1
|
Kheradmand B, Richardson-Ramos I, Chan S, Nelson C, Nieh JC. Honey Bees Can Use Sequence Learning to Predict Rewards from a Prior Unrewarded Visual Stimulus. INSECTS 2025; 16:358. [PMID: 40332847 PMCID: PMC12027691 DOI: 10.3390/insects16040358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/02/2025] [Accepted: 03/27/2025] [Indexed: 05/08/2025]
Abstract
Learning to anticipate upcoming events can increase fitness by allowing animals to choose the best course of action, and many species can learn sequences of events and anticipate rewards. To date, most studies have focused on sequences over short time scales such as a few seconds. Whereas events separated by a few seconds are easily learned, events separated by longer delays are typically more difficult to learn. Here, we show that honey bees (Apis mellifera) can learn a sequence of two visually distinct food sources alternating in profitability every few minutes. Bees were challenged to learn that the rewarded pattern was the one that was non-rewarded on the prior visit. We show that bees can predict and choose the feeder that will be rewarding upon their next approach more frequently than predicted by chance, and they improve with experience, with 64% correct choices made in the second half of their visit sequence (N = 320 visits by 20 different bees). These results increase our understanding of honey bee visual sequential learning and further demonstrate the flexibility of foragers' learning strategies.
Collapse
Affiliation(s)
- Bahram Kheradmand
- Section of Ecology, Behavior, and Evolution, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, MC0116, La Jolla, CA 92093, USA; (I.R.-R.); (S.C.); (C.N.); (J.C.N.)
| | | | | | | | | |
Collapse
|
2
|
Lind J, Jon-And A. A sequence bottleneck for animal intelligence and language? Trends Cogn Sci 2025; 29:242-254. [PMID: 39516147 DOI: 10.1016/j.tics.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
We discuss recent findings suggesting that non-human animals lack memory for stimulus sequences, and therefore do not represent the order of stimuli faithfully. These observations have far-reaching consequences for animal cognition, neuroscience, and studies of the evolution of language and culture. This is because, if non-human animals do not remember or process information about order faithfully, then it is unlikely that non-human animals perform mental simulations, construct mental world models, have episodic memory, or transmit culture faithfully. If this suggested sequence bottleneck proves to be a prevalent characteristic of animal memory systems, as suggested by recent work, it would require a re-examination of some influential concepts and ideas.
Collapse
Affiliation(s)
- Johan Lind
- Biology Division, Department of Physics, Chemistry, and Biology (IFM), Linköping University, 581 83 Linköping, Sweden; Centre for Cultural Evolution, Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden.
| | - Anna Jon-And
- Centre for Cultural Evolution, Department of Psychology, Stockholm University, 106 91 Stockholm, Sweden; Department of Romance Studies and Classics, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
3
|
Guiraud MG, MaBouDi H, Woodgate J, Bates OK, Rodriguez OR, Gallo V, Barron AB. How bumblebees manage conflicting information seen on arrival and departure from flowers. Anim Cogn 2025; 28:11. [PMID: 39909894 PMCID: PMC11799123 DOI: 10.1007/s10071-024-01926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/14/2024] [Accepted: 12/17/2024] [Indexed: 02/07/2025]
Abstract
Bees are flexible and adaptive learners, capable of learning stimuli seen on arrival and at departure from flowers where they have fed. This gives bees the potential to learn all information associated with a feeding event, but it also presents the challenge of managing information that is irrelevant, inconsistent, or conflicting. Here, we examined how presenting bumblebees with conflicting visual information before and after feeding influenced their learning rate and what they learned. Bees were trained to feeder stations mounted in front of a computer monitor. Visual stimuli were displayed behind each feeder station on the monitor. Positively reinforced stimuli (CS +) marked feeders offering sucrose solution. Negatively reinforced stimuli (CS-) marked feeders offering quinine solution. While alighted at the feeder station the stimuli were likely not visible to the bee. The "constant stimulus" training group saw the same stimulus throughout. For the "switched stimulus" training group, the CS + changed to the CS- during feeding. Learning was slower in the "switched stimulus" training group compared to the constant stimulus" group, but the training groups did not differ in their learning performance or the extent to which they generalised their learning. The information conflict in the "switched stimulus" group did not interfere with what had been learned. Differences between the "switched" and "constant stimulus" groups were greater for bees trained on a horizontal CS + than a vertical CS + suggesting bees differ in their processing of vertically and horizontally oriented stimuli. We discuss how bumblebees might resolve this type of information conflict so effectively, drawing on the known neurobiology of their visual learning system.
Collapse
Affiliation(s)
- Marie-Geneviève Guiraud
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, UK.
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| | - HaDi MaBouDi
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, UK
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Joe Woodgate
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Olivia K Bates
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, UK
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Oscar Ramos Rodriguez
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Vince Gallo
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London, UK
| | - Andrew B Barron
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
4
|
Giurfa M, Lee S, Macri C. Honey bees rely on associative stimulus strength after training on an olfactory transitive inference task. Front Psychol 2025; 15:1529460. [PMID: 39839923 PMCID: PMC11747915 DOI: 10.3389/fpsyg.2024.1529460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 12/19/2024] [Indexed: 01/23/2025] Open
Abstract
Transitive inference, the ability to establish hierarchical relationships between stimuli, is typically tested by training with premise pairs (e.g., A + B-, B + C-, C + D-, D + E-), which establishes a stimulus hierarchy (A > B > C > D > E). When subjects are tested with non-adjacent stimuli (e.g., B vs. D), a preference for B indicates transitive inference, while no preference indicates decisions based on stimulus associative strength, as B and D are equally reinforced. Previous studies with bees and wasps, conducted in an operant context, have shown conflicting results. However, this context allows free movement and the possibility to avoid non-reinforced options, thus reducing the number of non-reinforced trials. To address this, we examined whether honey bees could perform transitive inference using a Pavlovian protocol that fully controls reinforcement. We conditioned bees with five odorants, either forward-or backward-paired with a sucrose solution, across four discrimination tasks. In all experiments, bees showed no preference for B over D, choosing equally between them, regardless of the training schedule. Our results show that bees' choices were primarily influenced by stimulus associative strength and a recency effect, with greater weight given to the most recent reinforced or non-reinforced stimulus. We discuss these findings in the context of honey bee memory, suggesting that memory constraints may limit cognitive solutions to transitive inference tasks in bees.
Collapse
Affiliation(s)
- Martin Giurfa
- Sorbonne University, CNRS, INSERM, Institute of Biology Paris Seine, Neurosciences Paris Seine, Paris, France
| | - Silvia Lee
- Sorbonne University, CNRS, INSERM, Institute of Biology Paris Seine, Neurosciences Paris Seine, Paris, France
| | - Catherine Macri
- Sorbonne University, CNRS, INSERM, Institute of Biology Paris Seine, Neurosciences Paris Seine, Paris, France
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), CNRS, UPS, University of Toulouse, Toulouse, France
| |
Collapse
|
5
|
Just BB, Torres de Farias S. Living cognition and the nature of organisms. Biosystems 2024; 246:105356. [PMID: 39426661 DOI: 10.1016/j.biosystems.2024.105356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/27/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
There is no consensus about what cognition is. Different perspectives conceptualize it in different ways. In the same vein, there is no agreement about which systems are truly cognitive. This begs the question, what makes a process or a system cognitive? One of the most conspicuous features of cognition is that it is a set of processes. Cognition, in the end, is a collection of processes such as perception, memory, learning, decision-making, problem-solving, goal-directedness, attention, anticipation, communication, and maybe emotion. There is a debate about what they mean, and which systems possess these processes. One aspect of this problem concerns the level at which cognition and the single processes are conceptualized. To make this scenario clear, evolutionary and self-maintenance arguments are taken. Given the evolutive landscape, one sees processes shared by all organisms and their derivations in specific taxa. No matter which side of the complexity spectrum one favors, the similarities of the simple processes with the complex ones cannot be ignored, and the differences of some complex processes with their simple versions cannot be blurred. A final cognitive framework must make sense of both sides of the spectrum, their differences and similarities. Here, we discuss from an evolutionary perspective the basic elements shared by all living beings and whether these may be necessary and sufficient for understanding the cognitive process. Following these considerations, cognition can be expanded to every living being. Cognition is the set of informational and dynamic processes an organism must interact with and grasp aspects of its world. Understood at their most basic level, perception, memory, learning, problem-solving, decision-making, action, and other cognitive processes are basic features of biological functioning.
Collapse
Affiliation(s)
- Breno B Just
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Laboratório de Estudos Em Memória e Cognição (LEMCOG), Departamento de Psicologia, Universidade Federal da Paraíba, João Pessoa, Brazil.
| | - Sávio Torres de Farias
- Laboratório de Genética Evolutiva Paulo Leminski, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds LS7 3RB, UK.
| |
Collapse
|
6
|
Dvořáček J, Kodrík D. Brain and cognition: The need for a broader biological perspective to overcome old biases. Neurosci Biobehav Rev 2024; 167:105928. [PMID: 39427812 DOI: 10.1016/j.neubiorev.2024.105928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Even with accumulating knowledge, no consensus regarding the understanding of intelligence or cognition exists, and the universal brain bases for these functions remain unclear. Traditionally, our understanding of cognition is based on self-evident principles that appear indisputable when looking only at our species; however, this can distance us from understanding its essence (anthropocentrism, corticocentrism, intellectocentrism, neurocentrism, and idea of orthogenesis of brain evolution). Herein, we use several examples from biology to demonstrate the usefulness of comparative ways of thinking in relativizing these biases. We discuss the relationship between the number of neurons and cognition and draw attention to the highly developed cognitive performance of animals with small brains, to some "tricks" of evolution, to how animals cope with small hardware, to some animals with high-quality brains with an alternative architecture to vertebrates, and to surprising basal cognitive skills in aneural, unicellular organisms. Cognition can be supplemented by the idea of a multicellular organism as a continuum, with many levels of cognitive function, including the possible basal learning in single cells.
Collapse
Affiliation(s)
- Jiří Dvořáček
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budĕjovice 370 05, Czech Republic; Psychiatric Hospital Cerveny Dvur, Cerveny Dvur 1, Cesky Krumlov 381 01, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, České Budĕjovice 370 05, Czech Republic.
| | - Dalibor Kodrík
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budĕjovice 370 05, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, České Budĕjovice 370 05, Czech Republic
| |
Collapse
|
7
|
Song J, Luo F, ten Cate C, Yan C, Que P, Zhan X, Chen J. Stimulus-dependent emergence of understanding the 'same-different' concept in budgerigars. Proc Biol Sci 2024; 291:20241862. [PMID: 39657807 PMCID: PMC11631455 DOI: 10.1098/rspb.2024.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/06/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024] Open
Abstract
The ability to understand relational concepts, such as 'same' and 'different', is a critical feature of human cognition. To what extent non-human animals can acquire such concepts and which factors influence their learning are still unclear. We examined the acquisition and the breadth of understanding the 'same-different' concept in budgerigars (Melopsittacus undulatus). Budgerigars trained to discriminate stimulus pairs in which two identical figures were either the same or different size (Experiment 1) successfully generalized the discrimination to novel stimuli belonging to various categories (size, colour, shape, geometric type and number of dots). The results of Experiment 1 thus demonstrate that budgerigars can perceive and generalize the same-different concept across dimensions after training with a limited set of stimuli differing along a single dimension. In contrast, while most budgerigars trained to discriminate two pairs of discs that were either the same or different in colour (Experiment 2) could generalize the discrimination to novel stimuli within the training category (colour), only few generalized the discrimination to another category suggesting a generalization based on perceptual similarity. The results thus show that whether budgerigars generalize a relationship by conceptual or perceptual similarity depends on the nature of the training stimuli.
Collapse
Affiliation(s)
- Jingshu Song
- College of Ecology, Lanzhou University, Lanzhou73000, People’s Republic of China
| | - Fangyuan Luo
- College of Ecology, Lanzhou University, Lanzhou73000, People’s Republic of China
| | - Carel ten Cate
- Behavioural Biology, Institute of Biology Leiden, Leiden University, 2300 RA Leiden, The Netherlands
| | - Chuan Yan
- College of Ecology, Lanzhou University, Lanzhou73000, People’s Republic of China
| | - Pinjia Que
- Chengdu Research Base of Giant Panda Breeding, Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu610081, People’s Republic of China
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
- Cardiff University–Institute of Zoology Joint Laboratory for Biocomplexity Research, Chinese Academy of Sciences, Beijing100101, People’s Republic of China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming650223, People’s Republic of China
| | - Jiani Chen
- College of Ecology, Lanzhou University, Lanzhou73000, People’s Republic of China
| |
Collapse
|
8
|
Liang T, Rong KL, Qiao JD, Ke Y, Yung WH. Automatic Experimental Numerosity Generation and Numerical Training for Rodents. Curr Protoc 2024; 4:e70044. [PMID: 39531170 DOI: 10.1002/cpz1.70044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Non-symbolic stimuli representing numerosities are invariably associated with continuous magnitudes, complicating the interpretation of experimental studies on numerosity perception. Although various algorithms for experimental numerosity generation have been proposed, they do not consider the quantifiable distribution of values of continuous magnitudes and the degree of numerosity-magnitudes association. Consequently, they cannot thoroughly exclude the possibility of magnitudes integration or strategy switch between different magnitudes in numerical stimulus perception. Here, we introduce a protocol for numerosity generation, animal training, and behavior outcomes analysis that takes the aforementioned issues into consideration. This protocol has been applied to rodents and is applicable to other animals in numerosity studies. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Algorithm for generating non-symbolic numerical stimuli Alternate Protocol: General algorithm for generating non-symbolic numerical stimuli Basic Protocol 2: Numerical training and testing for rodents.
Collapse
Affiliation(s)
- Tuo Liang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kang-Lin Rong
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jing-Da Qiao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wing-Ho Yung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
9
|
Paoli M, Giurfa M. Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees? Eur J Neurosci 2024; 60:5927-5948. [PMID: 39258341 DOI: 10.1111/ejn.16536] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Neonicotinoids represent over a quarter of the global pesticide market. Research on their environmental impact has revealed their adverse effect on the cognitive functions of pollinators, in particular of bees. Cognitive impairments, mostly revealed by behavioural studies, are the phenotypic expression of an alteration in the underlying neural circuits, a matter deserving greater attention. Here, we reviewed studies on the impact of field-relevant doses of neonicotinoids on the neurophysiology and neurodevelopment of bees. In particular, we focus on their olfactory system as much knowledge has been gained on the different brain areas that participate in odour processing. Recent studies have revealed the detrimental effects of neonicotinoids at multiple levels of the olfactory system, including modulation of odorant-induced activity in olfactory sensory neurons, diminished neural responses in the antennal lobe (the first olfactory processing centre) and abnormal development of the neural connectivity within the mushroom bodies (central neuropils involved in multisensory integration, learning and memory storage, among others). Given the importance of olfactory perception for multiple aspects of bee biology, the reported disruption of the olfactory circuit, which can occur even upon exposure to sublethal doses of neonicotinoids, has severe consequences at both individual and colony levels. Moreover, the effects reported for a multimodal structure such as the mushroom bodies indicate that neonicotinoids' impact translates to other sensory domains. Assessing the impact of field-relevant doses of pesticides on bee neurophysiology is crucial for understanding how neonicotinoids influence their behaviour in ecological contexts and for defining effective and sustainable agricultural practices.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
| | - Martin Giurfa
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
10
|
Lochner S, Honerkamp D, Valada A, Straw AD. Reinforcement learning as a robotics-inspired framework for insect navigation: from spatial representations to neural implementation. Front Comput Neurosci 2024; 18:1460006. [PMID: 39314666 PMCID: PMC11416953 DOI: 10.3389/fncom.2024.1460006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/20/2024] [Indexed: 09/25/2024] Open
Abstract
Bees are among the master navigators of the insect world. Despite impressive advances in robot navigation research, the performance of these insects is still unrivaled by any artificial system in terms of training efficiency and generalization capabilities, particularly considering the limited computational capacity. On the other hand, computational principles underlying these extraordinary feats are still only partially understood. The theoretical framework of reinforcement learning (RL) provides an ideal focal point to bring the two fields together for mutual benefit. In particular, we analyze and compare representations of space in robot and insect navigation models through the lens of RL, as the efficiency of insect navigation is likely rooted in an efficient and robust internal representation, linking retinotopic (egocentric) visual input with the geometry of the environment. While RL has long been at the core of robot navigation research, current computational theories of insect navigation are not commonly formulated within this framework, but largely as an associative learning process implemented in the insect brain, especially in the mushroom body (MB). Here we propose specific hypothetical components of the MB circuit that would enable the implementation of a certain class of relatively simple RL algorithms, capable of integrating distinct components of a navigation task, reminiscent of hierarchical RL models used in robot navigation. We discuss how current models of insect and robot navigation are exploring representations beyond classical, complete map-like representations, with spatial information being embedded in the respective latent representations to varying degrees.
Collapse
Affiliation(s)
- Stephan Lochner
- Institute of Biology I, University of Freiburg, Freiburg, Germany
| | - Daniel Honerkamp
- Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Abhinav Valada
- Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Andrew D. Straw
- Institute of Biology I, University of Freiburg, Freiburg, Germany
- Bernstein Center Freiburg, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Ganguly I, Heckman EL, Litwin-Kumar A, Clowney EJ, Behnia R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. Nat Commun 2024; 15:5698. [PMID: 38972924 PMCID: PMC11228034 DOI: 10.1038/s41467-024-49616-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
The arthropod mushroom body is well-studied as an expansion layer representing olfactory stimuli and linking them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their function remains unclear. Here, we identify inputs to visual Kenyon cells using the FlyWire adult whole-brain connectome. Input repertoires are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual neurons presynaptic to Kenyon cells have large receptive fields, while interneuron inputs receive spatially restricted signals that may be tuned to specific visual features. Individual visual Kenyon cells randomly sample sparse inputs from combinations of visual channels, including multiple optic lobe neuropils. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the specific input repertoire to the smaller population of visual Kenyon cells suggests a constrained encoding of visual stimuli.
Collapse
Affiliation(s)
- Ishani Ganguly
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - Emily L Heckman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ashok Litwin-Kumar
- Department of Neuroscience, Columbia University, New York, NY, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Zuckerman Institute, Columbia University, New York, NY, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA.
| | - Rudy Behnia
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Zuckerman Institute, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Martin-Ordas G. Inferential reasoning abilities in wild-caught bumblebees. Biol Lett 2024; 20:20230561. [PMID: 38863346 DOI: 10.1098/rsbl.2023.0561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
The ability to make a decision by excluding alternatives (i.e. inferential reasoning) is a type of logical reasoning that allows organisms to solve problems with incomplete information. Several species of vertebrates have been shown to find hidden food using inferential reasoning abilities. Yet little is known about invertebrates' logical reasoning capabilities. In three experiments, I examined wild-caught bumblebees' abilities to locate a 'rewarded' stimulus using direct information or incomplete information-the latter requiring bees to use inferential reasoning. To do so, I adapted three paradigms previously used with primates-the two-cup, three-cup and double two-cup tasks. Bumblebees saw either two paper strips (experiment 1), three paper strips (experiment 2) or two pairs of paper strips (experiment 3) and experienced one of them being rewarded or unrewarded. At the test, they could choose between two (experiment 1), three (experiment 2) or four paper strips (experiment 3). Bumblebees succeeded in the three tasks and their performance was consistent with inferential reasoning. These findings highlight the importance of comparative studies with invertebrates to comprehensively track the evolution of reasoning abilities, in particular, and cognition, in general.
Collapse
|
13
|
Wijnen K, Genzel L, van der Meij J. Rodent maze studies: from following simple rules to complex map learning. Brain Struct Funct 2024; 229:823-841. [PMID: 38488865 PMCID: PMC11004052 DOI: 10.1007/s00429-024-02771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
More than 100 years since the first maze designed for rodent research, researchers now have the choice of a variety of mazes that come in many different shapes and sizes. Still old designs get modified and new designs are introduced to fit new research questions. Yet, which maze is the most optimal to use or which training paradigm should be applied, remains up for debate. In this review, we not only provide a historical overview of maze designs and usages in rodent learning and memory research, but also discuss the possible navigational strategies the animals can use to solve each maze. Furthermore, we summarize the different phases of learning that take place when a maze is used as the experimental task. At last, we delve into how training and maze design can affect what the rodents are actually learning in a spatial task.
Collapse
Affiliation(s)
- Kjell Wijnen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen, The Netherlands
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Jacqueline van der Meij
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Postbus 9010, 6500 GL, Nijmegen, The Netherlands.
| |
Collapse
|
14
|
Webb B. Beyond prediction error: 25 years of modeling the associations formed in the insect mushroom body. Learn Mem 2024; 31:a053824. [PMID: 38862164 PMCID: PMC11199945 DOI: 10.1101/lm.053824.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/01/2024] [Indexed: 06/13/2024]
Abstract
The insect mushroom body has gained increasing attention as a system in which the computational basis of neural learning circuits can be unraveled. We now understand in detail the key locations in this circuit where synaptic associations are formed between sensory patterns and values leading to actions. However, the actual learning rule (or rules) implemented by neural activity and leading to synaptic change is still an open question. Here, I survey the diversity of answers that have been offered in computational models of this system over the past decades, including the recurring assumption-in line with top-down theories of associative learning-that the core function is to reduce prediction error. However, I will argue, a more bottom-up approach may ultimately reveal a richer algorithmic capacity in this still enigmatic brain neuropil.
Collapse
Affiliation(s)
- Barbara Webb
- School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, United Kingdom
| |
Collapse
|
15
|
Fiala A, Kaun KR. What do the mushroom bodies do for the insect brain? Twenty-five years of progress. Learn Mem 2024; 31:a053827. [PMID: 38862175 PMCID: PMC11199942 DOI: 10.1101/lm.053827.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 06/13/2024]
Abstract
In 1998, a special edition of Learning & Memory was published with a discrete focus of synthesizing the state of the field to provide an overview of the function of the insect mushroom body. While molecular neuroscience and optical imaging of larger brain areas were advancing, understanding the basic functioning of neuronal circuits, particularly in the context of the mushroom body, was rudimentary. In the past 25 years, technological innovations have allowed researchers to map and understand the in vivo function of the neuronal circuits of the mushroom body system, making it an ideal model for investigating the circuit basis of sensory encoding, memory formation, and behavioral decisions. Collaborative efforts within the community have played a crucial role, leading to an interactive connectome of the mushroom body and accessible genetic tools for studying mushroom body circuit function. Looking ahead, continued technological innovation and collaborative efforts are likely to further advance our understanding of the mushroom body and its role in behavior and cognition, providing insights that generalize to other brain structures and species.
Collapse
Affiliation(s)
- André Fiala
- Department of Molecular Neurobiology of Behaviour, University of Göttingen, Göttingen 37077, Germany
| | - Karla R Kaun
- Department of Neuroscience, Brown University, Providence, Rhode Island 02806, USA
| |
Collapse
|
16
|
Felsche E, Völter CJ, Herrmann E, Seed AM, Buchsbaum D. How can I find what I want? Can children, chimpanzees and capuchin monkeys form abstract representations to guide their behavior in a sampling task? Cognition 2024; 245:105721. [PMID: 38262272 DOI: 10.1016/j.cognition.2024.105721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/23/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
concepts are a powerful tool for making wide-ranging predictions in new situations based on little experience. Whereas looking-time studies suggest an early emergence of this ability in human infancy, other paradigms like the relational match to sample task often fail to detect abstract concepts until late preschool years. Similarly, non-human animals show difficulties and often succeed only after long training regimes. Given the considerable influence of slight task modifications, the conclusiveness of these findings for the development and phylogenetic distribution of abstract reasoning is debated. Here, we tested the abilities of 3 to 5-year-old children, chimpanzees, and capuchin monkeys in a unified and more ecologically valid task design based on the concept of "overhypotheses" (Goodman, 1955). Participants sampled high- and low-valued items from containers that either each offered items of uniform value or a mix of high- and low-valued items. In a test situation, participants should switch away earlier from a container offering low-valued items when they learned that, in general, items within a container are of the same type, but should stay longer if they formed the overhypothesis that containers bear a mix of types. We compared each species' performance to the predictions of a probabilistic hierarchical Bayesian model forming overhypotheses at a first and second level of abstraction, adapted to each species' reward preferences. Children and, to a more limited extent, chimpanzees demonstrated their sensitivity to abstract patterns in the evidence. In contrast, capuchin monkeys did not exhibit conclusive evidence for the ability of abstract knowledge formation.
Collapse
Affiliation(s)
- Elisa Felsche
- School of Psychology and Neuroscience, University of St Andrews, Scotland, UK; Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Germany.
| | - Christoph J Völter
- School of Psychology and Neuroscience, University of St Andrews, Scotland, UK; Department of Comparative Cultural Psychology, Max Planck Institute for Evolutionary Anthropology, Germany; Comparative Cognition, Messerli Research Institute, University of Veterinary Medicine Vienna, Medical University of Vienna and University of Vienna, Vienna, Austria.
| | | | - Amanda M Seed
- School of Psychology and Neuroscience, University of St Andrews, Scotland, UK.
| | - Daphna Buchsbaum
- The Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, USA.
| |
Collapse
|
17
|
Lind J. Limits of flexibility and associative learning in pigeons. Learn Behav 2024; 52:7-8. [PMID: 37254030 DOI: 10.3758/s13420-023-00588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
In a recent study, Wasserman, Kain, and O'Donoghue (Current Biology, 33(6), 1112-1116, 2023) set out to resolve the associative learning paradox by showing that pigeons can solve a complex category learning task through associative learning. The present Outlook paper presents their findings, expands on this paradox, and discusses implications of their results.
Collapse
Affiliation(s)
- Johan Lind
- Centre for Cultural Evolution, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
18
|
Martin-Ordas G. Relational reasoning in wild bumblebees revisited: the role of distance. Sci Rep 2023; 13:22311. [PMID: 38102236 PMCID: PMC10724225 DOI: 10.1038/s41598-023-49840-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023] Open
Abstract
In reasoning tasks, non-human animals attend more to relational than to object similarity. It is precisely this focus on relational similarity that has been argued to explain the reasoning gap between humans and other animals. Work with humans has revealed that objects placed near each other are represented to be more similar than objects placed farther apart. Will distance between objects also affect non-human animals' abilities to represent and reason about objects? To test this, wild bumblebees were presented with a spatial reasoning task (with competing object matches) in which the objects or features alone (colour, shape) were placed close together or far apart. Bumblebees spontaneously attended to objects over relations, but only when the objects were far apart. Features alone were not strong enough to drive object matching-suggesting that bumblebees bound colour and shape into their object representations. These findings question whether the ability to focus on and compare objects is what makes human abstract reasoning unique.
Collapse
|
19
|
Ganguly I, Heckman EL, Litwin-Kumar A, Clowney EJ, Behnia R. Diversity of visual inputs to Kenyon cells of the Drosophila mushroom body. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.561793. [PMID: 37873086 PMCID: PMC10592809 DOI: 10.1101/2023.10.12.561793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The arthropod mushroom body is well-studied as an expansion layer that represents olfactory stimuli and links them to contingent events. However, 8% of mushroom body Kenyon cells in Drosophila melanogaster receive predominantly visual input, and their tuning and function are poorly understood. Here, we use the FlyWire adult whole-brain connectome to identify inputs to visual Kenyon cells. The types of visual neurons we identify are similar across hemispheres and connectomes with certain inputs highly overrepresented. Many visual projection neurons presynaptic to Kenyon cells receive input from large swathes of visual space, while local visual interneurons, providing smaller fractions of input, receive more spatially restricted signals that may be tuned to specific features of the visual scene. Like olfactory Kenyon cells, visual Kenyon cells receive sparse inputs from different combinations of visual channels, including inputs from multiple optic lobe neuropils. The sets of inputs to individual visual Kenyon cells are consistent with random sampling of available inputs. These connectivity patterns suggest that visual coding in the mushroom body, like olfactory coding, is sparse, distributed, and combinatorial. However, the expansion coding properties appear different, with a specific repertoire of visual inputs projecting onto a relatively small number of visual Kenyon cells.
Collapse
Affiliation(s)
- Ishani Ganguly
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - Emily L Heckman
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ashok Litwin-Kumar
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
- Center for Theoretical Neuroscience, Columbia University, New York, NY 10027, USA
| | - E Josephine Clowney
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Neuroscience Institute Affiliate
| | - Rudy Behnia
- The Mortimer B. Zuckerman Mind Brain Behavior Institute, Department of Neuroscience, Columbia University, New York, NY 10027, USA
| |
Collapse
|
20
|
Hernández LG, Garcia CHS, Souza JMFDE, Cruz GCNDA, Calábria LK, Moreno AM, Espindola FS, Souza DGDE, Sousa MVDE. Study of Melipona quadrifasciata brain under operant learning using proteomic and phosphoproteomic analysis. AN ACAD BRAS CIENC 2023; 95:e20201317. [PMID: 37585963 DOI: 10.1590/0001-3765202320201317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 02/02/2021] [Indexed: 08/18/2023] Open
Abstract
Learning to anticipate events based on the predictive relationship between an action and an outcome (operant conditioning) is a form of associative learning shared by humans and most of other living beings, including invertebrates. Several behavioral studies on the mechanisms of operant conditioning have included Melipona quadrifasciata, a honey bee that is easily manipulated due to lack of sting. In this work, brain proteomes of Melipona bees trained using operant conditioning and untrained (control) bees were compared by two-dimensional gel electrophoresis analysis within pI range of 3-10 and 4-7; in order to find proteins specifically related to this type of associative learning.One protein was detected with differential protein abundance in the brains of trained bees, when compared to not trained ones, through computational gel imaging and statistical analysis. This protein was identified by peptide mass fingerprinting and MS/MS peptide fragmentation using a MALDI-TOF/TOF mass spectrometer as one isoform of arginine kinase monomer, apparently dephosphorylated. Brain protein maps were obtained by 2-DE (Two-dimensional gel electrophoresis) from a total proteins and phosphoproteins extract of the bee Melipona quadrifasciata. One isoform of arginine kinase, probably a dephosphorylated isoform, was significantly more abundant in the brain of trained bees using operant conditioning. Arginine kinase has been reported as an important enzyme of the energy releasing process in the visual system of the bee, but it may carry out additional and unexpected functions in the bee brain for learning process.
Collapse
Affiliation(s)
- Liudy G Hernández
- System Biology Department, Center for Genetic Engineering and Biotechnology, Ave 31 e/158 y 190, Cubanacán, Playa, P.O. Box 6162, 10600, La Habana, Cuba
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Carlos Henrique S Garcia
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
- Institute of Microbiology, San Francisco University of Quito, Av. Diego de Robles y Vía Interoceánica, Post Office Box 170901, Quito, Ecuador
| | - Jaques M F DE Souza
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
| | - Gabriel C N DA Cruz
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
- Superintendência da Polícia Tecnico Científica, Núcleo de Perícia Criminalística, Rua Fritz Jacobs, 1045, 15025-500 São José do Rio Preto, SP, Brazil
| | - Luciana Karen Calábria
- Universidade Federal de Uberlândia, Instituto de Biotecnologia, Av. Amazonas, 38405-320 Uberlândia, MG, Brazil
- Universidade Federal de Uberlândia, Instituto de Ciências Exatas e Naturais do Pontal, Rua Vinte, 1600, 38304-208 Ituiutaba, MG, Brazil
| | - Antonio Mauricio Moreno
- Universidade Federal de São Carlos, Departamento de Psicologia,Via Washington Luis, Km 235, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
- Universidade Estadual do Sudoeste da Bahia, Departamento de Filosofia e Ciências Humanas, Caixa Postal 95, 45028-100 Vitória da Conquista, BA, Brazil
| | - Foued S Espindola
- Universidade Federal de Uberlândia, Instituto de Biotecnologia, Av. Amazonas, 38405-320 Uberlândia, MG, Brazil
| | - Deisy G DE Souza
- Universidade Federal de São Carlos, Departamento de Psicologia,Via Washington Luis, Km 235, Caixa Postal 676, 13565-905 São Carlos, SP, Brazil
| | - Marcelo V DE Sousa
- Universidade de Brasília, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Asa Norte, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
21
|
Bennett D, Nakamura J, Vinnakota C, Sokolenko E, Nithianantharajah J, van den Buuse M, Jones NC, Sundram S, Hill R. Mouse Behavior on the Trial-Unique Nonmatching-to-Location (TUNL) Touchscreen Task Reflects a Mixture of Distinct Working Memory Codes and Response Biases. J Neurosci 2023; 43:5693-5709. [PMID: 37369587 PMCID: PMC10401633 DOI: 10.1523/jneurosci.2101-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/28/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
The trial-unique nonmatching to location (TUNL) touchscreen task shows promise as a translational assay of working memory (WM) deficits in rodent models of autism, ADHD, and schizophrenia. However, the low-level neurocognitive processes that drive behavior in the TUNL task have not been fully elucidated. In particular, it is commonly assumed that the TUNL task predominantly measures spatial WM dependent on hippocampal pattern separation, but this proposition has not previously been tested. In this project, we tested this question using computational modeling of behavior from male and female mice performing the TUNL task (N = 163 across three datasets; 158,843 trials). Using this approach, we empirically tested whether TUNL behavior solely measured retrospective WM, or whether it was possible to deconstruct behavior into additional neurocognitive subprocesses. Overall, contrary to common assumptions, modeling analyses revealed that behavior on the TUNL task did not primarily reflect retrospective spatial WM. Instead, behavior was best explained as a mixture of response strategies, including both retrospective WM (remembering the spatial location of a previous stimulus) and prospective WM (remembering an anticipated future behavioral response) as well as animal-specific response biases. These results suggest that retrospective spatial WM is just one of a number of cognitive subprocesses that contribute to choice behavior on the TUNL task. We suggest that findings can be understood within a resource-rational framework, and use computational model simulations to propose several task-design principles that we predict will maximize spatial WM and minimize alternative behavioral strategies in the TUNL task.SIGNIFICANCE STATEMENT Touchscreen tasks represent a paradigm shift for assessment of cognition in nonhuman animals by automating large-scale behavioral data collection. Their main relevance, however, depends on the assumption of functional equivalence to cognitive domains in humans. The trial-unique, delayed nonmatching to location (TUNL) touchscreen task has revolutionized the study of rodent spatial working memory. However, its assumption of functional equivalence to human spatial working memory is untested. We leveraged previously untapped single-trial TUNL data to uncover a novel set of hierarchically ordered cognitive processes that underlie mouse behavior on this task. The strategies used demonstrate multiple cognitive approaches to a single behavioral outcome and the requirement for more precise task design and sophisticated data analysis in interpreting rodent spatial working memory.
Collapse
Affiliation(s)
- Daniel Bennett
- School of Psychological Sciences, Monash University, Melbourne, Victoria 3180, Australia
| | - Jay Nakamura
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
- Laboratory for Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan, 351-0198
| | - Chitra Vinnakota
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
| | - Elysia Sokolenko
- Discipline of Anatomy and Pathology, School of Biomedicine, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | - Maarten van den Buuse
- School of Psychology and Public Health, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Nigel C Jones
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
- Department of Neurology, Alfred Hospital, Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Suresh Sundram
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
- Mental Health Program, Monash Health, Clayton, Victoria 3168, Australia
| | - Rachel Hill
- Department of Psychiatry, Monash University, Melbourne, Victoria 3180, Australia
| |
Collapse
|
22
|
Brando S, Norman M. Handling and Training of Wild Animals: Evidence and Ethics-Based Approaches and Best Practices in the Modern Zoo. Animals (Basel) 2023; 13:2247. [PMID: 37508025 PMCID: PMC10375971 DOI: 10.3390/ani13142247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
There is an ethical responsibility to provide all animals living in human care with optimal and positive well-being. As animals living in zoos and aquariums frequently interact with their human caregivers as part of their daily care routines, it is both relevant and essential to consider the impact of these interactions on animal well-being. Allowing animals to have choice and control in multiple areas of their lives, such as by providing opportunities for them to voluntarily participate in their own care through, for example, positive reinforcement training, is an essential component of good animal well-being programs. This review aims to describe evidence-based approaches, ethics, and best practices in the handling and training of the many taxa held in zoos and aquariums worldwide, drawing from work in related animal care fields such as laboratories, farms, rescue, and sanctuaries. The importance of ongoing animal well-being assessments is discussed, with a particular focus on the need for continued review and refinement of processes and procedures pertaining to animal training and handling specifically. Review, enquiry, assessment, evaluation, and refinement will aim to dynamically support positive well-being for all animals.
Collapse
|
23
|
Menzel R. Navigation and dance communication in honeybees: a cognitive perspective. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:515-527. [PMID: 36799987 PMCID: PMC10354182 DOI: 10.1007/s00359-023-01619-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 01/28/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
Flying insects like the honeybee experience the world as a metric layout embedded in a compass, the time-compensated sun compass. The focus of the review lies on the properties of the landscape memory as accessible by data from radar tracking and analyses of waggle dance following. The memory formed during exploration and foraging is thought to be composed of multiple elements, the aerial pictures that associate the multitude of sensory inputs with compass directions. Arguments are presented that support retrieval and use of landscape memory not only during navigation but also during waggle dance communication. I argue that bees expect landscape features that they have learned and that are retrieved during dance communication. An intuitive model of the bee's navigation memory is presented that assumes the picture memories form a network of geographically defined locations, nodes. The intrinsic components of the nodes, particularly their generalization process leads to binding structures, the edges. In my view, the cognitive faculties of landscape memory uncovered by these experiments are best captured by the term cognitive map.
Collapse
Affiliation(s)
- Randolf Menzel
- Fachbereich Biologie, Chemie, Pharmazie, Institut Für Biologie, Freie Universität Berlin, Königin Luisestr. 1-3, 14195, Berlin, Germany.
| |
Collapse
|
24
|
Fan X, Zhang W, Guo S, Zhu L, Zhang Y, Zhao H, Gao X, Jiang H, Zhang T, Chen D, Guo R, Niu Q. Expression Profile, Regulatory Network, and Putative Role of microRNAs in the Developmental Process of Asian Honey Bee Larval Guts. INSECTS 2023; 14:insects14050469. [PMID: 37233097 DOI: 10.3390/insects14050469] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
MiRNAs, as a kind of key regulators in gene expression, play vital roles in numerous life activities from cellular proliferation and differentiation to development and immunity. However, little is known about the regulatory manner of miRNAs in the development of Asian honey bee (Apis cerana) guts. Here, on basis of our previously gained high-quality transcriptome data, transcriptome-wide identification of miRNAs in the larval guts of Apis cerana cerana was conducted, followed by investigation of the miRNAs' differential expression profile during the gut development. In addition to the regulatory network, the potential function of differentially expressed miRNAs (DEmiRNAs) was further analyzed. In total, 330, 351, and 321 miRNAs were identified in the 4-, 5-, and 6-day-old larval guts, respectively; among these, 257 miRNAs were shared, while 38, 51, and 36 ones were specifically expressed. Sequences of six miRNAs were confirmed by stem-loop RT-PCR and Sanger sequencing. Additionally, in the "Ac4 vs. Ac5" comparison group, there were seven up-regulated and eight down-regulated miRNAs; these DEmiRNAs could target 5041 mRNAs, involving a series of GO terms and KEGG pathways associated with growth and development, such as cellular process, cell part, Wnt, and Hippo. Comparatively, four up-regulated and six down-regulated miRNAs detected in the "Ac5 vs. Ac6" comparison group and the targets were associated with diverse development-related terms and pathways, including cell, organelle, Notch and Wnt. Intriguingly, it was noticed that miR-6001-y presented a continuous up-regulation trend across the developmental process of larval guts, implying that miR-6001-y may be a potential essential modulator in the development process of larval guts. Further investigation indicated that 43 targets in the "Ac4 vs. Ac5" comparison group and 31 targets in the "Ac5 vs. Ac6" comparison group were engaged in several crucial development-associated signaling pathways such as Wnt, Hippo, and Notch. Ultimately, the expression trends of five randomly selected DEmiRNAs were verified using RT-qPCR. These results demonstrated that dynamic expression and structural alteration of miRNAs were accompanied by the development of A. c. cerana larval guts, and DEmiRNAs were likely to participate in the modulation of growth as well as development of larval guts by affecting several critical pathways via regulation of the expression of target genes. Our data offer a basis for elucidating the developmental mechanism underlying Asian honey bee larval guts.
Collapse
Affiliation(s)
- Xiaoxue Fan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wende Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sijia Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Leran Zhu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqiong Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haodong Zhao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuze Gao
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Haibin Jiang
- Apiculture Science Institute of Jilin Province, Jilin 132000, China
| | - Tianze Zhang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dafu Chen
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Rui Guo
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Apitherapy Research Institute of Fujian Province, Fuzhou 350002, China
| | - Qingsheng Niu
- Apiculture Science Institute of Jilin Province, Jilin 132000, China
| |
Collapse
|
25
|
Howard SR, Symonds MRE. Complex preference relationships between native and non-native angiosperms and foraging insect visitors in a suburban greenspace under field and laboratory conditions. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2023; 110:16. [PMID: 37140757 PMCID: PMC10160202 DOI: 10.1007/s00114-023-01846-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
The introduction and spread of non-native flora threatens native pollinators and plants. Non-native angiosperms can compete with native plants for pollinators, space, and other resources which can leave native bees without adequate nutritional or nesting resources, particularly specialist species. In the current study, we conducted flower preference experiments through field observations and controlled binary choice tests in an artificial arena to determine the impact of field vs. laboratory methods on flower preferences of native bees for native or non-native flowers within their foraging range. We conducted counts of insect pollinators foraging on the flowers of three plant species in a suburban green belt including one native (Arthropodium strictum) and two non-native (Arctotheca calendula and Taraxacum officinale) plant species. We then collected native halictid bees foraging on each of the three plant species and conducted controlled binary tests to determine their preferences for the flowers of native or non-native plant species. In the field counts, halictid bees visited the native plant significantly more than the non-native species. However, in the behavioural assays when comparing A. strictum vs. A. calendula, Lasioglossum (Chilalictus) lanarium (Family: Halictidae), bees significantly preferred the non-native species, regardless of their foraging history. When comparing A. strictum vs. T. officinale, bees only showed a preference for the non-native flower when it had been collected foraging on the flowers of that plant species immediately prior to the experiment; otherwise, they showed no flower preference. Our results highlight the influence that non-native angiosperms have on native pollinators and we discuss the complexities of the results and the possible reasons for different flower preferences under laboratory and field conditions.
Collapse
Affiliation(s)
- Scarlett R Howard
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia.
- School of Biological Sciences, Monash University, Clayton, VIC, Australia.
| | - Matthew R E Symonds
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, Australia
| |
Collapse
|
26
|
Hämäläinen R, Kajanus MH, Forsman JT, Kivelä SM, Seppänen JT, Loukola OJ. Ecological and evolutionary consequences of selective interspecific information use. Ecol Lett 2023; 26:490-503. [PMID: 36849224 DOI: 10.1111/ele.14184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 02/02/2023] [Accepted: 02/04/2023] [Indexed: 03/01/2023]
Abstract
Recent work has shown that animals frequently use social information from individuals of their own species as well as from other species; however, the ecological and evolutionary consequences of this social information use remain poorly understood. Additionally, information users may be selective in their social information use, deciding from whom and how to use information, but this has been overlooked in an interspecific context. In particular, the intentional decision to reject a behaviour observed via social information has received less attention, although recent work has indicated its presence in various taxa. Based on existing literature, we explore in which circumstances selective interspecific information use may lead to different ecological and coevolutionary outcomes between two species, such as explaining observed co-occurrences of putative competitors. The initial ecological differences and the balance between the costs of competition and the benefits of social information use potentially determine whether selection may lead to trait divergence, convergence or coevolutionary arms race between two species. We propose that selective social information use, including adoption and rejection of behaviours, may have far-reaching fitness consequences, potentially leading to community-level eco-evolutionary outcomes. We argue that these consequences of selective interspecific information use may be much more widespread than has thus far been considered.
Collapse
Affiliation(s)
| | - Mira H Kajanus
- Ecology and Genetics, University of Oulu, Oulu, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | | | - Sami M Kivelä
- Ecology and Genetics, University of Oulu, Oulu, Finland
| | | | | |
Collapse
|
27
|
Bullinger E, Greggers U, Menzel R. Generalization of navigation memory in honeybees. Front Behav Neurosci 2023; 17:1070957. [PMID: 36950065 PMCID: PMC10025308 DOI: 10.3389/fnbeh.2023.1070957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/03/2023] [Indexed: 03/08/2023] Open
Abstract
Flying insects like the honeybee learn multiple features of the environment for efficient navigation. Here we introduce a novel paradigm in the natural habitat, and ask whether the memory of such features is generalized to novel test conditions. Foraging bees from colonies located in 5 different home areas were tested in a common area for their search flights. The home areas differed in the arrangements of rising natural objects or their lack, and in the existence or lack of elongated ground structures. The test area resembled partly or not at all the layout of landmarks in the respective home areas. In particular, the test area lacked rising objects. The search flights were tracked with harmonic radar and quantified by multiples procedures, extracting their differences on an individual basis. Random search as the only guide for searching was excluded by two model calculations. The frequencies of directions of flight sectors differed from both model calculations and between the home areas in a graded fashion. Densities of search flight fixes were used to create heat maps and classified by a partial least squares regression analysis. Classification was performed with a support vector machine in order to account for optimal hyperplanes. A rank order of well separated clusters was found that partly resemble the graded differences between the ground structures of the home areas and the test area. The guiding effect of elongated ground structures was quantified with respect to the sequence, angle and distance from these ground structures. We conclude that foragers generalize their specific landscape memory in a graded way to the landscape features in the test area, and argue that both the existence and absences of landmarks are taken into account. The conclusion is discussed in the context of the learning and generalization process in an insect, the honeybee, with an emphasis on exploratory learning in the context of navigation.
Collapse
Affiliation(s)
- Eric Bullinger
- Institut für Automatisierungstechnik, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | - Uwe Greggers
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Randolf Menzel
- Neurobiologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Generalized, cross-modal, and incrementing non-matching-to-sample in rats. Learn Behav 2023; 51:88-107. [PMID: 36697934 DOI: 10.3758/s13420-023-00571-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2023] [Indexed: 01/26/2023]
Abstract
Same/different concept learning has been demonstrated in previous research in rats using matching- and non-matching-to-sample procedures with olfactory stimuli. In Experiment 1, rats were trained on the non-matching-to-sample procedure with either three-dimensional (3D plastic objects; n = 3) or olfactory (household spices, n = 5) stimuli, then tested for transfer to novel stimuli of the same, and then the alternate, modality. While all three rats trained with olfactory stimuli showed generalized non-matching to novel odors, only one rat learned the 3D relation and showed generalized transfer to novel objects. Importantly, in this rat the 3D non-matching relation then immediately transferred to odors. In contrast, rats trained with scents did not show transfer to novel 3D stimuli until after training with one or two 3D stimulus sets. In Experiment 2, four rats were trained on an incrementing non-matching-to-sample task featuring 3D plastic objects as stimuli (3D Span Task). Responses to session-novel stimuli resulted in reinforcement. Only two rats learned the 3D Span Task; one rat performed with high accuracy even with up to 17 session-novel objects in a session. While these findings emphasize the exceptional olfactory discrimination of rats relative to that with 3D/tactile/visual cues, they also show that relational learning can be demonstrated in another modality in this species. Further, the present study provides some evidence of cross-modal transfer of relational responding in rats.
Collapse
|
29
|
Assessing Temporal Relational Responding in Young Children. PSYCHOLOGICAL RECORD 2023. [DOI: 10.1007/s40732-023-00534-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
AbstractRelational frame theory (RFT) sees temporal relational responding (e.g., A is after B; B is before A) as a key operant skill involved in the understanding of time. From this perspective relating events temporally is important for everyday life situations such as sequencing events, planning, and talking about the past or future. The aim of the present research was to assess performance on a test of temporal relational responding in young children at increasing levels of complexity. Twenty-five typically developing children between 3 and 8 years were assessed on tasks of nonarbitrary (i.e., based on physical events) and arbitrary (i.e., based on contextual cues only) temporal relations. Results showed a correlation between overall performance across temporal relational responding tasks and age. Performance on nonarbitrary “before” and “after” trials improved similarly with age whereas with arbitrary relations, participants performed much more poorly on “after” trials than on “before” trials and some interesting cohort specific patterns were also seen. Implications of the results and future research directions are discussed.
Collapse
|
30
|
Martin-Ordas G. Frames of reference in small-scale spatial tasks in wild bumblebees. Sci Rep 2022; 12:21683. [PMID: 36522430 PMCID: PMC9755249 DOI: 10.1038/s41598-022-26282-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Spatial cognitive abilities are fundamental to foraging animal species. In particular, being able to encode the location of an object in relation to another object (i.e., spatial relationships) is critical for successful foraging. Whether egocentric (i.e., viewer-dependent) or allocentric (i.e., dependent on external environment or cues) representations underlie these behaviours is still a highly debated question in vertebrates and invertebrates. Previous research shows that bees encode spatial information largely using egocentric information. However, no research has investigated this question in the context of relational similarity. To test this, a spatial matching task previously used with humans and great apes was adapted for use with wild-caught bumblebees. In a series of experiments, bees first experienced a rewarded object and then had to spontaneously (Experiment 1) find or learn (Experiments 2 and 3) to find a second one, based on the location of first one. The results showed that bumblebees predominantly exhibited an allocentric strategy in the three experiments. These findings suggest that egocentric representations alone might not be evolutionary ancestral and clearly indicate similarities between vertebrates and invertebrates when encoding spatial information.
Collapse
Affiliation(s)
- Gema Martin-Ordas
- grid.10863.3c0000 0001 2164 6351Department of Psychology, University of Oviedo, Oviedo, Spain ,grid.11918.300000 0001 2248 4331Division of Psychology, University of Stirling, Stirling, UK
| |
Collapse
|
31
|
A Behavioral Approach to the Human Understanding of Time: Relational Frame Theory and Temporal Relational Framing. PSYCHOLOGICAL RECORD 2022. [DOI: 10.1007/s40732-022-00529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
Baran B, Krzyżowski M, Rádai Z, Francikowski J, Hohol M. Geometry-based navigation in the dark: layout symmetry facilitates spatial learning in the house cricket, Acheta domesticus, in the absence of visual cues. Anim Cogn 2022; 26:755-770. [PMID: 36369419 PMCID: PMC10066172 DOI: 10.1007/s10071-022-01712-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
AbstractThe capacity to navigate by layout geometry has been widely recognized as a robust strategy of place-finding. It has been reported in various species, although most studies were performed with vision-based paradigms. In the presented study, we aimed to investigate layout symmetry-based navigation in the house cricket, Acheta domesticus, in the absence of visual cues. For this purpose, we used a non-visual paradigm modeled on the Tennessee Williams setup. We ensured that the visual cues were indeed inaccessible to insects. In the main experiment, we tested whether crickets are capable of learning to localize the centrally positioned, inconspicuous cool spot in heated arenas of various shapes (i.e., circular, square, triangular, and asymmetric quadrilateral). We found that the symmetry of the arena significantly facilitates crickets’ learning to find the cool spot, indicated by the increased time spent on the cool spot and the decreased latency in locating it in subsequent trials. To investigate mechanisms utilized by crickets, we analyzed their approach paths to the spot. We found that crickets used both heuristic and directed strategies of approaching the target, with the dominance of a semi-directed strategy (i.e., a thigmotactic phase preceding direct navigation to the target). We propose that the poor performance of crickets in the asymmetrical quadrilateral arena may be explained by the difficulty of encoding its layout with cues from a single modality.
Collapse
|
33
|
Prior associations affect bumblebees’ generalization performance in a tool-selection task. iScience 2022; 25:105466. [DOI: 10.1016/j.isci.2022.105466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022] Open
|
34
|
Nieder A. In search for consciousness in animals: Using working memory and voluntary attention as behavioral indicators. Neurosci Biobehav Rev 2022; 142:104865. [PMID: 36096205 DOI: 10.1016/j.neubiorev.2022.104865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
Whether animals have subjective experiences about the content of their sensory input, i.e., whether they are aware of stimuli, is a notoriously difficult question to answer. If consciousness is present in animals, it must share fundamental characteristics with human awareness. Working memory and voluntary/endogenous attention are suggested as diagnostic features of conscious awareness. Behavioral evidence shows clear signatures of both working memory and voluntary attention as minimal criterium for sensory consciousness in mammals and birds. In contrast, reptiles and amphibians show no sign of either working memory or volitional attention. Surprisingly, some species of teleost fishes exhibit elementary working memory and voluntary attention effects suggestive of possibly rudimentary forms of subjective experience. With the potential exception of honeybees, evidence for conscious processing is lacking in invertebrates. These findings suggest that consciousness is not ubiquitous in the animal kingdom but also not exclusive to humans. The phylogenetic gap between animal taxa argues that evolution does not rely on specific neural substrates to endow distantly related species with basic forms of consciousness.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
35
|
Martin L, Marie J, Brun M, de Hevia MD, Streri A, Izard V. Abstract representations of small sets in newborns. Cognition 2022; 226:105184. [PMID: 35671541 PMCID: PMC9289748 DOI: 10.1016/j.cognition.2022.105184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 03/22/2022] [Accepted: 05/26/2022] [Indexed: 11/21/2022]
Abstract
From the very first days of life, newborns are not tied to represent narrow, modality- and object-specific aspects of their environment. Rather, they sometimes react to abstract properties shared by stimuli of very different nature, such as approximate numerosity or magnitude. As of now, however, there is no evidence that newborns possess abstract representations that apply to small sets: in particular, while newborns can match large approximate numerosities across senses, this ability does not extend to small numerosities. In two experiments, we presented newborn infants (N = 64, age 17 to 98 h) with patterned sets AB or ABB simultaneously in the auditory and visual modalities. Auditory patterns were presented as periodic sequences of sounds (AB: triangle-drum-triangle-drum-triangle-drum …; ABB: triangle-drum-drum-triangle-drum-drum-triangle-drum-drum …), and visual patterns as arrays of 2 or 3 shapes (AB: circle-diamond; ABB: circle-diamond-diamond). In both experiments, we found that participants reacted and looked longer when the patterns matched across the auditory and visual modalities – provided that the first stimulus they received was congruent. These findings uncover the existence of yet another type of abstract representations at birth, applying to small sets. As such, they bolster the hypothesis that newborns are endowed with the capacity to represent their environment in broad strokes, in terms of its most abstract properties. This capacity for abstraction could later serve as a scaffold for infants to learn about the particular entities surrounding them. Newborns were presented with auditory and visual patterns (AB vs. ABB). Participants reacted when the patterns presented were congruent across modalities. Newborns possess abstract representations applying to small sets. These representations may encode numerosity and/or repetitions.
Collapse
Affiliation(s)
- Lucie Martin
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Julien Marie
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Mélanie Brun
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Maria Dolores de Hevia
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Arlette Streri
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France
| | - Véronique Izard
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, F-75006 Paris, France.
| |
Collapse
|
36
|
Varnon CA, Barrera EI, Wilkes IN. Learning and memory in the orange head cockroach (Eublaberus posticus). PLoS One 2022; 17:e0272598. [PMID: 35994454 PMCID: PMC9394846 DOI: 10.1371/journal.pone.0272598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/23/2022] [Indexed: 11/30/2022] Open
Abstract
This paper describes two experiments aimed at establishing the orange head cockroach (Eublaberus posticus) as a model organism for behavioral research. While many invertebrate models are available, cockroaches have several benefits over others that show impressive behavioral abilities. Most notably, cockroaches are long-lived generalists that can be maintained in controlled indoor laboratory conditions. While the most popular cockroaches in behavioral research, Periplaneta americana and Blattella germanica, have the potential to become domestic pests, our E. posticus is extremely unlikely to escape or infest a human environment, making it a very practical species. In our first experiment, we investigated the ability of E. posticus to associate novel odors with appetitive and aversive solutions. They quickly learned to approach odors associated with a dog food sucrose solution and learned to avoid odors associated with salt water. The second experiment repeated the methods of the first experiment, while also testing retained preferences for conditioned odors, from 15 to 1,215 minutes after the conditioning procedure ended. We found that preferences for odors associated with food were strongest 45 minutes after training, then decreased as a function of time. Our work is the first to show associative learning and memory in the orange head cockroach. Findings are discussed in comparison to other invertebrate models as well as to other cockroach research.
Collapse
Affiliation(s)
- Christopher A Varnon
- Department of Psychology, Laboratory of Comparative Psychology and Behavioral Ecology, Converse University, Spartanburg, South Carolina, United States of America
| | - Erandy I Barrera
- Department of Psychology, Laboratory of Comparative Psychology and Behavioral Ecology, Converse University, Spartanburg, South Carolina, United States of America
| | - Isobel N Wilkes
- Department of Psychology, Laboratory of Comparative Psychology and Behavioral Ecology, Converse University, Spartanburg, South Carolina, United States of America
| |
Collapse
|
37
|
Degrande R, Cornilleau F, Lansade L, Jardat P, Colson V, Calandreau L. Domestic hens succeed at serial reversal learning and perceptual concept generalisation using a new automated touchscreen device. Animal 2022; 16:100607. [PMID: 35963029 DOI: 10.1016/j.animal.2022.100607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Improving the welfare of farm animals depends on our knowledge on how they perceive and interpret their environment; the latter depends on their cognitive abilities. Hence, limited knowledge of the range of cognitive abilities of farm animals is a major concern. An effective approach to explore the cognitive range of a species is to apply automated testing devices, which are still underdeveloped in farm animals. In screen-like studies, the uses of automated devices are few in domestic hens. We developed an original fully automated touchscreen device using digital computer-drawn colour pictures and independent sensible cells adapted for cognitive testing in domestic hens, enabling a wide range of test types from low to high complexity. This study aimed to test the efficiency of our device using two cognitive tests. We focused on tasks related to adaptive capacities to environmental variability, such as flexibility and generalisation capacities as this is a good start to approach more complex cognitive capacities. We implemented a serial reversal learning task, categorised as a simple cognitive test, and a delayed matching-to-sample (dMTS) task on an identity concept, followed by a generalisation test, categorised as more complex. In the serial reversal learning task, the hens performed equally for the two changing reward contingencies in only three reversal stages. In the dMTS task, the hens increased their performance rapidly throughout the training sessions. Moreover, to the best of our knowledge, we present the first positive result of identity concept generalisation in a dMTS task in domestic hens. Our results provide additional information on the behavioural flexibility and concept understanding of domestic hens. They also support the idea that fully automated devices would improve knowledge of farm animals' cognition.
Collapse
Affiliation(s)
- Rachel Degrande
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France.
| | - Fabien Cornilleau
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| | - Léa Lansade
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| | - Plotine Jardat
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| | - Violaine Colson
- INRAE, LPGP (Laboratoire de Physiologie et Génomique des Poissons), Campus de Beaulieu, F-35042 Rennes cedex, Ille-et-Vilaine, France
| | - Ludovic Calandreau
- CNRS, IFCE, INRAE, Université de Tours, PRC (Physiologie de la Reproduction et des Comportements), F-37380 Nouzilly, Indre-et-Loire, France
| |
Collapse
|
38
|
Martin-Ordas G. Spontaneous relational and object similarity in wild bumblebees. Biol Lett 2022; 18:20220253. [PMID: 36043304 PMCID: PMC9428533 DOI: 10.1098/rsbl.2022.0253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Being able to abstract relations of similarity is considered one of the hallmarks of human cognition. While previous research has shown that other animals (e.g. primates) can attend to relational similarity, they struggle to focus on object similarity. This is in contrast with humans. And it is precisely the ability to attend to objects that it is argued to make relational reasoning uniquely human. What about invertebrates? Despite earlier studies indicating that bees are capable of learning abstract relationships (e.g. 'same' and 'different'), no research has investigated whether bees can spontaneously attend to relational similarity and whether they can do so when relational matches compete with object matches. To test this, a spatial matching task (with and without competing object matches) previously used with children and great apes was adapted for use with wild-caught bumblebees. When object matches were not present, bumblebees spontaneously used relational similarity. Importantly, when competing object matches were present, bumblebees still focused on relations over objects. These findings indicate that the absence of object bias is also present in invertebrates and suggest that the relational gap between humans and other animals is due to their preference for relations over objects.
Collapse
Affiliation(s)
- Gema Martin-Ordas
- Division of Psychology, University of Stirling, Stirling FK9 4LA, UK
- Department of Psychology, University of Oviedo, 33003 Asturias, Spain
| |
Collapse
|
39
|
Weise C, Ortiz CC, Tibbetts EA. Paper wasps form abstract concept of 'same and different'. Proc Biol Sci 2022; 289:20221156. [PMID: 35855600 PMCID: PMC9297017 DOI: 10.1098/rspb.2022.1156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Concept formation requires animals to learn and use abstract rules that transcend the characteristics of specific stimuli. Abstract concepts are often associated with high levels of cognitive sophistication, so there has been much interest in which species can form and use concepts. A key abstract concept is that of sameness and difference, where stimuli are classified as either the same as or different than an original stimulus. Here, we used a simultaneous two-item same-different task to test whether paper wasps (Polistes fuscatus) can learn and apply a same-different concept. We trained wasps by simultaneously presenting pairs of same or different stimuli (e.g. colours). Then, we tested whether wasps could apply the concept to new stimuli of the same type (e.g. new colours) and to new stimulus types (e.g. odours). We show that wasps learned a general concept of sameness or difference and applied it to new samples and types of stimuli. Notably, wasps were able to transfer the learned rules to new stimuli in a different sensory modality. Therefore, P. fuscatus can classify stimuli based on their relationships and apply abstract concepts to novel stimulus types. These results indicate that abstract concept learning may be more widespread than previously thought.
Collapse
Affiliation(s)
- Chloe Weise
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| | - Christian Cely Ortiz
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| | - Elizabeth A. Tibbetts
- Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 7347633564, USA
| |
Collapse
|
40
|
Elwood RW. Caution is required when considering sentience in animals: a response to the commentary by Briffa (2022) on "Hermit crabs, shells, and sentience" (Elwood 2022). Anim Cogn 2022; 25:1371-1374. [PMID: 35881315 DOI: 10.1007/s10071-022-01655-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022]
Abstract
My recent review examined the complex and intimate relationship between hermit crabs and the empty gastropod shells upon which they depend for survival. Because shells come with costs as well as benefits, the crabs are highly selective about which ones they prefer to occupy. Thus, a new shell is investigated and the information that is gathered appears to be compared with their existing shell before a decision is made. This is often prolonged and complex. Crabs also fight for shells and again the information that is gathered and used to inform fight decisions is complex. In my review, I consider these and other situations with reference to the possibility of sentience (including awareness). The excellent commentary from Mark Briffa expands on aspects of sentience and invokes the use of Lloyd Morgan's Canon to avoid suggesting complex abilities when simpler explanations would suffice. I agree with this approach. However, I also suggest that when simpler explanations appear not to explain the data, then it is reasonable to consider if more complex mental abilities might be used. I also like Briffa's suggestion that the use of an apparently higher mental faculty might result in a mechanism that is simpler than a large number of apparently simple decisions used to make complex decisions.
Collapse
Affiliation(s)
- Robert W Elwood
- School of Biological Sciences, Queen's University, Belfast, BT9 7DL, UK.
| |
Collapse
|
41
|
Menzel R. In Search for the Retrievable Memory Trace in an Insect Brain. Front Syst Neurosci 2022; 16:876376. [PMID: 35757095 PMCID: PMC9214861 DOI: 10.3389/fnsys.2022.876376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 04/05/2022] [Indexed: 11/30/2022] Open
Abstract
The search strategy for the memory trace and its semantics is exemplified for the case of olfactory learning in the honeybee brain. The logic of associative learning is used to guide the experimental approach into the brain by identifying the anatomical and functional convergence sites of the conditioned stimulus and unconditioned stimulus pathways. Two of the several convergence sites are examined in detail, the antennal lobe as the first-order sensory coding area, and the input region of the mushroom body as a higher order integration center. The memory trace is identified as the pattern of associative changes on the level of synapses. The synapses are recruited, drop out, and change the transmission properties for both specifically associated stimulus and the non-associated stimulus. Several rules extracted from behavioral studies are found to be mirrored in the patterns of synaptic change. The strengths and the weaknesses of the honeybee as a model for the search for the memory trace are addressed in a comparison with Drosophila. The question is discussed whether the memory trace exists as a hidden pattern of change if it is not retrieved and whether an external reading of the content of the memory trace may ever be possible. Doubts are raised on the basis that the retrieval circuits are part of the memory trace. The concept of a memory trace existing beyond retrieval is defended by referring to two well-documented processes also in the honeybee, memory consolidation during sleep, and transfer of memory across brain areas.
Collapse
Affiliation(s)
- Randolf Menzel
- Institute Biology - Neurobiology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
42
|
Forsman JT, Kivelä SM, Tolvanen J, Loukola OJ. Conceptual preferences can be transmitted via selective social information use between competing wild bird species. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220292. [PMID: 35719877 PMCID: PMC9198510 DOI: 10.1098/rsos.220292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/19/2022] [Indexed: 05/03/2023]
Abstract
Concept learning is considered a high-level adaptive ability. Thus far, it has been studied in laboratory via asocial trial and error learning. Yet, social information use is common among animals but it remains unknown whether concept learning by observing others occurs. We tested whether pied flycatchers (Ficedula hypoleuca) form conceptual relationships from the apparent choices of nest-site characteristics (geometric symbol attached to the nest-box) of great tits (Parus major). Each wild flycatcher female (n = 124) observed one tit pair that exhibited an apparent preference for either a large or a small symbol and was then allowed to choose between two nest-boxes with a large and a small symbol, but the symbol shape was different to that on the tit nest. Older flycatcher females were more likely to copy the symbol size preference of tits than yearling flycatcher females when there was a high number of visible eggs or a few partially visible eggs in the tit nest. However, this depended on the phenotype, copying switched to rejection as a function of increasing body size. Possibly the quality of and overlap in resource use with the tits affected flycatchers' decisions. Hence, our results suggest that conceptual preferences can be horizontally transmitted across coexisting animals, which may increase the performance of individuals that use concept learning abilities in their decision-making.
Collapse
Affiliation(s)
- Jukka T. Forsman
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014, Finland
| | - Sami M. Kivelä
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014, Finland
| | - Jere Tolvanen
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014, Finland
| | - Olli J. Loukola
- Department of Ecology and Genetics, University of Oulu, PO Box 3000, 90014, Finland
| |
Collapse
|
43
|
Gatto E, Loukola OJ, Petrazzini MEM, Agrillo C, Cutini S. Illusional Perspective across Humans and Bees. Vision (Basel) 2022; 6:28. [PMID: 35737416 PMCID: PMC9231007 DOI: 10.3390/vision6020028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 11/16/2022] Open
Abstract
For two centuries, visual illusions have attracted the attention of neurobiologists and comparative psychologists, given the possibility of investigating the complexity of perceptual mechanisms by using relatively simple patterns. Animal models, such as primates, birds, and fish, have played a crucial role in understanding the physiological circuits involved in the susceptibility of visual illusions. However, the comprehension of such mechanisms is still a matter of debate. Despite their different neural architectures, recent studies have shown that some arthropods, primarily Hymenoptera and Diptera, experience illusions similar to those humans do, suggesting that perceptual mechanisms are evolutionarily conserved among species. Here, we review the current state of illusory perception in bees. First, we introduce bees' visual system and speculate which areas might make them susceptible to illusory scenes. Second, we review the current state of knowledge on misperception in bees (Apidae), focusing on the visual stimuli used in the literature. Finally, we discuss important aspects to be considered before claiming that a species shows higher cognitive ability while equally supporting alternative hypotheses. This growing evidence provides insights into the evolutionary origin of visual mechanisms across species.
Collapse
Affiliation(s)
- Elia Gatto
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121 Ferrara, Italy
| | - Olli J. Loukola
- Ecology and Genetics Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland;
| | | | - Christian Agrillo
- Department of General Psychology, University of Padova, 35131 Padova, Italy; (M.E.M.P.); (C.A.)
- Department of Developmental and Social Psychology, University of Padova, 35131 Padova, Italy;
| | - Simone Cutini
- Department of Developmental and Social Psychology, University of Padova, 35131 Padova, Italy;
- Padua Neuroscience Center, University of Padova, 35129 Padova, Italy
| |
Collapse
|
44
|
Howard SR, Greentree J, Avarguès-Weber A, Garcia JE, Greentree AD, Dyer AG. Numerosity Categorization by Parity in an Insect and Simple Neural Network. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.805385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A frequent question as technology improves and becomes increasingly complex, is how we enable technological solutions and models inspired by biological systems. Creating technology based on humans is challenging and costly as human brains and cognition are complex. The honeybee has emerged as a valuable comparative model which exhibits some cognitive-like behaviors. The relative simplicity of the bee brain compared to large mammalian brains enables learning tasks, such as categorization, that can be mimicked by simple neural networks. Categorization of abstract concepts can be essential to how we understand complex information. Odd and even numerical processing is known as a parity task in human mathematical representations, but there appears to be a complete absence of research exploring parity processing in non-human animals. We show that free-flying honeybees can visually acquire the capacity to differentiate between odd and even quantities of 1–10 geometric elements and extrapolate this categorization to the novel numerosities of 11 and 12, revealing that such categorization is accessible to a comparatively simple system. We use this information to construct a neural network consisting of five neurons that can reliably categorize odd and even numerosities up to 40 elements. While the simple neural network is not directly based on the biology of the honeybee brain, it was created to determine if simple systems can replicate the parity categorization results we observed in honeybees. This study thus demonstrates that a task, previously only shown in humans, is accessible to a brain with a comparatively small numbers of neurons. We discuss the possible mechanisms or learning processes allowing bees to perform this categorization task, which range from numeric explanations, such as counting, to pairing elements and memorization of stimuli or patterns. The findings should encourage further testing of parity processing in a wider variety of animals to inform on its potential biological roots, evolutionary drivers, and potential technology innovations for concept processing.
Collapse
|
45
|
The best of both worlds: Dual systems of reasoning in animals and AI. Cognition 2022; 225:105118. [PMID: 35453083 DOI: 10.1016/j.cognition.2022.105118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
Abstract
Much of human cognition involves two different types of reasoning that operate together. Type 1 reasoning systems are intuitive and fast, whereas Type 2 reasoning systems are reflective and slow. Why has our cognition evolved with these features? Both systems are coherent and in most ecological circumstances either alone is capable of coming up with the right answer most of the time. Neural tissue is costly, and thus far evolutionary models have struggled to identify a benefit of operating two systems of reasoning. To explore this issue we take a broad comparative perspective. We discuss how dual processes of cognition have enabled the emergence of selective attention in insects, transforming the learning capacities of these animals. Modern AIs using dual systems of learning are able to learn how their vast world works and how best to interact with it, allowing them to exceed human levels of performance in strategy games. We propose that the core benefits of dual processes of reasoning are to narrow down a problem space in order to focus cognitive resources most effectively.
Collapse
|
46
|
Fahad Raza M, Anwar M, Husain A, Rizwan M, Li Z, Nie H, Hlaváč P, Ali MA, Rady A, Su S. Differential gene expression analysis following olfactory learning in honeybee (Apis mellifera L.). PLoS One 2022; 17:e0262441. [PMID: 35139088 PMCID: PMC8827436 DOI: 10.1371/journal.pone.0262441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022] Open
Abstract
Insects change their stimulus-response through the perception of associating these stimuli with important survival events such as rewards, threats, and mates. Insects develop strong associations and relate them to their experiences through several behavioral procedures. Among the insects, Apis species, Apis mellifera ligustica are known for their outstanding ability to learn with tremendous economic importance. Apis mellifera ligustica has a strong cognitive ability and promising model species for investigating the neurobiological basis of remarkable olfactory learning abilities. Here we evaluated the olfactory learning ability of A. mellifera by using the proboscis extension reflex (PER) protocol. The brains of the learner and failed-learner bees were examined for comparative transcriptome analysis by RNA-Seq to explain the difference in the learning capacity. In this study, we used an appetitive olfactory learning paradigm in the same age of A. mellifera bees to examine the differential gene expression in the brain of the learner and failed-learner. Bees that respond in 2nd and 3rd trials or only responded to 3rd trials were defined as learned bees, failed-learner individuals were those bees that did not respond in all learning trials The results indicate that the learning ability of learner bees was significantly higher than failed-learner bees for 12 days. We obtained approximately 46.7 and 46.4 million clean reads from the learner bees failed-learner bees, respectively. Gene expression profile between learners' bees and failed-learners bees identified 74 differentially expressed genes, 57 genes up-regulated in the brains of learners and 17 genes were down-regulated in the brains of the bees that fail to learn. The qRT-PCR validated the differently expressed genes. Transcriptome analyses revealed that specific genes in learner and failed-learner bees either down-regulated or up-regulated play a crucial role in brain development and learning behavior. Our finding suggests that down-regulated genes of the brain involved in the integumentary system, storage proteins, brain development, sensory processing, and neurodegenerative disorder may result in reduced olfactory discrimination and olfactory sensitivity in failed-learner bees. This study aims to contribute to a better understanding of the olfactory learning behavior and gene expression information, which opens the door for understanding of the molecular mechanism of olfactory learning behavior in honeybees.
Collapse
Affiliation(s)
- Muhammad Fahad Raza
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Arif Husain
- Department of Soil and Environmental Sciences, Faculty of Agricultural Sciences, Ghazi University Dera Ghazi Khan, Dera Ghazi Khan, Pakistan
| | - Muhmmad Rizwan
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiguo Li
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongyi Nie
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Pavol Hlaváč
- Department of Integrated Forest and Landscape Protection, Faculty of Forestry, Technical University in Zvolen, Zvolen, Slovakia
| | - M. Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Rady
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
47
|
Aellen M, Siebeck UE, Bshary R. Cleaner wrasse Labroides dimidiatus perform above chance in a "matching-to-sample" experiment. PLoS One 2022; 17:e0262351. [PMID: 35100297 PMCID: PMC8803161 DOI: 10.1371/journal.pone.0262351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 12/21/2021] [Indexed: 11/18/2022] Open
Abstract
Concept learning have been studied widely in non-human animal species within or not an ecological context. Here we tested whether cleaner fish Labroides dimidiatus, which show generalised rule learning in an ecologically relevant context; they generalise that any predator may provide protection from being chased by other fish; can also learn a general concept when presented with abstract cues. We tested for this ability in the matching-to-sample task. In this task, a sample is shown first, and then the subject needs to choose the matching sample over a simultaneously presented different one in order to obtain a food reward. We used the most general form of the task, using each stimulus only once in a total of 200 trials. As a group, the six subjects performed above chance, and four individuals eventually reached learning criteria. However, individual performance was rather unstable, yielding overall only 57% correct choices. These results add to the growing literature that ectotherms show the ability of abstract concept learning, though the lack of stable high performance may indicate quantitative performance differences to endotherms.
Collapse
Affiliation(s)
- Mélisande Aellen
- Department of Behavioural Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ulrike E. Siebeck
- School of Biomedical Sciences, University of Queensland, Brisbane St Lucia, QLD, Australia
| | - Redouan Bshary
- Department of Behavioural Ecology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
48
|
Teodorescu L, Hofmann K, Oudeyer PY. SpatialSim: Recognizing Spatial Configurations of Objects With Graph Neural Networks. Front Artif Intell 2022; 4:782081. [PMID: 35156011 PMCID: PMC8826049 DOI: 10.3389/frai.2021.782081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/20/2021] [Indexed: 11/13/2022] Open
Abstract
An embodied, autonomous agent able to set its own goals has to possess geometrical reasoning abilities for judging whether its goals have been achieved, namely it should be able to identify and discriminate classes of configurations of objects, irrespective of its point of view on the scene. However, this problem has received little attention so far in the deep learning literature. In this paper we make two key contributions. First, we propose SpatialSim (Spatial Similarity), a novel geometrical reasoning diagnostic dataset, and argue that progress on this benchmark would allow for diagnosing more principled approaches to this problem. This benchmark is composed of two tasks: "Identification" and "Discrimination," each one instantiated in increasing levels of difficulty. Secondly, we validate that relational inductive biases-exhibited by fully-connected message-passing Graph Neural Networks (MPGNNs)-are instrumental to solve those tasks, and show their advantages over less relational baselines such as Deep Sets and unstructured models such as Multi-Layer Perceptrons. We additionally showcase the failure of high-capacity CNNs on the hard Discrimination task. Finally, we highlight the current limits of GNNs in both tasks.
Collapse
|
49
|
Lehmann KDS, Shogren FG, Fallick M, Watts JC, Schoenberg D, Wiegmann DD, Bingman VP, Hebets EA. Exploring Higher-Order Conceptual Learning in an Arthropod with a Large Multisensory Processing Center. INSECTS 2022; 13:insects13010081. [PMID: 35055924 PMCID: PMC8780652 DOI: 10.3390/insects13010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/30/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary It is difficult to measure animal intelligence because the definition of ‘intelligence’ varies, and many animals are good at specific tasks used to measure intelligence or cognition. To address this, scientists often look for evidence of common cognitive abilities. One such ability, the ability to learn concepts, is thought to be rare in animals, especially invertebrates. Concepts include the ideas of ‘same’ and ‘different’. These concepts can be applied to anything in the environment while also being independent of those objects and can help animals understand and survive their environment. Amblypygids, a relative of spiders, live in tropical and subtropical areas, are very good learners, and have a large, complex brain region known to process information from multiple senses. We tested whether amblypygids could learn the concept of ‘same’ by training them to move toward a stimulus that matched with an initial stimulus. We also trained some individuals to learn the concept ‘different’ by training them to move toward a non-matching stimulus. When we used new stimuli, the amblypygids did not move toward the correct stimulus significantly more often than the incorrect stimulus, suggesting either they are unable to learn these higher-order concepts or our experimental design failed to elicit that ability. Abstract Comparative cognition aims to understand the evolutionary history and current function of cognitive abilities in a variety of species with diverse natural histories. One characteristic often attributed to higher cognitive abilities is higher-order conceptual learning, such as the ability to learn concepts independent of stimuli—e.g., ‘same’ or ‘different’. Conceptual learning has been documented in honeybees and a number of vertebrates. Amblypygids, nocturnal enigmatic arachnids, are good candidates for higher-order learning because they are excellent associational learners, exceptional navigators, and they have large, highly folded mushroom bodies, which are brain regions known to be involved in learning and memory in insects. In Experiment 1, we investigate if the amblypygid Phrynus marginimaculatus can learn the concept of same with a delayed odor matching task. In Experiment 2, we test if Paraphrynus laevifrons can learn same/different with delayed tactile matching and nonmatching tasks before testing if they can transfer this learning to a novel cross-modal odor stimulus. Our data provide no evidence of conceptual learning in amblypygids, but more solid conclusions will require the use of alternative experimental designs to ensure our negative results are not simply a consequence of the designs we employed.
Collapse
Affiliation(s)
- Kenna D. S. Lehmann
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Fiona G. Shogren
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Mariah Fallick
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - James Colton Watts
- Department of Biology, Texas A&M University, College Station, TX 77843, USA;
| | - Daniel Schoenberg
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
| | - Daniel D. Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403, USA;
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA;
| | - Verner P. Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, USA;
- Department of Psychology, Bowling Green State University, Bowling Green, OH 43403, USA
| | - Eileen A. Hebets
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (K.D.S.L.); (F.G.S.); (M.F.); (D.S.)
- Correspondence:
| |
Collapse
|
50
|
|