1
|
Zhang ZC, Shen Y, Lin YS, Yang B, Cao J, Li J, Zhao WB. Peptide-MHC I regulatory mechanisms and intervention strategies in anti-tumor T cell immunity. Acta Pharmacol Sin 2025:10.1038/s41401-025-01574-y. [PMID: 40379886 DOI: 10.1038/s41401-025-01574-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/22/2025] [Indexed: 05/19/2025]
Abstract
T cell immune responses are triggered by antigenic peptides presented through major histocompatibility complex class Is (pMHC-Is), which play an important role in the genesis, development, and therapy of tumors. The capacity of a specific pMHC-I to elicit T cell responses is deeply influenced by its expression level (quantity) and its immunogenicity (quality). Tumor cells can evade T cell immunity by down-regulating the quantity of pMHC-Is or selectively eliminating highly immunogenic antigenic peptides. Augmenting the quantity or quality of pMHC-Is is essential for tumor immunotherapy. However, the complexity of pMHC-I regulation and tumor heterogeneity pose challenges to clinical strategies. Consequently, developing approaches grounded in comprehensive analyses of pMHC-I regulatory mechanisms remains a focal point in the research of T cell immunity. In this review, we discuss how tumors modulate their surface pMHC-Is through genetic, epigenetic, and proteomic mechanisms and summarize potential therapeutic strategies targeting these mechanisms, which may provide a valuable reference for the development of novel tumor immunotherapies based on pMHC-I modulation. Tumor cells can achieve immune escape by interfering with the quantity and quality of pMHC-Is, and corresponding immunotherapy can also be achieved by the regulation of pMHC-Is.
Collapse
Affiliation(s)
- Zhi-Chao Zhang
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, China
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Shen
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, China
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310018, China
| | - Yu-Shen Lin
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, China
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, China
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310018, China
- School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Ji Cao
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, China.
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310018, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| | - Jun Li
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
- Department of Colorectal Surgery and Oncology (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, Key Laboratory of Molecular Biology in Medical Sciences, Hangzhou, 310009, China.
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, 310000, China.
- The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Wen-Bin Zhao
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, 310018, China.
- Institute of Pharmacology and Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, 310018, China.
| |
Collapse
|
2
|
Moniwa K, Tokita S, Sumi T, Saijo H, Sugita S, Arioka K, Hirohashi Y, Chiba H, Kanaseki T, Torigoe T. Loss of Tapasin in Tumors Potentiates T-Cell Recognition and Anti-Tumor Effects of Immune Checkpoint Blockade. Cancer Sci 2025; 116:1203-1213. [PMID: 39989216 PMCID: PMC12044650 DOI: 10.1111/cas.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/25/2025] Open
Abstract
Tumors can evade host immune surveillance by compromising the intracellular antigen processing machinery (APM), such as beta 2 macroglobulin (β2m) or the transporter associated with antigen processing (TAP). Defects in the APM generally result in the downregulation of surface MHC class I (MHC-I) levels. Here, we show that the downregulation of a component of the peptide loading complex (PLC), tapasin, in tumors conversely induces CD8+ T-cell responses and inhibits tumor growth in vivo. Loss of tapasin enhanced the anti-tumor effects of immune checkpoint blockade (ICB) in mouse non-small cell lung and colon cancer models. In contrast to β2m-deficient tumors, the reduced levels of MHC-I in tapasin-deficient tumors were restored by IFN-γ treatment, allowing them to be recognized by CD8+ T cells. These results suggest the presence of a reactive CD8+ T-cell fraction and the ability of immune surveillance to eliminate tumor variants with impaired tapasin expression.
Collapse
Affiliation(s)
- Keigo Moniwa
- Department of PathologySapporo Medical UniversitySapporoJapan
- Department of Respiratory Medicine and AllergologySapporo Medical UniversitySapporoJapan
| | - Serina Tokita
- Department of PathologySapporo Medical UniversitySapporoJapan
- Joint Research Center for ImmunoproteogenomicsSapporo Medical UniversitySapporoJapan
| | - Toshiyuki Sumi
- Department of Respiratory MedicineHakodate Goryoukaku HospitalHakodateJapan
| | - Hiroshi Saijo
- Department of Respiratory MedicineSapporo Minami‐Sanjo HospitalSapporoJapan
| | - Shintaro Sugita
- Department of Surgical PathologySapporo Medical UniversitySapporoJapan
| | - Kotomi Arioka
- Department of Surgical PathologyHakodate Goryoukaku HospitalHakodateJapan
| | | | - Hirofumi Chiba
- Department of Respiratory Medicine and AllergologySapporo Medical UniversitySapporoJapan
| | - Takayuki Kanaseki
- Department of PathologySapporo Medical UniversitySapporoJapan
- Joint Research Center for ImmunoproteogenomicsSapporo Medical UniversitySapporoJapan
| | | |
Collapse
|
3
|
Seipp RP, Hoeffel G, Moise AR, Lok S, Ripoche AC, Marañón C, Hosmalin A, Jefferies WA. A secreted Tapasin isoform impairs cytotoxic T lymphocyte recognition by disrupting exogenous MHC class I antigen presentation. Front Immunol 2025; 15:1525136. [PMID: 40171019 PMCID: PMC11959276 DOI: 10.3389/fimmu.2024.1525136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/23/2024] [Indexed: 04/03/2025] Open
Abstract
Endogenous and exogenous antigen processing and presentation through the MHC class I peptide-loading complex (PLC) are essential for initiating cytotoxic T lymphocyte responses against pathogens and tumors. Tapasin, a key component of the PLC, is produced in multiple isoforms through alternative splicing, each isoform influencing the assembly and stability of MHC class I molecules differently. While the canonical Tapasin isoform plays a critical role in stabilizing MHC class I by facilitating optimal peptide loading in the endoplasmic reticulum (ER), the other isoforms function in distinct ways that impact immune regulation. This study aimed to investigate the role of Tapasin isoforms, particularly soluble isoform 3, in modulating antigen presentation and immune responses, focusing on their effects on MHC class I peptide loading and surface expression. Our findings show that isoforms 1 and 2 stabilize TAP and facilitate efficient peptide loading onto MHC class I in the ER, promoting optimal antigen presentation. In contrast, isoform 3, which lacks both the ER retention signal and the transmembrane domain, is secreted and acts as a negative regulator. Isoform 3 inhibits the loading of exogenous peptides onto MHC class I molecules at the cell surface, thereby playing a critical role in the spatial and temporal regulation of MHC class I antigen presentation. The secreted Tapasin isoform 3 likely regulates immune responses by preventing inappropriate T cell activation and cytotoxicity, which could otherwise lead to immune-mediated tissue damage and contribute to autoimmune disorders. Understanding the distinct functions of Tapasin isoforms provides insights into immune regulation and highlights the importance of fine-tuning peptide-loading processes to ensure proper immune responses and prevent immune-related pathologies.
Collapse
Affiliation(s)
- Robyn P. Seipp
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | - Alexander R. Moise
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Siri Lok
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Anne Hosmalin
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France
| | - Wilfred A. Jefferies
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Department of Urological Science, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Nie Y, Schalper KA, Chiang A. Mechanisms of immunotherapy resistance in small cell lung cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:55. [PMID: 39802951 PMCID: PMC11724353 DOI: 10.20517/cdr.2024.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/05/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025]
Abstract
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine tumor with a poor prognosis. Although the addition of immunotherapy to chemotherapy has modestly improved outcomes, most patients rapidly develop resistance. Resistance to immunotherapy can be broadly categorized into primary resistance and acquired resistance, as proposed by the Society for Immunotherapy of Cancer (SITC) consensus definition. Primary resistance occurs in the setting of failure to respond to immune checkpoint inhibitors (ICIs), while acquired resistance develops after initial response. The mechanisms of acquired and primary resistance to ICI are not well understood in SCLC, denoting an area of critical unmet need. Both intrinsic and extrinsic mechanisms play significant roles in immunotherapy resistance. Intrinsic mechanisms include defects in antigen presentation, mutations in key genes, reduced tumor immunogenicity, and epigenetic alterations. Extrinsic mechanisms involve the tumor microenvironment (TME), which is a complex interplay of both tumor- and immunosuppressive immune cells, vasculature, and microbiome. An understanding of these resistance mechanisms is crucial for developing novel therapeutic strategies to advance effective immunotherapy in patients with SCLC, a critical area of unmet need.
Collapse
Affiliation(s)
- Yunan Nie
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kurt A. Schalper
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Anne Chiang
- Department of Medical Oncology, Yale School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
5
|
Elsayed A, von Hardenberg S, Atschekzei F, Graalmann T, Jänke C, Witte T, Ringshausen FC, Sogkas G. Phenotypic and pathomechanistic overlap between tapasin and TAP deficiencies. J Allergy Clin Immunol 2024; 154:1069-1075. [PMID: 38866210 DOI: 10.1016/j.jaci.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Human tapasin deficiency is reported to cause an autosomal-recessive inborn error of immunity characterized by substantially reduced cell surface expression of major histocompatibility complex class I (MHC-I). OBJECTIVE We evaluated the immunologic and clinical consequences of tapasin deficiency. METHODS A novel homozygous variant in TAPBP was identified by means of whole genome sequencing. The expression of tapasin and both subunits of the transporter associated with antigen presentation (TAP) were evaluated by Western blot analysis. Cell surface and intracellular expression of MHC-I were evaluated by flow cytometry. Small interfering RNAs were used for silencing TAPBP expression in HEK293T cells. RESULTS We identified a deletion in TAPBP (c.312del, p.(K104Nfs∗6)) causing tapasin deficiency in a patient with bronchiectasis and recurrent respiratory tract infections as well as herpes zoster. Besides substantial reduction in TAP1 and TAP2 expression, peripheral blood mononuclear cells from this patient and TAPBP-knockdown HEK293T cells, displayed reduced cell surface expression of MHC-I, while reduction in intracellular expression of MHC-I was less prominent, suggesting a defect in MHC-I trafficking to the plasma membrane. IFN-α improved cell surface expression of MHC-I in tapasin deficient lymphocytes and TAPBP-knockdown HEK293T cells, representing a possible therapeutic approach for tapasin deficiency. CONCLUSION Tapasin deficiency is a very rare inborn error of immunity, the pathomechanism and clinical spectrum of which overlaps with TAP deficiencies.
Collapse
Affiliation(s)
- Abdulwahab Elsayed
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | | | - Faranaz Atschekzei
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Theresa Graalmann
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Junior Research Group for Translational Immunology, TWINCORE, Center for Infection Research and the Hannover Medical School, Hannover, Germany; Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Christine Jänke
- Junior Research Group for Translational Immunology, TWINCORE, Center for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Torsten Witte
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Felix C Ringshausen
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany; Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School, Hannover, Germany; European Reference Network on Rare and Complex Respiratory Diseases (ERN-LUNG), Frankfurt, Germany
| | - Georgios Sogkas
- Department of Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
van de Weijer ML, Samanta K, Sergejevs N, Jiang L, Dueñas ME, Heunis T, Huang TY, Kaufman RJ, Trost M, Sanyal S, Cowley SA, Carvalho P. Tapasin assembly surveillance by the RNF185/Membralin ubiquitin ligase complex regulates MHC-I surface expression. Nat Commun 2024; 15:8508. [PMID: 39353943 PMCID: PMC11445256 DOI: 10.1038/s41467-024-52772-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/19/2024] [Indexed: 10/03/2024] Open
Abstract
Immune surveillance by cytotoxic T cells eliminates tumor cells and cells infected by intracellular pathogens. This process relies on the presentation of antigenic peptides by Major Histocompatibility Complex class I (MHC-I) at the cell surface. The loading of these peptides onto MHC-I depends on the peptide loading complex (PLC) at the endoplasmic reticulum (ER). Here, we uncovered that MHC-I antigen presentation is regulated by ER-associated degradation (ERAD), a protein quality control process essential to clear misfolded and unassembled proteins. An unbiased proteomics screen identified the PLC component Tapasin, essential for peptide loading onto MHC-I, as a substrate of the RNF185/Membralin ERAD complex. Loss of RNF185/Membralin resulted in elevated Tapasin steady state levels and increased MHC-I at the surface of professional antigen presenting cells. We further show that RNF185/Membralin ERAD complex recognizes unassembled Tapasin and limits its incorporation into PLC. These findings establish a novel mechanism controlling antigen presentation and suggest RNF185/Membralin as a potential therapeutic target to modulate immune surveillance.
Collapse
Affiliation(s)
- Michael L van de Weijer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Krishna Samanta
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Nikita Sergejevs
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - LuLin Jiang
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
- Altos Labs-Bay Institute of Science, Redwood City, CA, USA
| | - Maria Emilia Dueñas
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
- Telethon Kids Institute, Perth, Nedlands, WA, 6009, Australia
| | - Tiaan Heunis
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Immunocore Ltd, 92 Park Drive, Abingdon, OX14 4RY, UK
| | - Timothy Y Huang
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Randal J Kaufman
- Degenerative Diseases Program, Genetics, and Aging Research Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Sumana Sanyal
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Sally A Cowley
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Pedro Carvalho
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
7
|
Brunnberg J, Barends M, Frühschulz S, Winter C, Battin C, de Wet B, Cole DK, Steinberger P, Tampé R. Dual role of the peptide-loading complex as proofreader and limiter of MHC-I presentation. Proc Natl Acad Sci U S A 2024; 121:e2321600121. [PMID: 38771881 PMCID: PMC11145271 DOI: 10.1073/pnas.2321600121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/17/2024] [Indexed: 05/23/2024] Open
Abstract
Antigen presentation via major histocompatibility complex class I (MHC-I) molecules is essential for surveillance by the adaptive immune system. Central to this process is the peptide-loading complex (PLC), which translocates peptides from the cytosol to the endoplasmic reticulum and catalyzes peptide loading and proofreading of peptide-MHC-I (pMHC-I) complexes. Despite its importance, the impact of individual PLC components on the presented pMHC-I complexes is still insufficiently understood. Here, we used stoichiometrically defined antibody-nanobody complexes and engineered soluble T cell receptors (sTCRs) to quantify different MHC-I allomorphs and defined pMHC-I complexes, respectively. Thereby, we uncovered distinct effects of individual PLC components on the pMHC-I surface pool. Knockouts of components of the PLC editing modules, namely tapasin, ERp57, or calreticulin, changed the MHC-I surface composition to a reduced proportion of HLA-A*02:01 presentation compensated by a higher ratio of HLA-B*40:01 molecules. Intriguingly, these knockouts not only increased the presentation of suboptimally loaded HLA-A*02:01 complexes but also elevated the presentation of high-affinity peptides overexpressed in the cytosol. Our findings suggest that the components of the PLC editing module serve a dual role, acting not only as peptide proofreaders but also as limiters for abundant peptides. This dual function ensures the presentation of a broad spectrum of antigenic peptides.
Collapse
Affiliation(s)
- Jamina Brunnberg
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Martina Barends
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Stefan Frühschulz
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| | - Claire Battin
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna1090, Austria
| | - Ben de Wet
- Immunocore Ltd., AbingdonOX14 4RY, United Kingdom
| | | | - Peter Steinberger
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna1090, Austria
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Frankfurt am Main60438, Germany
| |
Collapse
|
8
|
Czaja AJ. Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis. Dig Dis Sci 2023; 68:4098-4116. [PMID: 37755606 PMCID: PMC10570239 DOI: 10.1007/s10620-023-08118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
9
|
Margulies DH, Jiang J, Ahmad J, Boyd LF, Natarajan K. Chaperone function in antigen presentation by MHC class I molecules-tapasin in the PLC and TAPBPR beyond. Front Immunol 2023; 14:1179846. [PMID: 37398669 PMCID: PMC10308438 DOI: 10.3389/fimmu.2023.1179846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Peptide loading of MHC-I molecules plays a critical role in the T cell response to infections and tumors as well as to interactions with inhibitory receptors on natural killer (NK) cells. To facilitate and optimize peptide acquisition, vertebrates have evolved specialized chaperones to stabilize MHC-I molecules during their biosynthesis and to catalyze peptide exchange favoring high affinity or optimal peptides to permit transport to the cell surface where stable peptide/MHC-I (pMHC-I) complexes are displayed and are available for interaction with T cell receptors and any of a host of inhibitory and activating receptors. Although components of the endoplasmic reticulum (ER) resident peptide loading complex (PLC) were identified some 30 years ago, the detailed biophysical parameters that govern peptide selection, binding, and surface display have recently been understood better with advances in structural methods including X-ray crystallography, cryogenic electron microscopy (cryo-EM), and computational modeling. These approaches have provided refined mechanistic illustration of the molecular events involved in the folding of the MHC-I heavy chain, its coordinate glycosylation, assembly with its light chain, β2-microglobulin (β2m), its association with the PLC, and its binding of peptides. Our current view of this important cellular process as it relates to antigen presentation to CD8+ T cells is based on many different approaches: biochemical, genetic, structural, computational, cell biological, and immunological. In this review, taking advantage of recent X-ray and cryo-EM structural evidence and molecular dynamics simulations, examined in the context of past experiments, we attempt a dispassionate evaluation of the details of peptide loading in the MHC-I pathway. By critical evaluation of several decades of investigation, we outline aspects of the peptide loading process that are well-understood and indicate those that demand further detailed investigation. Further studies should contribute not only to basic understanding, but also to applications for immunization and therapy of tumors and infections.
Collapse
|
10
|
Cruz FM, Chan A, Rock KL. Pathways of MHC I cross-presentation of exogenous antigens. Semin Immunol 2023; 66:101729. [PMID: 36804685 PMCID: PMC10023513 DOI: 10.1016/j.smim.2023.101729] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Phagocytes, particularly dendritic cells (DCs), generate peptide-major histocompatibility complex (MHC) I complexes from antigens they have collected from cells in tissues and report this information to CD8 T cells in a process called cross-presentation. This process allows CD8 T cells to detect, respond and eliminate abnormal cells, such as cancers or cells infected with viruses or intracellular microbes. In some settings, cross-presentation can help tolerize CD8 T cells to self-antigens. One of the principal ways that DCs acquire tissue antigens is by ingesting this material through phagocytosis. The resulting phagosomes are key hubs in the cross-presentation (XPT) process and in fact experimentally conferring the ability to phagocytize antigens can be sufficient to allow non-professional antigen presenting cells (APCs) to cross-present. Once in phagosomes, exogenous antigens can be cross-presented (XPTed) through three distinct pathways. There is a vacuolar pathway in which peptides are generated and then bind to MHC I molecules within the confines of the vacuole. Ingested exogenous antigens can also be exported from phagosomes to the cytosol upon vesicular rupture and/or possibly transport. Once in the cytosol, the antigen is degraded by the proteasome and the resulting oligopeptides can be transported to MHC I molecule in the endoplasmic reticulum (ER) (a phagosome-to-cytosol (P2C) pathway) or in phagosomes (a phagosome-to-cytosol-to-phagosome (P2C2P) pathway). Here we review how phagosomes acquire the necessary molecular components that support these three mechanisms and the contribution of these pathways. We describe what is known as well as the gaps in our understanding of these processes.
Collapse
Affiliation(s)
- Freidrich M Cruz
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Amanda Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
11
|
Lan BH, Becker M, Freund C. The mode of action of tapasin on major histocompatibility class I (MHC-I) molecules. J Biol Chem 2023; 299:102987. [PMID: 36758805 PMCID: PMC10040737 DOI: 10.1016/j.jbc.2023.102987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 01/05/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Tapasin (Tsn) plays a critical role in antigen processing and presentation by major histocompatibility complex class I (MHC-I) molecules. The mechanism of Tsn-mediated peptide loading and exchange hinges on the conformational dynamics governing the interaction of Tsn and MHC-I with recent structural and functional studies pinpointing the critical sites of direct or allosteric regulation. In this review, we highlight these recent findings and relate them to the extensive molecular and cellular data that are available for these evolutionary interdependent proteins. Furthermore, allotypic differences of MHC-I with regard to the editing and chaperoning function of Tsn are reviewed and related to the mechanistic observations. Finally, evolutionary aspects of the mode of action of Tsn will be discussed, a short comparison with the Tsn-related molecule TAPBPR (Tsn-related protein) will be given, and the impact of Tsn on noncanonical MHC-I molecules will be described.
Collapse
Affiliation(s)
- By Huan Lan
- Institute of Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Moritz Becker
- Institute of Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Christian Freund
- Institute of Chemistry & Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
12
|
Boulanger DSM, Douglas LR, Duriez PJ, Kang Y, Dalchau N, James E, Elliott T. Tapasin-mediated editing of the MHC I immunopeptidome is epitope specific and dependent on peptide off-rate, abundance, and level of tapasin expression. Front Immunol 2022; 13:956603. [PMID: 36389776 PMCID: PMC9659924 DOI: 10.3389/fimmu.2022.956603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022] Open
Abstract
Tapasin, a component of the major histocompatibility complex (MHC) I peptide loading complex, edits the repertoire of peptides that is presented at the cell surface by MHC I and thereby plays a key role in shaping the hierarchy of CD8+ T-cell responses to tumors and pathogens. We have developed a system that allows us to tune the level of tapasin expression and independently regulate the expression of competing peptides of different off-rates. By quantifying the relative surface expression of peptides presented by MHC I molecules, we show that peptide editing by tapasin can be measured in terms of “tapasin bonus,” which is dependent on both peptide kinetic stability (off-rate) and peptide abundance (peptide supply). Each peptide has therefore an individual tapasin bonus fingerprint. We also show that there is an optimal level of tapasin expression for each peptide in the immunopeptidome, dependent on its off-rate and abundance. This is important, as the level of tapasin expression can vary widely during different stages of the immune response against pathogens or cancer and is often the target for immune escape.
Collapse
Affiliation(s)
- Denise S. M. Boulanger
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- *Correspondence: Denise S. M. Boulanger, ; Tim Elliott,
| | - Leon R. Douglas
- Cancer Research UK (CR-UK) Protein Core Facility, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Patrick J. Duriez
- Cancer Research UK (CR-UK) Protein Core Facility, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Yoyel Kang
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | | - Edd James
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Tim Elliott
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Centre for Immuno-oncology, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- *Correspondence: Denise S. M. Boulanger, ; Tim Elliott,
| |
Collapse
|
13
|
Molecular basis of MHC I quality control in the peptide loading complex. Nat Commun 2022; 13:4701. [PMID: 35948544 PMCID: PMC9365787 DOI: 10.1038/s41467-022-32384-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
Major histocompatibility complex class I (MHC I) molecules are central to adaptive immunity. Their assembly, epitope selection, and antigen presentation are controlled by the MHC I glycan through a sophisticated network of chaperones and modifying enzymes. However, the mechanistic integration of the corresponding processes remains poorly understood. Here, we determine the multi-chaperone-client interaction network of the peptide loading complex (PLC) and report the PLC editing module structure by cryogenic electron microscopy at 3.7 Å resolution. Combined with epitope-proofreading studies of the PLC in near-native lipid environment, these data show that peptide-receptive MHC I molecules are stabilized by multivalent chaperone interactions including the calreticulin-engulfed mono-glucosylated MHC I glycan, which only becomes accessible for processing by α-glucosidase II upon loading of optimal epitopes. Our work reveals allosteric coupling between peptide-MHC I assembly and glycan processing. This inter-process communication defines the onset of an adaptive immune response and provides a prototypical example of the tightly coordinated events in endoplasmic reticulum quality control. The immune system monitors the health status of cells by surveilling fragments of foreign molecules from invaders presented on MHC I complexes at the cell surface. Here, the authors investigate the sequence of events of MHC I assembly and quality control cycle.
Collapse
|
14
|
Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol 2022; 22:751-764. [PMID: 35418563 DOI: 10.1038/s41577-022-00707-2] [Citation(s) in RCA: 343] [Impact Index Per Article: 114.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Antigen processing and presentation are the cornerstones of adaptive immunity. B cells cannot generate high-affinity antibodies without T cell help. CD4+ T cells, which provide such help, use antigen-specific receptors that recognize major histocompatibility complex (MHC) molecules in complex with peptide cargo. Similarly, eradication of virus-infected cells often depends on cytotoxic CD8+ T cells, which rely on the recognition of peptide-MHC complexes for their action. The two major classes of glycoproteins entrusted with antigen presentation are the MHC class I and class II molecules, which present antigenic peptides to CD8+ T cells and CD4+ T cells, respectively. This Review describes the essentials of antigen processing and presentation. These pathways are divided into six discrete steps that allow a comparison of the various means by which antigens destined for presentation are acquired and how the source proteins for these antigens are tagged for degradation, destroyed and ultimately displayed as peptides in complex with MHC molecules for T cell recognition.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Society of Fellows, Harvard University, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Mantel I, Sadiq BA, Blander JM. Spotlight on TAP and its vital role in antigen presentation and cross-presentation. Mol Immunol 2022; 142:105-119. [PMID: 34973498 PMCID: PMC9241385 DOI: 10.1016/j.molimm.2021.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023]
Abstract
In the late 1980s and early 1990s, the hunt for a transporter molecule ostensibly responsible for the translocation of peptides across the endoplasmic reticulum (ER) membrane yielded the successful discovery of transporter associated with antigen processing (TAP) protein. TAP is a heterodimer complex comprised of TAP1 and TAP2, which utilizes ATP to transport cytosolic peptides into the ER across its membrane. In the ER, together with other components it forms the peptide loading complex (PLC), which directs loading of high affinity peptides onto nascent major histocompatibility complex class I (MHC-I) molecules that are then transported to the cell surface for presentation to CD8+ T cells. TAP also plays a crucial role in transporting peptides into phagosomes and endosomes during cross-presentation in dendritic cells (DCs). Because of the critical role that TAP plays in both classical MHC-I presentation and cross-presentation, its expression and function are often compromised by numerous types of cancers and viruses to evade recognition by cytotoxic CD8 T cells. Here we review the discovery and function of TAP with a major focus on its role in cross-presentation in DCs. We discuss a recently described emergency route of noncanonical cross-presentation that is mobilized in DCs upon TAP blockade to restore CD8 T cell cross-priming. We also discuss the various strategies employed by cancer cells and viruses to target TAP expression or function to evade immunosurveillance - along with some strategies by which the repertoire of peptides presented by cells which downregulate TAP can be targeted as a therapeutic strategy to mobilize a TAP-independent CD8 T cell response. Lastly, we discuss TAP polymorphisms and the role of TAP in inherited disorders.
Collapse
Affiliation(s)
- Ian Mantel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA
| | - Barzan A Sadiq
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, New York, NY, 10021, USA; Joan and Sanford I. Weill Department of Medicine, New York, NY, 10021, USA; Department of Microbiology and Immunology, New York, NY, 10021, USA; Sandra and Edward Meyer Cancer Center, New York, NY, 10021, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, 10021, USA.
| |
Collapse
|
16
|
Aflalo A, Boyle LH. Polymorphisms in MHC class I molecules influence their interactions with components of the antigen processing and presentation pathway. Int J Immunogenet 2021; 48:317-325. [PMID: 34176210 DOI: 10.1111/iji.12546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 10/21/2022]
Abstract
MHC class I (MHC-I) molecules undergo an intricate folding process in order to pick up antigenic peptide to present to the immune system. In recent years, the discovery of a new peptide editor for MHC-I has added an extra level of complexity in our understanding of how peptide presentation is regulated. On top of this, the incredible diversity in MHC-I molecules leads to significant variation in the interaction between MHC-I and components of the antigen processing and presentation pathway. Here, we review our current understanding regarding how polymorphisms in human leukocyte antigen class I molecules influence their interactions with key components of the antigen processing and presentation pathway. A deeper understanding of this may offer new insights regarding how apparently subtle variation in MHC-I can have a significant impact on susceptibility to disease.
Collapse
Affiliation(s)
- Aure Aflalo
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
17
|
Hafstrand I, Aflalo A, Boyle LH. Why TAPBPR? Implications of an additional player in MHC class I peptide presentation. Curr Opin Immunol 2021; 70:90-94. [PMID: 34052734 DOI: 10.1016/j.coi.2021.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/15/2021] [Accepted: 04/30/2021] [Indexed: 10/21/2022]
Abstract
The peptide editor TAPBPR is the newest member of the major histocompatibility complex class I (MHC-I) antigen processing and presentation pathway. Since 2013, studies have explored the functions and mechanisms of action of this tapasin homolog. Here, we review the key insights gained from structural studies of the TAPBPR:MHC-I complex and the involvement of the TAPBPR loop in peptide exchange. However, despite recent advances, the question still remains: why do we need TAPBPR? The recent appreciation that different MHC-I allotypes vary in their ability to interact with TAPBPR, together with a role for TAPBPR in alternative presentation pathways highlights that much remains unknown concerning the biological need for TAPBPR.
Collapse
Affiliation(s)
- Ida Hafstrand
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Aure Aflalo
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, United Kingdom.
| |
Collapse
|
18
|
Kotsias F, Cebrian I, Alloatti A. Antigen processing and presentation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:69-121. [PMID: 31810556 DOI: 10.1016/bs.ircmb.2019.07.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic cells are at the center of immune responses. They are defined by their ability to sense the environment, take up and process antigen, migrate to secondary lymphoid organs, where they present antigens to the adaptive immune system. In particular, they present lipids and proteins from pathogens, which they encountered in peripheral tissues, to T cells in order to induce a specific effector immune response. These complex antigens need to be broken down into peptides of a certain length in association with Major Histocompatibility Complex (MHC) molecules. Presentation of MHC/antigen complexes alongside costimulatory molecules and secretion of proinflammatory cytokines will induce an appropriate immune response. This interaction between dendritic cells and T cells takes place at defined locations within secondary lymphoid organs. In this review, we discuss the current knowledge and recent advances on the cellular and molecular mechanisms that underlie antigen processing and the subsequent presentation to T lymphocytes.
Collapse
Affiliation(s)
- Fiorella Kotsias
- Cátedra de Virología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina; Instituto de Investigaciones en Producción Animal (INPA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Ignacio Cebrian
- Facultad de Ciencias Médicas, Instituto de Histología y Embriología de Mendoza (IHEM)-CONICET/Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Andrés Alloatti
- Facultad de Ciencias Médicas, Instituto de Inmunología Clínica y Experimental de Rosario (IDICER)-CONICET/Universidad Nacional de Rosario, Rosario, Argentina.
| |
Collapse
|
19
|
Grizzi F, Borroni EM, Qehajaj D, Stifter S, Chiriva-Internati M, Cananzi FCM. The Complex Nature of Soft Tissue Sarcomas, Including Retroperitoneal Sarcomas. Updates Surg 2019:21-32. [DOI: 10.1007/978-88-470-3980-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
|
20
|
Trowitzsch S, Tampé R. ABC Transporters in Dynamic Macromolecular Assemblies. J Mol Biol 2018; 430:4481-4495. [DOI: 10.1016/j.jmb.2018.07.028] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 07/24/2018] [Accepted: 07/30/2018] [Indexed: 12/28/2022]
|
21
|
Geng J, Zaitouna AJ, Raghavan M. Selected HLA-B allotypes are resistant to inhibition or deficiency of the transporter associated with antigen processing (TAP). PLoS Pathog 2018; 14:e1007171. [PMID: 29995954 PMCID: PMC6056074 DOI: 10.1371/journal.ppat.1007171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/23/2018] [Accepted: 06/20/2018] [Indexed: 11/18/2022] Open
Abstract
Major histocompatibility complex class I (MHC-I) molecules present antigenic peptides to CD8+ T cells, and are also important for natural killer (NK) cell immune surveillance against infections and cancers. MHC-I molecules are assembled via a complex assembly pathway in the endoplasmic reticulum (ER) of cells. Peptides present in the cytosol of cells are transported into the ER via the transporter associated with antigen processing (TAP). In the ER, peptides are assembled with MHC-I molecules via the peptide-loading complex (PLC). Components of the MHC-I assembly pathway are frequently targeted by viruses, in order to evade host immunity. Many viruses encode inhibitors of TAP, which is thought to be a central source of peptides for the assembly of MHC-I molecules. However, human MHC-I (HLA-I) genes are highly polymorphic, and it is conceivable that several variants can acquire peptides via TAP-independent pathways, thereby conferring resistance to pathogen-derived inhibitors of TAP. To broadly assess TAP-independent expression within the HLA-B locus, expression levels of 27 frequent HLA-B alleles were tested in cells with deficiencies in TAP. Approximately 15% of tested HLA-B allotypes are expressed at relatively high levels on the surface of TAP1 or TAP2-deficient cells and occur in partially peptide-receptive forms and Endoglycosidase H sensitive forms on the cell surface. Synergy between high peptide loading efficiency, broad specificity for peptides prevalent within unconventional sources and high intrinsic stability of the empty form allows for deviations from the conventional HLA-I assembly pathway for some HLA-B*35, HLA-B*57 and HLA-B*15 alleles. Allotypes that display higher expression in TAP-deficient cells are more resistant to viral TAP inhibitor-induced HLA-I down-modulation, and HLA-I down-modulation-induced NK cell activation. Conversely, the same allotypes are expected to mediate stronger CD8+ T cell responses under TAP-inhibited conditions. Thus, the degree of resistance to TAP inhibition functionally separates specific HLA-B allotypes. Human leukocyte antigen (HLA) class I molecules present pathogen-derived components (peptides) to cytotoxic T cells, thereby inducing the T cells to kill virus-infected cells. A complex cellular pathway involving the transporter associated with antigen processing (TAP) is typically required for the loading of peptides onto HLA class I molecules, and for effective anti-viral immunity mediated by cytotoxic T cells. Many viruses encode inhibitors of TAP as a means to evade anti-viral immunity by cytotoxic T cells. In humans, there are three sets of genes encoding HLA class I molecules, which are the HLA-A, HLA-B and HLA-C genes. These genes are highly variable, with thousands of allelic variants in human populations. Most individuals typically express two variants of each gene, one inherited from each parent. We demonstrate that about 15% of tested HLA-B allotypes have higher resistance to viral inhibitors of TAP or deficiency of TAP, compared to other HLA-B variants. HLA-B allotypes that are more resistant to TAP inhibition are expected to induce stronger CD8+ T cell responses against pathogens that inhibit TAP. Thus, unconventional TAP-independent assembly pathways are broadly prevalent among HLA-B variants. Such pathways provide mechanisms to effectively combat viruses that evade the conventional TAP-dependent HLA-B assembly pathway.
Collapse
Affiliation(s)
- Jie Geng
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anita J. Zaitouna
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
22
|
Boulanger DSM, Eccleston RC, Phillips A, Coveney PV, Elliott T, Dalchau N. A Mechanistic Model for Predicting Cell Surface Presentation of Competing Peptides by MHC Class I Molecules. Front Immunol 2018; 9:1538. [PMID: 30026743 PMCID: PMC6041393 DOI: 10.3389/fimmu.2018.01538] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/21/2018] [Indexed: 12/15/2022] Open
Abstract
Major histocompatibility complex-I (MHC-I) molecules play a central role in the immune response to viruses and cancers. They present peptides on the surface of affected cells, for recognition by cytotoxic T cells. Determining which peptides are presented, and in what proportion, has profound implications for developing effective, medical treatments. However, our ability to predict peptide presentation levels is currently limited. Existing prediction algorithms focus primarily on the binding affinity of peptides to MHC-I, and do not predict the relative abundance of individual peptides on the surface of antigen-presenting cells in situ which is a critical parameter for determining the strength and specificity of the ensuing immune response. Here, we develop and experimentally verify a mechanistic model for predicting cell-surface presentation of competing peptides. Our approach explicitly models key steps in the processing of intracellular peptides, incorporating both peptide binding affinity and intracellular peptide abundance. We use the resulting model to predict how the peptide repertoire is modified by interferon-γ, an immune modulator well known to enhance expression of antigen processing and presentation proteins.
Collapse
Affiliation(s)
- Denise S. M. Boulanger
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth C. Eccleston
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
- CoMPLEX, University College London, London, United Kingdom
| | | | - Peter V. Coveney
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
- CoMPLEX, University College London, London, United Kingdom
| | - Tim Elliott
- Centre for Cancer Immunology and Institute for Life Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | | |
Collapse
|
23
|
Arshad N, Cresswell P. Tumor-associated calreticulin variants functionally compromise the peptide loading complex and impair its recruitment of MHC-I. J Biol Chem 2018; 293:9555-9569. [PMID: 29769311 DOI: 10.1074/jbc.ra118.002836] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/10/2018] [Indexed: 12/22/2022] Open
Abstract
Major histocompatibility complex-I-β2m dimers (MHC-I) bind peptides derived from intracellular proteins, enabling the immune system to distinguish between normal cells and those expressing pathogen-derived or mutant proteins. The peptides bind to MHC-I in the endoplasmic reticulum (ER), and this binding is facilitated by the peptide loading complex (PLC), which contains calreticulin (CRT). CRT associates with MHC-I via a conserved glycan present on MHC-I and recruits it to the PLC for peptide binding. Somatic frameshift mutations in CRT (CRT-FS) drive the proliferation of a subset of myeloproliferative neoplasms, which are chronic blood tumors. All CRT-FS proteins have a C-terminal sequence lacking the normal ER-retention signal and possessing a net negative charge rather than the normal positive charge. We characterized the effect of CRT-FS on antigen presentation by MHC-I in human cells. Our results indicate that CRT-FS cannot mediate CRT's peptide loading function in the PLC. Cells lacking CRT exhibited reduced surface MHC-I levels, consistent with reduced binding of high-affinity peptides, and this was not reversed by CRT-FS expression. CRT-FS was secreted and not detectably associated with the PLC, leading to poor MHC-I recruitment, although CRT-FS could still associate with MHC-I in a glycan-dependent manner. The addition of an ER-retention sequence to CRT-FS restored its association with the PLC but did not rescue MHC-I recruitment or its surface expression, indicating that the CRT-FS mutants functionally compromise the PLC. MHC-I down-regulation permits tumor cells to evade immune surveillance, and these findings may therefore be relevant for designing effective immunotherapies for managing myeloproliferative neoplasms.
Collapse
Affiliation(s)
| | - Peter Cresswell
- From the Departments of Immunobiology and .,Cell Biology, Yale University School of Medicine, New Haven, Connecticut 06520-8011
| |
Collapse
|
24
|
van Hateren A, Anderson M, Bailey A, Werner JM, Skipp P, Elliott T. Direct evidence for conformational dynamics in major histocompatibility complex class I molecules. J Biol Chem 2017; 292:20255-20269. [PMID: 29021251 PMCID: PMC5724011 DOI: 10.1074/jbc.m117.809624] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/25/2017] [Indexed: 12/19/2022] Open
Abstract
Major histocompatibility complex class I molecules (MHC I) help protect jawed vertebrates by binding and presenting immunogenic peptides to cytotoxic T lymphocytes. Peptides are selected from a large diversity present in the endoplasmic reticulum. However, only a limited number of peptides complement the polymorphic MHC specificity determining pockets in a way that leads to high-affinity peptide binding and efficient antigen presentation. MHC I molecules possess an intrinsic ability to discriminate between peptides, which varies in efficiency between allotypes, but the mechanism of selection is unknown. Elucidation of the selection mechanism is likely to benefit future immune-modulatory therapies. Evidence suggests peptide selection involves transient adoption of alternative, presumably higher energy conformations than native peptide-MHC complexes. However, the instability of peptide-receptive MHC molecules has hindered characterization of such conformational plasticity. To investigate the dynamic nature of MHC, we refolded MHC proteins with peptides that can be hydrolyzed by UV light and thus released. We compared the resultant peptide-receptive MHC molecules with non-hydrolyzed peptide-loaded MHC complexes by monitoring the exchange of hydrogen for deuterium in solution. We found differences in hydrogen-deuterium exchange between peptide-loaded and peptide-receptive molecules that were negated by the addition of peptide to peptide-receptive MHC molecules. Peptide hydrolysis caused significant increases in hydrogen-deuterium exchange in sub-regions of the peptide-binding domain and smaller increases elsewhere, including in the α3 domain and the non-covalently associated β2-microglobulin molecule, demonstrating long-range dynamic communication. Comparing two MHC allotypes revealed allotype-specific differences in hydrogen-deuterium exchange, consistent with the notion that MHC I plasticity underpins peptide selection.
Collapse
Affiliation(s)
- Andy van Hateren
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, Southampton SO17 1BJ
| | - Malcolm Anderson
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Alistair Bailey
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, Southampton SO17 1BJ; Centre for Proteomic Research, Biological Sciences, and Institute for Life Sciences, Southampton SO17 1BJ
| | - Jörn M Werner
- Institute for Life Sciences, Centre for Biological Sciences, and Faculty of Natural and Environmental Sciences, University of Southampton, Building 85, Southampton SO17 1BJ
| | - Paul Skipp
- Centre for Proteomic Research, Biological Sciences, and Institute for Life Sciences, Southampton SO17 1BJ
| | - Tim Elliott
- Institute for Life Sciences and Centre for Cancer Immunology, Faculty of Medicine, Southampton SO17 1BJ.
| |
Collapse
|
25
|
Structure of the human MHC-I peptide-loading complex. Nature 2017; 551:525-528. [PMID: 29107940 DOI: 10.1038/nature24627] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022]
Abstract
The peptide-loading complex (PLC) is a transient, multisubunit membrane complex in the endoplasmic reticulum that is essential for establishing a hierarchical immune response. The PLC coordinates peptide translocation into the endoplasmic reticulum with loading and editing of major histocompatibility complex class I (MHC-I) molecules. After final proofreading in the PLC, stable peptide-MHC-I complexes are released to the cell surface to evoke a T-cell response against infected or malignant cells. Sampling of different MHC-I allomorphs requires the precise coordination of seven different subunits in a single macromolecular assembly, including the transporter associated with antigen processing (TAP1 and TAP2, jointly referred to as TAP), the oxidoreductase ERp57, the MHC-I heterodimer, and the chaperones tapasin and calreticulin. The molecular organization of and mechanistic events that take place in the PLC are unknown owing to the heterogeneous composition and intrinsically dynamic nature of the complex. Here, we isolate human PLC from Burkitt's lymphoma cells using an engineered viral inhibitor as bait and determine the structure of native PLC by electron cryo-microscopy. Two endoplasmic reticulum-resident editing modules composed of tapasin, calreticulin, ERp57, and MHC-I are centred around TAP in a pseudo-symmetric orientation. A multivalent chaperone network within and across the editing modules establishes the proofreading function at two lateral binding platforms for MHC-I molecules. The lectin-like domain of calreticulin senses the MHC-I glycan, whereas the P domain reaches over the MHC-I peptide-binding pocket towards ERp57. This arrangement allows tapasin to facilitate peptide editing by clamping MHC-I. The translocation pathway of TAP opens out into a large endoplasmic reticulum lumenal cavity, confined by the membrane entry points of tapasin and MHC-I. Two lateral windows channel the antigenic peptides to MHC-I. Structures of PLC captured at distinct assembly states provide mechanistic insight into the recruitment and release of MHC-I. Our work defines the molecular symbiosis of an ABC transporter and an endoplasmic reticulum chaperone network in MHC-I assembly and provides insight into the onset of the adaptive immune response.
Collapse
|
26
|
Thomas C, Tampé R. Structure of the TAPBPR–MHC I complex defines the mechanism of peptide loading and editing. Science 2017; 358:1060-1064. [DOI: 10.1126/science.aao6001] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/20/2017] [Indexed: 12/22/2022]
|
27
|
Neerincx A, Boyle LH. Properties of the tapasin homologue TAPBPR. Curr Opin Immunol 2017; 46:97-102. [PMID: 28528220 DOI: 10.1016/j.coi.2017.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/01/2017] [Accepted: 04/17/2017] [Indexed: 11/17/2022]
Abstract
The presentation of antigenic peptides by MHC class I molecules plays a vital role in generating T cell responses against infection and cancer. Over the last two decades the central role of tapasin as a peptide editor that influences the loading and optimisation of peptides onto MHC class I molecules has been extensively characterised. Recently, it has become evident that the tapasin-related protein, TAPBPR, functions as a second peptide editor which influences the peptides displayed by MHC class I molecules. Here, we review the discovery of TAPBPR and current understanding of this novel protein in relation to its closest homologue tapasin.
Collapse
Affiliation(s)
- Andreas Neerincx
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
28
|
Neerincx A, Hermann C, Antrobus R, van Hateren A, Cao H, Trautwein N, Stevanović S, Elliott T, Deane JE, Boyle LH. TAPBPR bridges UDP-glucose:glycoprotein glucosyltransferase 1 onto MHC class I to provide quality control in the antigen presentation pathway. eLife 2017; 6:e23049. [PMID: 28425917 PMCID: PMC5441866 DOI: 10.7554/elife.23049] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/14/2017] [Indexed: 11/24/2022] Open
Abstract
Recently, we revealed that TAPBPR is a peptide exchange catalyst that is important for optimal peptide selection by MHC class I molecules. Here, we asked whether any other co-factors associate with TAPBPR, which would explain its effect on peptide selection. We identify an interaction between TAPBPR and UDP-glucose:glycoprotein glucosyltransferase 1 (UGT1), a folding sensor in the calnexin/calreticulin quality control cycle that is known to regenerate the Glc1Man9GlcNAc2 moiety on glycoproteins. Our results suggest the formation of a multimeric complex, dependent on a conserved cysteine at position 94 in TAPBPR, in which TAPBPR promotes the association of UGT1 with peptide-receptive MHC class I molecules. We reveal that the interaction between TAPBPR and UGT1 facilities the reglucosylation of the glycan on MHC class I molecules, promoting their recognition by calreticulin. Our results suggest that in addition to being a peptide editor, TAPBPR improves peptide optimisation by promoting peptide-receptive MHC class I molecules to associate with the peptide-loading complex.
Collapse
Affiliation(s)
- Andreas Neerincx
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Clemens Hermann
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Andy van Hateren
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Science, University of Southampton, Southampton, United Kingdom
| | - Huan Cao
- Division of Applied Medicine, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Nico Trautwein
- Department of Immunology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Tim Elliott
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- Institute for Life Science, University of Southampton, Southampton, United Kingdom
| | - Janet E Deane
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Louise H Boyle
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
29
|
van Hateren A, Bailey A, Elliott T. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control. F1000Res 2017; 6:158. [PMID: 28299193 PMCID: PMC5321123 DOI: 10.12688/f1000research.10474.1] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/13/2017] [Indexed: 01/25/2023] Open
Abstract
We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation.
Collapse
Affiliation(s)
- Andy van Hateren
- Institute for Life Sciences and Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Alistair Bailey
- Institute for Life Sciences and Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Tim Elliott
- Institute for Life Sciences and Cancer Sciences Unit, University of Southampton, Southampton, UK
| |
Collapse
|
30
|
Thomas C, Tampé R. Proofreading of Peptide-MHC Complexes through Dynamic Multivalent Interactions. Front Immunol 2017; 8:65. [PMID: 28228754 PMCID: PMC5296336 DOI: 10.3389/fimmu.2017.00065] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 01/16/2017] [Indexed: 11/18/2022] Open
Abstract
The adaptive immune system is able to detect and destroy cells that are malignantly transformed or infected by intracellular pathogens. Specific immune responses against these cells are elicited by antigenic peptides that are presented on major histocompatibility complex class I (MHC I) molecules and recognized by cytotoxic T lymphocytes at the cell surface. Since these MHC I-presented peptides are generated in the cytosol by proteasomal protein degradation, they can be metaphorically described as a window providing immune cells with insights into the state of the cellular proteome. A crucial element of MHC I antigen presentation is the peptide-loading complex (PLC), a multisubunit machinery, which contains as key constituents the transporter associated with antigen processing (TAP) and the MHC I-specific chaperone tapasin (Tsn). While TAP recognizes and shuttles the cytosolic antigenic peptides into the endoplasmic reticulum (ER), Tsn samples peptides in the ER for their ability to form stable complexes with MHC I, a process called peptide proofreading or peptide editing. Through its selection of peptides that improve MHC I stability, Tsn contributes to the hierarchy of immunodominant peptide epitopes. Despite the fact that it concerns a key event in adaptive immunity, insights into the catalytic mechanism of peptide proofreading carried out by Tsn have only lately been gained via biochemical, biophysical, and structural studies. Furthermore, a Tsn homolog called TAP-binding protein-related (TAPBPR) has only recently been demonstrated to function as a second MHC I-specific chaperone and peptide proofreader. Although TAPBPR is PLC-independent and has a distinct allomorph specificity, it is likely to share a common catalytic mechanism with Tsn. This review focuses on the current knowledge of the multivalent protein–protein interactions and the concomitant dynamic molecular processes underlying peptide-proofreading catalysis. We do not only derive a model that highlights the common mechanistic principles shared by the MHC I editors Tsn and TAPBPR, and the MHC II editor HLA-DM, but also illustrate the distinct quality control strategies employed by these chaperones to sample epitopes. Unraveling the mechanistic underpinnings of catalyzed peptide proofreading will be crucial for a thorough understanding of many aspects of immune recognition, from infection control and tumor immunity to autoimmune diseases and transplant rejection.
Collapse
Affiliation(s)
- Christoph Thomas
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt am Main , Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt , Frankfurt am Main , Germany
| |
Collapse
|
31
|
Shionoya Y, Kanaseki T, Miyamoto S, Tokita S, Hongo A, Kikuchi Y, Kochin V, Watanabe K, Horibe R, Saijo H, Tsukahara T, Hirohashi Y, Takahashi H, Sato N, Torigoe T. Loss of tapasin in human lung and colon cancer cells and escape from tumor-associated antigen-specific CTL recognition. Oncoimmunology 2017; 6:e1274476. [PMID: 28344889 DOI: 10.1080/2162402x.2016.1274476] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/30/2016] [Accepted: 12/15/2016] [Indexed: 01/05/2023] Open
Abstract
Cytotoxic T-lymphocytes (CTLs) lyse target cells after recognizing the complexes of peptides and MHC class I molecules (pMHC I) on cell surfaces. Tapasin is an essential component of the peptide-loading complex (PLC) and its absence influences the surface repertoire of MHC class I peptides. In the present study, we assessed tapasin expression in 85 primary tumor lesions of non-small cell lung cancer (NSCLC) patients, demonstrating that tapasin expression positively correlated with patient survival. CD8+ T-cell infiltration of tumor lesions was synergistically observed with tapasin expression and correlated positively with survival. To establish a direct link between loss of tapasin and CTL recognition in human cancer models, we targeted the tapasin gene by CRISPR/Cas9 system and generated tapasin-deficient variants of human lung as well as colon cancer cells. We induced the CTLs recognizing endogenous tumor-associated antigens (TAA), survivin or cep55, and they responded to each tapasin-proficient wild type. In contrast, both CTL lines ignored the tapasin-deficient variants despite their antigen expression. Moreover, the adoptive transfer of the cep55-specific CTL line failed to prevent tumor growth in mice bearing the tapasin-deficient variant. Loss of tapasin most likely limited antigen processing of TAAs and led to escape from TAA-specific CTL recognition. Tapasin expression is thus a key for CTL surveillance against human cancers.
Collapse
Affiliation(s)
- Yosuke Shionoya
- Department of Pathology, Sapporo Medical University, Sapporo, Japan; Department of Respiratory Medicine and Allergology, Sapporo Medical University, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University , Sapporo, Japan
| | - Sho Miyamoto
- Department of Pathology, Sapporo Medical University , Sapporo, Japan
| | - Serina Tokita
- Department of Pathology, Sapporo Medical University , Sapporo, Japan
| | - Ayumi Hongo
- Department of Pathology, Sapporo Medical University , Sapporo, Japan
| | - Yasuhiro Kikuchi
- Department of Pathology, Sapporo Medical University , Sapporo, Japan
| | - Vitaly Kochin
- Department of Pathology, Sapporo Medical University , Sapporo, Japan
| | - Kazue Watanabe
- Department of Pathology, Sapporo Medical University, Sapporo, Japan; Research and Development Division, Medical and Biological Laboratories Company, Limited, Ina, Japan
| | - Ryota Horibe
- Department of Pathology, Sapporo Medical University, Sapporo, Japan; Department of Respiratory Medicine and Allergology, Sapporo Medical University, Sapporo, Japan
| | - Hiroshi Saijo
- Department of Pathology, Sapporo Medical University, Sapporo, Japan; Department of Respiratory Medicine and Allergology, Sapporo Medical University, Sapporo, Japan
| | | | | | - Hiroki Takahashi
- Department of Respiratory Medicine and Allergology, Sapporo Medical University , Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University , Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University , Sapporo, Japan
| |
Collapse
|
32
|
van Hateren A, Bailey A, Werner JM, Elliott T. Plasticity of empty major histocompatibility complex class I molecules determines peptide-selector function. Mol Immunol 2015; 68:98-101. [PMID: 25818313 PMCID: PMC4726658 DOI: 10.1016/j.molimm.2015.03.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 11/28/2022]
Abstract
Major histocompatibility complex class I (MHC I) proteins provide protection from intracellular pathogens and cancer via each of a cell's MHC I molecules binding and presenting a peptide to cytotoxic T lymphocytes. MHC I genes are highly polymorphic and can have significant diversity, with polymorphisms predominantly localised in the peptide-binding groove where they can change peptide-binding specificity. However, polymorphic residues may also determine other functional properties, such as how dependent MHC I alleles are on the peptide-loading complex for optimal acquisition of peptide cargo. We describe how differences in the peptide-binding properties of two MHC I alleles correlates with altered conformational flexibility in the peptide-empty state. We hypothesise that plasticity is an intrinsic property encoded by the protein sequence, and that co-ordinated movements of the membrane-proximal and membrane-distal domains collectively determines how dependent MHC I are on the peptide-loading complex for efficient assembly with high affinity peptides.
Collapse
Affiliation(s)
- Andy van Hateren
- Institute for Life Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK; Cancer Sciences Unit, Faculty of Medicine, University of Southampton, SO16 6YD, UK.
| | - Alistair Bailey
- Institute for Life Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK; Cancer Sciences Unit, Faculty of Medicine, University of Southampton, SO16 6YD, UK; Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK.
| | - Jörn M Werner
- Institute for Life Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK; Centre for Biological Sciences, Faculty of Natural & Environmental Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK.
| | - Tim Elliott
- Institute for Life Sciences, Building 85, M55, University of Southampton, SO17 1BJ, UK; Cancer Sciences Unit, Faculty of Medicine, University of Southampton, SO16 6YD, UK.
| |
Collapse
|
33
|
Hermann C, Trowsdale J, Boyle LH. TAPBPR: a new player in the MHC class I presentation pathway. ACTA ACUST UNITED AC 2015; 85:155-66. [PMID: 25720504 DOI: 10.1111/tan.12538] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In order to provide specificity for T cell responses against pathogens and tumours, major histocompatibility complex (MHC) class I molecules present high-affinity peptides at the cell surface to T cells. A key player for peptide loading is the MHC class I-dedicated chaperone tapasin. Recently we discovered a second MHC class I-dedicated chaperone, the tapasin-related protein TAPBPR. Here, we review the major steps in the MHC class I pathway and the TAPBPR data. We discuss the potential function of TAPBPR in the MHC class I pathway and the involvement of this previously uncharacterised protein in human health and disease.
Collapse
Affiliation(s)
- C Hermann
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | | | | |
Collapse
|
34
|
Fleischmann G, Fisette O, Thomas C, Wieneke R, Tumulka F, Schneeweiss C, Springer S, Schäfer LV, Tampé R. Mechanistic Basis for Epitope Proofreading in the Peptide-Loading Complex. THE JOURNAL OF IMMUNOLOGY 2015; 195:4503-13. [DOI: 10.4049/jimmunol.1501515] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 08/31/2015] [Indexed: 02/02/2023]
|
35
|
Thuring C, Follin E, Geironson L, Freyhult E, Junghans V, Harndahl M, Buus S, Paulsson KM. HLA class I is most tightly linked to levels of tapasin compared with other antigen-processing proteins in glioblastoma. Br J Cancer 2015; 113:952-62. [PMID: 26313662 PMCID: PMC4578088 DOI: 10.1038/bjc.2015.297] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/15/2014] [Accepted: 07/25/2015] [Indexed: 12/24/2022] Open
Abstract
Background: Tumour cells can evade the immune system by dysregulation of human leukocyte antigens (HLA-I). Low quantity and/or altered quality of HLA-I cell surface expression is the result of either HLA-I alterations or dysregulations of proteins of the antigen-processing machinery (APM). Tapasin is an APM protein dedicated to the maturation of HLA-I and dysregulation of tapasin has been linked to higher malignancy in several different tumours. Methods: We studied the expression of APM components and HLA-I, as well as HLA-I tapasin-dependency profiles in glioblastoma tissues and corresponding cell lines. Results: Tapasin displayed the strongest correlation to HLA-I heavy chain but also clustered with β2-microglobulin, transporter associated with antigen processing (TAP) and LMP. Moreover, tapasin also correlated to survival of glioblastoma patients. Some APM components, for example, TAP1/TAP2 and LMP2/LMP7, showed variable but coordinated expression, whereas ERAP1/ERAP2 displayed an imbalanced expression pattern. Furthermore, analysis of HLA-I profiles revealed variable tapasin dependence of HLA-I allomorphs in glioblastoma patients. Conclusions: Expression of APM proteins is highly variable between glioblastomas. Tapasin stands out as the APM component strongest correlated to HLA-I expression and we proved that HLA-I profiles in glioblastoma patients include tapasin-dependent allomorphs. The level of tapasin was also correlated with patient survival time. Our results support the need for individualisation of immunotherapy protocols.
Collapse
Affiliation(s)
- Camilla Thuring
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Elna Follin
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Linda Geironson
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Eva Freyhult
- Science for Life Laboratory, Bioinformatics Infrastructure for Life Sciences, Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, SE-751 05 Uppsala, Sweden
| | - Victoria Junghans
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| | - Mikkel Harndahl
- Department of Experimental Immunology, Institute of International Health, Immunology and Microbiology, DK-2200 Copenhagen, Denmark
| | - Søren Buus
- Department of Experimental Immunology, Institute of International Health, Immunology and Microbiology, DK-2200 Copenhagen, Denmark
| | - Kajsa M Paulsson
- Immunology Section, Department of Experimental Medical Science, Lund University, SE-221 84 Lund, Sweden
| |
Collapse
|
36
|
Sokol L, Koelzer VH, Rau TT, Karamitopoulou E, Zlobec I, Lugli A. Loss of tapasin correlates with diminished CD8(+) T-cell immunity and prognosis in colorectal cancer. J Transl Med 2015; 13:279. [PMID: 26310568 PMCID: PMC4551690 DOI: 10.1186/s12967-015-0647-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/20/2015] [Indexed: 11/10/2022] Open
Abstract
Background Tapasin is a crucial component of the major histocompatibility (MHC) class I antigen presentation pathway. Defects in this pathway can lead to tumor immune evasion. The aim of this study was to test whether tapasin expression correlates with CD8+ cytotoxic T lymphocyte (CTL) infiltration of colorectal cancer (CRC) and overall survival. Methods A next-generation tissue microarray (ngTMA) of 198 CRC patients with full clinicopathological information was included in this study. TMA slides were immunostained for tapasin, MHC I and CD8. Marker expression was analyzed with immune-cell infiltration, patient survival and TNM-staging. Results A reduction of tapasin expression strongly correlated with venous invasion (AUC 0.682, OR 2.7, p = 0.002; 95 % CI 1.7–5.0), lymphatic invasion (AUC 0.620, OR 2.0, p = 0.005; 95 % CI 1.3–3.3), distant metastasis (AUC 0.727, OR 2.9, p = 0.004; 95 % CI 1.4–5.9) and an infiltrative tumor border configuration (AUC 0.621, OR 2.2, p = 0.017; 95 % CI 1.2–4.4). Further, tapasin expression was associated with CD8+ CTL infiltration (AUC 0.729, OR 5.4, p < 0.001; 95 % CI 2.6–11), and favorable overall survival (p = 0.004, HR 0.6, 95 % CI 0.42–0.85). Conclusions Consistent with published functional data showing that tapasin promotes antigen presentation, as well as tumor immune recognition and destruction by CD8+ CTLs, a reduction in tapasin expression is associated with tumor progression in CRC. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0647-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lena Sokol
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland.
| | - Viktor H Koelzer
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland. .,Clinical Pathology Division, Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland.
| | - Tilman T Rau
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland. .,Clinical Pathology Division, Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland.
| | - Eva Karamitopoulou
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland. .,Clinical Pathology Division, Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland.
| | - Inti Zlobec
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland.
| | - Alessandro Lugli
- Translational Research Unit (TRU), Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland. .,Clinical Pathology Division, Institute of Pathology, University of Bern, Murtenstrasse 31, 3010, Bern, Switzerland.
| |
Collapse
|
37
|
Fritzsche S, Abualrous ET, Borchert B, Momburg F, Springer S. Release from endoplasmic reticulum matrix proteins controls cell surface transport of MHC class I molecules. Traffic 2015; 16:591-603. [PMID: 25753898 DOI: 10.1111/tra.12279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 01/12/2015] [Accepted: 01/30/2015] [Indexed: 02/01/2023]
Abstract
The anterograde transport of secretory proteins from the endoplasmic reticulum (ER) to the plasma membrane is a multi-step process. Secretory proteins differ greatly in their transport rates to the cell surface, but the contribution of each individual step to this difference is poorly understood. Transport rates may be determined by protein folding, chaperone association in the ER, access to ER exit sites (ERES) and retrieval from the ER-Golgi intermediate compartment or the cis-Golgi to the ER. We have used a combination of folding and trafficking assays to identify the differential step in the cell surface transport of two natural allotypes of the murine major histocompatibility complex (MHC) class I peptide receptor, H-2D(b) and H-2K(b) . We find that a novel pre-ER exit process that acts on the folded lumenal part of MHC class I molecules and that drastically limits their access to ERES accounts for the transport difference of the two allotypes. Our observations support a model in which the cell surface transport of MHC class I molecules and other type I transmembrane proteins is governed by the affinity of all their folding and maturation states to the proteins of the ER matrix.
Collapse
Affiliation(s)
- Susanne Fritzsche
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Esam T Abualrous
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Britta Borchert
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| | - Frank Momburg
- Department of Translational Immunology, German Cancer Research Center/NCT, Heidelberg, Germany
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
38
|
Porter KM, Hermann C, Traherne JA, Boyle LH. TAPBPR isoforms exhibit altered association with MHC class I. Immunology 2014; 142:289-99. [PMID: 24444341 PMCID: PMC4008236 DOI: 10.1111/imm.12253] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/14/2014] [Accepted: 01/14/2014] [Indexed: 01/14/2023] Open
Abstract
The tapasin-related protein TAPBPR is a novel component of the antigen processing and presentation pathway, which binds to MHC class I coupled with β2-microglobulin. We describe six alternatively spliced TAPBPR transcripts from the TAPBPL gene and investigate three of these at a protein level. TAPBPR transcripts lacking exon 5 result in loss of the membrane proximal IgC domain and loss of ability to bind to MHC class I. Alternative acceptor and donor splice sites in exon 4 of TAPBPR altered the reading frame in the IgV domain and produced a truncated TAPBPR product. An additional exon in the TAPBPL gene was identified that encodes extra residues in the cytoplasmic tail of TAPBPR. This longer TAPBPR protein interacted with MHC class I but was attenuated in its ability to down-regulate surface expression of MHC class I. The abundance of these alternative transcripts in peripheral blood mononuclear cells and dendritic cells suggests an important role of TAPBPR isoforms in vivo.
Collapse
Affiliation(s)
- Keith M Porter
- Department of Pathology, Cambridge Institute of Medical Research, University of Cambridge, Wellcome TrustCambridge, UK
| | - Clemens Hermann
- Department of Pathology, Cambridge Institute of Medical Research, University of Cambridge, Wellcome TrustCambridge, UK
| | - James A Traherne
- Department of Pathology, Cambridge Institute of Medical Research, University of Cambridge, Wellcome TrustCambridge, UK
| | - Louise H Boyle
- Department of Pathology, Cambridge Institute of Medical Research, University of Cambridge, Wellcome TrustCambridge, UK
| |
Collapse
|
39
|
Sever L, Vo NTK, Bols NC, Dixon B. Expression of tapasin in rainbow trout tissues and cell lines and up regulation in a monocyte/macrophage cell line (RTS11) by a viral mimic and viral infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:86-93. [PMID: 24321527 DOI: 10.1016/j.dci.2013.11.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 06/03/2023]
Abstract
Tapasin is a transmembrane glycoprotein that acts as a bridge between the transporter associated with antigen processing and the MHC class I receptor in mammals. Through the development of antibody against trout tapasin, this report demonstrates the detection of trout tapasin as a N-glycosylated 48 kDa protein. Tissue and cell line distribution revealed that tapasin protein is expressed mainly in immune system organs and in rainbow trout epithelial cell lines from gill (RTgill-W1), liver (RTL-W1), and intestine (RTgutGC). An additional 20 kDa band was observed in tissues and cell lines, and appeared to be most prominent in RTgutGC but was absent in peripheral blood leukocytes. Tapasin 48 kDa protein was most strongly expressed in RTS11 (monocyte/macrophage cell line) and its regulation following dsRNA stimulation was explored. Upon poly I:C treatment and Chum Salmon Reovirus (CSV) infection, tapasin protein expression was upregulated up to 3.5 fold and 3 fold respectively, in parallel with increased expression of the glycosylated MH class I heavy chain, whereas the expression of the 20 kDa form remained unchanged. Overall this work demonstrates the induction of tapasin protein by dsRNA stimulation, which implies its possible conserved regulation during viral infection in teleost cells.
Collapse
Affiliation(s)
- Lital Sever
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada
| | - Nguyen T K Vo
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada
| | - Niels C Bols
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada
| | - Brian Dixon
- Department of Biology, University of Waterloo, 200 University Ave W., Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|
40
|
Chen X, Tang Y, Zhang Y, Zhuo M, Tang Z, Yu Y, Zang G. Tapasin modification on the intracellular epitope HBcAg18-27 enhances HBV-specific CTL immune response and inhibits hepatitis B virus replication in vivo. J Transl Med 2014; 94:478-90. [PMID: 24614195 DOI: 10.1038/labinvest.2014.6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 11/23/2013] [Accepted: 12/23/2013] [Indexed: 01/16/2023] Open
Abstract
HBV-specific cytotoxic T-lymphocyte (CTL) activity has a very important role in hepatitis B virus clearance. Present studies suggest that Tapasin, a endoplasmic reticulum (ER) chaperone, stabilizes the peptide-receptive MHC I conformation, allowing peptide exchange and increasing more peptides to be translocated into the ER. We have previously testified that cytoplasmic transduction peptide (CTP)-HBcAg(18-27)-Tapasin fusion protein could enter cytoplasm of dendritic cells, and enhance T cells' response to generate specific CTLs efficiently in vitro. In the present study, we evaluated specific immune responses of CTP-HBcAg(18-27)-Tapasin fusion protein in HLA-A2 transgenic mice (H-2K(b)) and anti-viral ability in HBV transgenic mice, and explored the mechanisms probably involved in. The studies showed that CTP-HBcAg(18-27)-Tapasin not only increased production of cytokine IFN-γ and interleukin-2 (IL-2), compared with CTP-HBcAg(18-27), HBcAg(18-27)-Tapasin, and PBS, but also significantly induced the higher percentages of IFN-γ+CD8(+) T cells and specific CTL responses in HLA-A2 transgenic mice. Moreover, enhancement of specific CTL activity induced by the fusion protein reduced HBV DNA and hepatitis B surface antigen (HBsAg) levels and decreased the expression of HBsAg and hepatitis B core antigen (HBcAg) in liver tissue of HBV transgenic mice. In addition, CTP-HBcAg(18-27)-Tapasin could upregulate the expression of JAK2, Tyk2, STAT1, and STAT4 in T lymphocytes in HLA-A2 transgenic mice splenocytes. However, there was no significant difference on the expressions of JAK1, JAK3, and STAT6 between each group. In conclusion, CTP-HBcAg(18-27)-Tapasin fusion protein could enhance not only the percentages of CTLs but also induce robust specific CTL activity and inhibits hepatitis B virus replication in vivo, which was associated with activation of the JAK/STAT signaling pathway.
Collapse
Affiliation(s)
- Xiaohua Chen
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuyan Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yi Zhang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Meng Zhuo
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenghao Tang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yongsheng Yu
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Guoqing Zang
- Department of Infectious Disease, Shanghai JiaoTong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
41
|
Association analysis of tapasin polymorphisms with aspirin-exacerbated respiratory disease in asthmatics. Pharmacogenet Genomics 2014; 23:341-8. [PMID: 23736108 DOI: 10.1097/fpc.0b013e328361d4bb] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Aspirin-exacerbated respiratory disease (AERD) is characterized by the development of airway obstruction in asthmatic individuals following the ingestion of aspirin or other nonsteroidal anti-inflammatory drugs. TAPBP (TAP-binding protein, tapasin) is upregulated by eicosanoids, which act as potent inflammatory molecules in aspirin-related reactions. Thus, functional alterations in the TAPBP gene may contribute toward AERD. OBJECTIVES We examined the relationship between the single nucleotide polymorphisms on the TAPBP gene and AERD. MATERIALS AND METHODS A group of asthmatic patients (n=1252) underwent the oral aspirin challenge. Oral aspirin challenge reactions were categorized into two groups as follows: 15% or greater decreases in forced expiratory volume in 1 s or naso-ocular and skin reactions (AERD), or 15% or less decreases in forced expiratory volume in 1 s without naso-ocular and skin reactions (aspirin-tolerant asthma). Five single nucleotide polymorphisms of the TAPBP gene were genotyped. RESULTS Logistic regression analysis showed that the minor allele frequencies of TAPBP rs2071888 C>G (Thr260Arg) on exon 4 (P>0.05), which was in absolute linkage disequilibrium with rs1059288 T>C on 3'UTR, were significantly higher in the AERD group than in the aspirin-tolerant asthma group, and the P values remained significant after multiple comparisons (Pcorr=0.006, odds ratio: 1.37, 95% confidence interval: 1.11-1.69, additive model; Pcorr=0.009, odds ratio: 1.52, 95% confidence interval: 1.14-2.03, dominant model). Alpha-helical wheel plotting showed that 260Arg had greater hydrophilic helical property than 260Thr. CONCLUSION TAPBP polymorphisms may play a role in the development of AERD.
Collapse
|
42
|
Hermann C, Strittmatter LM, Deane JE, Boyle LH. The binding of TAPBPR and Tapasin to MHC class I is mutually exclusive. THE JOURNAL OF IMMUNOLOGY 2013; 191:5743-50. [PMID: 24163410 DOI: 10.4049/jimmunol.1300929] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The loading of peptide Ags onto MHC class I molecules is a highly controlled process in which the MHC class I-dedicated chaperone tapasin is a key player. We recently identified a tapasin-related molecule, TAPBPR, as an additional component in the MHC class I Ag-presentation pathway. In this study, we show that the amino acid residues important for tapasin to interact with MHC class I are highly conserved on TAPBPR. We identify specific residues in the N-terminal and C-terminal domains of TAPBPR involved in associating with MHC class I. Furthermore, we demonstrate that residues on MHC class I crucial for its association with tapasin, such as T134, are also essential for its interaction with TAPBPR. Taken together, the data indicate that TAPBPR and tapasin bind in a similar orientation to the same face of MHC class I. In the absence of tapasin, the association of MHC class I with TAPBPR is increased. However, in the absence of TAPBPR, the interaction between MHC class I and tapasin does not increase. In light of our findings, previous data determining the function of tapasin in the MHC class I Ag-processing and presentation pathway must be re-evaluated.
Collapse
Affiliation(s)
- Clemens Hermann
- Department of Pathology, Cambridge Institute of Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | | | | | | |
Collapse
|
43
|
Geironson L, Thuring C, Harndahl M, Rasmussen M, Buus S, Røder G, Paulsson KM. Tapasin facilitation of natural HLA-A and -B allomorphs is strongly influenced by peptide length, depends on stability, and separates closely related allomorphs. THE JOURNAL OF IMMUNOLOGY 2013; 191:3939-47. [PMID: 23980206 DOI: 10.4049/jimmunol.1201741] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite an abundance of peptides inside a cell, only a small fraction is ultimately presented by HLA-I on the cell surface. The presented peptides have HLA-I allomorph-specific motifs and are restricted in length. So far, detailed length studies have been limited to few allomorphs. Peptide-HLA-I (pHLA-I) complexes of different allomorphs are qualitatively and quantitatively influenced by tapasin to different degrees, but again, its effect has only been investigated for a small number of HLA-I allomorphs. Although both peptide length and tapasin dependence are known to be important for HLA-I peptide presentation, the relationship between them has never been studied. In this study, we used random peptide libraries from 7- to 13-mers and studied binding in the presence and absence of a recombinant truncated form of tapasin. The data show that HLA-I allomorphs are differentially affected by tapasin, different lengths of peptides generated different amounts of pHLA-I complexes, and HLA-A allomorphs are generally less restricted than HLA-B allomorphs to peptides of the classical length of 8-10 aa. We also demonstrate that tapasin facilitation varies for different peptide lengths, and that the correlation between high degree of tapasin facilitation and low stability is valid for different random peptide mixes of specific lengths. In conclusion, these data show that tapasin has specificity for the combination of peptide length and HLA-I allomorph, and suggest that tapasin promotes formation of pHLA-I complexes with high on and off rates, an important intermediary step in the HLA-I maturation process.
Collapse
Affiliation(s)
- Linda Geironson
- Department of Experimental Medical Science, Immunology Section, Lund University, 221 84 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
44
|
Kanaseki T, Lind KC, Escobar H, Nagarajan N, Reyes-Vargas E, Rudd B, Rockwood AL, Van Kaer L, Sato N, Delgado JC, Shastri N. ERAAP and tapasin independently edit the amino and carboxyl termini of MHC class I peptides. THE JOURNAL OF IMMUNOLOGY 2013; 191:1547-55. [PMID: 23863903 DOI: 10.4049/jimmunol.1301043] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Effective CD8(+) T cell responses depend on presentation of a stable peptide repertoire by MHC class I (MHC I) molecules on the cell surface. The overall quality of peptide-MHC I complexes (pMHC I) is determined by poorly understood mechanisms that generate and load peptides with appropriate consensus motifs onto MHC I. In this article, we show that both tapasin (Tpn), a key component of the peptide loading complex, and the endoplasmic reticulum aminopeptidase associated with Ag processing (ERAAP) are quintessential editors of distinct structural features of the peptide repertoire. We carried out reciprocal immunization of wild-type mice with cells from Tpn- or ERAAP-deficient mice. Specificity analysis of T cell responses showed that absence of Tpn or ERAAP independently altered the peptide repertoire by causing loss as well as gain of new pMHC I. Changes in amino acid sequences of MHC-bound peptides revealed that ERAAP and Tpn, respectively, defined the characteristic amino and carboxy termini of canonical MHC I peptides. Thus, the optimal pMHC I repertoire is produced by two distinct peptide editing steps in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Takayuki Kanaseki
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Annexin A1 on the surface of early apoptotic cells suppresses CD8+ T cell immunity. PLoS One 2013; 8:e62449. [PMID: 23638088 PMCID: PMC3640057 DOI: 10.1371/journal.pone.0062449] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 03/21/2013] [Indexed: 12/13/2022] Open
Abstract
Prevention of an immune response against self-antigens derived from apoptotic cells is essential to preclude autoimmune and chronic inflammatory diseases. Here, we describe apoptosis induced externalization of endogenous cytosolic annexin 1 initiating an anti-inflammatory effector mechanism that suppresses the immune response against antigens of apoptotic cells. Cytosolic annexin 1 rapidly translocated to the apoptotic cell surface and inhibited dendritic cell (DC) activation induced by Toll like receptors (TLR). Annexin 1-inhibited DC showed strongly reduced secretion of pro-inflammatory cytokines (e.g. TNF and IL-12) and costimulatory surface molecules (e.g. CD40 and CD86), while anti-inflammatory mediators like PD-L1 remained unchanged. T cells stimulated by such DC lacked secretion of interferon-γ (IFN-γ) and TNF but retained IL-10 secretion. In mice, annexin 1 prevented the development of inflammatory DC and suppressed the cellular immune response against the model antigen ovalbumin (OVA) expressed in apoptotic cells. Furthermore, annexin 1 on apoptotic cells compromised OVA-specific tumor vaccination and impaired rejection of an OVA-expressing tumor. Thus, our results provide a molecular mechanism for the suppressive activity of apoptotic cells on the immune response towards apoptotic cell-derived self-antigens. This process may play an important role in prevention of autoimmune diseases and of the immune response against cancer.
Collapse
|
46
|
Boyle LH, Hermann C, Boname JM, Porter KM, Patel PA, Burr ML, Duncan LM, Harbour ME, Rhodes DA, Skjødt K, Lehner PJ, Trowsdale J. Tapasin-related protein TAPBPR is an additional component of the MHC class I presentation pathway. Proc Natl Acad Sci U S A 2013; 110:3465-70. [PMID: 23401559 PMCID: PMC3587277 DOI: 10.1073/pnas.1222342110] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Tapasin is an integral component of the peptide-loading complex (PLC) important for efficient peptide loading onto MHC class I molecules. We investigated the function of the tapasin-related protein, TAPBPR. Like tapasin, TAPBPR is widely expressed, IFN-γ-inducible, and binds to MHC class I coupled with β2-microglobulin in the endoplasmic reticulum. In contrast to tapasin, TAPBPR does not bind ERp57 or calreticulin and is not an integral component of the PLC. β2-microglobulin is essential for the association between TAPBPR and MHC class I. However, the association between TAPBPR and MHC class I occurs in the absence of a functional PLC, suggesting peptide is not required. Expression of TAPBPR decreases the rate of MHC class I maturation through the secretory pathway and prolongs the association of MHC class I on the PLC. The TAPBPR:MHC class I complex trafficks through the Golgi apparatus, demonstrating a function of TAPBPR beyond the endoplasmic reticulum/cis-Golgi. The identification of TAPBPR as an additional component of the MHC class I antigen-presentation pathway demonstrates that mechanisms controlling MHC class I expression remain incompletely understood.
Collapse
Affiliation(s)
- Louise H Boyle
- Department of Pathology, Cambridge Institute of Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
T cell recognition of antigen-presenting cells depends on their expression of a spectrum of peptides bound to major histocompatibility complex class I (MHC-I) and class II (MHC-II) molecules. Conversion of antigens from pathogens or transformed cells into MHC-I- and MHC-II-bound peptides is critical for mounting protective T cell responses, and similar processing of self proteins is necessary to establish and maintain tolerance. Cells use a variety of mechanisms to acquire protein antigens, from translation in the cytosol to variations on the theme of endocytosis, and to degrade them once acquired. In this review, we highlight the aspects of MHC-I and MHC-II biosynthesis and assembly that have evolved to intersect these pathways and sample the peptides that are produced.
Collapse
Affiliation(s)
- Janice S Blum
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
48
|
Abstract
The stability of the MHC (major histocompatibility complex) class I peptide repertoire is optimized during assembly in the endoplasmic reticulum (ER) and depends on the collective function of components of the peptide-loading complex (PLC). The chaperone-like molecule tapasin is the cornerstone of this complex and acts directly on the MHC class I molecule to promote high-affinity peptide loading. Optimal tapasin activity, however, relies on the ability of ERp57 and calreticulin, two proteins involved in general ER glycoprotein folding, to bridge and thereby stabilize its otherwise weak interaction with the MHC class I heavy chain. Here, we describe methods for the recombinant expression of soluble components of the PLC specifically tailored to generate the post-translational modifications required to support subcomplex assembly in vitro. Using recombinant MHC class I molecules bearing monoglucosylated N-linked glycans, calreticulin, and disulfide-linked tapasin/ERp57 heterodimers, this soluble PLC subcomplex can be employed to study the mechanism of peptide loading or the principles governing peptide selection for particular MHC class I alleles.
Collapse
Affiliation(s)
- Pamela A Wearsch
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Peter Cresswell
- Department of Immunobiology and Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, USA.
| |
Collapse
|
49
|
Maretti-Mira AC, Bittner J, Oliveira-Neto MP, Liu M, Kang D, Li H, Pirmez C, Craft N. Transcriptome patterns from primary cutaneous Leishmania braziliensis infections associate with eventual development of mucosal disease in humans. PLoS Negl Trop Dis 2012; 6:e1816. [PMID: 23029578 PMCID: PMC3441406 DOI: 10.1371/journal.pntd.0001816] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 07/31/2012] [Indexed: 12/03/2022] Open
Abstract
Introduction Localized Cutaneous Leishmaniasis (LCL) and Mucosal Leishmaniasis (ML) are two extreme clinical forms of American Tegumentary Leishmaniasis that usually begin as solitary primary cutaneous lesions. Host and parasite factors that influence the progression of LCL to ML are not completely understood. In this manuscript, we compare the gene expression profiles of primary cutaneous lesions from patients who eventually developed ML to those that did not. Methods Using RNA-seq, we analyzed both the human and Leishmania transcriptomes in primary cutaneous lesions. Results Limited number of reads mapping to Leishmania transcripts were obtained. For human transcripts, compared to ML patients, lesions from LCL patients displayed a general multi-polarization of the adaptive immune response and showed up-regulation of genes involved in chemoattraction of innate immune cells and in antigen presentation. We also identified a potential transcriptional signature in the primary lesions that may predict long-term disease outcome. Conclusions We were able to simultaneously sequence both human and Leishmania mRNA transcripts in primary cutaneous leishmaniasis lesions. Our results suggest an intrinsic difference in the immune capacity of LCL and ML patients. The findings correlate the complete cure of L. braziliensis infection with a controlled inflammatory response and a balanced activation of innate and adaptive immunity. In Brazil, American tegumentary leishmaniasis is mainly caused by Leishmania braziliensis infection. Usually, it begins as a solitary skin lesion, which is called Localized Cutaneous Leishmaniasis (LCL). However, after this lesion heals, 5% of the patients may develop destructive lesions of the mucosa of nose and throat, which is called Mucosal Leishmaniasis (ML). Currently, there is no technology to identify individuals at risk for ML, and the factors that control the evolution to ML remain unknown. This work aims to study the human gene expression patterns that may contribute to the clinical manifestation of the disease. We used the RNA-Seq technique to study skin lesions from individuals that had LCL (LCL group) and those who developed ML (ML group). Our results suggest that individuals that progressed to ML expressed low levels of genes involved in the immune and inflammatory responses, which might lead to insufficient control of the infection. We were also able to identify a potential gene expression signature to predict long-term disease outcome.
Collapse
Affiliation(s)
- Ana Claudia Maretti-Mira
- Division of Molecular Medicine, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaime Bittner
- Division of Molecular Medicine, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - Manoel Paes Oliveira-Neto
- Ambulatório de Leishmanioses, Instituto de Pesquisas Clínicas Evandro Chagas, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Minghsun Liu
- Infectious Diseases Section (111 F) and Research Service, VA Medical Center West Los Angeles, Los Angeles, California, United States of America
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Dezhi Kang
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, United States of America
| | - Huiying Li
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, UCLA-DOE Institute for Genomics and Proteomics, Los Angeles, California, United States of America
| | - Claude Pirmez
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Noah Craft
- Division of Molecular Medicine, Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Geironson L, Røder G, Paulsson K. Stability of peptide-HLA-I complexes and tapasin folding facilitation - tools to define immunogenic peptides. FEBS Lett 2012; 586:1336-43. [DOI: 10.1016/j.febslet.2012.03.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Revised: 03/02/2012] [Accepted: 03/18/2012] [Indexed: 01/04/2023]
|