1
|
Zhang Y, Zhang M, Yu J, Ma Z, Chen X, Tang Y, Zhou C, Li Q. Genome-wide identification, evolution, and expression analysis of the bone morphogenetic protein gene family in Myxocyprinus asiaticus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101431. [PMID: 39893899 DOI: 10.1016/j.cbd.2025.101431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/04/2025]
Abstract
Bone morphogenetic proteins (BMPs) are important growth factors belonging to the TGF-β superfamily. These factors not only play a vital role in skeleton formation in young fish but also regulate the morphological development of M. asiaticus, with Group II genes regulating morphology mainly during the juvenile stage. This study investigated how BMP genes regulate Myxocyprinus asiaticus development and function and explored the role of the BMP family in fish morphological development. In this study, 43 BMPs were identified and classified into five groups: BMP1/3/11/15 (Group I), BMP12/13/14 (Group II), BMP2/4/16 (Group III), BMP9/10 (Group IV), and BMP5/6/7/8 (Group V). Analyses of the gene structures and conserved motifs revealed the conservation of the BMP gene family in M. asiaticus. In M. asiaticus, gene fragmentation, duplication, and 4R whole-genome duplication events contributed to BMP gene family expansion. Furthermore, expression pattern analysis and qRT-PCR revealed that changes in M. asiaticus BMP gene expression during different developmental stages were due to body size alterations, highlighting the major impact of the BMP gene on body size variation in this species. Our study provides fundamental data for investigating the morphological development of M. asiaticus and lays the framework for understanding the genetic mechanisms of body size variation in scleractinian fishes, with potential applications in the artificial breeding and conservation of M. asiaticus.
Collapse
Affiliation(s)
- Yizheng Zhang
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Meng Zhang
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Provinc, College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China
| | - Jinhui Yu
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Provinc, College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China
| | - Zhigang Ma
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Xin Chen
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Yongtao Tang
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang 453007, PR China
| | - Chuanjiang Zhou
- The Observation and Research Field Station of Taihang Mountain Forest Ecosystems of Henan Provinc, College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China.
| | - Qiang Li
- Fisheries Institute, Sichuan Academy of Agricultural Sciences, Chengdu 611731, PR China.
| |
Collapse
|
2
|
Lüth S, Fuchs J, Deneke C. Compatibility of whole-genome sequencing data from Illumina and Ion Torrent technologies in genome comparison analysis of Listeria monocytogenes. Microb Genom 2025; 11:001389. [PMID: 40310451 PMCID: PMC12046094 DOI: 10.1099/mgen.0.001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/28/2025] [Indexed: 05/02/2025] Open
Abstract
Whole-genome sequencing (WGS) has become the key approach for molecular surveillance of Listeria monocytogenes. Genome comparison analysis can reveal transmission routes that cannot be found with classic epidemiology. A widespread standard for use in genome comparison analysis involves data from short-read sequencing, generated on Illumina or Ion Torrent devices. To date, little is known about the compatibility of data from both platforms. This knowledge is essential when it comes to the central analysis of data, for example, in the case of outbreaks. We used WGS data from 47 L. monocytogenes isolates of the strain collection of the German National Reference Laboratory for L. monocytogenes, generated on either Illumina or Ion Torrent devices, to analyse the impact of the sequencing technology on downstream analyses. In our study, only the assembler SPAdes delivered qualitatively comparable results. In the gene-based core genome multilocus sequence typing (cgMLST), the same-strain allele discrepancy between the platforms was 14.5 alleles on average, which is well above the threshold of 7 alleles routinely used for cluster detection in L. monocytogenes. An application of a strict frameshift filter in cgMLST analysis could push the mean discrepancy below this threshold but reduced discriminatory power. The impact of the platform on the read-based single nucleotide polymorphism analysis was lower than that on the cgMLST. Overall, it was possible to improve compatibility in various ways, but perfect compatibility could not be achieved.
Collapse
Affiliation(s)
- Stefanie Lüth
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Jannika Fuchs
- Chemical and Veterinary Investigation Office (CVUA) Karlsruhe, Weißenburger Str. 3, 76187 Karlsruhe, Germany
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
3
|
Shin S, Kim J, Song E, Han S, Hohng S. Analytical techniques for nucleic acid and protein detection with single-molecule sensitivity. Exp Mol Med 2025:10.1038/s12276-025-01453-w. [PMID: 40307572 DOI: 10.1038/s12276-025-01453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 01/13/2025] [Accepted: 03/10/2025] [Indexed: 05/02/2025] Open
Abstract
Nucleic acids and proteins serve as crucial biomarkers used in the diagnosis, prognosis and therapy monitoring across various diseases. Traditionally, these biomarkers are identified at an ensemble level following the amplification of target or signaling molecules. However, these methods have limitations in addressing contemporary challenges in molecular diagnostics, such as low sensitivity, specificity, throughput and imprecise quantification. To overcome these limitations, various analytical techniques offering single-molecule sensitivity have been developed. Here we aim to provide a concise overview of historically notable and potentially promising analytical techniques to detect nucleic acids and proteins with single-molecule sensitivity. Our focus is on their potential in liquid biopsy, delineating their strengths and weaknesses, providing insights into their ability to revolutionize biomarker analysis and paving the way for more advanced technologies.
Collapse
Affiliation(s)
- Soochul Shin
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Juyoung Kim
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Eunho Song
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Sun Han
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea
| | - Sungchul Hohng
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
May SA, Rosenbaum SW, Pearse DE, Kardos M, Primmer CR, Baetscher DS, Waples RS. The Genomics Revolution in Nonmodel Species: Predictions vs. Reality for Salmonids. Mol Ecol 2025:e17758. [PMID: 40249276 DOI: 10.1111/mec.17758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/12/2025] [Accepted: 03/28/2025] [Indexed: 04/19/2025]
Abstract
The increasing feasibility of whole-genome sequencing has been highly anticipated, promising to transform our understanding of the biology of nonmodel species. Notably, dramatic cost reductions beginning around 2007 with the advent of high-throughput sequencing inspired publications heralding the 'genomics revolution', with predictions about its future impacts. Although such predictions served as useful guideposts, value is added when statements are evaluated with the benefit of hindsight. Here, we review 10 key predictions made early in the genomics revolution, highlighting those realised while identifying challenges limiting others. We focus on predictions concerning applied aspects of genomics and examples involving salmonid species which, due to their socioeconomic and ecological significance, have been frontrunners in applications of genomics in nonmodel species. Predicted outcomes included enhanced analytical power, deeper insights into the genetic basis of phenotype and fitness variation, disease management and breeding program advancements. Although many predictions have materialised, several expectations remain unmet due to technological, analytical and knowledge barriers. Additionally, largely unforeseen advancements, including the identification and management applicability of large-effect loci, close-kin mark-recapture, environmental DNA and gene editing have added under-anticipated value. Finally, emerging innovations in artificial intelligence and bioinformatics offer promising new directions. This retrospective evaluation of the impacts of the genomic revolution offers insights into the future of genomics for nonmodel species.
Collapse
Affiliation(s)
- Samuel A May
- National Cold Water Marine Aquaculture Center, Agricultural Research Service, United States Department of Agriculture, Orono, Maine, USA
| | - Samuel W Rosenbaum
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, College of Forestry and Conservation, University of Montana, Missoula, Montana, USA
| | - Devon E Pearse
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA
| | - Marty Kardos
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington, USA
| | - Craig R Primmer
- Organismal and Evolutionary Biology Research Program, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Institute of Biotechnology, Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Diana S Baetscher
- Auke Bay Laboratories, Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Juneau, Alaska, USA
| | - Robin S Waples
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
5
|
Uzundurukan A, Nelson M, Teske C, Islam MS, Mohamed E, Christy JV, Martin HJ, Muratov E, Glover S, Fuoco D. Meta-analysis and review of in silico methods in drug discovery - part 1: technological evolution and trends from big data to chemical space. THE PHARMACOGENOMICS JOURNAL 2025; 25:8. [PMID: 40204715 DOI: 10.1038/s41397-025-00368-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 03/13/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
This review offers an overview of advanced in silico methods crucial for drug discovery, emphasizing their integration with data science, and investigates the effectiveness of data science, machine learning, and artificial intelligence via a thorough meta-analysis of existing technologies. This meta-analysis aims to rank these technologies based on their applications and accessibility of knowledge. Initially, a search strategy yielded 900 papers, which were then refined into two subsets: the top 300 most-cited papers since 2000 and papers selected for systematic review based on high impact. From these, 97 articles were identified for discussion, categorized by their influence on society. The focus remains on the qualitative impact of these disciplines rather than solely on metrics like new drug approvals. Ultimately, the review underscores the role of big data in enhancing our comprehension of drug candidate trajectories from development to commercialization, utilizing information stored in publicly available databases to chemical space. Graphical extrapolation of some keywords (Drug Discovery; Big Data; Database; Metadata) discussed in this article and their evolution (in terms of absolute items that are available) by time.
Collapse
Affiliation(s)
- Arife Uzundurukan
- Centre de Recherche Acoustique-Signal-Humain, Université de Sherbrooke, 2500 Bd de l'Université, Sherbrooke, J1K 2R1, QC, Canada
- Department of Chemical Engineering, École Polytechnique de Montréal, 2500 Chem. de Polytechnique, Montréal, H3T 1J4, QC, Canada
| | - Mark Nelson
- Piramal Pharma Solutions, Inc, 18655 Krause St., Riverview, MI 48193, Altoris, Inc., San Diego, CA, USA
| | | | - Mohamed Shahidul Islam
- Quality and Compliance Department, BIOVANTEK Global, 10149, chemin de la cote-de-liesse, Montréal, QC, Canada
| | - Elzagheid Mohamed
- Royal Commission for Jubail and Yanbu, Jubail Industrial City, Kingdom of Saudi Arabia
| | | | - Holli-Joi Martin
- Laboratory for Molecular Modeling, Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Eugene Muratov
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, USA
| | - Samantha Glover
- Quantum Business Solution. Beverly Hills, Los Angeles, CA, USA
| | - Domenico Fuoco
- Department of Chemical Engineering, École Polytechnique de Montréal, 2500 Chem. de Polytechnique, Montréal, H3T 1J4, QC, Canada.
| |
Collapse
|
6
|
Lok J, Harris JM, Carey I, Agarwal K, McKeating JA. Assessing the virological response to direct-acting antiviral therapies in the HBV cure programme. Virology 2025; 605:110458. [PMID: 40022943 DOI: 10.1016/j.virol.2025.110458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 02/20/2025] [Indexed: 03/04/2025]
Abstract
Hepatitis B virus (HBV) is a global health problem with over 250 million people affected worldwide. Nucleos(t)ide analogues remain the standard of care and suppress production of progeny virions; however, they have limited effect on the viral transcriptome and long-term treatment is associated with off-target toxicities. Promising results are emerging from clinical trials and several drug classes have been evaluated, including capsid assembly modulators and RNA interfering agents. Whilst peripheral biomarkers are used to monitor responses and define treatment endpoints, they fail to reflect the full reservoir of infected hepatocytes. Given these limitations, consideration should be given to the merits of sampling liver tissue, especially in the context of clinical trials. In this review article, we will discuss methods for profiling HBV in liver tissue and their value to the HBV cure programme.
Collapse
Affiliation(s)
- James Lok
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom.
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, OX3 7FZ, United Kingdom
| | - Ivana Carey
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, SE5 9RS, United Kingdom
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, OX3 7FZ, United Kingdom; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Freund FD, Gates D, Johnson MG, Rothfels CJ. Phylogenetics and population structure of the western North American endemic Pacific Laurasian clade of Isoëtes. AMERICAN JOURNAL OF BOTANY 2025; 112:e70030. [PMID: 40237371 DOI: 10.1002/ajb2.70030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 04/18/2025]
Abstract
PREMISE Isoëtes is a genus of small, semi-woody, hydrophilic, heterosporous lycophytes with a cosmopolitan, global distribution. However, local populations tend to be found in narrow, patchy, and highly fragmented mesic to aquatic habitats, many of which are currently under threat. In this study, we sought to uncover how this patchy distribution has affected the evolutionary history of one of the two lineages of Isoëtes found on the West Coast of North America-the Pacific Laurasian clade (PLC). METHODS We used a combination of population genetic and multilocus molecular phylogenetic approaches to infer the relationships among the three described species in this clade and to determine the degree of isolation among the sampled populations. RESULTS We discovered that the populations studied are highly structured and that two of the species, as currently circumscribed, are not monophyletic. Instead, our phylogenetic results suggest that there are at least eight distinct "species-level" clades within the PLC. Of these eight, five appear to have been the result of a rapid radiation. CONCLUSIONS Our results suggest that the existing taxonomy does not reflect the actual diversity in the PLC and warrants further investigation.
Collapse
Affiliation(s)
- Forrest D Freund
- Department of Integrative Biology, University of California, Berkeley, 1001 Valley Life Sciences Building, Berkeley, 94720-2465, CA, USA
| | - Daniel Gates
- Department of Evolution and Ecology and Center for Population Biology, University of California, Davis, Davis, 97616, CA, USA
| | - Matthew G Johnson
- Department of Biological Sciences, Texas Tech University, 2901 Main Street, Lubbock, 79409-3131, TX, USA
| | - Carl J Rothfels
- Ecology Center and Department of Biology, Utah State University, BNR 117, 5305 Old Main Hill, Logan, 84322-0300, UT, USA
| |
Collapse
|
8
|
Stojchevski R, Sutanto EA, Sutanto R, Hadzi-Petrushev N, Mladenov M, Singh SR, Sinha JK, Ghosh S, Yarlagadda B, Singh KK, Verma P, Sengupta S, Bhaskar R, Avtanski D. Translational Advances in Oncogene and Tumor-Suppressor Gene Research. Cancers (Basel) 2025; 17:1008. [PMID: 40149342 PMCID: PMC11940485 DOI: 10.3390/cancers17061008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Cancer, characterized by the uncontrolled proliferation of cells, is one of the leading causes of death globally, with approximately one in five people developing the disease in their lifetime. While many driver genes were identified decades ago, and most cancers can be classified based on morphology and progression, there is still a significant gap in knowledge about genetic aberrations and nuclear DNA damage. The study of two critical groups of genes-tumor suppressors, which inhibit proliferation and promote apoptosis, and oncogenes, which regulate proliferation and survival-can help to understand the genomic causes behind tumorigenesis, leading to more personalized approaches to diagnosis and treatment. Aberration of tumor suppressors, which undergo two-hit and loss-of-function mutations, and oncogenes, activated forms of proto-oncogenes that experience one-hit and gain-of-function mutations, are responsible for the dysregulation of key signaling pathways that regulate cell division, such as p53, Rb, Ras/Raf/ERK/MAPK, PI3K/AKT, and Wnt/β-catenin. Modern breakthroughs in genomics research, like next-generation sequencing, have provided efficient strategies for mapping unique genomic changes that contribute to tumor heterogeneity. Novel therapeutic approaches have enabled personalized medicine, helping address genetic variability in tumor suppressors and oncogenes. This comprehensive review examines the molecular mechanisms behind tumor-suppressor genes and oncogenes, the key signaling pathways they regulate, epigenetic modifications, tumor heterogeneity, and the drug resistance mechanisms that drive carcinogenesis. Moreover, the review explores the clinical application of sequencing techniques, multiomics, diagnostic procedures, pharmacogenomics, and personalized treatment and prevention options, discussing future directions for emerging technologies.
Collapse
Affiliation(s)
- Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| | - Edward Agus Sutanto
- CUNY School of Medicine, The City College of New York, 160 Convent Avenue, New York, NY 10031, USA;
| | - Rinni Sutanto
- New York Institute of Technology College of Osteopathic Medicine, Glen Head, NY 11545, USA;
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.)
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, Ss. Cyril and Methodius University, 1000 Skopje, North Macedonia; (N.H.-P.)
| | - Sajal Raj Singh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | - Jitendra Kumar Sinha
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, Uttar Pradesh, India (J.K.S.)
| | | | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune 411057, Maharashtra, India;
| | - Prashant Verma
- School of Management, BML Munjal University, NH8, Sidhrawali, Gurugram 122413, Haryana, India
| | - Sonali Sengupta
- Department of Gastroenterology, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, New York, NY 10022, USA;
- Feinstein Institutes for Medical Research, Manhasset, NY 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
9
|
Chen J, Zhang Z, Shen N, Yu H, Yu G, Qi J, Liu R, Hu C, Qu J. Bipartite trophic levels cannot resist the interference of microplastics: A case study of submerged macrophytes and snail. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137898. [PMID: 40107097 DOI: 10.1016/j.jhazmat.2025.137898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/04/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
Some studies frequently focus on the toxic effects of compound pollution formed by microplastics and other pollutants on individual organisms, but it is still unclear how multi-trophic level organisms in compound communities resist the stress of microplastics. Thus, this research used a dose-response experiment (0, 0.1, 0.2, 0.5, 1 mg L-1) to illustrate the influences that microplastics might have on two symbiotic freshwater organisms Vallisneria natans and Sinotaia quadrata. The results showed the reduction of V. natans biomass in 0.5 and 1 mg L-1 groups (28-38 %), and disturbances on the photosynthetic system, reduced the chlorophyll content (15-85 %) and maximum quantum yields (10-31 %). In the case of S. quadrata, which subsisted by scraping leaf biofilms, there was a disruption in the functioning of the antioxidant system. Concurrently, the activities of digestive and neurotransmitter enzymes were affected, potentially leading to detrimental impacts on the organism's essential physiological processes. The introduction of microplastics significantly enhanced the relative abundance of specific microbial taxa, such as Proteobacteria within the biofilm of V. natans leaves and chloroflexi in the rhizosphere, thereby altering the microbial community assembly process. This means the potential ecological functions with microbes as the carrier was influenced. These results indicated that microplastic in aquatic environments can impact the metabolism, autotrophic, and heterotrophic behavior of double-end trophic organisms through symbiotic activities. Therefore, our study reveals how polystyrene microplastics affect the growth of submerged aquatic plants and snails, and from the perspective of community integrity and health, the introduction of these pollutants into freshwater environments may cause disruptive effects.
Collapse
Affiliation(s)
- Jun Chen
- Yunnan University, College of Ecology and Environment, Kunming 650500, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhiqiang Zhang
- College of Landscape Architecture and Art, Henan Agricultural University, Zhengzhou 450002, China
| | - Nan Shen
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jing Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Rui Liu
- Yunnan University, College of Ecology and Environment, Kunming 650500, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
10
|
Kokubu E, Kikuchi Y, Yonezawa H, Sasaki H, Matsuzaka K, Ishihara K. Effect of Porphyromonas Gingivalis Infection on Epithelial Rests of Malassez. THE BULLETIN OF TOKYO DENTAL COLLEGE 2025; 66:13-23. [PMID: 39956574 DOI: 10.2209/tdcpublication.2024-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The epithelial cell rests of Malassez (ERM) are located within the periodontal ligament. They are reportedly involved in maintaining homeostasis, particularly with regards to the thickness of the periodontal ligament. Their role in apical periodontitis lesions remains unclear, however. This study investigated the response of ERM to infection with Porphyromonas gingivalis. After being infected, the morphology of the P. gingivalis-infected cells was observed using confocal laser-scanning microscopy. The gene expression of P. gingivalis-infected and uninfected cells was investigated by RNA-sequencing analysis. Morphological observation showed the invasion and adhesion of P. gingivalis to the surface of ERM. The RNA analysis showed that the gene expression profile significantly differed between the infected and uninfected cells. At an expression level of ≥2 and false discovery rate of <0.1, the infected cells showed a decrease in 99 genes and an increase in 6 compared with in the non-infected cells. Most of the upregulated genes were unique to epithelial cells, such as endothelial cell-specific molecules and cytokeratin 5; the upregulated genes were associated with the immune response, however. These results indicate that ERM upregulate genes associated with epithelial cells and suppress those associated with the immune response following P. gingivalis infection.
Collapse
Affiliation(s)
- Eitoyo Kokubu
- Department of Microbiology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Yuichiro Kikuchi
- Department of Microbiology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Hideo Yonezawa
- Department of Microbiology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Hodaka Sasaki
- Department of Oral and Maxillofacial Implantology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Kenichi Matsuzaka
- Department of Pathology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| | - Kazuyuki Ishihara
- Department of Microbiology, Tokyo Dental College
- Oral Health Science Center, Tokyo Dental College
| |
Collapse
|
11
|
Zhao S, Xu D, Cai J, Shen Q, He M, Pan X, Gao Y, Li J, Yuan X. Benchmarking strategies for CNV calling from whole genome bisulfite data in humans. Comput Struct Biotechnol J 2025; 27:912-919. [PMID: 40123798 PMCID: PMC11929052 DOI: 10.1016/j.csbj.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2025] Open
Abstract
It's important to dissect the relationship between copy number variations (CNVs) and DNA methylation, because both greatly change the dosages of genes and are responsible for diverse human cancers. Although whole genome bisulfite sequencing (WGBS) informs CNVs and DNA methylation, no study has provided a systematic benchmark for detecting CNVs from WGBS data. Herein, based on simulated and real WGBS datasets of 84.62 billion reads, we undertook 714 CNV detections to comprehensively benchmark the performance of 35 strategies, 5 alignment algorithms (bismarkbt2, bsbolt, bsmap, bwameth, and walt) wrapping with 7 CNV detection applications (BreakDancer, cn.mops, CNVkit, CNVnator, DELLY, GASV and Pindel). The results highlighted a subset of strategies that accurately called CNVs depending on numbers, lengths, precision, recall, and F1 scores of CNV detections. We found that bwameth-DELLY and bwameth-BreakDancer were the best strategies for calling deletions, and walt-CNVnator and bismarkbt2-CNVnator were the best strategies for calling duplications. These works provided investigators with useful information to accurately explore CNVs from WGBS data in humans.
Collapse
Affiliation(s)
- Shanghui Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Dantong Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiali Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingpeng Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Mingran He
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Xiangchun Pan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yahui Gao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jiaqi Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
| | - Xiaolong Yuan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
- National Center of Technology Innovation for Pigs, Chongqing 402460, China
- Centre for Healthy Ageing, Health Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| |
Collapse
|
12
|
Tang BW, Wang PY, Shen YM. Design and synthesis of fluorescent-dye-labeled nucleotide with a new cleavable azo linker for DNA sequencing by synthesis. Org Biomol Chem 2025; 23:2456-2462. [PMID: 39910983 DOI: 10.1039/d5ob00083a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
A new cleavable azo linker was synthesized and reacted with 5-iodo-2'-deoxyuridine, followed by triphosphorylation, and finally labeled with Cy3 to give the desired product dUTP-azo linker-Cy3 as a potential reversible terminator for DNA sequencing. The synthesized 3'-OH-unblocked nucleotide triphosphate can be faithfully incorporated into the DNA strands as catalyzed by DNA polymerase (Bst 3.0) with 100% yield. Meanwhile, further incorporation is terminated temporarily by the overall steric hindrance of the nucleotide triphosphate, ensuring that only one molecule can be incorporated into the DNA strand within one sequencing cycle even for a template containing multiple identical bases in a row. The next incorporation can proceed smoothly upon complete removal of the labeled dye with only aniline left on the elongated DNA strand. The synthesized nucleotide triphosphate is the first reversible terminator that can be considered crucial for DNA sequening. These preliminary evaluations indicate that the synthesized nucleotide triphosphate holds substantial potential value in DNA sequencing.
Collapse
Affiliation(s)
- Bo-Wei Tang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping-Yang Wang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yu-Mei Shen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
13
|
Zhang XT, Blacutt J, Lloyd T, Mencer M, Pratt V, Kotha J, Sheeran L, Adcock S. Enhancing clinical research with pharmacogenomics: a practical perspective. Bioanalysis 2025; 17:399-411. [PMID: 40118816 PMCID: PMC11970788 DOI: 10.1080/17576180.2025.2481019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 03/12/2025] [Indexed: 03/24/2025] Open
Abstract
Pharmacogenomics (PGx) is transforming therapeutic development by providing insights into how genetic variations influence drug response, safety, and efficacy. This review provides a structured analysis of PGx in clinical research, beginning with an overview of key genes involved in drug metabolism, transport, and targets. Following this, it examines strategies for identifying PGx-relevant genes, including phenotype-driven, hypothesis-driven, population-focused, and clinical-driven approaches. Technical platforms such as PCR, MassARRAY, and next-generation sequencing are analyzed for their suitability in PGx studies. The discussion then shifts to assay validation processes, covering both analytical and clinical validation, to ensure data reliability in clinical trials. Finally, regulatory expectations for PGx in clinical trials are discussed, focusing on key requirements across all phases of drug development. This review aims to provide a clear and practical framework for integrating PGx into clinical research to enhance drug safety, efficacy, and personalized medicine.
Collapse
Affiliation(s)
| | - Jacob Blacutt
- Early Phase Unit, Worldwide Clinical Trials, Austin, TX, USA
| | - Thomas Lloyd
- Early Phase Unit, Worldwide Clinical Trials, Austin, TX, USA
| | - Mike Mencer
- Early Phase Unit, Worldwide Clinical Trials, Austin, TX, USA
| | - Vicky Pratt
- Pharmacogenetics, Agena Bioscience, San Diego, CA, USA
| | | | - Lona Sheeran
- Early Phase Unit, Worldwide Clinical Trials, Austin, TX, USA
| | - Sherilyn Adcock
- Early Phase Unit, Worldwide Clinical Trials, Austin, TX, USA
| |
Collapse
|
14
|
Stoljarova-Bibb M, Sadam M, Erg S, Väli M. The effect of commonly employed forensic DNA extraction protocols on ssDNA/dsDNA proportion and DNA integrity. Forensic Sci Int Genet 2025; 76:103210. [PMID: 39708438 DOI: 10.1016/j.fsigen.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
The utilisation of massively parallel sequencing (MPS) in forensic DNA analysis is on the rise, driven by the expansion of targeted MPS panels in the market and the introduction of forensic investigative genetic genealogy. The MPS library preparation process, integral to both whole-genome sequencing (WGS) and targeted MPS panel data generation, is largely based on converting double-stranded DNA (dsDNA) into sequencing libraries. In the current study, we examined the effect of seven routinely used forensic DNA extraction methods on the strandedness (single-stranded or double-stranded) and the fragment size of the DNA extracted from buccal swab, blood, bone and tooth samples. Our findings reveal a variation in the proportion of dsDNA and single-stranded DNA (ssDNA), with the phenol-chloroform and silica column-based extraction methods tested predominantly yielding dsDNA, while the tested Chelex and magnetic bead-based extraction methods predominantly yielded ssDNA. Additionally, fragment size analysis showed that high molecular weight dsDNA was recovered from buccal swab samples with all of the extraction methods except Chelex, which yielded relatively short dsDNA fragments. DNA extracted from tooth samples with tested magnetic bead-based extraction methods resulted in longer dsDNA fragments compared to the silica column-based extraction protocol.
Collapse
Affiliation(s)
| | - Maarja Sadam
- Estonian Forensic Science Institute, Tallinn, Estonia
| | - Silja Erg
- Estonian Forensic Science Institute, Tallinn, Estonia
| | - Marika Väli
- Estonian Forensic Science Institute, Tallinn, Estonia
| |
Collapse
|
15
|
Marx C, Qing X, Gong Y, Kirkpatrick J, Siniuk K, Beznoussenko GV, Kidiyoor GR, Kirtay M, Buder K, Koch P, Westermann M, Bruhn C, Brown EJ, Xu X, Foiani M, Wang ZQ. DNA damage response regulator ATR licenses PINK1-mediated mitophagy. Nucleic Acids Res 2025; 53:gkaf178. [PMID: 40105243 PMCID: PMC11920799 DOI: 10.1093/nar/gkaf178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 01/20/2025] [Accepted: 02/24/2025] [Indexed: 03/20/2025] Open
Abstract
Defective DNA damage response (DDR) and mitochondrial dysfunction are a major etiology of tissue impairment and aging. Mitochondrial autophagy (mitophagy) is a mitochondrial quality control (MQC) mechanism to selectively eliminate dysfunctional mitochondria. ATR (ataxia-telangiectasia and Rad3-related) is a key DDR regulator playing a pivotal role in DNA replication stress response and genomic stability. Paradoxically, the human Seckel syndrome caused by ATR mutations exhibits premature aging and neuropathies, suggesting a role of ATR in nonreplicating tissues. Here, we report a previously unknown yet direct role of ATR at mitochondria. We find that ATR and PINK1 (PTEN-induced kinase 1) dock at the mitochondrial translocase TOM/TIM complex, where ATR interacts directly with and thereby stabilizes PINK1. ATR deletion silences mitophagy initiation thereby altering oxidative phosphorylation functionality resulting in reactive oxygen species overproduction that attack cytosolic macromolecules, in both cells and brain tissues, prior to nuclear DNA. This study discloses ATR as an integrated component of the PINK1-mediated MQC program to ensure mitochondrial fitness. Together with its DDR function, ATR safeguards mitochondrial and genomic integrity under physiological and genotoxic conditions.
Collapse
Affiliation(s)
- Christian Marx
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Center for Pandemic Vaccines and Therapeutics (ZEPAI), Paul Ehrlich Institute (PEI), Paul-Ehrlich-Str. 51-59, 63225 Langen, Germany
| | - Xiaobing Qing
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Yamin Gong
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Faculty of Basic Medicine, Shenzhen University Medical School, 518055 Shenzhen, China
| | - Joanna Kirkpatrick
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Kanstantsin Siniuk
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | | | | | - Murat Kirtay
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Katrin Buder
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Philipp Koch
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
| | - Martin Westermann
- Electron Microscopy Center, Jena University Hospital, Ziegelmühlenweg 1, 07743 Jena, Germany
| | - Christopher Bruhn
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
| | - Eric J Brown
- Perelman School of Medicine, University of Pennsylvania, Philadelphia 19104, United States
| | - Xingzhi Xu
- Faculty of Basic Medicine, Shenzhen University Medical School, 518055 Shenzhen, China
| | - Marco Foiani
- IFOM, the FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Department of Oncology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Zhao-Qi Wang
- L eibniz Institute on Aging-Fritz Lipmann Institute (FLI), Beutenbergstr. 11, 07745 Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Bachstraße 18k, 07743 Jena, Germany
- State Key Laboratory of Microbial Technology, Shandong University, 266237 Qingdao, China
| |
Collapse
|
16
|
Wu SP, Quiroz E, Wang T, Redecke SM, Xu X, Lin L, Anderson ML, DeMayo FJ. Assessment of the Histone Mark-based Epigenomic Landscape in Human Myometrium at Term Pregnancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.19.581035. [PMID: 40060655 PMCID: PMC11888205 DOI: 10.1101/2024.02.19.581035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The myometrium plays a critical role during pregnancy as it is responsible for both the structural integrity of the uterus and force generation at term. Emerging studies in mice indicate a dynamic change of the myometrial epigenome and transcriptome during pregnancy to ready the contractile machinery for parturition. However, the regulatory systems underlying myometrial gene expression patterns throughout gestation remain largely unknown. Here we investigated human term pregnant nonlabor myometrial biopsies for transcriptome, enhancer histone mark cistrome, and chromatin conformation pattern mapping. More than thirty-thousand putative enhancers with H3K27ac and H3K4me1 double positive marks were identified in the myometrium. Enriched transcription factor binding motifs include known myometrial regulators AP-1, STAT, NFkB, and PGR among others. Putative myometrial super enhancers are mostly colocalized with progesterone receptor occupying sites and preferentially associated with highly expressing genes, suggesting a conserved role of PGR in regulating the myometrial transcriptome between species. In human myometrial specimens, inferred PGR activities are positively correlated with phospholipase C like 2 (PLCL2) mRNA levels, supporting that PGR may act through this genomic region to promote PLCL2 expression. PGR overexpression facilitated PLCL2 gene expression in myometrial cells. Using CRISPR activation, we assessed the functionality of a PGR putative enhancer 35-kilobases upstream of the contractile-restrictive gene PLCL2. In summary, results of this study serve as a resource to study gene regulatory mechanisms in the human myometrium at the term pregnancy stage for further advancing women's health research.
Collapse
Affiliation(s)
- San-Pin Wu
- Reproductive and Developmental Biology Laboratory
| | - Elvis Quiroz
- Reproductive and Developmental Biology Laboratory
| | | | | | - Xin Xu
- Epigenomic and DNA Sequencing Core Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Lin Lin
- Reproductive and Developmental Biology Laboratory
- School of Nursing, University of California San Francisco, San Francisco, California
| | - Matthew L Anderson
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine and Moffitt Cancer Center, Tampa, Florida
| | | |
Collapse
|
17
|
Joshi S, Romanens P, Winssinger N. Sequencing of d/l-DNA and XNA by Templated-Synthesis. J Am Chem Soc 2025; 147:6288-6296. [PMID: 39930695 PMCID: PMC11848921 DOI: 10.1021/jacs.5c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/03/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025]
Abstract
Progress in oligonucleotide sequencing has transformed modern biology and medicine. Here we report a fast and efficient enzyme-free primer extension of PNA with reversible chain termination and its application to DNA and XNA sequencing. The approach leverages activated 4-mer PNAs that react in a templated ligation reaction at μM concentrations within minutes. We demonstrate that the fidelity of this enzyme-free primer extension benefits from reactions performed with a mixture of activated PNAs where every 4-mer has its self-complementary 4-mer. The reactions can be performed using the whole repertoire of 4-mers (256 permutations) in a parallelized manner. Using a primer in combination with its -1, -2, and -3 deletion allows for sequencing by MALDI analysis, using the increment in mass for each nucleobase assignment. Given the enzyme-free nature of this sequencing and the achiral nature of PNA, we further demonstrate that the technology can be used to sequence d- or l-DNA as well as LNA and PNA (XNA).
Collapse
Affiliation(s)
- Saurabh Joshi
- Department of Organic Chemistry, CVU,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Patrick Romanens
- Department of Organic Chemistry, CVU,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, CVU,
Faculty of Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
18
|
Liu B, Wang F, Fan C, Li Q. Data Readout Techniques for DNA-Based Information Storage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2412926. [PMID: 39910849 DOI: 10.1002/adma.202412926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 01/02/2025] [Indexed: 02/07/2025]
Abstract
DNA is a natural chemical substrate that carries genetic information, which also serves as a powerful toolkit for storing digital data. Compared to traditional storage media, DNA molecules offer higher storage density, longer lifespan, and lower maintenance energy consumption. In DNA storage process, data readout is a critical step that bridges the gap between DNA molecular/structures with stored digital information. With the continued development of strategies in DNA data storage technology, the readout techniques have evolved. However, there is a lack of systematic introduction and discussion on the readout techniques for reported DNA data storage systems, especially the correlation between the design of the data storage system and the corresponding selection of readout techniques. This review first introduces two main categories of DNA data storage units (i.e., sequence and structure) and their corresponding readout techniques (i.e., sequencing and nonsequencing methods), and then reviewed representative examples of notable advancements in DNA data storage technology, focusing on data storage unit design, and readout technique selection. It also introduces emerging approaches to assist data readout techniques, such as implementation of microfluidic and fluorescent probes. Finally, the paper discusses the limitations, challenges, and potential of DNA data readout approaches.
Collapse
Affiliation(s)
- Bingyi Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
19
|
Gao L, Lin M, Wu C, Liao Y, Lin Z, Yan X, Lin S, Wang Y, Chen J, Zheng Z, Lin J, Zhang S, Guan J, Qiu Y, Liao J, Wu L. Novel PKD1 Mutation (c.G10086T) Drives High Intracranial Aneurysm Risk in Autosomal Dominant Polycystic Kidney Disease. Eur J Neurol 2025; 32:e70086. [PMID: 39973757 PMCID: PMC11840425 DOI: 10.1111/ene.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/21/2025]
Abstract
BACKGROUND Autosomal dominant polycystic kidney disease (ADPKD) is frequently complicated by intracranial aneurysms (IAs). However, the genetic factors driving the elevated IA risk in ADPKD remain poorly understood. In this study, we identified a novel PKD1 mutation associated with a remarkably high IA incidence in a large Chinese ADPKD family. METHODS We conducted whole-exome sequencing in a three-generation Chinese ADPKD family (n = 24) characterized by an unusually high IA prevalence. The pathogenicity of the identified PKD1 variant was validated through comprehensive functional studies, including protein localization, calcium signaling, and endothelial cell behavior analyses. RESULTS We discovered a novel PKD1 mutation (c.G10086T) that co-segregated with disease in all affected family members. Notably, 38.1% (8/21) of the mutation carriers developed IAs, a significantly higher rate than reported in general ADPKD populations (4%-11.5%). Functional studies revealed that this mutation disrupted polycystin-1 trafficking and impaired calcium signaling, leading to endothelial dysfunction. In vitro experiments demonstrated enhanced angiogenic potential and compromised vascular integrity in cells expressing mutant PKD1. CONCLUSIONS The newly identified PKD1:c.G10086T mutation represents a high-risk genetic variant for IA development in ADPKD. Our findings provide new insights into the vascular complications of ADPKD and suggest that PKD1 genotyping may help identify patients requiring intensive IA surveillance. This study supports the development of mutation-specific screening strategies for ADPKD-associated vascular complications.
Collapse
Affiliation(s)
- Lili Gao
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Min Lin
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Chenghan Wu
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Yuansheng Liao
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Zuopeng Lin
- Wuhan Kindstar Clinical Diagnostic Co., Kindstar Globalgene Technology, IncWuhanChina
| | - Xiaohua Yan
- Department of Neurology and Traditional Chinese Medicine, Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Sheng Lin
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Yinzhou Wang
- Department of Neurology and Traditional Chinese Medicine, Fujian Provincial HospitalShengli Clinical Medical College of Fujian Medical UniversityFuzhouChina
| | - Jing Chen
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Zhaocong Zheng
- Department of Neurosurgery900th Hospital of PLA Joint Logistics TeamFuzhouChina
| | - Jushan Lin
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Sheng Zhang
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Jianhua Guan
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Yan Qiu
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Jilian Liao
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Lihua Wu
- Department of NeurologySecond Affiliated Clinical College of Fujian University of Traditional Chinese MedicineFuzhouChina
| |
Collapse
|
20
|
Smith CR, Kaltenegger E, Teisher J, Moore AJ, Straub SCK, Livshultz T. Homospermidine synthase evolution and the origin(s) of pyrrolizidine alkaloids in Apocynaceae. AMERICAN JOURNAL OF BOTANY 2025; 112:e16458. [PMID: 39887714 PMCID: PMC11848025 DOI: 10.1002/ajb2.16458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 02/01/2025]
Abstract
PREMISE Enzymes that are encoded by paralogous genes and produce identical specialized metabolites in distantly related plant lineages are strong evidence of parallel phenotypic evolution. Inference of phenotypic homology for metabolites produced by orthologous genes is less straightforward, since orthologs may be recruited in parallel into novel pathways. In prior research on pyrrolizidine alkaloids (PAs), specialized metabolites of Apocynaceae, the evolution of homospermidine synthase (HSS), an enzyme of PA biosynthesis, was reconstructed and a single origin of PAs inferred because HSS enzymes of all known PA-producing Apocynaceae species are orthologous and descended from an ancestral enzyme with the motif (VXXXD) of an optimized HSS. METHODS We increased sampling, tested the effect of amino acid motif on HSS function, revisited motif evolution, and tested for selection to infer evolution of HSS function and its correlation with phenotype. RESULTS Some evidence supports a single origin of PAs: an IXXXD HSS-like gene, similar in function to VXXXD HSS, evolved in the shared ancestor of all PA-producing species; loss of HSS function occurred multiple times via pseudogenization and perhaps via evolution of an IXXXN motif. Other evidence indicates multiple origins: the VXXXD motif, highly correlated with the PA phenotype, evolved two or four times independently; the ancestral IXXXD gene was not under positive selection, while some VXXXD genes were; and substitutions at sites experiencing positive selection occurred on multiple branches in the HSS-like gene tree. CONCLUSIONS The complexity of the genotype-function-phenotype map confounds the inference of PA homology from HSS-like gene evolution in Apocynaceae.
Collapse
Affiliation(s)
- Chelsea R. Smith
- Botany DepartmentAcademy of Natural Sciences of Drexel UniversityPhiladelphiaPAUSA
- Department of Biodiversity, Earth, and Environmental SciencesDrexel UniversityPhiladelphiaPAUSA
| | - Elisabeth Kaltenegger
- Botanisches Institut und Botanischer GartenChristian‐Albrechts‐Universitӓt zu KielKielGermany
| | - Jordan Teisher
- Botany DepartmentAcademy of Natural Sciences of Drexel UniversityPhiladelphiaPAUSA
- MO Herbarium, Missouri Botanical GardenSt. LouisMOUSA
| | - Abigail J. Moore
- School of Biological Sciences, University of OklahomaNormanOKUSA
| | | | - Tatyana Livshultz
- Botany DepartmentAcademy of Natural Sciences of Drexel UniversityPhiladelphiaPAUSA
- Department of Biodiversity, Earth, and Environmental SciencesDrexel UniversityPhiladelphiaPAUSA
| |
Collapse
|
21
|
Bejaoui S, Nielsen SH, Rasmussen A, Coia JE, Andersen DT, Pedersen TB, Møller MV, Kusk Nielsen MT, Frees D, Persson S. Comparison of Illumina and Oxford Nanopore sequencing data quality for Clostridioides difficile genome analysis and their application for epidemiological surveillance. BMC Genomics 2025; 26:92. [PMID: 39885402 PMCID: PMC11783910 DOI: 10.1186/s12864-025-11267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND The burden of Clostridioides difficile as a nosocomial- and community-acquired pathogen has been increasing over the recent decades, including reports of severe outbreaks. Molecular and virulence genotyping are central for the epidemiological surveillance of this pathogen, but need to balance accuracy and rapid turnaround time of the results. While Illumina short-read sequencing has been adopted as the gold standard to investigate C. difficile virulence and transmission routes, little is known about the potential of Nanopore long-read sequencing in this field. The goal of our study was to compare sequencing and assembly quality of 37 C. difficile isolates using Illumina (SPAdes assembled) and Nanopore (Flye and Unicycler assembled) data alone, along with hybrid assemblies obtained with short-read polishing of long reads. RESULTS Illumina sequencing produced reads with an average quality of 99.68% (Q25), while Nanopore sequencing produced reads reaching an average quality of 96.84% (Q15), showing a tenfold difference in quality. Sequence type (ST) designation from Nanopore assemblies failed to detect ST5, ST7, ST8, ST13 and ST49, while ST designation based on unpolished Nanopore reads using Krocus was successful for all STs. Nanopore sequences exhibited an average of 640 base errors per genome (~ 0.015% substitution rate), which was reflected by the incorrect assignment of over 180 alleles in core genome multilocus sequence typing (cgMLST) analysis. As a result, Nanopore-derived phylogenies were not as accurate as the Illumina reference, and therefore inadequate for precise investigation of transmission events. Both sequencing platforms provided comparable, satisfactory results for the detection of virulence genes tcdA, tcdB, cdtAB and in-frame deletions in tcdC. CONCLUSION Compared to Illumina, Nanopore has higher error rate, which limits its application for high-resolution epidemiological surveillance. However, the short analysis time, lower cost and more simple procedure combined with correctly identified STs and virulence genes, makes it an alternative when fast and less detailed analyses are preferred.
Collapse
Affiliation(s)
- Semeh Bejaoui
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | | | - Astrid Rasmussen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - John Eugenio Coia
- Department of Regional Health Research (Esbjerg), University of Southern Denmark, Odense, Denmark
- ESCMID Study Group for C. difficile infections (ESCGD), Basel, Switzerland
| | - Dorte Terp Andersen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Tobias Bruun Pedersen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Martin Vad Møller
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Marc Trunjer Kusk Nielsen
- Department of Clinical Diagnostics, Esbjerg and Grindsted Hospital, University Hospital of Southern, Odense, Denmark
| | - Dorte Frees
- Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg, Denmark
| | - Søren Persson
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark.
| |
Collapse
|
22
|
Bizat PN, Sabat N, Hollenstein M. Recent Advances in Biocatalytic and Chemoenzymatic Synthesis of Oligonucleotides. Chembiochem 2025:e202400987. [PMID: 39854143 DOI: 10.1002/cbic.202400987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/16/2025] [Accepted: 01/24/2025] [Indexed: 01/26/2025]
Abstract
Access to synthetic oligonucleotides is crucial for applications in diagnostics, therapeutics, synthetic biology, and nanotechnology. Traditional solid phase synthesis is limited by sequence length and complexities, low yields, high costs and poor sustainability. Similarly, polymerase-based approaches such as in vitro transcription and primer extension reactions do not permit any control on the positioning of modifications and display poor substrate tolerance. In response, biocatalytic and chemoenzymatic strategies have emerged as promising alternatives, offering selective and efficient pathways for oligonucleotide synthesis. These methods leverage the precision and efficiency of enzymes to construct oligonucleotides with high fidelity. Recent advancements have focused on optimized systems and/or engineered enzymes enabling the incorporation of chemically modified nucleotides. Biocatalytic approaches, particularly those using DNA/RNA polymerases provide advantages in milder reaction conditions and enhanced sustainability. Chemoenzymatic methods, combining chemical synthesis and enzymes, have proven to be effective in overcoming limitations of traditional solid phase synthesis. This review summarizes recent developments in biocatalytic and chemoenzymatic strategies to construct oligonucleotides, highlighting innovations in enzyme engineering, substrate and reaction condition optimization for various applications. We address crucial details of the methods, their advantages, and limitations as well as important insights for future research directions in oligonucleotide production.
Collapse
Affiliation(s)
- Pierre Nicolas Bizat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Nazarii Sabat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris Cedex 15, France
| |
Collapse
|
23
|
Lee CL, Chuang CK, Chiu HC, Chang YH, Tu YR, Lo YT, Lin HY, Lin SP. Understanding Genetic Screening: Harnessing Health Information to Prevent Disease Risks. Int J Med Sci 2025; 22:903-919. [PMID: 39991772 PMCID: PMC11843151 DOI: 10.7150/ijms.101219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 12/17/2024] [Indexed: 02/25/2025] Open
Abstract
Genetic screening analyzes an individual's genetic information to assess disease risk and provide personalized health recommendations. This article introduces the public to genetic screening, explaining its definition, principles, history, and common types, including prenatal, newborn, adult disease risk, cancer, and pharmacogenetic screening. It elaborates on the benefits of genetic screening, such as early risk detection, personalized prevention, family risk assessment, and reproductive decision-making. The article also notes limitations, including result interpretation uncertainty, psychological and ethical issues, and privacy and discrimination risks. It provides advice on selecting suitable screening, consulting professionals, choosing reliable institutions, and understanding screening purposes and limitations. Finally, it discusses applying screening results through lifestyle adjustments, regular check-ups, and preventive treatments. By comprehensively introducing genetic screening, the article aims to raise public awareness and encourage utilizing this technology to prevent disease and maintain health.
Collapse
Affiliation(s)
- Chung-Lin Lee
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang-Ming Chiao-Tung University, Taipei, Taiwan
- International Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
| | - Chih-Kuang Chuang
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- College of Medicine, Fu-Jen Catholic University, Taipei, Taiwan
| | - Huei-Ching Chiu
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ya-Hui Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- International Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Rong Tu
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yun-Ting Lo
- International Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
| | - Hsiang-Yu Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- International Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Mackay Junior College of Medicine, Nursing and Management, Taipei, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shuan-Pei Lin
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan
- International Rare Disease Center, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Division of Genetics and Metabolism, Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Infant and Child Care, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| |
Collapse
|
24
|
Atkinson CGF, Kerns KA, Hendrickson EL, He X, Bor B, McLean JS. Complete genome of Nanosynbacter sp. strain BB002, isolated and cultivated from a site of periodontal disease. Microbiol Resour Announc 2025; 14:e0063724. [PMID: 39601521 PMCID: PMC11737083 DOI: 10.1128/mra.00637-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 11/01/2024] [Indexed: 11/29/2024] Open
Abstract
Nanosynbacter sp. strain BB002, was isolated from the human oral cavity on its basibiont bacterial host Actinomyces sp. oral taxon 171 strain F0337, related to Actinomyces oris. As a member of the Saccharibacteria within the candidate phylum radiation group (CPR), its reduced genome facilitates the survival as an ultrasmall (<0.2 μm) epibiont.
Collapse
Affiliation(s)
- Celine Grace F. Atkinson
- Department of Periodontics, University of Washington, Seattle, Washington, USA
- Department of Oral Health Sciences, University of Washington, Seattle, Washington, USA
| | - Kristopher A. Kerns
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Erik L. Hendrickson
- Department of Periodontics, University of Washington, Seattle, Washington, USA
| | - Xuesong He
- Department of Microbiology, ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Batbileg Bor
- Department of Microbiology, ADA Forsyth Institute, Cambridge, Massachusetts, USA
| | - Jeffrey S. McLean
- Department of Periodontics, University of Washington, Seattle, Washington, USA
- Department of Oral Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
25
|
Weerakoon M, Lee S, Mitchell E, Heaton H. TopoQual polishes circular consensus sequencing data and accurately predicts quality scores. BMC Bioinformatics 2025; 26:17. [PMID: 39815230 PMCID: PMC11737182 DOI: 10.1186/s12859-024-06020-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/17/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Pacific Biosciences (PacBio) circular consensus sequencing (CCS), also known as high fidelity (HiFi) technology, has revolutionized modern genomics by producing long (10 + kb) and highly accurate reads. This is achieved by sequencing circularized DNA molecules multiple times and combining them into a consensus sequence. Currently, the accuracy and quality value estimation provided by HiFi technology are more than sufficient for applications such as genome assembly and germline variant calling. However, there are limitations in the accuracy of the estimated quality scores when it comes to somatic variant calling on single reads. RESULTS To address the challenge of inaccurate quality scores for somatic variant calling, we introduce TopoQual, a novel tool designed to enhance the accuracy of base quality predictions. TopoQual leverages techniques including partial order alignments (POA), topologically parallel bases, and deep learning algorithms to polish consensus sequences. Our results demonstrate that TopoQual corrects approximately 31.9% of errors in PacBio consensus sequences. Additionally, it validates base qualities up to q59, which corresponds to one error in 0.9 million bases. These improvements will significantly enhance the reliability of somatic variant calling using HiFi data. CONCLUSION TopoQual represents a significant advancement in genomics by improving the accuracy of base quality predictions for PacBio HiFi sequencing data. By correcting a substantial proportion of errors and achieving high base quality validation, TopoQual enables confident and accurate somatic variant calling. This tool not only addresses a critical limitation of current HiFi technology but also opens new possibilities for precise genomic analysis in various research and clinical applications.
Collapse
Affiliation(s)
| | - Sangjin Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Emily Mitchell
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
26
|
Zhu Z, Lu S, Wang H, Wang F, Xu W, Zhu Y, Xue J, Yang L. Innovations in Transgene Integration Analysis: A Comprehensive Review of Enrichment and Sequencing Strategies in Biotechnology. ACS APPLIED MATERIALS & INTERFACES 2025; 17:2716-2735. [PMID: 39760503 DOI: 10.1021/acsami.4c14208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Understanding the integration of transgene DNA (T-DNA) in transgenic crops, animals, and clinical applications is paramount for ensuring the stability and expression of inserted genes, which directly influence desired traits and therapeutic outcomes. Analyzing T-DNA integration patterns is essential for identifying potential unintended effects and evaluating the safety and environmental implications of genetically modified organisms (GMOs). This knowledge is crucial for regulatory compliance and fostering public trust in biotechnology by demonstrating transparency in genetic modifications. This review highlights recent advancements in T-DNA integration analysis, specifically focusing on targeted DNA enrichment and sequencing strategies. We examine key technologies, such as polymerase chain reaction (PCR)-based methods, hybridization capture, RNA/DNA-guided endonuclease-mediated enrichment, and high-throughput resequencing, emphasizing their contributions to enhancing precision and efficiency in transgene integration analysis. We discuss the principles, applications, and recent developments in these techniques, underscoring their critical role in advancing biotechnological products. Additionally, we address the existing challenges and future directions in the field, offering a comprehensive overview of how innovative DNA-targeted enrichment and sequencing strategies are reshaping biotechnology and genomics.
Collapse
Affiliation(s)
- Zaobing Zhu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| | - Shengtao Lu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| | - Hongchun Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Fan Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Wenting Xu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yulei Zhu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Jing Xue
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, People's Republic of China
| | - Litao Yang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Zhejiang Yuzhi Biotechnology Company, Limited, Ningbo 315032, People's Republic of China
| |
Collapse
|
27
|
Wang R, Hastings WJ, Saliba JG, Bao D, Huang Y, Maity S, Kamal Ahmad OM, Hu L, Wang S, Fan J, Ning B. Applications of Nanotechnology for Spatial Omics: Biological Structures and Functions at Nanoscale Resolution. ACS NANO 2025; 19:73-100. [PMID: 39704725 PMCID: PMC11752498 DOI: 10.1021/acsnano.4c11505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Spatial omics methods are extensions of traditional histological methods that can illuminate important biomedical mechanisms of physiology and disease by examining the distribution of biomolecules, including nucleic acids, proteins, lipids, and metabolites, at microscale resolution within tissues or individual cells. Since, for some applications, the desired resolution for spatial omics approaches the nanometer scale, classical tools have inherent limitations when applied to spatial omics analyses, and they can measure only a limited number of targets. Nanotechnology applications have been instrumental in overcoming these bottlenecks. When nanometer-level resolution is needed for spatial omics, super resolution microscopy or detection imaging techniques, such as mass spectrometer imaging, are required to generate precise spatial images of target expression. DNA nanostructures are widely used in spatial omics for purposes such as nucleic acid detection, signal amplification, and DNA barcoding for target molecule labeling, underscoring advances in spatial omics. Other properties of nanotechnologies include advanced spatial omics methods, such as microfluidic chips and DNA barcodes. In this review, we describe how nanotechnologies have been applied to the development of spatial transcriptomics, proteomics, metabolomics, epigenomics, and multiomics approaches. We focus on how nanotechnology supports improved resolution and throughput of spatial omics, surpassing traditional techniques. We also summarize future challenges and opportunities for the application of nanotechnology to spatial omics methods.
Collapse
Affiliation(s)
- Ruixuan Wang
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Waylon J. Hastings
- Department
of Psychiatry and Behavioral Science, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Julian G. Saliba
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Duran Bao
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Yuanyu Huang
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Sudipa Maity
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Omar Mustafa Kamal Ahmad
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Logan Hu
- Groton
School, 282 Farmers Row, Groton, Massachusetts 01450, United States
| | - Shengyu Wang
- St.
Margaret’s Episcopal School, 31641 La Novia Avenue, San
Juan Capistrano, California92675, United States
| | - Jia Fan
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| | - Bo Ning
- Center
for Cellular and Molecular Diagnostics, Tulane University School of Medicine, New Orleans, Louisiana 70112, United States
- Department
of Biochemistry and Molecular Biology, Tulane
University School of Medicine, New Orleans, Louisiana 70112, United States
| |
Collapse
|
28
|
Ghosh P, Betz K, Gutfreund C, Pal A, Marx A, Srivatsan SG. Structures of a DNA Polymerase Caught while Incorporating Responsive Dual-Functional Nucleotide Probes. Angew Chem Int Ed Engl 2025; 64:e202414319. [PMID: 39428682 DOI: 10.1002/anie.202414319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Functionalizing nucleic acids using DNA polymerases is essential in biophysical and biotechnology applications. This study focuses on understanding how DNA polymerases recognize and incorporate nucleotides with diverse chemical modifications, aiming to develop advanced nucleotide probes. We present the crystal structures of ternary complexes of Thermus aquaticus DNA polymerase (KlenTaq) with C5-heterocycle-modified environment-sensitive 2'-deoxyuridine-5'-triphosphate (dUTP) probes. These nucleotides include SedUTP, BFdUTP and FBFdUTP, which bear selenophene, benzofuran and fluorobenzofuran, respectively, at the C5 position of uracil, and exhibit high conformational sensitivity. SedUTP and FBFdUTP serve as dual-app probes, combining a fluorophore with X-ray anomalous scattering Se or 19F NMR labels. Our study reveals that the size of the heterocycle influences how DNA polymerase families A and B incorporate these modified nucleotides during single nucleotide incorporation and primer extension reactions. Remarkably, the responsiveness of FBFdUTP enabled real-time monitoring of the binary complex formation and polymerase activity through fluorescence and 19F NMR spectroscopy. Comparative analysis of incorporation profiles, fluorescence, 19F NMR data, and crystal structures of ternary complexes highlights the plasticity of the enzyme. Key insight is provided into the role of gatekeeper amino acids (Arg660 and Arg587) in accommodating and processing these modified substrates, offering a structural basis for next-generation nucleotide probe development.
Collapse
Affiliation(s)
- Pulak Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Karin Betz
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Cédric Gutfreund
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Arindam Pal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| | - Andreas Marx
- Department of Chemistry, Konstanz Research School Chemical Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Seergazhi G Srivatsan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER), Pune, Dr. Homi Bhabha Road, Pune, 411008, India
| |
Collapse
|
29
|
Richter A, Mörl H, Thielemann M, Kleemann M, Geißen R, Schwarz R, Albertz C, Koch P, Petzold A, Kroll T, Groth M, Hartmann N, Herpin A, Englert C. The master male sex determinant Gdf6Y of the turquoise killifish arose through allelic neofunctionalization. Nat Commun 2025; 16:540. [PMID: 39788971 PMCID: PMC11718055 DOI: 10.1038/s41467-025-55899-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/03/2025] [Indexed: 01/30/2025] Open
Abstract
Although sex determination is a fundamental process in vertebrate development, it is very plastic. Diverse genes became major sex determinants in teleost fishes. Deciphering how individual sex-determining genes orchestrate sex determination can reveal new actors in sexual development. Here, we demonstrate that the Y-chromosomal copy of the TGF-β family member gdf6 (gdf6Y) in Nothobranchius furzeri, an emerging model organism in aging research, gained the function of the male sex determinant through allelic diversification while retaining the skeletal developmental function shared with the X-chromosomal gdf6 allele (gdf6X). Concerning sex determination, gdf6Y is expressed by somatic supporting cells of the developing testes. There it induces the male sex in a germ cell-independent manner in contrast to sex determination in zebrafish and the medaka. Looking for downstream effectors of Gdf6Y, we identified besides TGF-β signaling modulators, especially the inhibitor of DNA binding genes id1/2/3, the mRNA decay activator zfp36l2 as a new GDF6 signaling target.
Collapse
Affiliation(s)
- Annekatrin Richter
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Hanna Mörl
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Maria Thielemann
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- BianoGMP GmbH, Gera, Germany
| | - Markus Kleemann
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Abbott Rapid Diagnostics Jena GmbH, Jena, Germany
| | - Raphael Geißen
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert Schwarz
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Carolin Albertz
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Philipp Koch
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Andreas Petzold
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- DRESDEN-concept e. V., Technical University (TU) Dresden, Dresden, Germany
| | - Torsten Kroll
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Nils Hartmann
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Institute of Pathology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Amaury Herpin
- INRAE, UR1037 Laboratory of Fish Physiology and Genomics, Campus de Beaulieu, Rennes, France
| | - Christoph Englert
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
30
|
Hou Y, Zak J, Shi Y, Pratumchai I, Dinner B, Wang W, Qin K, Weber EW, Teijaro JR, Wu P. Transient EZH2 Suppression by Tazemetostat during In Vitro Expansion Maintains T-Cell Stemness and Improves Adoptive T-Cell Therapy. Cancer Immunol Res 2025; 13:47-65. [PMID: 39365901 PMCID: PMC11717634 DOI: 10.1158/2326-6066.cir-24-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The histone methyltransferase enhancer of zeste homolog 2 (EZH2) plays important roles in T-cell differentiation, proliferation, and function. Previous studies have demonstrated that genetic deletion of EZH2 in CD8+ or total T cells impairs their antiviral and antitumor activities, cytokine production, and ability to expand upon rechallenge. Contrary to the detrimental role of deleting T cell-intrinsic EZH2, in this study, we demonstrated that transient inhibition of EZH2 in T cells prior to the phenotypic onset of exhaustion with a clinically approved inhibitor, tazemetostat (Taz), delayed their dysfunctional progression and preserved T-cell stemness and polyfunctionality but had no negative impact on cell proliferation. Taz-induced T-cell epigenetic reprogramming increased the expression of the self-renewal T-cell transcription factor TCF1 by reducing H3K27 methylation at its promoter preferentially in rapidly dividing T cells. In a murine melanoma model, T cells depleted of EZH2 induced poor tumor control, whereas adoptively transferred T cells pretreated with Taz exhibited superior antitumor immunity, especially when used in combination with anti-PD-1 blockade. Collectively, these data highlight the potential of transient epigenetic reprogramming by EZH2 inhibition to enhance adoptive T-cell immunotherapy.
Collapse
Affiliation(s)
- Yingqin Hou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Authors contributed equally
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Authors contributed equally
| | - Yujie Shi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brandon Dinner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenjian Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ke Qin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Evan W. Weber
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
31
|
Siano G, Varisco M, Terrigno M, Wang C, Scarlatti A, Iannone V, Groth M, Galas MC, Hoozemans JJM, Cellerino A, Cattaneo A, Di Primio C. Tau mediates the reshaping of the transcriptional landscape toward intermediate Alzheimer's disease stages. Front Cell Dev Biol 2025; 12:1459573. [PMID: 39830212 PMCID: PMC11739074 DOI: 10.3389/fcell.2024.1459573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/01/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Recent research revealed that Tau plays critical roles in various neuronal functions. We previously demonstrated that destabilization and nuclear delocalization of Tau alter the expression of glutamatergic genes, mediating early neuronal damage. Methods In this study, we discovered that changes in Tau availability are linked to global alterations in gene expression that affect multiple neuronal pathways. Comparison with the human temporal region showed that the Tau-dependent modulation of gene expression closely resembles the intermediate stages of Alzheimer's disease (AD) that precede the definitive pathological condition. Results Furthermore, we identified the chromatin remodeling pathway as being significantly affected by Tau in both our cellular model and AD brains, with reductions in heterochromatin markers. Our findings indicate that Tau is able to globally affect the neuronal transcriptome and that its subcellular unbalance changes gene expression in the intermediate stages of AD development. In addition, we found that the chromatin architecture is affected by Tau during the progression of AD. Discussion These results provide new insights into the molecular mechanisms underlying early stages of AD development and highlight the central role of Tau and the contribution of nuclear Tau in this process.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Martina Varisco
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Marco Terrigno
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Congwei Wang
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Arianna Scarlatti
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Vincenzo Iannone
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Marco Groth
- CF Next-Generation Sequencing, Leibniz Institute on Ageing – Fritz Lipmann institute, Jena, Germany
| | - Marie-Christine Galas
- University of Lille, Institut national de la santé et de la recherche médicale, CHU-Lille, Centre national de la recherche scientifique, LilNCog-Lille Neuroscience & Cognition, Lille, France
| | - Jeroen J. M. Hoozemans
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Alessandro Cellerino
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
- Leibniz Institute on Ageing, Fritz Lipmann institute, Jena, Germany
| | - Antonino Cattaneo
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Cristina Di Primio
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
32
|
Yan T, Chen Y, Mortishire-Smith B, Simeone A, Hofer A, Balasubramanian S. Selective Photocatalytic C-H Oxidation of 5-Methylcytosine in DNA. Angew Chem Int Ed Engl 2025; 64:e202413593. [PMID: 39231378 DOI: 10.1002/anie.202413593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/06/2024]
Abstract
Selective C-H activation on complex biological macromolecules is a key goal in the field of organic chemistry. It requires thermodynamically challenging chemical transformations to be delivered under mild, aqueous conditions. 5-Methylcytosine (5mC) is a fundamentally important epigenetic modification in DNA that has major implications for biology and has emerged as a vital biomarker. Selective functionalisation of 5mC would enable new chemical approaches to tag, detect and map DNA methylation to enhance the study and exploitation of this epigenetic feature. We demonstrate the first example of direct and selective chemical oxidation of 5mC to 5-formylcytosine (5fC) in DNA, employing a photocatalytic system. This transformation was used to selectively tag 5mC. We also provide proof-of-concept for deploying this chemistry for single-base resolution sequencing of 5mC and genetic bases adenine (A), cytosine (C), guanine (G), thymine (T) in DNA on a next-generation sequencing system. This work exemplifies how photocatalysis has the potential to transform the analysis of DNA.
Collapse
Affiliation(s)
- Tao Yan
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yuqi Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ben Mortishire-Smith
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Angela Simeone
- Cancer Research, UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
| | - Alexandre Hofer
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Shankar Balasubramanian
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cancer Research, UK Cambridge Institute, Li Ka Shing Centre, Robinson Way, Cambridge, CB2 0RE, UK
- School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SP, UK
| |
Collapse
|
33
|
Wiechens E, Vigliotti F, Siniuk K, Schwarz R, Schwab K, Riege K, van Bömmel A, Görlich I, Bens M, Sahm A, Groth M, Sammons MA, Loewer A, Hoffmann S, Fischer M. Gene regulation by convergent promoters. Nat Genet 2025; 57:206-217. [PMID: 39779959 PMCID: PMC11735407 DOI: 10.1038/s41588-024-02025-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
Convergent transcription, that is, the collision of sense and antisense transcription, is ubiquitous in mammalian genomes and believed to diminish RNA expression. Recently, antisense transcription downstream of promoters was found to be surprisingly prevalent. However, functional characteristics of affected promoters are poorly investigated. Here we show that convergent transcription marks an unexpected positively co-regulated promoter constellation. By assessing transcriptional dynamic systems, we identified co-regulated constituent promoters connected through a distinct chromatin structure. Within these cis-regulatory domains, transcription factors can regulate both constituting promoters by binding to only one of them. Convergent promoters comprise about a quarter of all active transcript start sites and initiate 5'-overlapping antisense RNAs-an RNA class believed previously to be rare. Visualization of nascent RNA molecules reveals convergent cotranscription at these loci. Together, our results demonstrate that co-regulated convergent promoters substantially expand the cis-regulatory repertoire, reveal limitations of the transcription interference model and call for adjusting the promoter concept.
Collapse
Affiliation(s)
- Elina Wiechens
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Flavia Vigliotti
- Department of Biology, Systems Biology of the Stress Response, Technical University of Darmstadt, Darmstadt, Germany
| | - Kanstantsin Siniuk
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Robert Schwarz
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Katjana Schwab
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Konstantin Riege
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Alena van Bömmel
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Ivonne Görlich
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Arne Sahm
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
- Computational Phenomics Group, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
- Computational Phenomics Group, Ruhr University Bochum, Bochum, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany
| | - Morgan A Sammons
- Department of Biological Sciences, The RNA Institute, The State University of New York at Albany, Albany, NY, USA
| | - Alexander Loewer
- Department of Biology, Systems Biology of the Stress Response, Technical University of Darmstadt, Darmstadt, Germany
| | - Steve Hoffmann
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Martin Fischer
- Hoffmann Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), Jena, Germany.
| |
Collapse
|
34
|
Lambert CLG, van Mierlo G, Bues JJ, Guillaume-Gentil OJ, Deplancke B. The evolution of DNA sequencing with microfluidics. Nat Rev Genet 2025; 26:1-2. [PMID: 39333241 DOI: 10.1038/s41576-024-00783-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Affiliation(s)
- Camille L G Lambert
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Guido van Mierlo
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Johannes J Bues
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Orane J Guillaume-Gentil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland.
| |
Collapse
|
35
|
Akintunde O, Tucker T, Carabetta VJ. The Evolution of Next-Generation Sequencing Technologies. Methods Mol Biol 2025; 2866:3-29. [PMID: 39546194 DOI: 10.1007/978-1-0716-4192-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
The genetic information that dictates the structure and function of all life forms is encoded in the DNA. In 1953, Watson and Crick first presented the double helical structure of a DNA molecule. Their findings unearthed the desire to elucidate the exact composition and sequence of DNA molecules. Discoveries and the subsequent development and optimization of techniques that allowed for deciphering the DNA sequence has opened new doors in research, biotech, and healthcare. The application of high-throughput sequencing technologies in these industries has positively impacted and will continue to contribute to the betterment of humanity and the global economy. Improvements, such as the use of radioactive molecules for DNA sequencing to the use of florescent dyes and the implementation of polymerase chain reaction (PCR) for amplification, led to sequencing a few hundred base pairs in days, to automation, where sequencing of thousands of base pairs in hours became possible. Significant advances have been made, but there is still room for improvement. Here, we look at the history and the technology of the currently available next-generation sequencing platforms and the possible applications of such technologies to biomedical research and beyond.
Collapse
Affiliation(s)
- Olaitan Akintunde
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Trichina Tucker
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Valerie J Carabetta
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ, USA.
| |
Collapse
|
36
|
Wazahat R. Strategic diagnosis- Unraveling Tuberculosis- A comprehensive approach. Indian J Tuberc 2025; 72:112-132. [PMID: 39890361 DOI: 10.1016/j.ijtb.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 08/12/2024] [Indexed: 02/03/2025]
Abstract
Tuberculosis, an airborne-infectious disease caused by Mycobacterium tuberculosis remains a perpetual threat globally. It claims over 1.4 million lives per year. Various diagnostic strategies including smear microscopy, culture methods, immunochromatographic assays and molecular methods have paved the way for tuberculosis diagnosis. The Government of India has introduced National Strategic Plan (NSP) for TB elimination, aiming to achieve a rapid decline in the incidence, morbidity, and mortality of TB by the year 2030. In its quest for TB elimination, the plan is structured around four strategic pillars: "Detect-Treat-Prevent-Build." To achieve these pillars and progress towards TB elimination, the government encourages adoption of novel point-of- care diagnostics techniques.
Collapse
Affiliation(s)
- Rushna Wazahat
- Department of Biochemistry, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
37
|
Sahm A, Riege K, Groth M, Bens M, Kraus J, Fischer M, Kestler H, Englert C, Schaible R, Platzer M, Hoffmann S. Hydra has mammal-like mutation rates facilitating fast adaptation despite its nonaging phenotype. Genome Res 2024; 34:2217-2228. [PMID: 39632086 PMCID: PMC11694757 DOI: 10.1101/gr.279025.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024]
Abstract
Growing evidence suggests that somatic mutations may be a major cause of the aging process. However, it remains to be tested whether the predictions of the theory also apply to species with longer life spans than humans. Hydra is a genus of freshwater polyps with remarkable regeneration abilities and a potentially unlimited life span under laboratory conditions. By genome sequencing of single cells and whole animals, we found that the mutation rates in Hydra's stem cells are even slightly higher than in humans or mice. A potential explanation for this deviation from the prediction of the theory may lie in the adaptability offered by a higher mutation rate, as we were able to show that the genome of the widely studied Hydra magnipapillata strain 105 has undergone a process of strong positive selection since the strain's cultivation 50 years ago. This most likely represents a rapid adaptation to the drastically altered environmental conditions associated with the transition from the wild to laboratory conditions. Processes under positive selection in captive animals include pathways associated with Hydra's simple nervous system, its nucleic acid metabolic process, cell migration, and hydrolase activity.
Collapse
Affiliation(s)
- Arne Sahm
- Computational Phenomics group, IUF-Leibniz Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany;
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Computational Phenomics group, Faculty of Biology and Biotechnology, Ruhr University Bochum, 44801 Bochum, Germany
| | - Konstantin Riege
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Marco Groth
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Martin Bens
- Core Facility Next Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, 07745 Jena, Germany
| | - Johann Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Martin Fischer
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Hans Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Christoph Englert
- Molecular Genetics Lab, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Institute of Biochemistry and Biophysics, Friedrich Schiller University Jena, 07745 Jena, Germany
| | - Ralf Schaible
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Matthias Platzer
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| | - Steve Hoffmann
- Computational Biology Group, Leibniz Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
| |
Collapse
|
38
|
Ruppeka Rupeika E, D’Huys L, Leen V, Hofkens J. Sequencing and Optical Genome Mapping for the Adventurous Chemist. CHEMICAL & BIOMEDICAL IMAGING 2024; 2:784-807. [PMID: 39735829 PMCID: PMC11673194 DOI: 10.1021/cbmi.4c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 12/31/2024]
Abstract
This review provides a comprehensive overview of the chemistries and workflows of the sequencing methods that have been or are currently commercially available, providing a very brief historical introduction to each method. The main optical genome mapping approaches are introduced in the same manner, although only a subset of these are or have ever been commercially available. The review comes with a deck of slides containing all of the figures for ease of access and consultation.
Collapse
Affiliation(s)
| | - Laurens D’Huys
- Faculty
of Science, Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium
| | - Volker Leen
- Perseus
Biomics B.V., Industriepark
6 bus 3, Tienen 3300, Belgium
| | - Johan Hofkens
- Faculty
of Science, Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, Flanders 3001, Belgium
- Max
Planck Institute for Polymer Research, Mainz, Rheinland-Pfalz 55128, Germany
| |
Collapse
|
39
|
Alsharksi AN, Sirekbasan S, Gürkök-Tan T, Mustapha A. From Tradition to Innovation: Diverse Molecular Techniques in the Fight Against Infectious Diseases. Diagnostics (Basel) 2024; 14:2876. [PMID: 39767237 PMCID: PMC11674978 DOI: 10.3390/diagnostics14242876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/15/2024] [Accepted: 12/17/2024] [Indexed: 01/02/2025] Open
Abstract
Infectious diseases impose a significant burden on global health systems due to high morbidity and mortality rates. According to the World Health Organization, millions die from infectious diseases annually, often due to delays in accurate diagnosis. Traditional diagnostic methods in clinical microbiology, primarily culture-based techniques, are time-consuming and may fail with hard-to-culture pathogens. Molecular biology advancements, notably the polymerase chain reaction (PCR), have revolutionized infectious disease diagnostics by allowing rapid and sensitive detection of pathogens' genetic material. PCR has become the gold standard for many infections, particularly highlighted during the COVID-19 pandemic. Following PCR, next-generation sequencing (NGS) has emerged, enabling comprehensive genomic analysis of pathogens, thus facilitating the detection of new strains and antibiotic resistance tracking. Innovative approaches like CRISPR technology are also enhancing diagnostic precision by identifying specific DNA/RNA sequences. However, the implementation of these methods faces challenges, particularly in low- and middle-income countries due to infrastructural and financial constraints. This review will explore the role of molecular diagnostic methods in infectious disease diagnosis, comparing their advantages and limitations, with a focus on PCR and NGS technologies and their future potential.
Collapse
Affiliation(s)
- Ahmed Nouri Alsharksi
- Department of Microbiology, Faculty of Medicine, Misurata University, Misrata 93FH+66F, Libya;
| | - Serhat Sirekbasan
- Department of Medical Laboratory Techniques, Şabanözü Vocational School, Çankırı Karatekin University, Çankırı 18650, Turkey
| | - Tuğba Gürkök-Tan
- Department of Field Crops, Food and Agriculture Vocational School, Çankırı Karatekin University, Çankırı 18100, Turkey;
| | - Adam Mustapha
- Department of Microbiology, Faculty of Life Sciences, University of Maiduguri, Maiduguri 600104, Nigeria;
| |
Collapse
|
40
|
Santucci K, Cheng Y, Xu SM, Janitz M. Enhancing novel isoform discovery: leveraging nanopore long-read sequencing and machine learning approaches. Brief Funct Genomics 2024; 23:683-694. [PMID: 39158328 DOI: 10.1093/bfgp/elae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Long-read sequencing technologies can capture entire RNA transcripts in a single sequencing read, reducing the ambiguity in constructing and quantifying transcript models in comparison to more common and earlier methods, such as short-read sequencing. Recent improvements in the accuracy of long-read sequencing technologies have expanded the scope for novel splice isoform detection and have also enabled a far more accurate reconstruction of complex splicing patterns and transcriptomes. Additionally, the incorporation and advancements of machine learning and deep learning algorithms in bioinformatic software have significantly improved the reliability of long-read sequencing transcriptomic studies. However, there is a lack of consensus on what bioinformatic tools and pipelines produce the most precise and consistent results. Thus, this review aims to discuss and compare the performance of available methods for novel isoform discovery with long-read sequencing technologies, with 25 tools being presented. Furthermore, this review intends to demonstrate the need for developing standard analytical pipelines, tools, and transcript model conventions for novel isoform discovery and transcriptomic studies.
Collapse
Affiliation(s)
- Kristina Santucci
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yuning Cheng
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Si-Mei Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michael Janitz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
41
|
Nagashima H, Shayne J, Jiang K, Petermann F, Pękowska A, Kanno Y, O'Shea JJ. Remodeling of Il4-Il13-Il5 locus underlies selective gene expression. Nat Immunol 2024; 25:2220-2233. [PMID: 39567762 DOI: 10.1038/s41590-024-02007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/08/2024] [Indexed: 11/22/2024]
Abstract
The type 2 cytokines, interleukin (IL)-4, IL-13 and IL-5 reside within a multigene cluster. Both innate (ILC2) and adaptive T helper 2 (TH2) lymphocytes secrete type 2 cytokines with diverse production spectra. Using transcription factor footprint and chromatin accessibility, we systemically cataloged regulatory elements (REs) denoted as SHS-I/II, KHS-I/II, +6.5kbIl13, 5HS-I(a, b, c, d, e), 5HS-II and 5HS-III(a, b, c) across the extended Il4-Il13-Il5 locus in mice. Physical proximities among REs were coordinately remodeled in three-dimensional space after cell activation, leading to divergent compartmentalization of Il4, Il13 and Il5 with varied combinations of REs. Deletions of REs revealed no single RE solely accounted for selective regulation of a given cytokine in vivo. Instead, individual RE differentially contribute to proper genomic positioning of REs and target genes. RE deletions resulted in context-dependent dysregulation of cytokine expression and immune response in tissue. Thus, signal-dependent remodeling of three-dimensional configuration underlies divergent cytokine outputs from the type 2 loci.
Collapse
Affiliation(s)
| | - Justin Shayne
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - Kan Jiang
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD, USA
| | - Franziska Petermann
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
- NGS Core Facility, German Cancer Research Center, Heidelberg, Germany
| | - Aleksandra Pękowska
- Genomics and Immunity Section, NIAMS, NIH, Bethesda, MD, USA
- Dioscuri Centre for Chromatin Biology and Epigenomics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Yuka Kanno
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA
| | - John J O'Shea
- Lymphocyte Cell Biology Section, NIAMS, NIH, Bethesda, MD, USA.
| |
Collapse
|
42
|
Chen J, Qin Z, Jia Z. The application status of sequencing technology in global respiratory infectious disease diagnosis. Infection 2024; 52:2169-2181. [PMID: 39152290 DOI: 10.1007/s15010-024-02360-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Next-generation sequencing (NGS) has revolutionized clinical microbiology, particularly in diagnosing respiratory infectious diseases and conducting epidemiological investigations. This narrative review summarizes conventional methods for routine respiratory infection diagnosis, including culture, smear microscopy, immunological assays, image techniques as well as polymerase chain reaction(PCR). In contrast to conventional methods, there is a new detection technology, sequencing technology, and here we mainly focus on the next-generation sequencing NGS, especially metagenomic NGS(mNGS). NGS offers significant advantages over traditional methods. Firstly, mNGS eliminates assumptions about pathogens, leading to faster and more accurate results, thus reducing diagnostic time. Secondly, it allows unbiased identification of known and novel pathogens, offering broad-spectrum coverage. Thirdly, mNGS not only identifies pathogens but also characterizes microbiomes, analyzes human host responses, and detects resistance genes and virulence factors. It can complement targeted sequencing for bacterial and fungal classification. Unlike traditional methods affected by antibiotics, mNGS is less influenced due to the extended survival of pathogen DNA in plasma, broadening its applicability. However, barriers to full integration into clinical practice persist, primarily due to cost constraints and limitations in sensitivity and turnaround time. Despite these challenges, ongoing advancements aim to improve cost-effectiveness and efficiency, making NGS a cornerstone technology for global respiratory infection diagnosis.
Collapse
Affiliation(s)
- Jingyuan Chen
- Department of Global Health, School of Public Health, Peking University, Beijing, China
| | - Zhen Qin
- School of Public Health, Peking University, Beijing, China
| | - Zhongwei Jia
- Department of Global Health, School of Public Health, Peking University, Beijing, China.
- Center for Intelligent Public Health, Institute for Artificial Intelligence, Peking University, Beijing, China.
- Center for Drug Abuse Control and Prevention, National Institute of Health Data Science, Peking University, Beijing, China.
| |
Collapse
|
43
|
von Witzleben A, Grages A, Thomas J, Ezić J, Brunner C, Schuler PJ, Kraus JM, Kestler HA, Vahl JM, Doescher J, King EV, Ottensmeier CH, Hoffmann TK, Laban S. Immune checkpoint expression on tumor-infiltrating lymphocytes (TIL) is dependent on HPV status in oropharyngeal carcinoma (OPSCC) - A single-cell RNA sequencing analysis. Oral Oncol 2024; 159:107107. [PMID: 39549431 DOI: 10.1016/j.oraloncology.2024.107107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/02/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
INTRODUCTION A substantial proportion of head and neck squamous cell carcinoma (HNSCC), particularly oropharyngeal squamous cell carcinoma (OPSCC), is associated with human papillomavirus (HPV), resulting in distinct molecular phenotypes. In this study, we investigated differential immune checkpoint molecule (ICM) expression by HPV status using RNA sequencing data to identify additional ICM targets that may complement anti-PD1 antibodies. MATERIAL AND METHODS RNA sequencing was performed on 51 OPSCC cases and validated using the TCGA HNSCC dataset. Unsupervised clustering and differential gene expression analyses in R were conducted based on HPV status. Additionally, a published single-cell RNA sequencing (scRNA) dataset of tumor-infiltrating lymphocytes (TIL) and peripheral immune cells (PBMC) (GSE139324) was analyzed with a Seurat pipeline grouped by HPV status. RESULTS Our study identified a significant upregulation of all examined ICM in HPV-positive OPSCC through bulk RNA sequencing, validated by the TCGA cohort. Unsupervised clustering revealed a strong association between HPV-positive/-negative and high/low ICM expression cases respectively, indicating overlap between ICM and HPV status. In scRNA analysis, CD27, PD-1, OX-40, and BTLA were significantly more highly expressed on TILs of HPV-positive OPSCC. Conversely, VSIR was increased in PBMC and TILs of HPV-negative OPSCC, while LAG3 expression on PBMC was reduced in HPV-negative OPSCC. CONCLUSION Our study unveils the intricate interplay of ICMs in OPSCC, emphasizing the necessity for personalized therapeutic approaches based on HPV status and immune profiles. The identified ICMs, including PD1, CD27, and CTLA4, are promising candidates for further investigation and may enhance immunotherapeutic interventions in the HPV-dependent treatment strategies for OPSCC.
Collapse
Affiliation(s)
- Adrian von Witzleben
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany.
| | - Ayla Grages
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Jaya Thomas
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, UK
| | - Jasmin Ezić
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Cornelia Brunner
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany; Core Facility Immune Monitoring, Medical Faculty of Ulm University, Germany
| | - Patrick J Schuler
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Johann M Kraus
- Institute for Medical Systems Biology, University of Ulm, Germany
| | - Hans A Kestler
- Institute for Medical Systems Biology, University of Ulm, Germany
| | - Julius M Vahl
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Johannes Doescher
- Department of Otorhinolaryngology and Head & Neck Surgery, University of Augsburg, Germany
| | - Emma V King
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, UK; Department of Otorhinolaryngology, Head & Neck Surgery, Poole Hospital, Poole, UK
| | - Christian H Ottensmeier
- Institute of Translational Medicine, Department of Molecular & Clinical Cancer Medicine, University of Liverpool, UK
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| | - Simon Laban
- Department of Otorhinolaryngology and Head & Neck Surgery, Head and Neck Cancer Center of the Comprehensive Cancer Center Ulm, University Medical Center Ulm, Germany
| |
Collapse
|
44
|
Mortillo M, Kennedy EG, Hermetz KM, Burt AA, Marsit CJ. Epigenetic landscape of 5-hydroxymethylcytosine and associations with gene expression in placenta. Epigenetics 2024; 19:2326869. [PMID: 38507502 PMCID: PMC10956631 DOI: 10.1080/15592294.2024.2326869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
5-hydroxymethylcystosine (5hmC), is an intermediate product in the DNA demethylation pathway, but may act as a functional epigenetic modification. We have conducted the largest study of site-specific 5hmC in placenta to date using parallel bisulphite and oxidative bisulphite modification with array-based assessment. Incorporating parallel RNA-sequencing data allowed us to assess associations between 5hmC and gene expression, using expression quantitative trait hydroxymethylation (eQTHM) analysis. We identified ~ 47,000 loci with consistently elevated (systematic) 5hmC proportions. Systematic 5hmC was significantly depleted (p < 0.0001) at CpG islands (CGI), and enriched (p < 0.0001) in 'open sea' regions (CpG >4 kb from CGI). 5hmC was most and least abundant at CpGs in enhancers and active transcription start sites (TSS), respectively (p < 0.05). We identified 499 significant (empirical-p <0.05) eQTHMs within 1 MB of the assayed gene. At most (75.4%) eQTHMs, the proportion of 5hmC was positively correlated with transcript abundance. eQTHMs were significantly enriched among enhancer CpGs and depleted among CpGs in active TSS (p < 0.05 for both). Finally, we identified 107 differentially hydroxymethylated regions (DHMRs, p < 0.05) across 100 genes. Our study provides insight into placental distribution of 5hmC, and sheds light on the functional capacity of this epigenetic modification in placenta.
Collapse
Affiliation(s)
- Michael Mortillo
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elizabeth G. Kennedy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen M. Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber A. Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J. Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
45
|
Zhao Y, Zhang W, Zhang X. Application of metagenomic next-generation sequencing in the diagnosis of infectious diseases. Front Cell Infect Microbiol 2024; 14:1458316. [PMID: 39619659 PMCID: PMC11604630 DOI: 10.3389/fcimb.2024.1458316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/31/2024] [Indexed: 12/11/2024] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is a transformative approach in the diagnosis of infectious diseases, utilizing unbiased high-throughput sequencing to directly detect and characterize microbial genomes from clinical samples. This review comprehensively outlines the fundamental principles, sequencing workflow, and platforms utilized in mNGS technology. The methodological backbone involves shotgun sequencing of total nucleic acids extracted from diverse sample types, enabling simultaneous detection of bacteria, viruses, fungi, and parasites without prior knowledge of the infectious agent. Key advantages of mNGS include its capability to identify rare, novel, or unculturable pathogens, providing a more comprehensive view of microbial communities compared to traditional culture-based methods. Despite these strengths, challenges such as data analysis complexity, high cost, and the need for optimized sample preparation protocols remain significant hurdles. The application of mNGS across various systemic infections highlights its clinical utility. Case studies discussed in this review illustrate its efficacy in diagnosing respiratory tract infections, bloodstream infections, central nervous system infections, gastrointestinal infections, and others. By rapidly identifying pathogens and their genomic characteristics, mNGS facilitates timely and targeted therapeutic interventions, thereby improving patient outcomes and infection control measures. Looking ahead, the future of mNGS in infectious disease diagnostics appears promising. Advances in bioinformatics tools and sequencing technologies are anticipated to streamline data analysis, enhance sensitivity and specificity, and reduce turnaround times. Integration with clinical decision support systems promises to further optimize mNGS utilization in routine clinical practice. In conclusion, mNGS represents a paradigm shift in the field of infectious disease diagnostics, offering unparalleled insights into microbial diversity and pathogenesis. While challenges persist, ongoing technological advancements hold immense potential to consolidate mNGS as a pivotal tool in the armamentarium of modern medicine, empowering clinicians with precise, rapid, and comprehensive pathogen detection capabilities.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Urology Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Wenhui Zhang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xin Zhang
- Department of Urology Surgery, Beijing Chao-Yang Hospital Affiliated to Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Xie X, Xi X, Zhao D, Zhao Y, Yi T, Chen D, Liu R, Qi L, Pan Z, Wang H, Zhang H, Ding R, Du H. Advancing pathogen and tumor copy number variation detection through simultaneous metagenomic next-generation sequencing: A comprehensive review. Heliyon 2024; 10:e38826. [PMID: 39568836 PMCID: PMC11577201 DOI: 10.1016/j.heliyon.2024.e38826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 11/22/2024] Open
Abstract
In clinical practice, timely and accurate diagnosis can effectively reduce unnecessary treatment, avoid high medical costs, and prevent adverse prognoses. However, some patients with malignant tumors and those with infection often exhibit similar symptoms, which are difficult to distinguish, posing challenges in accurate clinical diagnosis. Metagenomic next-generation sequencing (mNGS) technology has been widely applied to confirm the source of infection. Recent studies have shown that for pathogen detection, mNGS technology can be used to perform chromosomal copy number variations (CNVs) analysis in two different analytical pipelines using the same wet test. mNGS technology has further demonstrated its utility in not only the determination of pathogenic microorganisms but also of CNVs, thereby facilitating early differential diagnosis for malignant tumors. In this review, we aim to analyze the diagnostic performance of mNGS technology in the simultaneous detection of pathogenic microorganisms and CNVs in current clinical practice and discuss the advantages and limitations of mNGS-CNV dual-omics detection technology. Our review highlights the need for more large-scale prospective research data on current mNGS-CNV dual-omics detection technology to provide more evidence-based results for researchers and clinicians and to promote the greater role of this technology in future clinical practice.
Collapse
Affiliation(s)
- Xiaofang Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, China
| | - Xiaotong Xi
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Dan Zhao
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Yingyue Zhao
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Tiantian Yi
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Dongsheng Chen
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Rui Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Lin Qi
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Zhen Pan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Hongqiu Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| | - Ran Ding
- Jiangsu Simcere Diagnostics Co., Ltd., Nanjing Simcere Medical Laboratory Science Co., Ltd., The State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, China
- Cancer Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, China
| |
Collapse
|
47
|
Strzoda T, Cruz-Garcia L, Najim M, Badie C, Polanska J. A mapping-free natural language processing-based technique for sequence search in nanopore long-reads. BMC Bioinformatics 2024; 25:354. [PMID: 39538122 PMCID: PMC11562635 DOI: 10.1186/s12859-024-05980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND In unforeseen situations, such as nuclear power plant's or civilian radiation accidents, there is a need for effective and computationally inexpensive methods to determine the expression level of a selected gene panel, allowing for rough dose estimates in thousands of donors. The new generation in-situ mapper, fast and of low energy consumption, working at the level of single nanopore output, is in demand. We aim to create a sequence identification tool that utilizes natural language processing techniques and ensures a high level of negative predictive value (NPV) compared to the classical approach. RESULTS The training dataset consisted of RNA sequencing data from 6 samples. Multiple natural language processing models were examined, differing in the type of dictionary components (word length, step, context) as well as the encoding length and number of sequences required for algorithm training. The best configuration analyses the entire sequence and uses a word length of 3 base pairs with one-word neighbor on each side. For the considered FDXR gene, the achieved mean balanced accuracy (BACC) was 98.29% and NPV was 99.25%, compared to minimap2's performance in a cross-validation scenario. The next stage focused on exploring the dictionary components and attempting to optimize it, employing statistical techniques as well as those relying on the explainability of the decisions made. Reducing the dictionary from 1024 to 145 changed BACC to 96.49% and the NPV to 98.15%. Obtained model, validated on an external independent genome sequencing dataset, gave NPV of 99.64% for complete and 95.87% for reduced dictionary. The salmon-estimated read counts differed from the classical approach on average by 3.48% for the complete dictionary and by 5.82% for the reduced one. CONCLUSIONS We conclude that for long Oxford nanopore reads, a natural language processing-based approach can reliably replace classical mapping when there is a need for fast, reliable and energy and computationally efficient targeted mapping of a pre-defined subset of transcripts. The developed model can be easily retrained to identify selected transcripts and/or work with various long-read sequencing techniques. Our results of the study clearly demonstrate the potential of applying techniques known from classical text processing to nucleotide sequences.
Collapse
Affiliation(s)
- Tomasz Strzoda
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Lourdes Cruz-Garcia
- Cancer Mechanisms and Biomarkers Group, Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Oxfordshire, OX11 0RQ, United Kingdom
| | - Mustafa Najim
- Cancer Mechanisms and Biomarkers Group, Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Oxfordshire, OX11 0RQ, United Kingdom
| | - Christophe Badie
- Cancer Mechanisms and Biomarkers Group, Centre for Radiation, Chemical and Environmental Hazards, UK Health Security Agency, Oxfordshire, OX11 0RQ, United Kingdom
| | - Joanna Polanska
- Department of Data Science and Engineering, Silesian University of Technology, Gliwice, Poland.
| |
Collapse
|
48
|
Lin P, Yu Y, Bao Z, Li F. Optimization of Whole-Genome Resequencing Depth for High-Throughput SNP Genotyping in Litopenaeus vannamei. Int J Mol Sci 2024; 25:12083. [PMID: 39596153 PMCID: PMC11593832 DOI: 10.3390/ijms252212083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
The application of whole-genome resequencing in genetic research is rapidly expanding, yet the impact of sequencing depth on data quality and variant detection remains unclear, particularly in aquaculture species. This study re-sequenced 31 Litopenaeus vannamei (L. vannamei) samples at over 28× sequencing depth using the Illumina NovaSeq system and down-sampled the data to simulate depths from 0.5× to 20×. Results showed that when the sequencing depth was below 10×, the number of SNP identifications increased sharply with the rise in depth, with single nucleotide polymorphisms (SNPs) detected at 10× accounting for approximately 69.16% of those detected at 20×. The genotyping accuracy followed a similar trend to SNP detection results, being approximately 0.90 at 6×. Further analyses showed that the main cause of genotyping errors was the misidentification of heterozygous variants as homozygous variants. Therefore, considering both the quantity and quality of SNPs, a sequencing depth of 10× is recommended for whole-genome studies and genetic mapping, while a depth of 6× is more cost-effective for population structure analysis. This study underscores the importance of selecting optimal sequencing depth to ensure reliable variant detection and high data quality, providing valuable guidance for whole-genome resequencing in shrimp and other aquatic species.
Collapse
Affiliation(s)
- Pengfei Lin
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.L.); (Z.B.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Yu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.L.); (Z.B.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenning Bao
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.L.); (Z.B.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuhua Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (P.L.); (Z.B.); (F.L.)
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
49
|
Cheng C, Cheng Q, Zhou W, Chen Y, Xiao P. Highly accurate single-color fluorogenic DNA decoding sequencing for mutational genotyping. J Pharm Biomed Anal 2024; 249:116397. [PMID: 39111245 DOI: 10.1016/j.jpba.2024.116397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/20/2024]
Abstract
We proposed a single-color fluorogenic DNA decoding sequencing method designed to improve sequencing accuracy, increase read length and throughput, as well as decrease scanning time. This method involves the incorporation of a mixture of four types of 3'-O-modified nucleotide reversible terminators into each reaction. Among them, two nucleotides are labeled with the same fluorophore, while the remaining two are unlabeled. Only one nucleotide can be extended in each reaction, and an encoding that partially defines base composition can be obtained. Through cyclic interrogation of a template twice with different nucleotide combinations, two sets of encodings are sequentially obtained, enabling the determination of the sequence. We demonstrate the feasibility of this method using established sequencing chemistry, achieving a cycle efficiency of approximately 99.5 %. Notably, this strategy exhibits remarkable efficacy in the detection and correction of sequencing errors, achieving a theoretical error rate of 0.00016 % at a sequencing depth of ×2, which is lower than Sanger sequencing. This method is theoretically compatible with the existing sequencing-by-synthesis (SBS) platforms, and the instrument is simpler, which may facilitate further reductions in sequencing costs, thereby broadening its applications in biology and medicine. Moreover, we demonstrate the capability to detect known mutation sites using information from only a single sequencing run. We validate this approach by accurately identifying a mutation site in the human mitochondrial DNA.
Collapse
Affiliation(s)
- Chu Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China.
| | - Qingzhou Cheng
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China
| | - Wei Zhou
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China
| | - Yulong Chen
- College of Medicine and Health Science, Wuhan Polytechnic University, Wuhan, China
| | - Pengfeng Xiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
50
|
Shan J, Cheng R, Magaoya T, Duan Y, Chen C. Comparative Transcriptome Analysis of Cold Tolerance Mechanism in Honeybees ( Apis mellifera sinisxinyuan). INSECTS 2024; 15:790. [PMID: 39452366 PMCID: PMC11508713 DOI: 10.3390/insects15100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Honeybees are important pollinators worldwide that are closely related to agricultural production and ecological balance. The biological activities and geographical distribution of honeybees are strongly influenced by temperature. However, there is not much research on the cold tolerance of honeybees. The Apis mellifera sinisxinyuan, a kind of western honeybee, exhibits strong cold hardiness. Here, we determined that short-term temperature treatment could regulate the honeybee's cold tolerance ability by measuring the supercooling point of A. m. sinisxinyuan treated with different temperatures. Transcriptome data were analyzed between the treated and untreated honeybees. A total of 189 differentially expressed genes were identified. Among them, Abra, Pla1, rGC, Hr38, and Maf were differentially expressed in all comparisons. GO and KEGG analysis showed that the DEGs were enriched in molecular functions related to disease, signal transduction, metabolism, and the endocrine system's function. The main components involved were ribosomes, nucleosomes, proteases, and phosphokinases, among others. This study explored the formation and regulation mechanism of cold tolerance in honeybees, not only providing a theoretical basis for cultivating honeybees with excellent traits but also promoting research and practice on insect stress tolerance.
Collapse
Affiliation(s)
- Jinqiong Shan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.S.)
| | - Ruiyi Cheng
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.S.)
| | | | - Yujie Duan
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.S.)
| | - Chao Chen
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; (J.S.)
- Faculty of Agricultural Sciences and Food, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia
| |
Collapse
|