities for therapeutic intervention. To withstand the steep requirements for metabolic intermediates, RAS-driven cancer cells enhance endolysosome and autophagosome biogenesis. By degrading cellular macromolecules into metabolites that can be used by biosynthetic pathways, endolysosomes permit continued proliferation and survival in otherwise detrimental conditions. We recently showed that human cancers with activating mutations in HRAS elevate the expression of MCOLN1, which encodes an endolysosomal cation channel called TRPML1. Increased TRPML1 activity in HRAS-driven cancer cells is needed for the restoration of plasma membrane cholesterol that gets collaterally internalized during endocytosis. Inhibition of TRPML1 or knockdown of MCOLN1 leads to mislocalization of cholesterol from the plasma membrane to endolysosomes, loss of oncogenic HRAS from the cell surface, and attenuation of downstream signaling. Here, we discuss the implications of our findings and suggest strategies to leverage pathways that impinge upon TRPML1 as novel anti-cancer treatments.
Collapse
Affiliation(s)
- Jewon Jung
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center and UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
40
|
Karouzaki S, Peta C, Tsirimonaki E, Mangoura D. PKCε-dependent H-Ras activation encompasses the recruitment of the RasGEF SOS1 and of the RasGAP neurofibromin in the lipid rafts of embryonic neurons. Neurochem Int 2019; 131:104582. [PMID: 31629778 DOI: 10.1016/j.neuint.2019.104582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/27/2019] [Accepted: 10/15/2019] [Indexed: 01/07/2023]
Abstract
The spatial organization of plasma membrane proteins is a key factor in the generation of distinct signal outputs, especially for PKC/Ras/ERK signalling. Regulation of activation of the membrane-bound Ras, critical for neuronal differentiation and highly specialized functions, is controlled by exchanges in nucleotides catalyzed by nucleotide exchange factors (GEFs) for GTP loading and Ras activation, and by Ras GTPase Activated Proteins (RasGAPs) that lead to activation of the intrinsic GTPase activity of Ras and thus its inactivation. PKCs are potent Ras activators yet the mechanistic details of these interactions, or the involvement of specific PKC isoforms are now beginning to be addressed. Even less known is the topology where RasGAPs terminate Ras activation. Towards this aim, we isolated lipid rafts from chick embryo neural tissue and primary neuronal cultures when PKCε is the prominent isoform and in combination with in vitro kinase assays, we now show that, in response the PKCε-specific activating peptide ψεRACK, an activated PKCε is recruited to lipid rafts; similar mobility was established when PKCε was physiologically activated with the Cannabinoid receptor 1 (CB1) agonist methanandamide. Activation of H-Ras for both agents was then established for the first time using in vivo RasGAP activity assays, which showed similar temporal profiles of activation and lateral mobility. Moreover, we found that the GEF SOS1, and the major neuronal RasGAP neurofibromin, a specific PKCε substrate, were both transiently significantly enriched in the rafts. Finally, our in silico analysis revealed a highly probable, conserved palmitoylation site adjacent to a CARC motif on neurofibromin, both of which are included only in the RasGAP related domain type I (GRDI) with the known high H-RasGAP activity. Taken together, these results suggest that PKCε activation regulates the spatial plasma membrane enrichments of both SOS1 and neurofibromin, thus controlling the output of activated H-Ras available for downstream signalling in neurons.
Collapse
Affiliation(s)
- Sophia Karouzaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Charoula Peta
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Emmanouella Tsirimonaki
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece
| | - Dimitra Mangoura
- Basic Research Center, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Efesiou, Athens, 11527, Greece.
| |
Collapse
|
41
|
Jung J, Cho KJ, Naji AK, Clemons KN, Wong CO, Villanueva M, Gregory S, Karagas NE, Tan L, Liang H, Rousseau MA, Tomasevich KM, Sikora AG, Levental I, van der Hoeven D, Zhou Y, Hancock JF, Venkatachalam K. HRAS-driven cancer cells are vulnerable to TRPML1 inhibition. EMBO Rep 2019; 20:e46685. [PMID: 30787043 PMCID: PMC6446245 DOI: 10.15252/embr.201846685] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 01/28/2019] [Accepted: 02/01/2019] [Indexed: 12/28/2022] Open
Abstract
By serving as intermediaries between cellular metabolism and the bioenergetic demands of proliferation, endolysosomes allow cancer cells to thrive under normally detrimental conditions. Here, we show that an endolysosomal TRP channel, TRPML1, is necessary for the proliferation of cancer cells that bear activating mutations in HRAS Expression of MCOLN1, which encodes TRPML1, is significantly elevated in HRAS-positive tumors and inversely correlated with patient prognosis. Concordantly, MCOLN1 knockdown or TRPML1 inhibition selectively reduces the proliferation of cancer cells that express oncogenic, but not wild-type, HRAS Mechanistically, TRPML1 maintains oncogenic HRAS in signaling-competent nanoclusters at the plasma membrane by mediating cholesterol de-esterification and transport. TRPML1 inhibition disrupts the distribution and levels of cholesterol and thereby attenuates HRAS nanoclustering and plasma membrane abundance, ERK phosphorylation, and cell proliferation. These findings reveal a selective vulnerability of HRAS-driven cancers to TRPML1 inhibition, which may be leveraged as an actionable therapeutic strategy.
Collapse
Affiliation(s)
- Jewon Jung
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Kwang-Jin Cho
- Department of Biochemistry and Molecular Biology, Boonshoft School of Medicine, Wright State University, Dayton, OH, USA
| | - Ali K Naji
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center, Houston, TX, USA
| | - Kristen N Clemons
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Ching On Wong
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Mariana Villanueva
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
- Patient Derived Xenografts and Advanced in vivo Models Core Facility, Baylor College of Medicine, Houston, TX, USA
| | - Steven Gregory
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Nicholas E Karagas
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Lingxiao Tan
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Hong Liang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Morgan A Rousseau
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Kelly M Tomasevich
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Andrew G Sikora
- Bobby R. Alford Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
- Patient Derived Xenografts and Advanced in vivo Models Core Facility, Baylor College of Medicine, Houston, TX, USA
| | - Ilya Levental
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dharini van der Hoeven
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center, Houston, TX, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School, the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Graduate Program in Biochemistry and Cell Biology, MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
42
|
Functional link between plasma membrane spatiotemporal dynamics, cancer biology, and dietary membrane-altering agents. Cancer Metastasis Rev 2019; 37:519-544. [PMID: 29860560 DOI: 10.1007/s10555-018-9733-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The cell plasma membrane serves as a nexus integrating extra- and intracellular components, which together enable many of the fundamental cellular signaling processes that sustain life. In order to perform this key function, plasma membrane components assemble into well-defined domains exhibiting distinct biochemical and biophysical properties that modulate various signaling events. Dysregulation of these highly dynamic membrane domains can promote oncogenic signaling. Recently, it has been demonstrated that select membrane-targeted dietary bioactives (MTDBs) have the ability to remodel plasma membrane domains and subsequently reduce cancer risk. In this review, we focus on the importance of plasma membrane domain structural and signaling functionalities as well as how loss of membrane homeostasis can drive aberrant signaling. Additionally, we discuss the intricacies associated with the investigation of these membrane domain features and their associations with cancer biology. Lastly, we describe the current literature focusing on MTDBs, including mechanisms of chemoprevention and therapeutics in order to establish a functional link between these membrane-altering biomolecules, tuning of plasma membrane hierarchal organization, and their implications in cancer prevention.
Collapse
|
43
|
Agamasu C, Ghirlando R, Taylor T, Messing S, Tran TH, Bindu L, Tonelli M, Nissley DV, McCormick F, Stephen AG. KRAS Prenylation Is Required for Bivalent Binding with Calmodulin in a Nucleotide-Independent Manner. Biophys J 2019; 116:1049-1063. [PMID: 30846362 PMCID: PMC6428923 DOI: 10.1016/j.bpj.2019.02.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
Deregulation of KRAS4b signaling pathway has been implicated in 30% of all cancers. Membrane localization of KRAS4b is an essential step for the initiation of the downstream signaling cascades that guide various cellular mechanisms. KRAS4b plasma membrane (PM) binding is mediated by the insertion of a prenylated moiety that is attached to the terminal carboxy-methylated cysteine, in addition to electrostatic interactions of its positively charged hypervariable region with anionic lipids. Calmodulin (CaM) has been suggested to selectively bind KRAS4b to act as a negative regulator of the RAS/mitogen-activated protein kinase (MAPK) signaling pathway by displacing KRAS4b from the membrane. However, the mechanism by which CaM can recognize and displace KRAS4b from the membrane is not well understood. In this study, we employed biophysical and structural techniques to characterize this mechanism in detail. We show that KRAS4b prenylation is required for binding to CaM and that the hydrophobic pockets of CaM can accommodate the prenylated region of KRAS4b, which might represent a novel CaM-binding motif. Remarkably, prenylated KRAS4b forms a 2:1 stoichiometric complex with CaM in a nucleotide-independent manner. The interaction between prenylated KRAS4b and CaM is enthalpically driven, and electrostatic interactions also contribute to the formation of the complex. The prenylated KRAS4b terminal KSKTKC-farnesylation and carboxy-methylation is sufficient for binding and defines the minimal CaM-binding motif. This is the same region implicated in membrane and phosphodiesterase6-δ binding. Finally, we provide a structure-based docking model by which CaM binds to prenylated KRAS4b. Our data provide new insights into the KRAS4b-CaM interaction and suggest a possible mechanism whereby CaM can regulate KRAS4b membrane localization.
Collapse
Affiliation(s)
- Constance Agamasu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Rodolfo Ghirlando
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Lakshman Bindu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Marco Tonelli
- National Magnetic Resource Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Frank McCormick
- Diller Family Comprehensive Cancer Center, University of California, San Francisco, California
| | - Andrew G Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland.
| |
Collapse
|
44
|
Cao S, Chung S, Kim S, Li Z, Manor D, Buck M. K-Ras G-domain binding with signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2): membrane association, protein orientation, and function. J Biol Chem 2019; 294:7068-7084. [PMID: 30792310 DOI: 10.1074/jbc.ra118.004021] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Ras genes potently drive human cancers, with mutated proto-oncogene GTPase KRAS4B (K-Ras4B) being the most abundant isoform. Targeted inhibition of oncogenic gene products is considered the "holy grail" of present-day cancer therapy, and recent discoveries of small-molecule KRas4B inhibitors were made thanks to a deeper understanding of the structure and dynamics of this GTPase. Because interactions with biological membranes are key for Ras function, Ras-lipid interactions have become a major focus, especially because such interactions evidently involve both the Ras C terminus for lipid anchoring and its G-protein domain. Here, using NMR spectroscopy and molecular dynamics simulations complemented by biophysical- and cell-biology assays, we investigated the interaction between K-Ras4B with the signaling lipid phosphatidylinositol (4,5)-phosphate (PIP2). We discovered that the β2 and β3 strands as well as helices 4 and 5 of the GTPase G-domain bind to PIP2 and identified the specific residues in these structural elements employed in these interactions, likely occurring in two K-Ras4B orientation states relative to the membrane. Importantly, we found that some of these residues known to be oncogenic when mutated (D47K, D92N, K104M, and D126N) are critical for K-Ras-mediated transformation of fibroblast cells, but do not substantially affect basal and assisted nucleotide hydrolysis and exchange. Moreover, the K104M substitution abolished localization of K-Ras to the plasma membrane. The findings suggest that specific G-domain residues can critically regulate Ras function by mediating interactions with membrane-associated PIP2 lipids; these insights that may inform the future design of therapeutic reagents targeting Ras activity.
Collapse
Affiliation(s)
- Shufen Cao
- From the Departments of Physiology and Biophysics
| | | | | | - Zhenlu Li
- From the Departments of Physiology and Biophysics
| | - Danny Manor
- Nutrition, .,Pharmacology, and.,the Case Comprehensive Cancer Center and
| | - Matthias Buck
- From the Departments of Physiology and Biophysics, .,the Case Comprehensive Cancer Center and.,Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106 and.,Center for Proteomics and Bioinformatics, Case Western Reserve University, School of Medicine, Cleveland, Ohio 44106
| |
Collapse
|
45
|
Lakshman B, Messing S, Schmid EM, Clogston JD, Gillette WK, Esposito D, Kessing B, Fletcher DA, Nissley DV, McCormick F, Stephen AG, Jean-Francois FL. Quantitative biophysical analysis defines key components modulating recruitment of the GTPase KRAS to the plasma membrane. J Biol Chem 2019; 294:2193-2207. [PMID: 30559287 PMCID: PMC6369290 DOI: 10.1074/jbc.ra118.005669] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/28/2018] [Indexed: 11/06/2022] Open
Abstract
The gene encoding the GTPase KRAS is frequently mutated in pancreatic, lung, and colorectal cancers. The KRAS fraction in the plasma membrane (PM) correlates with activation of the mitogen-activated protein kinase (MAPK) pathway and subsequent cellular proliferation. Understanding KRAS's interaction with the PM is challenging given the complexity of the cellular environment. To gain insight into key components necessary for KRAS signal transduction at the PM, we used synthetic membranes such as liposomes and giant unilamellar vesicles. Using surface plasmon resonance (SPR) spectroscopy, we demonstrated that KRAS and Raf-1 proto-oncogene Ser/Thr kinase (RAF1) domains interact with these membranes primarily through electrostatic interactions with negatively charged lipids reinforced by additional interactions involving phosphatidyl ethanolamine and cholesterol. We found that the RAF1 region spanning RBD through CRD (RBDCRD) interacts with the membrane significantly more strongly than the isolated RBD or CRD domains and synergizes KRAS partitioning to the membrane. We also found that calmodulin and phosphodiesterase 6 delta (PDE6δ), but not galectin3 previously proposed to directly interact with KRAS, passively sequester KRAS and prevent it from partitioning into the PM. RAF1 RBDCRD interacted with membranes preferentially at nonraft lipid domains. Moreover, a C-terminal O-methylation was crucial for KRAS membrane localization. These results contribute to a better understanding of how the KRAS-membrane interaction is tuned by multiple factors whose identification could inform drug discovery efforts to disrupt this critical interaction in diseases such as cancer.
Collapse
Affiliation(s)
- Bindu Lakshman
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Simon Messing
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Eva M Schmid
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720
| | - Jeffrey D Clogston
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702
| | - William K Gillette
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Dominic Esposito
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Bailey Kessing
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Daniel A Fletcher
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720
- Chan Zuckerberg Biohub, San Francisco, California 94158
| | - Dwight V Nissley
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Frank McCormick
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California 94158
| | - Andrew G Stephen
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702
| | - Frantz L Jean-Francois
- From the NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland 21702,
| |
Collapse
|
46
|
Kang SJ, Kim JS, Park SM. Ubiquitin C-terminal Hydrolase L1 Regulates Lipid Raft-dependent Endocytosis. Exp Neurobiol 2018; 27:377-386. [PMID: 30429647 PMCID: PMC6221840 DOI: 10.5607/en.2018.27.5.377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 11/19/2022] Open
Abstract
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is a deubiquitinating enzyme that is highly expressed in neurons, and gathering evidence indicates that UCH-L1 may play pathogenic roles in many neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease (PD). Additionally, lipid rafts have attracted interest in neurodegeneration as playing a common role in many neurodegenerative diseases. In the present study, we demonstrated that UCH-L1 associates with lipid rafts as with other PD-associated gene products. In addition, UCH-L1 regulates lipid raft-dependent endocytosis and it is not dependent on the expression and degradation of caveolin-1 or flotillin-1. Finally, UCH-L1 regulates cell-to-cell transmission of α-synuclein. This study provides evidence that many PD-associated gene products share common signaling pathways to explain the pathogenesis of PD.
Collapse
Affiliation(s)
- Seo-Jun Kang
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 plus program, Department of Biological Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Jin Soo Kim
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang Myun Park
- Department of Pharmacology, Ajou University School of Medicine, Suwon 16499, Korea.,Chronic Inflammatory Disease Research Center, Ajou University School of Medicine, Suwon 16499, Korea.,BK21 plus program, Department of Biological Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| |
Collapse
|
47
|
O'Bryan JP. Pharmacological targeting of RAS: Recent success with direct inhibitors. Pharmacol Res 2018; 139:503-511. [PMID: 30366101 DOI: 10.1016/j.phrs.2018.10.021] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 02/06/2023]
Abstract
RAS has long been viewed as undruggable due to its lack of deep pockets for binding of small molecule inhibitors. However, recent successes in the development of direct RAS inhibitors suggest that the goal of pharmacological inhibition of RAS in patients may soon be realized. This review will discuss the role of RAS in cancer, the approaches used to develop direct RAS inhibitors, and highlight recent successes in the development of novel RAS inhibitory compounds that target different aspects of RAS biochemistry. In particular, this review will discuss the different properties of RAS that have been targeted by various inhibitors including membrane localization, the different activation states of RAS, effector binding, and nucleotide exchange. In addition, this review will highlight the recent success with mutation-specific inhibitors that exploit the unique biochemistry of the RAS(G12C) mutant. Although this mutation in KRAS accounts for 11% of all KRAS mutations in cancer, it is the most prominent KRAS mutant in lung cancer suggesting that G12C-specific inhibitors may provide a new approach for treating the subset of lung cancer patients harboring this mutant allele. Finally, this review will discuss the involvement of dimerization in RAS function and highlight new approaches to inhibit RAS by specifically interfering with RAS:RAS interaction.
Collapse
Affiliation(s)
- John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, 29401, United States.
| |
Collapse
|
48
|
Zhou Y, Prakash P, Gorfe AA, Hancock JF. Ras and the Plasma Membrane: A Complicated Relationship. Cold Spring Harb Perspect Med 2018; 8:cshperspect.a031831. [PMID: 29229665 DOI: 10.1101/cshperspect.a031831] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The primary site of Ras signal transduction is the plasma membrane (PM). On the PM, the ubiquitously expressed Ras isoforms, H-, N-, and K-Ras, spatially segregate to nonoverlapping nanometer-sized domains, called nanoclusters, with further lateral segregation into nonoverlapping guanosine triphosphate (GTP)-bound and guanosine diphosphate (GDP)-bound nanoclusters. Effector binding and activation is restricted to GTP nanoclusters, rendering the underlying assembly mechanism essential to Ras signaling. Ras nanoclusters have distinct lipid compositions as a result of lipid-sorting specificity encoded in each Ras carboxy-terminal membrane anchor. The role of the G-domain in regulating anchor-membrane interactions is becoming clearer. Ras G-domains undergo significant conformational orientation changes on guanine nucleotide switch, leading to differential direct contacts between the G-domain and reorganization of the membrane anchor. Ras G-domains also contain weak dimer interfaces, resulting in homodimerization, which is an obligate step of nanoclustering. Modulating the formation of Ras dimers, the lipid composition of the PM or lateral dynamics of key PM phospholipids represent novel mechanisms whereby the extent of Ras nanoclustering can be regulated to tune the gain in Ras signaling circuits.
Collapse
Affiliation(s)
- Yong Zhou
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Priyanka Prakash
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - Alemayehu A Gorfe
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| | - John F Hancock
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, Texas 77030
| |
Collapse
|
49
|
EspH Suppresses Erk by Spatial Segregation from CD81 Tetraspanin Microdomains. Infect Immun 2018; 86:IAI.00303-18. [PMID: 30037792 DOI: 10.1128/iai.00303-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/10/2018] [Indexed: 01/12/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) belongs to a group of enteric human pathogens known as attaching-and-effacing (A/E) pathogens, which utilize a type III secretion system (T3SS) to translocate a battery of effector proteins from their own cytoplasm into host intestinal epithelial cells. Here we identified EspH to be an effector that prompts the recruitment of the tetraspanin CD81 to infection sites. EspH was also shown to be an effector that suppresses the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (Erk) signaling pathway at longer infection times. The inhibitory effect was abrogated upon deletion of the last 38 amino acids located at the C terminus of the protein. The efficacy of EspH-dependent Erk suppression was higher in CD81-deficient cells, suggesting that CD81 may act as a positive regulator of Erk, counteracting Erk suppression by EspH. EspH was found within CD81 microdomains soon after infection but was largely excluded from these domains at a later time. Based on our results, we propose a mechanism whereby CD81 is initially recruited to infection sites in response to EspH translocation. At a later stage, EspH moves out of the CD81 clusters to facilitate effective Erk inhibition. Moreover, EspH selectively inhibits the tumor necrosis factor alpha (TNF-α)-induced Erk signaling pathway. Since Erk and TNF-α have been implicated in innate immunity and cell survival, our studies suggest a novel mechanism by which EPEC suppresses these processes to promote its own colonization and survival in the infected gut.
Collapse
|
50
|
Cohen BE. Membrane Thickness as a Key Factor Contributing to the Activation of Osmosensors and Essential Ras Signaling Pathways. Front Cell Dev Biol 2018; 6:76. [PMID: 30087894 PMCID: PMC6066546 DOI: 10.3389/fcell.2018.00076] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022] Open
Abstract
The cell membrane provides a functional link between the external environment and the replicating DNA genome by using ligand-gated receptors and chemical signals to activate signaling transduction pathways. However, increasing evidence has also indicated that the phospholipid bilayer itself by altering various physical parameters serves as a sensor that regulate membrane proteins in a specific manner. Changes in thickness and/or curvature of the membrane have been shown to be induced by mechanical forces and transmitted through the transmembrane helices of several types of mechanosensitive (MS) ion channels underlying functions such as osmoregulation in bacteria and sensory processing in mammalian cells. This review focus on recent protein functional and structural data indicating that the activation of bacterial and yeast osmosensors is consistent with thickness-induced tilting changes of the transmembrane domains of these proteins. Membrane thinning in combination with curvature changes may also lead to the lateral transfer of the small lipid-anchored GTPases Ras1 and H-Ras out of lipid rafts for clustering and signaling. The modulation of signaling pathways by amphiphilic peptides and the membrane-active antibiotics colistin and Amphotericin B is also discussed.
Collapse
Affiliation(s)
- B Eleazar Cohen
- Division of External Activities, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| |
Collapse
|